
265

CHAPTER

Securing SQL Server: Protecting Your Database from Attackers﻿
Copyright © 2015 Elsevier Inc. All rights reserved.

INFORMATION IN THIS CHAPTER:

•	 What is a SQL injection attack?

•	 Why are SQL injection attacks so successful?

•	 How to figure out you have been attacked?

•	 How to protect yourself from a SQL injection attack?

•	 Cleaning up the database after a SQL injection attack

WHAT IS AN SQL INJECTION ATTACK?
An SQL Injection Attack is probably the easiest attack to prevent, while being one
of the least protected against forms of attack. The core of the attack is that an SQL
command is appended to the backend of a form field in the web or application front
end (usually through a website), with the intent of breaking the original SQL Script
and then running the SQL script that was injected into the form field. This SQL In-
jection most often happens when you have dynamically generated SQL within your
front-end application. These attacks are most common with legacy Active Server
Pages (ASP) and Hypertext Preprocessor (PHP) applications, but they are still a
problem with ASP.NET web-based applications. The core reason behind an SQL
Injection attack comes down to poor coding practices both within the front-end ap-
plication and within the database stored procedures. Many developers have learned
better development practices since ASP.NET was released, but SQL Injection is still
a big problem between the number of legacy applications out there and newer appli-
cations built by developers who did not take SQL Injection seriously while building
the application.

As an example, assume that the front-end web application creates a dynamic SQL
Script that ends up executing an SQL Script similar to that shown in Example 9.1.

EXAMPLE 9.1
A simple dynamic SQL statement as expected from the application.

SQL Injection Attacks 9

266 CHAPTER 9  SQL injection attacks

This SQL Script is created when the customer goes to the sales order history
portion of the company’s website. The value passed in as the OrderId is taken from
the query string in the URL, so the query shown above is created when the customer
goes to the URL http://www.yourcompany.com/orders/orderhistory.aspx?Id=25.
Within the .NET code, a simple string concatenation is done to put together the
SQL Query. So any value that is put at the end of the query string is passed to the
database at the end of the select statement. If the attacker were to change the query
string to something like “/orderhistory.aspx?id=25; delete from Orders,” then the
query sent to the SQL Server will be a little more dangerous to run as shown in
Example 9.2.

EXAMPLE 9.2
A dynamic SQL String that has had a delete statement concatenated to the
end of it.

The way the query in Example 9.2 works is that the SQL database is told via
the semicolon “;” that the statement has ended and that there is another state-
ment that should be run. The SQL Server then processes the next statement as
instructed.

While the initial query is run as normal now, and without any error being gener-
ated but when you look at the Orders table, you would not see any records in the
Orders table because the second query in that batch will have executed against the
database as well. Even if the attacker omits the value that the query is expecting, they
can pass in “; delete from Orders;” and while the first query attempting to return the
data from the Orders table will fail, the batch will continue moving on to the next
statement, which will delete all the records in the Orders table.

Many people will inspect the text of the parameters looking for various keywords
in order to prevent these SQL Injection attacks. However, this only provides the most
rudimentary protection as there are many, many ways to force these attacks to work.
Some of these techniques include passing in binary data, having the SQL Server
convert the binary data back to a text string, and then executing the string. This can
be proven by running the T-SQL statement shown in Example 9.3.

EXAMPLE 9.3
Code showing how a binary value can be used to hide a T-SQL statement.

267What is an SQL injection attack?

When data is being accepted from a user, either a customer or an employee, one
good way to ensure that the value would not be used for an SQL Injection attack is
to validate that the data being returned is of the expected data type. If a number is
expected, the front-end application should ensure that there is in fact a number within
the value. If a text string is expected, then ensure that the text string is of the correct
length, and it does not contain any binary data within it. The front-end application
should be able to validate all data being passed in from the user, either by inform-
ing the user of the problem and allowing the user to correct the issue, or by crashing
gracefully in such a way that an error is returned and no commands are sent to the
database or the file system. Just because users should be sending up valid data does
not mean that they are going to. If users could be trusted, most of this book would
not be needed.

