
CHAPTER 6

Machine Learning

Machine learning is a computational process to discover the underlying mod-
els of system behavior. Machine learning takes datasets, processes them, and
attempts to discover causal variables. Machine learning techniques were big
in the 1980s during the first artificial intelligence. Machine learning is having
a major resurgence in the last decade because of the immense amounts of
data available and the significant advancements in computational power.

The absence of a robust and unified theory of cyber dynamics presents chal-
lenges and opportunities for using machine learning�based data-driven
approaches to further the understanding of the behavior of such complex sys-
tems. Analysts can also use machine learning approaches to gain operational
insights. In order to be operationally beneficial, cyber security machine
learning�based models need to have the ability to: (1) represent a real-
world system, (2) infer system properties, and (3) learn and adapt based on
expert knowledge and observations. Probabilistic models and probabilistic
graphical models provide these necessary properties and are further explored
in this chapter. Bayesian networks (BNs) and hidden Markov models (HMMs)
are introduced as an example of a widely used data-driven classification/
modeling strategy.

This chapter is organized as follows: We begin with an introduction of
machine learning concepts and techniques. This is followed by a discussion
of validating models derived through machine learning. Finally, we will
explore using BNs and HMMs.

CHAPTER OBJECTIVES

� Introduce machine learning
� Discuss model validation
� Explore the use of Bayesian networks and hidden Markov models in

cyber security research
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WHAT IS MACHINE LEARNING

Machine learning is a field of study that looks at using computational algo-
rithms to turn empirical data into usable models. The machine learning field
grew out of traditional statistics and artificial intelligences communities.
From the efforts of mega corporations such as Google, Microsoft, Facebook,
Amazon, and so on, machine learning has become one of the hottest compu-
tational science topics in the last decade. Through their business processes
immense amounts of data have been and will be collected. This has provided
an opportunity to re-invigorate the statistical and computational approaches
to autogenerate useful models from data.

Machine learning algorithms can be used to (a) gather understanding of the
cyber phenomenon that produced the data under study, (b) abstract the
understanding of underlying phenomena in the form of a model, (c) predict
future values of a phenomena using the above-generated model, and
(d) detect anomalous behavior exhibited by a phenomenon under observation.
There are several open-source implementations of machine learning algo-
rithms that can be used with either application programming interface (API)
calls or nonprogrammatic applications. Examples of such implementations
include Weka,1 Orange,2 and RapidMiner.3 The results of such algorithms
can be fed to visual analytic tools such as Tableau4 and Spotfire5 to produce
dashboards and actionable pipelines.

Cyber space and its underlying dynamics can be conceptualized as a manifes-
tation of human actions in an abstract and high-dimensional space. In order
to begin solving some of the security challenges within cyber space, one
needs to sense various aspects of cyber space and collect data.6 The observa-
tional data obtained is usually large and increasingly streaming in nature.
Examples of cyber data include error logs, firewall logs, and network flow.

CATEGORIES OF MACHINE LEARNING

There are two dimensions around which machine learning is generally cate-
gorized: the process by which it learns and the type of output or problem it
attempts to solve. For the first machine learning�based solution strategies
can be broadly classified into three categories based on the mechanism used
to perform learning namely, supervised learning, semisupervised learning,
and unsupervised learning.7 For the latter, machine learning algorithms can
be broken into four categories: classification, clustering, regression, and
anomaly detection.

The style of learning has an impact upon the question you are trying to
solve. In some cases, you have data that you do not know the ground truth,
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other times it is possible to label data with categories or classifications.
Sometimes you know what a good result looks like but you may not know
what variables are important to get there. By categorizing machine learning
techniques by the learning style can help you in selecting the best approach
for your research. Table 6.1 discusses the different styles and provides a sam-
ple set of machine learning algorithms.

