
3

Encryption and Web Server Configuration

3.1. Examples of different web servers

The nature of web software programs, which send pages to the user’s

browser (also known as web servers), has changed dramatically in recent

years.

The 2000s were dominated by competition between Apache software

[APA 16] and Microsoft-based servers, Internet Information Server (IIS)

[MIC 16].

Although Apache servers are now the most commonly used type of server,

a newcomer, NGINX [NGI 16], has recently begun to gain in popularity,

renowned for its performance. IIS has largely disappeared and is seldom used,

except for very specific platforms.

Each of these servers is configured using different principles. Whereas

Apache governs the behavior either from a global configuration file or from

.htaccess files placed directly within the file system, NgInx works differently,

with one single file for each application (website name), usually saved in the

/etc/nginx/sites-enabled folder. This makes code review easier: you do not

need to browse the entire tree to determine the system configuration, but it

also has disadvantages, especially in the context of hosting platforms.

Specifying the desired settings is not always possible, since access to the file

might be prohibited.

36 Safety of Web Applications

Each of these web servers can adopt the same configuration, even though

the actual commands for doing so can differ. There would be little interest in

giving one presentation for each type of server; we will only give examples for

Apache, which is the most common, used by almost 50% of all active websites

[NET 16].

3.2. Introduction to concepts in encryption

Encryption is the process of modifying a message so that it becomes

incomprehensible to anybody who does not know the key or decryption

method. We distinguish two main types of encryption: symmetric encryption,

and its variant, hashing, and asymmetric encryption. The implementation of

the latter is based on digital certificates.

3.2.1. Symmetric encryption

Symmetric encryption (or private-key encryption) uses the same key both

to encrypt and decrypt the message.

A cipher is applied to the information being encrypted. One of the

parameters of this cypher is a key known only by the sender and receiver

(Figure 3.1).

Given the key and the cipher, the encrypted message can be decrypted by

applying the inverse cipher associated with the key.

There are two techniques for doing this. Block ciphers divide the message

into several parts of equal size (between 64 and 256 bits, depending on the

algorithm). This is the most common type of encryption in computer systems.

Stream ciphers encrypt the message bit by bit: this technique is mainly used for

radio transmission systems (GSM – cellphone networks, Bluetooth – wireless

networks, for example).

The size of the key itself is typically between 56 and 256 bits.

The strength of a symmetric cipher depends on several factors. The longer

the key, the more secure the encryption. It is widely believed that a key of 256

bits (2256 is approximately 1077, which is estimated to be close to the number

Encryption and Web Server Configuration 37

of electrons in the universe) can never be broken by brute force, i.e. by testing

each combination in turn. However, the length of the key is not the only factor

that determines the strength of the cipher. Messages are encrypted block by

block, and the larger each block, the more robust the cipher. The same

computation function is also applied multiple times (number of iterations).

The greater the number of iterations, the more robust the cipher; ANSSI

recommends performing 65,000 iterations. The relevancy of the algorithm

itself must also be considered, and the key must be generated completely at

random.

encryption

Cleartext message

Encrypted message

Key

decryption

Cleartext message

Key

Figure 3.1. Principle of symmetric encryption

To improve security, especially for codes or passwords, limiting the number

of permitted attempts is also a good idea. For example, smart cards are blocked

after three unsuccessful attempts, which means that unlock codes with only 4–

6 digits are sufficient.

Today, the most widely used algorithm is AES256: the blocks are 128 bits

in size, and the key is 256 bits. It is currently believed to be secure.

Symmetric encryption is inexpensive in terms of computation time, due to

the simplicity of its algorithms (matrix permutations and boolean XOR-type

38 Safety of Web Applications

functions are applied to the data). However, they have a disadvantage: the

sender and the receiver must first exchange the secret key. Over an Internet

connection, confirming the identities of the sender and the receiver is

problematic, and the key must be transmitted in such a way that nobody else

can see it. We will see below that asymmetric encryption provides a solution

to this problem.

3.2.2. Computing hashes and salting passwords

In computing, a hash is a fixed-length sequence of characters calculated

from a file or an arbitrary sequence of characters. The hash is unique: it is

impossible to obtain the same hash from different data. But if the algorithm

is not sufficiently secure or the number of possible combinations is too small,

there can be collisions, i.e. two different strings can lead to the same hash1.

Finally, it should not be possible to reconstruct the original information from

the hash.

There are two main situations in which hashes are useful. The first is when

we wish to verify that a copy of a file is identical to the original, for example

when downloading an ISO image. The website hosting the download

indicates the hash value, and specifies the method used to calculate it. Once

the file has been downloaded, it is easy to recalculate the hash and check that

both values are identical. If there is a difference, the downloaded file is not

identical to the original, either due to an error during transmission or

interference from a hacker, which typically takes the form of a

man-in-the-middle attack [WIK 15a]. In this type of attack, the attackers

position themselves between the client’s computer and the web server, and

rewrite the transmitted information in real time.