The same technique shown in Example 9.3 can be used to send update statements
into the database, causing values to be places within the database that will cause
undesirable side effects on the websites powered by the databases. This includes
returning javascript to the client computers causing popups that show ads for other
projects, using HTML iframes to cause malicious software to be downloaded, using
HTML tags to redirect the browser session to another website, and so on.

SQL Injection attacks are not successful against only applications which were
built in-house, a number of third-party applications available for purchase are sus-
ceptible to these SQL Injection attacks. When purchasing third-party applications, it
is often assumed that the product is a secure application that is not susceptible to the
attack. Unfortunately, that is not the case, and any time a third-party application is
brought into a company, it should be reviewed, with a full code review if possible, to
ensure that the application is safe to deploy. When a company deploys a third-party

NOTE
The Database Is Not the Only Weak Spot
If a file name is going to be generated based on the user’s input, a few special values should be
watched for. These values are Windows file system keywords that could be used to give attackers
access to something they should not have, or could simply cause havoc on the front-end server.
•	 AUX
•	 CLOCK$
•	 COM1-COM8
•	 CON
•	 CONFIG$
•	 LPT1-LPT8
•	 NUL
•	 PRN

By allowing an attacker to create a file path using these special names, attackers could send
data to a serial port by using COM1 (or whatever com port number they specify) or to a printer port
using LPT1 (or whatever printer port they specify). Bogus data could be sent to the system clock
by using the CLOCK$ value, or they could instruct the file to be written to NUL, causing the file to
simply disappear.

268 CHAPTER 9  SQL injection attacks

application that is susceptible to attack and that application is successfully attacked,
it is the company that deployed the application that will have to deal with the back-
lash for having an insecure application and their customer data compromised, not the
company that produced and sold the insecure application.

Many people think that SQL Injection attacks are a problem unique to Microsoft
SQL Server, and those people would be wrong. SQL Injection attacks can occur
against Oracle, MySQL, DB2, Access, and so on. Any database that allows multiple
statements to be run in the same connection is susceptible to an SQL Injection attack.
Now some of the other database platforms have the ability to turn off this function,
some by default and some via an optional setting. There are a number of tickets open
in the Microsoft bug-tracking website http://connect.microsoft.com that are request-
ing that this ability be removed from a future version of the Microsoft SQL Server
product. While doing so would make the Microsoft SQL Server product more secure,
it would break a large number of applications, many of which are probably the ones
that are susceptible to SQL Injection attacks.

Another technique that is easier to use against Microsoft SQL Server 7 and 2000
is to use the sp_makewebtask system stored procedure in the master database. If
the attacker can figure out the name of the web server, which can usually be done
pretty easily by looking at the sysprocesses table, or the path to the website, then the
sp_makewebtask procedure can be used to export lists of objects to HTML files on
the web server to make it easier for the attacker to see what objects are in the data-
base. Then they can simply browse to the website and see every table in the database.

EXAMPLE 9.4
Code that an attacker could execute to export all table objects to an HTML
file.

If xp_cmdshell is enabled on the server, then an attacker could use xp_cmdshell
to do the same basic thing just by using Bulk Copy Protocol (BCP) instead of sp_
makewebtask. The advantage to sp_makewebtask is that xp_cmdshell does not need
to be enabled, while the downside to sp_makewebtask is that it does not exist on
Microsoft SQL Server 2005 and up. The downside to xp_cmdshell is that, unless the
application uses a login that is a member of the sysadmin fixed server role, the xp_
cmdshell procedure will only have the rights that are granted by the proxy account.
An attacker can use the xp_cmdshell procedure to send in the correct commands to
give the account that is the proxy account more permissions, or even change the ac-
count to one that has the correct permissions. At this point BCP can be used to output
whatever data is wanted. The attacker could start with database schema information,
and then begin exporting your customer information, or they could use this informa-
tion to change or delete the data from the database.

269Why are SQL injection attacks so successful?