Supervised learning involves using a labeled dataset (e.g., the outcomes are
known and labeled). Unsupervised learning is used in cases where the labels
of the data are unknown (e.g., when the outcomes are unknown, but some
similar measure is desired). Examples of unsupervised learning approaches
include self-organizing maps (SOMs), K-means clustering, expectation�
maximization (EM), and hierarchical clustering.8 Unsupervised learning
approaches can also be used for preliminary data exploration such as
clustering similar error logs entries. Results of unsupervised algorithms are
frequently visualized using visual analytic tools. An important caveat on
using an unsupervised approach is to make sure one knows the numeric
space that the data encompasses as well as the type of distance measure
applied. Semisupervised approaches are a hybrid of unsupervised and
supervised approaches. Such approaches are used when only some of
the data is unlabeled. Semisupervised approaches are used when a portion
of the data is unlabeled. Such approaches can be inductive or transductive.9

While it is sometimes helpful in picking algorithms based on what type of
input data is available, it is equally helpfully to break them out along the

Table 6.1 Learning Style Categorization of Machine Learning Algorithms

Style Definition Example Algorithms

Unsupervised In unsupervised learning, no extra or meta data is
provided to the algorithm and it is forced to discover
the structure data and the relationship of variables by
observing a raw dataset.

K-means clustering, hierarchical clustering,
principal component analysis

Supervised In supervised learning, input data is annotated with
expert information detailing what the expected output
or answer would be. The process of annotating data
for supervised learning is called labeling.

Neural network, Bayesian networks,
decision tree, support vector machine

Semi-
supervised

In semisupervised learning a small set of learning
data is labeled but large gaps in labeling are present.
This is largely used when it is known that a small
number of variables led to a result, but the full extent of
the variables involved is unknown. A special case of
semisupervised learning is called reinforced learning
where an expert informs the algorithm if its output is
correct or not.

Expectation�maximization, transductive
support vector machine, Markov decision
processes
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result types provided. Variables within a dataset can be numeric (i.e., discrete
or continuous), ordinal (i.e., order matters), cardinal (i.e., integer valued),
nominal/categorical (i.e., used as an outcome class name). Machine learning
algorithms can also be categorized based on the type of problem they solve.
An example of such a breakdown of algorithms is listed in Table 6.2.

Decision tree algorithms: classification trees (e.g.,C4.5) can be used in cases
of a nominal class variable while regression trees can be used for continuous
numeric valued outcome variables.

As discussed by Murphy et al.,11 several issues affect the alternative learning
schemes, including:

� Dynamic range of the features
� Number of features
� Type of the class variable
� Types of the features
� Heavily correlated features

In order to be operationally beneficial, cyber security machine learning�
based models need to have the ability to: (1) represent a real-world system,
(2) infer system properties, and (3) learn and adapt based on expert know-
ledge and observations. Probabilistic graphical models have wide applica-
tions for assessing and quantifying cyber security risks.12,13 These models
contain desirable properties including representation of a real-world system,
inference about queries of interest related to the system, and learning from
expert knowledge and past experience.14 The probabilistic terms in these
models may be estimated or learned from historical data, generated from
simulation experiments, or elicited through informed judgments of subject
matter experts.

Table 6.2 Categories of Machine Learning Algorithms Separated by Problems they Address10

Problem Definition Example Algorithms

Classification Classification algorithms take labeled data and
generate models that classify new data into the
learned labels.

Hidden Markov models, support vector
machines (SVMs), random forests, naïve bayes,
probabilistic graphical models, logistic
regression, neural networks [9]

Clustering Cluster analysis attempts to take a dataset and
define clusters of like items.

K-means, heirarchical, density-based (DBSCAN)

Regression Regression attempts to generate a predictive
model by optimizing the error in learned data.

Linear,logistic, ordinary least squares,
multivariate adaptive regression splines

Anomaly
detection

Anomaly detection takes a dataset of “normal”
items and learns a model of normal. This model is
used to determine if any new data is anomalous
or low probability of occurring.

One-class SVM, linear regression and logistic
regression, frequent pattern growth (FP-growth),
a priori
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DID YOU KNOW?

A common application of anomaly detection
machine learning algorithms is credit card
fraud detection. Machine learning is used to
generate models of each customer’s behav-
ior and usage pattern. If the activity appears
that is deemed anomalous by the model

then a fraud alert is triggered. So when you
go on vacation and get a fraud alert from
using your credit card, you should know this
means you deviated enough from your
schedule such that it appears anomalous.