Hashes are also used to encode passwords in such a way that they cannot

be decoded.

A special procedure can be used to store passwords. When the password is

created, its hash is calculated, and the hash is stored in the database. To check

the password, the program calculates the hash of the string entered by the user,

and then compares it to the value stored in the database. If the two hashes are

identical, the password is accepted as correct (Figure 3.2).

1 Today, the md5 algorithm is no longer used alone, primarily because of this weakness.

Encryption and Web Server Configuration 39

Password
intialization

qwerty Hash function

9ceece10cf8b...

9ceece10cf8b...

Hash functionqwerty

Enter
password

Identical passwords

Figure 3.2. Password verification using hashes

Today, we extend this procedure with a technique known as salting. The

hash is calculated from the data given to the hash algorithm. But if these data

are predictable (password too easy to guess, for example), it can be relatively

easy to recover the original data from the hash.

This can happen in practice for passwords. Too many people choose

passwords that are easy to guess: the strings password or 12345678, first

names or the date of birth of a child or spouse, etc., are unfortunately very

common choices. If an attacker knows the hashing algorithm and has access

to the database following an intrusion or data theft, they will be able to run a

search that will easily find some of these passwords.

To protect against the risk of this type of attack, one solution is to mix in a

piece of variable information when the hash is calculated. This variable

information is different for each user. This is called salting. Usually, the

account or login id, which is necessarily unique, is appended to the password:

even if two users have the same password, this procedure results in different

hashes. Below is an example with the password password and the two distinct

user accounts john and mark (the code was generated using a Linux

command):

40 Safety of Web Applications

echo johnpassword|sha256sum
88071 bcc...

We joined the username (john) and the password (password) together

before computing the hash. We now do the same with a different username,

mark:

echo markpassword|sha256sum
bd6e27fb08 ...

The two hashes are different.

Therefore, even though the passwords themselves might be the same, the

values stored in the database are never identical. Even if the attacker knows the

salting algorithm, they will be forced to recalculate all possible values for each

account, which makes their task much more complex.

3.2.3. Asymmetric encryption

Symmetric encryption is secure enough to protect communications, but it

suffers from a fundamental flaw: the encryption key must be shared between

both parties. Thus, we need a way to exchange the key without it being

intercepted, while verifying the identity of the person with whom we are

communicating.

Asymmetric encryption provides a solution to this problem.

Asymmetric protocols generate two keys instead of one, based on two

randomly chosen prime numbers. The remarkable property of this procedure

is that a message encrypted with one key can only be decrypted using the

other:

1 2

Alice Bob

Figure 3.3. Principle of asymmetric encryption

Encryption and Web Server Configuration 41

The message encrypted with key 1 can only be decrypted with key 2. The

reverse is also true: the message encrypted with key 2 can only be decrypted

with key 1.

In practice, the first key is kept secret by its owner: it is referred to as the

private key. The second key, the public key, is transmitted to all recipients that

request it.

This mechanism provides an easy way of accomplishing two different

tasks: encrypting messages and verifying the identity of a communication

partner.

If Bob wants to send an encrypted message to Alice, he retrieves her public

key, and uses it to encrypt his message. Alice can then decrypt the message

using her private key: she is the only one able to do so, as she is the only one

who knows the private key.

Now, if Alice sends a message to Bob, and Bob wants to be certain that

it was definitely Alice who sent it, the procedure is a little more complicated

(Figure 3.4).

The following sequence of operations is performed:

– Alice calculates the hash of her message using a hash function as

discussed above;

– she encrypts the hash using her private key;

– she sends a message with the encrypted hash to Bob;

– Bob receives this message, and calculates its hash;

– he decrypts the encrypted hash sent by Alice using her public key;

– finally, he compares both hashes: if they are identical, then it must have

been Alice who sent the message.

Of course, this protocol is carried out automatically, and these calculations

are performed by software programs, such as email clients like Thunderbird

[MOZ 15].

Asymmetric encryption is relatively robust because it is currently not

possible to quickly factor the product of two prime numbers if they are

42 Safety of Web Applications

chosen to be sufficiently large (there are other algorithms for managing

asymmetric keys based on elliptic curves rather than prime numbers; these

algorithms do not require the keys to be so large).

Hash

Encrypted
Hash

PRI

Encrypted
Hash

PUB

Hash

Decrypted
Hash

= ?

Figure 3.4. Principle of asymmetric encryption-based signatures

As it currently stands, the prime numbers used to generate the keys must

have sizes of at least 2048 bits to guarantee that they are robust. Even today,

ANSSI recommends using keys with 3096 bits, especially if they are intended

to remain in usage until after 2030.