The catch to either of these techniques is that the NT File System (NTFS)
permissions need to allow either the SQL Server account or the account that the
xp_cmdshell proxy account uses to have network share and NTFS permissions to
the web server. On smaller applications where the web server and the database server
are running on the same machine, this is much, much easier as the SQL Server is
probably running as the local system account that gives it rights to everything.

WHY ARE SQL INJECTION ATTACKS SO SUCCESSFUL?
SQL Injection attacks are so successful for a few reasons, the most common of which
is that many newer developers simply do not know about the problem. With project
timelines being so short, these junior developers do not have the time to research
the security implications of using dynamic SQL. These applications then get left in

NOTE
There Are Lots of Protection Layers to Make Something Secure
Hopefully, by now you are starting to see how the various layers of the Microsoft SQL Server
need to be secured to make for a truly secure SQL Server. In this case we look specifically at how
the NTFS permissions, xp_cmdshell proxy account, the Windows account that the SQL Server
is running under, the application account that logs into SQL having the minimum level of rights,
and properly parameterizing the values from the web application all to create a more secure
environment.

To fully protect from an SQL Injection attack, the application account should only have the
minimum rights needed to function; it should have no rights to xp_cmdshell. In fact xp_cmdshell
which should be disabled (or removed from the server). The SQL Server service should be running
under a domain or local computer account that only has the rights needed to run as a service and
access the SQL Server folders. That Windows account should have no rights to the actual files that
are the website files, and it should not be an administrator on the server that is running the SQL
Server service or the web server. The resulting effective permissions that a SQL Server has are to
access the database files and do nothing else. Any other functions that the SQL Server instance is
expected to perform either via an SQL Agent job or a CLR procedure should be controlled through
some sort of account impersonation.

At the application level the actual SQL Server error messages should be masked so that they
are not returned to the client. If you have done these things, then even if attackers were able to
successfully complete an SQL Injection attack against the SQL Server they would not be able to do
much to the server as they would not have any way to get information back from the SQL Server
(as the error messages are masked) and they would not be able to get to the shell and get software
downloaded and installed from the outside. Once these things fail a few times, attackers will
probably just move on to an easier target.

The amount of time that an attacker will spend trying to successfully use an SQL Injection
attack against a web-based application will for the most part depend on the amount of value
the target has. A smaller company such as a wholesale food distributor probably would not be
attacked very often, and the attacker will probably leave after a short period of time. However, a
bank or other financial company will provide a much more enticing target for the attacker, and the
attack will probably last much longer, with many more techniques being tried, as well as many
combinations of techniques until they successfully break into the database application.

270 CHAPTER 9  SQL injection attacks

production for months or years, with little to no maintenance. These developers can
then move through their career without anyone giving them the guidance needed to
prevent these problems.

Now developers are not solely to blame for SQL Injection attack problems. The
IT Management should have policies in place in order to ensure that newer devel-
opers that come in do not have the ability to write dynamic inline SQL against the
database engine; and these policies should be in forced by code reviews to ensure
that things are being done correctly. These policies should include rules like the fol-
lowing.

1.	 All database interaction must be abstracted through stored procedures.
2.	 No stored procedure should have dynamic SQL unless there is no other option.
3.	 Applications should have no access to table or view objects unless required by

dynamic SQL, which is allowed under rule #2.

WARNING
SQL Injection Happens at All Levels
Unfortunately, not just small companies can have problems with SQL Injection attacks. In 2009,
for example, ZD Net reported that some of the international websites selling Kaspersky antivirus,
specifically Kaspersky Iran, Taiwan, and South Korea, were all susceptible to SQL Injection
attacks. In the same article (http://bit.ly/AntiVirusSQLInject) ZD Net also reported that websites
of F-Secure, Symantec, BitDeffender, and Kaspersky USA all had problems with SQL Injection
attacks on their websites.

These are some of the major security companies of the day, and they are showing a total lack
of security by letting their websites fall prey to the simple injection attack. Considering just how
simple it is to protect a website from an SQL Injection attack, the fact that some of the biggest
security companies in the industry were able to have SQL Injection problems on their production
customer facing websites is just ridiculous.