Owing to the adaptive nature of cyber threats, probabilistic cyber risk models
need to accommodate efficient updating of model structure and parameter
estimates as new intelligence and information becomes available. Also,
understanding relationships between factors influencing the occurrence and
impacts of such events is a critical task. Bayesian networks, or probabilistic
directed acyclic graphs, have mathematical properties for characterizing rela-
tionships between dynamic event and system factors, can be updated using
probabilistic theories, and produce inference and predictions for unobserved
factors given evidence. Past research indicates the potential for the applica-
tion of BNs along with attack graphs for real-world cyber defenses.15,16,17,18

HMMs have been widely used to generate data-driven models for several
cyber security solutions.

DEBUGGING MACHINE LEARNING

One of the challenges with machine learning is the problem of overfitting or
underfitting called variance and bias respectively. Model variance or overfit-
ting is when a machine learning developed model fits the training dataset
very well but fails to generalize to new datasets. Model bias or underfitting is
when the machine learning generated model has high error in fitting the
training set. This can commonly occur when you are learning over too many
features There are two general options to address overfitting: reduce the num-
ber of features or use regularization. Regularization is the process to reduce
the magnitude of values of a large feature set.

If you find that a model you have developed through machine learning is mak-
ing large errors in predictions what should you do? One approach is to develop
a diagnostic. A machine learning diagnostic is a test designed to gain insight
into what isn’t working in an algorithm or how to improve its performance.
Diagnostics can be difficult to build but they are well worth it in the long run.

Another good approach to validating your model is to use cross-validation.
Cross-validation is a process to evaluate the generalizability of your devel-
oped model. The process of doing cross-validation largely starts with dividing
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your initial dataset into three; a training set, a cross-validation set, and a test
set. You want to have a sufficient amount of data for your training set so a
good rule of thumb is to make the divisions at 60% training, 20% cross vali-
dation, and 20% test. The cross-validation set is used to tune or find the
best-fit model parameters. Then the test set is used to determine the gener-
alizability of the generated model.

There are a few more tips for addressing. To fix high variance you can get
more training data or try to learn around a smaller set of features or vari-
ables. To fix high bias try adding more features or polynomial features. In
both cases tuning your parameters can help.

DID YOU KNOW?

In 2011 the IBM Watson super computer
competed in two Jeopardy matches with
Brad Rutter and Ken Jennings, two of the
most successful Jeopardy players in his-
tory. The technology underlying Watson’s
ability to parse and answer questions,

called DeepQA, leveraged over 100 machine
learning algorithms.19 But it wasn’t just the
algorithms alone but also the pipeline and
structured sequence of using the machine
learning algorithms that helped Watson
best two of the best Jeopardy contestants.

BAYESIAN NETWORK MATHEMATICAL PRELIMINARIES
AND MODEL PROPERTIES

A BN is a graphical model that represents uncertainties (as probabilities)
associated with discrete or continuous random variables (nodes) and
their conditional dependencies (edges) within a directed acyclic
graph.20,21

BNs model the relationships among variables and may be updated as addi-
tional information about these variables becomes available. Mathematically,
if nodes represent a set of random variables, X5X1;X2; :::;Xn then a set
of links connecting these nodes Xi-Xj represent the dependencies among
the variables. Also, each node is conditionally independent of nondescen-
dant nodes given its parent nodes and has an attached probability function.
As a result, the joint probability of all nodes, P Xð Þ may be represented as:
Ln

i51P
�
Xi j parentsðXiÞ

�
.

Strengths and Limitations
Key strengths and limitations of BNs are listed below:

� Models dependencies among random variables as directed acyclic graphs
� Allows probabilistic inference of unobserved variables
� Graphical representation may be intuitive for users
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� Incorporate data/expert judgments and update structure/parameters as
“new” data/knowledge becomes available

� Inferring structure of an unknown network may be computationally
demanding from a scalability perspective

� Identifying reliable prior knowledge is a challenge

Data-driven Learning and Probabilistic Inference within
Bayesian Networks
Structure learning within Directed Acyclic Graphs (DAGs) may be broadly clas-
sified as: (1) constraint-based and (2) score-based. Constraint-based algorithms
use conditional independence tests using the data to build causal graphs that
satisfy constraints. A challenge associated with constraint-based approaches is
identifying independence properties and optimizing network structure. Also,
these approaches do not account for a well-defined objective function and may
result in nonoptimal graphical structures. Score-based algorithms assigns a score
function to the entire space of causal graphs and typically use greedy search
among various potential DAGs to identify the structure with the highest score.
These approaches are optimization-based and tend to scale better.