3.2.4. What is the ideal length for encryption keys?

The figures listed here are taken from a document published by ANSII

[ANS 14].

Here are some examples that give an idea of the orders of magnitude

involved.

Encryption and Web Server Configuration 43

2n 10n Order of magnitude

232 4,294,967,296 Number of people on Earth

246 7.036874418× 1013 Sun–Earth distance, in millimeters

255 3.602879702× 1016 Number of operations performed in 1 year at a

rate of one billion per second (1 Ghz)

290 1.237940039× 1027 Number of operations performed in 15 billion

years at a rate of one billion per second

2256 1.157920892× 1077 Estimated number of electrons in the universe

Table 3.1. Some examples of orders of magnitude

For secret-key encryption (symmetric keys), the minimum block size must

be at least 64 bits (128 bits after 2020). The length of the encryption key must

be at least 128 bits. It is believed that a key of length 256 bits will never be

able to be broken by brute force.

The decryption rules for asymmetric encryption are completely different:

factoring procedures are used, which are easier to compute. The minimum

size of the prime moduli, i.e. the moduli used to generate the keys, should not

be less than 2048 bits (3072 bits for certificates intended to remain in usage

after 2030).

3.2.5. Digital certificates and the chain of certification

One of the problems with using asymmetric encryption lies in the fact that

it is difficult to be sure that the public key, provided by Alice, is indeed hers

and was not replaced by an attacker.

One solution is to trust a certification authority that guarantees the validity

of the public key.

The certification authority signs Alice’s public key using the following

procedure:

– when Alice generates her two keys, she sends her public key to the

certification authority;

– the certification authority verifies Alice’s identity, for example by

checking her identification documents, and then signs Alice’s public key by

encrypting its hash with the certification authority’s own private key. The

public key and the encrypted hash are stored in a digital certificate.

44 Safety of Web Applications

To verify that the digital certificate (and hence the public key) indeed

belongs to Alice, her communication partner can calculate the hash of Alice’s

public key and then decrypt the encrypted hash using the public key of the

certification authority. If these two hashes are identical, the user can trust that

this key belongs to Alice, so long as they trust the certification authority. This

is exactly the same procedure as for signing messages, as discussed just above

(see section 3.2.3).

The public keys of the certification authorities are built directly into

computer systems, which means they can be trusted without necessarily

knowing all of them. Software publishers such as the Mozilla foundation for

the Firefox browser are responsible for including integrated certificates issued

by certification authorities. These public keys are technically implemented by

placing them in a self-signed certificate, i.e. a certificate signed directly by the

certification authority that created the key.

In most cases, the certification authorities do not use their private key to

generate the certificates of their clients, but instead create an intermediate key

that is then used to produce the required certificates. This leads to a chain of

certification (Figure 3.5).

In this example, the server certificate is generated from a level 3 certificate.

To allow the browser to validate the certificate submitted by the server, the

server produces three certificates on request, which makes it possible to unravel

the chain up to a known certification authority (the root certificate).

Certificates allow persons or devices to be reliably identified. They can

therefore be used to authenticate users in applications, sign messages or

documents and encrypt messages or communications to prevent them from

being read by unauthorized parties. This is the procedure used for web

applications, in the form of the https protocol (see section 3.4).

3.3. Generating and managing encryption certificates

3.3.1. The OpenSSL library

OpenSSL is a library of tools for managing TLS encryption. Distributed

under the Apache license, it is available for almost every operating system,

and is the most frequently used library in practical contexts.

Encryption and Web Server Configuration 45

Root Certificate

Intermediate
certificate

Intermediate
certificate

Server
certificate

Chain of certification

Figure 3.5. The chain of certification

3.3.2. Different types of certificates

Public keys, private keys and certificates are provided in various formats.

The most common are listed below:

– DER: Used to encode X509 certificates written in ASN.1. Standard

filename extensions: .der, .cer, .crt, .cert;

– PEM: Privacy Enhanced Mail. This is base64-encoded DER with added

ASCII headers. Standard filename extensions: .pem, .cer, .crt, .cert;

– PKCS#12: Personal Information Exchange Syntax Standard. This is

a standard for storing private keys, public keys and certificates, usually in

password-protected form. The data are stored as binary. Filename extension:

.p12, .pfx (for Microsoft).

Personal certificates are stored in the .p12 format. They contain both the

private key and the public key, and so should always be password-protected.

46 Safety of Web Applications

3.3.3. Generating certificates

A certificate is a public key that has been signed by a certification

authority. To create a certificate, the best solution is to submit a request to a

recognized authority, but we can also self-sign our certificates by creating our

own authority. In this case, browsers will not recognize the certificate as

secure.

In our discussion, we will begin by signing our own public keys. This is our

only option if we do not have access to a certification authority.