Data-driven statistical learning methods (e.g., Hill Climbing and Grow-Shrink
algorithms) may be adopted to infer Bayesian network structures for various
parameters of interest across geographic regions. Hill Climbing is a score-
based algorithm that uses greedy heuristic search to maximize scores assigned
to candidate networks.22 Grow-Shrink is a constraint-based algorithm that
uses conditional independence tests to detect blankets (comprised of a node’s
parents, children, and children’s other parents) of various variables.

DIG DEEPER: BAYESIAN NETWORK PROVENANCE
The probabilities and process underlying BNs was first defined by Thomas Bayes in mid-
17th century. The Bayes rule determines the probability of an event by updating prior proba-
bilities with new information. It wasn’t until the 1980s that Judea Pearl made the distinction
between evidence and causality. In the Bayesian network defined by Pearl, the nature and
uncertainty of evidence is taken into account before updating probabilities.

Parameter Learning
Probabilistic parameters associated with these network structures may be esti-
mated using expectation maximization and maximum likelihood estimation tech-
niques. Expectation maximization is useful with not fully observed data,
and is an iterative algorithm where in the “Expectation” step the probability
of unobserved variables given observed and current parameters are estimated.
Thereafter, in the “Maximization” step the current parameters are updated
through log-likelihood maximization.
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Maximum likelihood approach is useful with fully observed data and
involves estimating probabilistic parameters θ, for each node in the graph
such that the log-likelihood function, log

�
PðXjθÞ�, is maximized.

Bayesian estimation is also an option, where θ is treated as a random vari-
able, a prior probability p θð Þ is assumed, and data is used to estimate the
posterior probability of pðθjXÞ.

Probabilistic Inference
BNs apply Bayes’ theorem for inference of unobserved variables. Variable
elimination (by integration or summation) of unobserved, nonquery vari-
ables is a widely used exact inference method. Approximate inference meth-
ods include stochastic Markov Chain monte Carlo (MCMC) simulation, logic
sampling, likelihood weighting, and others.

Notional Example with bnlearn Package in R
R, in conjunction with the RStudio integrated development environment,
provides a powerful platform for data analysis. The default setup of R pro-
vides several libraries including the stat library. R and RStudio need to be
installed separately.23,24 The example described below uses the R package
“bnlearn”25 for structure learning, parameter learning, and probabilistic infer-
ence. The code begins by loading the “learning” dataset. This data has dis-
crete levels for each of the following random variables: In a realistic cyber
setting, these random variables (e.g., A, B, etc.) may represent the time-
varying health of system components and the levels (e.g., a, b, c) may repre-
sent the discrete states of health.

#install.packages(“bnlearn”)
library(bnlearn)
data(learning.test)
str(learning.test)
## ‘data.frame’: 5000 obs. of 6 variables:
## $ A: Factor w/ 3 levels “a”,“b“,”c”: 2 2 1 1 1 3 3 2 2 2 . . .

## $ B: Factor w/ 3 levels “a”,”b”,”c”: 3 1 1 1 1 3 3 2 2 1 . . .

## $ C: Factor w/ 3 levels “a”,”b”,”c”: 2 3 1 1 2 1 2 1 2 2 . . .

## $ D: Factor w/ 3 levels “a”,”b”,”c”: 1 1 1 1 3 3 3 2 1 1 . . .

## $ E: Factor w/ 3 levels “a”,”b”,”c”: 2 2 1 2 1 3 3 2 3 1 . . .

## $ F: Factor w/ 2 levels “a”,”b”: 2 2 1 2 1 1 1 2 1 1 . . .

head(learning.test)
## A B C D E F
## 1 b c b a b b
## 2 b a c a b b
## 3 a a a a a a
## 4 a a a a b b
## 5 a a b c a a
## 6 c c a c c a
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Structure learning using Hill Climbing and Grow-Shrink results in the
following.

raw ,- data.frame(learning.test)
bn.h ,- hc(raw) #hill climbing
bn.g ,- gs(raw) #grow-shrink
bn.h
##
## Bayesian network learned via score-based methods
##
## model:
## [A][C][F][B|A][D|A:C][E|B:F]
## nodes: 6
## arcs: 5
## undirected arcs: 0
## directed arcs: 5
## average markov blanket size: 2.33
## average neighbourhood size: 1.67
## average branching factor: 0.83
##
## learning algorithm: Hill-Climbing
## score: BIC (disc.)
## penalization coefficient: 4.258597
## tests used in the learning procedure: 40
## optimized: TRUE

Bayesian Information Criterion (BIC) score above is a measure of relative
model quality, and provides a mechanism for model selection by balancing
goodness-of-fit and complexity through a penalty term. Lower BIC scores are
preferred; however, these scores do not represent model quality in the abso-
lute sense and must be interpreted carefully.

The resulting structures are given below. The dependencies among certain
nodes learned solely from data may or may not make intuitive sense and can
be updated based on expert inputs (e.g., blacklist or whitelist). Blacklist indi-
cates an expert-provided absence of a relationship between nodes that is
indicated prior to data-driven structure learning; and Whitelist is the presence
of such a relationship. The different approaches can result in different out-
comes including directionality or the lack thereof between nodes.

#source(“https://bioconductor.org/biocLite.R”)
#biocLite(“Rgraphviz”)
library(Rgraphviz)
## Loading required package: graph
## ## Attaching package: ‘graph’
## The following objects are masked from ‘package:bnlearn’:
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##
## degree, nodes, nodes,-
## Loading required package: grid
par(mfrow 5 c(1, 2))
graphviz.plot(bn.h, main 5 “Hill climbing”)
graphviz.plot(bn.g, main 5 “Grow-shrink”)

In this notional example, the hill climbing and grow-shrink-based BN structures
above are similar except the directionality between nodes A and B. Grow-
shrink results in an undirected edge between nodes A and B, whereas hill
climbing results in the learning of a dependence of node B on node A. Once
the network structure is determined, one can learn the model parameters
(i.e., conditional probability tables (CPT) for the discrete case) associated with
each node in the BN. The results below display parameters of node D based
on maximum likelihood and Bayesian estimation methods.

fit.bnm ,- bn.fit(bn.h, data 5 raw, method 5 “mle”)
fit.bnm$D
##
## Parameters of node D (multinomial distribution)
##
## Conditional probability table:
##
## , , C 5 a
##
## A
## D a b c
## a 0.80081301 0.09251810 0.10530547
## b 0.09024390 0.80209171 0.11173633
## c 0.10894309 0.10539019 0.78295820
##
## , , C 5 b
##
## A
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## D a b c
## a 0.18079096 0.88304094 0.24695122
## b 0.13276836 0.07017544 0.49390244
## c 0.68644068 0.04678363 0.25914634
##
## , , C 5 c
##
## A
## D a b c
## a 0.42857143 0.34117647 0.13333333
## b 0.20238095 0.38823529 0.44444444
## c 0.36904762 0.27058824 0.42222222
fit.bnb ,- bn.fit(bn.h, data 5 raw, method 5 “bayes”)
fit.bnb$D
##
## Parameters of node D (multinomial distribution)
##
## Conditional probability table:
##
## , , C 5 a
##
## A
## D a b c
## a 0.80039110 0.09273317 0.10550895
## b 0.09046330 0.80167307 0.11193408
## c 0.10914561 0.10559376 0.78255696
##
## , , C 5 b
##
## A
## D a b c
## a 0.18126825 0.88126079 0.24724285
## b 0.13339591 0.07102763 0.49336034
## c 0.68533584 0.04771157 0.25939680
##
## , , C 5 c
##
## A
## D a b c
## a 0.42732811 0.34107527 0.13577236
## b 0.20409051 0.38752688 0.44308943
## c 0.36858138 0.27139785 0.42113821

The code below generates a plot of the CPT.

bn.fit.barchart(fit.bnm$D, xlab 5 “Probabilities”, ylab 5 “Levels”,
main 5 “Conditional Probabilities”)
## Loading required namespace: lattice
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With the BN structure and parameters, we can perform probabilistic infer-
ence. Logic sampling and likelihood weighting are currently implemented
options. For example, P(B55 “b”| A55 “a”) B 0.025.