3.3.3.1. Creating the root certificate

We begin by creating the private key of the authority corresponding to the

root certificate.

openssl req -new -x509 -keyout cacert.pem -out
cacert.pem -days 3650

This command generates a private key - public key pair. When this program

is executed, it will request a password: this is the password used to protect the

private key, which will need to be given each time that a certificate is signed.

Here, the root certificate is valid for 10 years (3650 days).

The cacert.pem file contains both the private key and the public key.

We will now generate the certificate belonging to the certification

authority, which will be used to validate the other certificates that we will

generate subsequently; this certificate therefore contains the public key of the

certification authority:

openssl x509 -in cacert.pem -out cacert.crt

The root certificate is the file cacert.crt.

3.3.3.2. Creating the private and public keys of the server

We will now generate the key pair (private key and public key), e.g. for a

web server:

openssl genrsa -out server.key 2048

Encryption and Web Server Configuration 47

The key has a length of 2048 bits.

We can protect it to prevent anyone other than root or authorized processes
from accessing it:

chmod 600 server.key

The private key - public key pair does not have an expiration date, unlike

certificates, which are issued for limited periods.

3.3.3.3. Creating the request for a certificate to be validated by the root
authority

Using the key pair that we just generated, we will prepare a request to be

submitted to the certification authority. It contains the public key, but also other

information, including the name of the server or website for which we want to

generate a key:

openssl req -new -key server.key -out server.csr

After running this command, we will need to fill out a few fields. To leave

a field blank, we use a period (.).

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some -State]:.
Locality Name (eg, city) []:.
Organization Name (eg, company) [Internet Widgits

Pty Ltd]: MY COMPANY
Organizational Unit Name (eg, section) []: .
Common Name (eg, YOUR name) []: myserver.company.

com
Email Address []: .

Please enter the following ’extra ’ attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

The last two fields are left blank. The challenge password is used to

generate a password to unlock the private key, and is not required in this

example.

48 Safety of Web Applications

Carefully note: it is important for the Common Name to match the name of

the server or website that will be used. When verifying the key, the software

will check that the server or website name is identical to the value stored in

this field.

Some certification authorities allow multiple names to be specified here,

which allows the same certificate to be used with multiple DNS entries. This

is sometimes used for mail servers, enabling them to use the same certificate

for both TLS pop access (pop.myserver.com) and webmail

(webmail.myserver.com), etc. It is also possible to create certificates with

wildcard characters, such as *.mydomain.com: all subsites of this domain can

be validated by the same certificate. Doing this is now officially discouraged

because of the risks that it creates: if the certificate is hijacked, all of the

websites of a single organization can now be forged.

Multiple certificates can also be created from the same private key – public
key pair: one request is submitted for each web address hosted by the server.

3.3.3.4. Signing the certificate locally

If you do not wish to use the services of a registration authority, you need

to generate the certificate yourself. The first time that you do this, you will

need to create a file containing the serial numbers of the generated certificates

(the cacert.srl file) as well as the certificates themselves, using the following

command:

openssl x509 -req -in server.csr -CA cacert.pem -
CAkey cacert.pem -out server.crt -
Cacreateserial

If the cacert.srl file exists, the command for doing this is:

openssl x509 -req -days 3650 -in server.csr -CA
cacert.pem -out server.crt

The server.crt file is a certificate that contains not just the public key itself,

but also its hash, encrypted with the root certificate.

3.3.3.5. Requesting a certificate signature from a registration authority

If you have a certification authority, you can send them the file containing

the certificate request (server.csr). In return, you will receive a certificate

Encryption and Web Server Configuration 49

containing both the public key and its encrypted hash. Usually, the fields

Organization Name and Organizational Unit Name are mandatory: check

with your certification authority to know which fields are required.

You will also need to obtain the root certificate (the equivalent of cacert.crt,
the public key of the certification authority), which will allow you to verify the

validity of the certificate.

3.3.3.6. Creating a self-signed certificate without using a registration
authority

Some applications need a simple self-signed certificate, i.e. one that is not

signed by a registration authority, even a personal one. Once the certificate

creation request has been executed, run the following command:

openssl x509 -req -days 3650 -in server.csr -
signkey server.key -out server.crt

The file server.crt contains the self-signed certificate.

3.3.4. Where are keys and certificates stored?

In Linux-based systems using the OpenSSL library, the following folders

are usually used:

– /etc/ssl/certs: contains certificates and public keys. This folder is readable

by all device users.

– /etc/ssl/private: contains the private key(s) of the device.

Access to this second folder needs to be strictly managed: if somebody

obtains the private key, they can decrypt all encrypted messages, or

impersonate the sender. This type of attack is known as man in the middle
[WIK 15a].

By default, this folder can only be accessed by the root account, which

prevents web server processes from accessing the private keys, meaning that it

will not be able to initiate https connections.