cpquery(fit.bnm, event5(B 55 “b”), evidence5(A 55 “a”))
## [1] 0.02622852
cpquery(fit.bnm, event5(B 55 “b”), evidence5(A 55 “a” & D 55 “c”))
## [1] 0.02760351

BNs are also useful for in-sample and out-of-sample predictions. In-sample
predictions are useful for model evaluation and out-of-sample predictions
help with model testing and validation. An out-of-sample prediction exam-
ple is given below with training and testing datasets and out-of-sample pre-
dictive performance of 90%.

train ,- raw[1:4990, ]
test ,- raw[4991:5000, ]
bn.train ,- hc(train)
fit ,- bn.fit(bn.train, data 5 train)
pred ,- predict(fit, “D”, test)
#library(xtable)
#print(xtable(cbind(pred, test[, “D”])), type5‘html’)
#print(xtable(table(pred, test[, “D”])), type5‘html’)
cbind(pred, test[, “D”])
## pred
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## [1,] 1 1
## [2,] 3 3
## [3,] 2 2
## [4,] 1 2
## [5,] 2 2
## [6,] 1 1
## [7,] 2 2
## [8,] 2 2
## [9,] 3 3
## [10,] 1 1
table(pred, test[, “D”])
##
## pred a b c
## a 3 1 0
## b 0 4 0
## c 0 0 2

HIDDEN MARKOV MODELS

In this section, we discuss HMMs,26 which are a type of dynamic BN models.
HMMs have found applications in biological sequence analysis for gene and
protein structure predictions,27,28,29 multistage network attack detection30,
and in pattern recognition problems31 such as speech,32 handwriting,33 and
gesture34 recognition. HMMs model the generation of a sequence of states
that can only be inferred from a sequence of observed symbols. The symbols
can be discrete (e.g., events, tosses of a coin) or continuous. In a HMM, a
hidden Markov process generates the sequence of states, which are in turn
used to explain and characterize the occurrence of a sequence of observable
symbols. Therefore, the generation of the observable symbols is probabilisti-
cally dependent on the generation of the unobservable Markov states.

To illustrate the process of generating the observation sequence in a HMM, let’s
denote a time-ordered sequence of observed symbols of length T, as
Y 5 fY1;Y2; . . . ;YTg, and the associated hidden sequence of Markov states, as
X5 fX1;X2; . . . ;XTg. Each observed element,Yi, can be a symbol describing the
outcome of a stochastic process. Let O5 O1;O2; . . . ;OMf g represent a discrete
set of M such possible outcomes (observed symbols). Similarly let
S5 fS1; S2; . . . ;YNg represent a discrete set of N distinct Markov states. Besides
specifying the number of observed symbols, M, and the number of distinct
Markov states, N, a HMM specification involves specifying three probability dis-
tributions: (1) the transition state probability distribution, A; (2) the probability
distribution to choose the observed symbol from a state, B; and (3) the initial
state distribution, π. The compact notation, λ5 A;B;πð Þ, is normally used to
represent an HMM.
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Fig. 6.1 illustrates a general example of an HMM. The process of generating
the observation sequence is described below.

Generation of observation sequence in HMM

1. Initialize time index, t 5 1
2. Choose the initial state, Xt , according to the initial state distribution, π.
3. Choose the observed symbol, Yt , according to the probability

distribution, B in state Xt .
4. Choose a new state, Xt11according to the state transition probability

distribution, A for the current state, Xt .
5. Set t5 t1 1
6. if t, T then
7. go to step 3
8. end if

There are three types of problems that need to be solved, in order for HMMs
to be useful in real-world applications:

� Problem 1: Given the observation sequence, Y 5 fY1;Y2; . . . ;YTg, and
the model parameters, λ5 A;B;πð Þ, compute the probability

FIGURE 6.1
General process modeled by hidden Markov models.

166 CHAPTER 6: Machine Learning



(likelihood), PðYjλÞ; that the observed sequence was produced by the
model. Problem 1 aims to evaluate the model.

� Problem 2: Given the observation sequence, Y 5 fY1;Y2; . . . ;YTg, and
the model parameters, λ5 A;B;πð Þ, determine the most optimal state
sequence of the underlying Markov process, X5 fX1;X2; . . . ;XTg.
Problem 2 aims to uncover the hidden part of the model.

� Problem 3: Given the observation sequence, Y 5 fY1;Y2; . . . ;YTg, and
the dimensions M and N, adjust the parameters of the model,
λ5 A;B;πð Þ, to maximize PðOjλÞ. Problem 3 aims to find the best
model that fits a training sequence of observed symbols.

Notional Example with HMM Package in R
This example uses the R package “HMM” for: (1) computing most probable
path of states given a HMM and (2) inferring optimal parameters to a HMM.
The Viterbi algorithm for state path estimation is implemented below:

#install.packages(“HMM”)
#source: https://cran.r-project.org/web/packages/HMM/HMM.pdf
library(HMM)
##Viterbi algorithm for computing most probable path of states given an
HMM
# HMM Initialization
hmm 5 initHMM(c(“A”,”B”,”C”), c(“o1”,”o2”), startProbs5matrix(c
(.25,.5,.25),1), transProbs5matrix(c
(.3,.4,.6,.4,.4,.3,.3,.2,.1),3), emissionProbs5matrix(c
(.5,.4,.9,.5,.6,.1),3))
print(hmm)
## $States
## [1] “A” “B” “C”
##
## $Symbols
## [1] “o1” “o2”
##
## $startProbs
## A B C
## 0.25 0.50 0.25
##
## $transProbs
## to
## from A B C
## A 0.3 0.4 0.3
## B 0.4 0.4 0.2
## C 0.6 0.3 0.1
##
## $emissionProbs
## symbols

Hidden Markov Models 167



## states o1 o2
## A 0.5 0.5
## B 0.4 0.6
## C 0.9 0.1
# Sequence of observations
observations 5 c(“o1”,”o2”,”o2”,”o1”,”o1”,”o2”)
print(observations)
## [1] “o1” “o2” “o2” “o1” “o1” “o2”
# Calculate Viterbi path
viterbi 5 viterbi(hmm,observations)
print(viterbi)
## [1] “C” “A” “B” “A” “C” “A”

The Viterbi-training algorithm for inferring optimal parameters is implemen-
ted below.

##Viterbi-training algorithm for inferring optimal parameters to an HMM
# Initial HMM
hmm 5 initHMM(c(“A”,”B”,”C”), c(“o1”,”o2”), startProbs5matrix
(c(.25,.5,.25),1), transProbs5matrix
(c(.3,.4,.6,.4,.4,.3,.3,.2,.1),3), emissionProbs5matrix
(c(.5,.4,.9,.5,.6,.1),3))
# Sequence of observations
a 5 sample(c(rep(“o1”,100),rep(“o2”,300)))
b 5 sample(c(rep(“o1”,300),rep(“o2”,100)))
observation 5 c(a,b)
# Viterbi-training
vt 5 viterbiTraining(hmm,observation,1000)
print(vt$hmm)
## $States
## [1] “A” “B” “C”
##
## $Symbols
## [1] “o1” “o2”
##
## $startProbs
## A B C
## 0.25 0.50 0.25
##
## $transProbs
## to
## from A B C
## A 0.0000000 0.2981928 0.7018072
## B 0.4230769 0.5769231 0.0000000
## C 1.0000000 0.0000000 0.0000000
##
## $emissionProbs
## symbols
## states o1 o2
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## A 0.5 0.5
## B 0.0 1.0
## C 1.0 0.0

DISCUSSION

BNs and HMMs provide a probabilistic framework to infer, predict, and gain
insights into the dependencies between components within a cyber system.
The choice of random variables, their types (discrete or continuous), and
state information are critical for designing and interpreting BN and HMM
results. Within BNs, the strength and direction of component dependencies
(represented as conditional probabilities) learned from data may vary across
systems and time periods. Additional cyber intelligence information related
to pre-event conditions and postevent impacts can be valuable for enhancing
what-if and forensic analyses. Modeling extensions of interest may include
the use of dynamic BNs that allow evolution over time and hybrid networks
that can accommodate mixed discrete and continuous random variables as
nodes. Further, validation approaches may be incorporated to test various
data-driven learning models using appropriate training and testing datasets.