To change this behavior, we need to allow the ssl-cert group to browse this

folder, and give private key read permissions to this group:

50 Safety of Web Applications

sudo chmod g+x ssl -cert /etc/ssl/private
sudo chmod g+r ssl -cert /etc/ssl/private /*

The sudo command grants administrative rights for executing commands.

Now, the account used by the web server, which in this case is www-data,

is added to the ssl-cert group:

sudo usermod -a -G ssl -cert www -data

After restarting the Apache server, it will be able to access the private key

and correctly manage https connections.

3.3.5. Commands for viewing keys and certificates

To view the contents of a private key:

openssl rsa -in server.key -text

Private -Key: (2048 bit)
modulus:

00:bb:6c:c9:c5:57:4f:f3:7c:83:56: a9:2d:c1:5d:
(...)
publicExponent: 65537 (0 x10001)
privateExponent:

07:d3:12:d9:5a:3b:cc:3e:76:7d:37:b2:e1:4f:b2:
(...)
prime1:

00:e4 :40:84: cf:08:d9:b5:c8:2e:74:a3:3f:75:72:
(...)
exponent1:

23:be:72:cd:d5:2d:fa:c8:a1:75:c4:86:d0:86:a1:
(...)
coefficient:

58:c0:2b:ea:71:eb:a5:60:e0:a0:25:f5:7c:b1:94:
(...)

75:53:08: da:ea:e1:74:6d
writing RSA key
-----BEGIN RSA PRIVATE KEY -----

Encryption and Web Server Configuration 51

MIIEogIBAAKCAQEAu2zJxVdP83yDVqktwV0saR1QafKL+
XblgtQT8pHDx2XQCWdW

(...)
IK/QeXnadKjz8jZT78nxL+N1xqK5RSBaAsk/

hzQsdVMI2urhdG0=
-----END RSA PRIVATE KEY -----

To view the associated public key:

openssl rsa -in server.key -pubout

writing RSA key
-----BEGIN PUBLIC KEY -----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ
(...)
OwIDAQAB
-----END PUBLIC KEY -----

To view a certificate:

openssl x509 -in server.crt -text -noout

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 16235780570068490813 (0

xe15114685a1f1a3d)
Signature Algorithm: sha256WithRSAEncryption

Issuer: C=FR, CN=equinton
Validity

Not Before: Jun 22 15:35:19 2016 GMT
Not After : Jun 20 15:35:19 2026 GMT

Subject: C=FR, CN=equinton
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
Public -Key: (2048 bit)
Modulus:

00:bb:6c:c9:c5:57:4f:f3:7c:83:
(...)

52 Safety of Web Applications

Exponent: 65537 (0 x10001)
Signature Algorithm: sha256WithRSAEncryption

23:29: ee:e1:6b:50:2c:d9:9e:6b:4c:10:2e
:84:cc

(...)

To check the validity of the certificate:

openssl verify -CAfile cacert.crt server.crt

server.crt: OK

3.4. Implementing the HTTPS protocol

3.4.1. Understanding the HTTPS protocol

Today, digital communications require a certain minimum threshold of

confidentiality (to protect passwords, bank details, etc.). The principle of the

HTTPS protocol, which was originally HTTP over SSL and is now HTTP
over TLS [WIK 15h] (SSL was abandoned as it is no longer considered to be

secure), is to encrypt all communications.

TLS is a symmetric-key-based encryption procedure that meets this need

perfectly. Its only shortcoming, like all symmetric-key protocols, is that the

key must first be exchanged between both parties without being intercepted.

To achieve this, the designers proposed starting the dialogue by using

asymmetric encryption. Figure 3.6 gives a slightly simplified diagram of the

protocol.

Suppose a browser wishes to connect to a web server by HTTPS (usually

the web server redirects the browser to the HTTPS protocol, but the result is the

same). It retrieves the certificate provided by the web server and then checks

its validity by decrypting the hash using the public key of the certification

authority. If the certificate is not recognized, the browser displays a warning

message and asks the user to confirm before accessing the requested page.

If the certificate is valid, the browser generates a symmetric key using the

TLS protocol. It then encrypts it using the public key of the server and sends it

to the server.

Encryption and Web Server Configuration 53

browserserver

requests the certificate

certificate

Sends the symmetric key encrypted with the public key

Encrypted communication

Checks the
certificate

Figure 3.6. Principle of the HTTPS protocol

The server retrieves the key and then decrypts it using its private key:

information can now be exchanged confidentially between the server and the

browser.

In practice, the server sends other information along with the certificate,

such as a list of accepted symmetric encryption protocols.

With this procedure, only the server has to justify its identity, and only the

server has to present a digital certificate. However, some implementations of

the HTTPS protocol require the client to also present a certificate. This is in

particular used for direct communications between servers for automatically

exchanging messages.