SAMPLE FORMAT

In the following, we will provide you with a general outline for publishing
your results. Every publication will provide their own formatting guidelines.
Be sure to check your selected venue’s submission requirements to make sure
you follow any outline and formatting specifications. The outline provided
here follows a common flow of information found in published papers and
should meet the requirements of a larger number of publisher specifications.

Every paper is unique and requires some different ways of presentation; how-
ever, the provided sample flow includes all of the general information that is
important to cover in a paper and is a general starting format we take when
starting to write a paper and then modify it to support the topic and venue.
We understand that every researcher has their own style of presentation, so
feel free to use this as a jumping-off point. The discussions of each section
are provided to explain what is important to include and why, so you can
present the important information in whatever way best suits your style.

Abstract
The abstract is a concise and clear summary of the paper. The goal of an
abstract is to provide readers with a quick description of what the paper dis-
cusses. You should only talk about what is stated in the rest of the paper and
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nothing additional. Each submission venue will provide guidelines on how
to provide an abstract. Generally, this includes the maximum length of the
abstract and formatting instructions, but sometimes this will include infor-
mation on the type and layout of the content to provide.

Introduction
The first section of a paper should always be an introduction for the reader
into the rest of the paper. The introduction section provides the motivation
and reasoning behind why the research was performed. This should include
a statement of the research question and any motivating questions that were
used for the research. If any background information is required, such as
explaining the domain, environment, or context of the research, you would
discuss it here. If the audience is significantly removed from some aspect of
this topic, it may be worth it to create an independent background section.
In machine learning papers, it is good to include the performance or learning
criteria around which you will determine the quality of the machine learning
application. It’s also good to specify the category of machine learning you
are describing in this paper; is it a new machine learning algorithm or an
application of an existing machine learning approach to a new set of data?

Related Work
The related works section should include a quick summarization of the
field’s knowledge about this research topic. Are there competing solutions?
Have other machine learning approaches been used in the past? Explain
what is deficient about past applications. What was the gap in the solution
space that motivated the use of the proposed machine learning approach
defined in this paper.

Approach
The approach section of an applied paper is often the meat or largest portion
of the paper. In this section you describe how your machine learning algo-
rithm works and represents or systematizes knowledge. Describe your learn-
ing dataset and any processing or manipulation of the data to provide it to
the algorithm.

Evaluation
In the evaluation explain how you are going to exercise the machine learning
approach to generate a results dataset for performance characterization.
Discuss what test datasets you will use. Explain if you do cross-validation
and regularization.

170 CHAPTER 6: Machine Learning



Data Analysis/Results
In the results section of your paper, explain what you found after you per-
formed your analysis. Present the performance and/or learning results
around whatever metrics you define. Comparative analysis with past or com-
peting applied solutions are very helpful in contextualizing your results.
Without previous performance numbers it is difficult to understand the sig-
nificance of your work. Creating tables to show results is an efficient and
effective method. You can also show pictures of interesting results, that is if a
data anomaly occurred or to display the distributions of the data samples.

Discussion/Future Work
The discussion/future work section is for you to provide your explanations
for the results you received. Discuss additional tests you think should be per-
formed. Discuss future directions in research that may result from the know-
ledge gained from the evaluation. If performance was less than expected
should more observation research be performed?

Conclusion/Summary
In the final section of the paper, summarize the results and conclusions of
the paper. The conclusion section is often a place readers jump to quickly
after reading the abstract. Make a clear and concise statement about what the
ultimate results of the experiments and what you learned from it.

Acknowledgments
The acknowledgments section is a place for you to acknowledge anyone who
helped you with parts of the research that were not part of the paper. It is
also good to acknowledge and funding sources that supported your research.

References
Each publication will provide some guidelines on how to format references.
Follow their guidelines and list all your references at the end of your paper.
Depending on the length of the paper you will want to adjust the number of
references. The longer the paper the more references. A good rule of thumb is
15�20 references for a 6-page paper. For peer-reviewed publications, the
majority of your references should be other peer-reviewed works. Referencing
web pages and Wikipedia doesn’t generate confidence in reviewers. Also,
make sure you only list references that are useful to your paper, that is don’t
inflate your reference count. Good reviewers will check and this will likely
disqualify and reflect poorly on you.
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