54 Safety of Web Applications

3.4.2. Implementing the HTTPS protocol

The HTTPS protocol relies on digital certificates. To protect an

application, you must first obtain a certificate. This certificate contains the

exact name of the application’s web address, for example

my_application.com. This allows the browser to check that the given

certificate matches the name of the requested website.

The certificate must also be provided by a recognized certification

authority: otherwise, the browser will indicate that it was not able to verify

the certificate. This is because the chain of certification, as presented above

(see section 3.2.5), is not complete.

The next step is to make sure that the Apache server redirects all requests

sent by the http protocol to the https protocol. This is done in the virtual host

configuration file, which can be found in the /etc/apache2/sites-available
folder. Here is an example configuration:

<VirtualHost *:80>
ServerName myapp.com
ServerPath /myapp.com
RewriteEngine On
RewriteRule ^ https :// myapp.com/%{ REQUEST_URI}

[R]
</VirtualHost >

Now, all content sent via HTTP, i.e. to port 80, is instead redirected to the

HTTPS protocol. To do this, we use the URL rewrite function (Rewrite).

We will now see how to configure the access to our application in HTTPS

mode:

<VirtualHost *:443>
ServerName myapp.com
ServerPath /myapp.com
ServerAdmin admin@myapp.com
ServerSignature off

Encryption and Web Server Configuration 55

The VirtualHost command now points to port 443, which is reserved for

HTTPS. We also see a few general-purpose commands, one of which shows

the name of the site administrator (a generic address).

The ServerSignature off command hides the version of the Apache server.

Support for the HTTPS protocol is enabled using the commands:

SSLEngine on
SSLCertificateFile /etc/ssl/certs/myapp.cert
SSLCertificateKeyFile /etc/ssl/private/myapp.

key
SSLCACertificateFile /etc/ssl/certs/cachain.

pem

We can also see the certificate access paths: SSLCertificateFile is the

certificate (signed public key), SSLCertificateKeyFile is the private key and

SSLCACertificateFile is the file containing the chain of certification, i.e. the

public keys of each authority that signed the public key.

Now, we must specify where the application code is located, using the

following command:

DocumentRoot /var/www/myappApp/myapp

And finally, application-specific log files:

CustomLog /var/log/apache2/myapp -access.log
combined

ErrorLog /var/log/apache2/myapp -error.log
</VirtualHost >

All access information is stored in the file /var/log/apache2/
myapp-access.log, (combined specifies the choice of format for the log file),

and the errors are logged in the file /var/log/apache2/myapp-error.log.

3.4.3. Testing the SSL chain

Once the certificates have been successfully added and Apache has been

configured, it is informative to check that the encryption has been correctly

56 Safety of Web Applications

configured. Several tools are available to do this, either in downloadable form

to test the configuration of an intranet, or directly online. With the latter, we

simply need to give the address of the web server, then the website launches a

more or less comprehensive analysis, first checking the chain of certification

and then the protocols being used. SSLLABS [LAB 16] offers possibly one of

the most comprehensive tools. This allows us to identify any obsolete

protocols that might still be accepted by the server and yields a list of

compatible operating systems and browsers.

3.5. Improving the security of the Apache server

In this section, we will briefly discuss how to improve the security of the

Apache web server. This is not an exhaustive guide to system administration,

but simply gathers together a few useful principles: system administrators are

likely to be aware of all of these things, but might nonetheless appreciate a

checklist to ensure that nothing has been forgotten.

The configurations listed below are for a Linux server running Ubuntu

Server 14.04 LTS.

3.5.1. Ensuring that the server hosting Apache has the latest
security updates

When a server is first installed, it is usually up-to-date with the latest

security patches. However, since new vulnerabilities are continuously being

discovered, servers need to be updated regularly, generally at least once a day.

For Ubuntu or Debian-type distributions, we can use the unattended-upgrades
package, which was specifically designed to automate this process.

This package uses the /etc/apt/apt.conf.d /50unattended-upgrades file to

specify all of the parameters used to configure the update software. This can

be used to specify the following, among other things:

– which repositories should be used to perform updates. Typically, for a

server, we should only install security updates;

– whether there are any packages that should not be updated: this is often

the case for the libc library, which is essential for the system to operate

properly; any changes to this component can cause significant disruption;

Encryption and Web Server Configuration 57

– whether the device should restart after an update that requires it (usually

after installing a new kernel). If this is enabled, it is possible to specify the time

at which the server should restart. Automatically restarting protects against

vulnerabilities in the kernels themselves, which can result in denial of service

or privilege escalation attacks. However, restarting is a complex operation,

especially in virtual environments where servers share resources, and it is

advisable to ensure beforehand that the operation can be completed safely.

There are also other settings, for example for sending emails, which we will

not discuss here.

3.5.2. Prohibiting low-security protocols

In the 1990s, the American government banned the export of strong security

protocols outside of its territory. This led people to use less secure protocols.

At the time, this was not a problem, but, with the computing power available

today, they have become easy to circumvent.

To remain compatible with existing websites, the Apache web server

continues to allow all types of protocol. Unfortunately, even if secure

certificates are used, Apache will continue to use weakly encrypted

connections, unless these connections are disallowed.

To do this, we must edit the configuration file /etc/apache2/sites-available/
default-ssl and add the following lines to the section beginning with

<VirtualHost _default_:443>:

SSLProtocol All -SSLv2 -SSLv3
SSLHonorCipherOrder On
SSLCipherSuite ECDHE -RSA -AES128 -SHA256:AES128 -GCM -

SHA256:HIGH:EECDH+AESGCM:EDH+AESGCM:AES256+
EECDH:AES256+EDH:!MD5:!aNULL:!EDH:!RC4

SSLCompression off

The first line disables the SSL protocol, which is considered to be

obsolete, and instead imposes TLS. The next two lines force the use of the

SHA256 signing algorithm (the default is SHA-1, which uses 128-bit keys),

as well as other new protocols that are considered to be reliable. Finally, the

58 Safety of Web Applications

last command disables SSL compression, which can create security issues

(this directive is usually set to off by default).

Remy van Elst discusses these questions further in a fairly comprehensive

article on comprehensively securing SSL connections with Apache2 [ELS 15].

Today, there are websites that generate configurations adapted to the usage

context (web server, supported browsers, etc.). For example, the one provided

by the Mozilla foundation [MOZ 16b] is particularly comprehensive.

Referring to these tools makes it easier to stay ahead of advancements in

encryption technologies.

3.5.3. Preventing request flooding

One of the simplest ways of “taking down” a server, i.e. preventing it from

responding to queries, is to send a burst of tens of thousands of requests

simultaneously. This is called a denial-of-service attack.

The Apache evasive module counters these types of attack. It blocks

identical requests sent within a give unit of time, and limits the number of

requests from the same user, again per unit time.

This module is easy to install:

sudo apt -get install libapache2 -mod -evasive

Its parameters can be configured in the file

/etc/apache2/mods-available/evasive.conf.

Here are example values (the default values are shown in brackets):

– DOSHashTableSize (3097): size of the table used to record calls;

– DOSPageCount (2): number of requests called in a given unit of time

by the same user. The default value is usually sufficient unless the same

component is called multiple times from within a single page;

– DOSSiteCount (50): number of calls to the website within a given unit of

time, summed over all pages;

– DOSPageInterval (1): time interval, in seconds, used to count the number

of requests;

Encryption and Web Server Configuration 59

– DOSSiteInterval (1): time interval used to count all incoming requests;

– DOSBlockingPeriod (10): period, in seconds, which blocked users will

not be able to complete requests.

To make the module work, each of the parameters must be activated by

uncommenting them before restarting the Apache server.

With the default parameter values, if a user sends two identical requests to

the server within 1 s, they will be blocked for 10 s. They will also be blocked

if they send more than 50 requests per second.

Whenever a request is blocked, a message is saved in the error log file

/var/log/apache2/error.log:

[Thu Jun 23 09:21:08.539066 2016] [evasive20:error
] [pid 19145] [client ::1:54188] client denied
by server configuration: /var/www/html/eabxcol/
display/images/logo.png , referer: https ://
localhost/eabxcol/index.php?module=management

The referer specifies the page that was originally called, i.e. the one that

was blocked.

The advantage of this module is that the server will use very few resources

if the threshold is exceeded: the request will not be completed, and the

processing time will be very short.

It is usually installed in the reverse-proxy server, which acts as a gateway

for all applications or websites associated with the organization. Since it is

still executed on the server itself, it is only effective up to a certain point: if

the attack is truly massive, the server resources will eventually be

overwhelmed anyway. Other, more complex techniques can be implemented,

but require modifications to the actual network equipment, or even at the level

of the Internet Service Provider (ISP).

Like any protective measure, one should first consider whether the risk

justifies implementing other measures in addition to this module.

60 Safety of Web Applications

3.5.4. Implementing a request filter

Apache proposes a module, mod_security, for analyzing the requests

received by the server and filtering them, if required, before forwarding them

to the PHP engine. This is called the application firewall, which acts as an

interface before the actual connection to the web server.

This module can be complex to configure, but examples of basic

configurations are available.

First, it needs to be installed on the server:

sudo apt -get install libapache2 -mod -security2

The Apache server automatically restarts, but the module is not yet

operational: no directives have been defined. The default root configuration

file is located in the /etc/modsecurity folder, and needs to be renamed to be

visible to the module:

cd /etc/modisecurity
sudo cp modsecurity.conf -recommended modsecurity.

conf

You will need to modify the contents of this file to suit your own

configuration. To allow files of up to 64 MB to be downloaded, you need to

modify the following directive:

SecRequestBodyLimit 67108864

We will now activate the basic directives used by the module. Type the

following commands:

for f in ‘ls /usr/share/modsecurity -crs/base_rules
/*‘ ; do sudo ln -s $f ; done

and restart the Apache server:

sudo service apache2 restart

Encryption and Web Server Configuration 61

By default, the module is configured to only register abnormal events

(directive SecRuleEngine DetectionOnly in the file modsecurity.conf). You

can test that the program properly detects anomalies, for example by entering

the string; or 1 = 1- - into a submitted field (this command represents an SQL

injection attack (see section 4.2.1)). An entry will be created in the log file

/etc/apache2/modsec_audit.log.

Check the log file, and disable any modules that you do not wish to use by

removing their links.

Very well-written English documentation is available from DigitalOcean

[DIG 15]. You can also visit the official project website [MOD 15].

You should test this module before activating it on a production server.

Check the log files that it generates in particular (they can become large very

quickly), and only activate the modules that you actually need.

If your application is properly coded and secured, and basic precautions

have been taken directly in Apache, this module may not necessarily be useful

to you. However, for open-source applications taken from the net, it can be

invaluable. For example, room booking software written several years ago

might not necessarily include the latest protections against the most common

types of attack, such as SQL injection. Rather than rewriting it or investing

time in modifying its code to make it secure, it is likely more beneficial to set

it up behind an application firewall such as modsecurity. If this firewall is

properly configured, it will block most common types of attack.

Of course, this approach should only be used for low-priority applications

that pose limited risk in the event that an attack should succeed.

3.5.5. Allowing page header modifications

Modern browsers are now capable of implementing several different

security checks, provided that the server asks for them to be activated. They

are disabled by default because, in some cases, they can prevent applications

from working.

The checks are, for example, designed to limit the risk that cookies from

other webpages are stolen using specially designed scripts written in

62 Safety of Web Applications

JavaScript. To ask the browser to implement these precautions, they need to

be included in the HTML header sent by the web server.

To allow the application to modify HTML headers, we first need to load a

module to complement Apache, using the following commands:

a2enmod headers
service apache2 restart

Below, we will see which instructions should be used to improve the

protection of the application.

3.5.6. Authorizing .htaccess files

.htaccess files allow us to modify the behavior of the Apache server in

individual folders. This is mainly used to prevent access to critical folders,

e.g. the folder that contains the connection details for the database.

Since these files contain special instructions, we must ask Apache to allow

them to be executed.

Usually, when a new application is installed on a server, a new virtual site

is registered in the /etc/apache2/sites-available folder using a configuration

file. This file indicates, among other things, the physical location of the

application within the server and specifies various parameters, such as

encryption certificates for https connections. We need to make sure that this

file contains the following instructions:

<Directory /myfolder >
AllowOverride all
Order allow ,deny
allow from all

</Directory >

The first instruction, AllowOverride, allows all Apache directives in the

folder /myfolder to be overridden, which ensures that all of the .htaccess files

of the application are correctly taken into account.

Encryption and Web Server Configuration 63

3.5.7. Hiding the version information of Apache and PHP

Allowing attackers to view the versions of installed software gives them

valuable information, especially if everything is not fully up-to-date. If we are

using an obsolete version of PHP that is known to be vulnerable to a particular

type of attack, revealing the version number tells the attackers exactly how to

penetrate the system.

It is easy to check whether a web application is displaying its version

numbers by installing the wappAlyzer [WAP 15] module in the Firefox

browser. This module collects information about all components of the

application and the server: the operating system, web engine, language and

all third-party software components, such as JQuery [JQU 15]. If the version

numbers are not hidden, this module will show them.

To prevent the Apache server and its PHP module from revealing their

version numbers, we simply need to edit the configuration files. For Apache,

we need to edit the file /etc/apache2/conf.d/security, and check the

configuration of the following parameters:

ServerTokens Prod
ServerSignature Off

PHP can be configured by modifying the following parameter in the

/etc/php5/apache2/php.ini file:

expose_php = Off

Apache must then be restarted for these changes to take effect.

3.6. In summary

Applications can never be considered to be intrinsically safe: their run-time

environment plays a significant role in their overall security.

Nowadays, encryption is essential for protecting applications. Only

allowing access in https mode is a necessary first step, but is not enough: the

web server must also be properly configured to disallow obsolete protocols.

64 Safety of Web Applications

Setting up measures such as the Apache evasive mode or an application

firewall strengthens the security of the application, provided that these

measures are configured correctly. Launching an application into production

requires close collaboration between the system administrators and

developers. The needs of both parties must be taken into account. This will

allow a good balance between performance and protection to be achieved.