Because of how intertwined various websites are with each other, real-estate listing providers
and the realtors which get their data from the listing providers, a lot of trust must exist between
these companies and the people who use one companies site without knowing that they are using
another companies data. This places the company that is showing the real-estate listings to their
users in a position of trusting the advertising company to have a safe application. However, this
trust can backfire as on a few occasions various partner companies have suffered from SQL
Injection attacks, in some cases pushing out malicious software to the users of dozens, hundreds, or
thousands of different websites that display the data.

NOTE
Leaving Notes for Future Generations
Would not it have been great if when you were first learning about writing application code that
talked to the database, if someone had told you how to properly write parameterized code? Even if
that did not happen, it can happen for the next guy. Leave some comments in the application source
code that you maintain, that explain why you are parameterizing the database code the way that you
are so that the next guy can learn from how you have done things.

271How to figure out you have been attacked

4.	 All database calls should be parameterized instead of being inline dynamic SQL.
5.	 No user input should be trusted and thought of as safe; all user interactions are

suspect.

With the introduction of Object Relational Mappings (ORM) such as Link to
SQL and nHybernate, the SQL Injection problems are greatly lessened as properly
done ORM code will automatically parameterize the SQL queries. However, if the
ORM calls stored procedures, and those stored procedures have dynamic SQL within
them, the application is still susceptible to SQL Injection attacks.

HOW TO FIGURE OUT YOU HAVE BEEN ATTACKED
There are two basics ways that SQL Injection attacks are used. The first is to query
data from a database and the second is to change data within the database. When
the attacker is performing a query only SQL Injection attack, detecting the SQL
Injection attack is not the most straightforward thing to do. When an attacker does
a good job executing a query only SQL Injection attack against your website there
should be little to no evidence of a SQL Injection attack on the SQL Server database
instance itself. The only evidence of the SQL Injection attack will be within the web
server’s logs, assuming that the web server is configured to log all requests to the
website.

If logging is enabled then the web server will include within the logs any HTTP
requests which are passed to the web servers. These requests will include the SE-
LECT statements which were attempted to be executed against the database engine.
Analyzing these logs should be done using some sort of automated process. Pack-
ages could be created in SQL Server Integration Services which could process the
transaction logs for a smaller scale website which could be used to parse the log
files looking for successful requests which include SQL Statements in the query
string or POST requests. For larger websites it may be more efficient to process the
logs using a NoSQL platform such as Hadoop or Microsoft’s HD Insight version
of Hadoop so that the workload can be processed by dozens or hundreds of nodes
depending on the amount of web server log data which needs to be processed daily.
Making the processing of the web servers logs harder is the fact that you need to
look for more than just the SELECT keyword. Remember from Example 9.3 where
binary values were passed in from the attacker to the web server which were then
converted by the SQL Server back to dynamic SQL? This attack vector also needs
to be watched for by looking for keywords such as EXEC and CONVERT or CAST.
Due to the rapid complexity of searching through the web server’s logs scaling out
this processing on a distributed system quickly becomes a much more flexible and
scalable option.

SQL Injection attacks which change data are easier to identify as they leave a trail
behind in the changed data which resides on the SQL Server Instance. Typically if an
attacker is making changes to data within the SQL Server database they are going to
change large amounts of data at once. One way to initially detect this is to look for

272 CHAPTER 9  SQL injection attacks

transaction logs which are suddenly larger than expected. This can give you a clue
that may be a SQL Injection attack has modified large amounts of data within the
database platform.

Other options include auditing data which should not be changing to see if that
data has changed. If it has an alert can be sent to the database administrator or secu-
rity team so that a person can visually inspect the data to see if it has been modified
by normal processes or if invalid data, such as an HTML iframe tag has been injected
into the data within the SQL Server’s tables.

The third way to detect a SQL Injection attack against a SQL Server database
where data has been changed is to monitor the web servers logs much like for the
read only SQL Injection attack. While different key words may need to be evaluated
this will still give you a good idea if something is attempting to attack the SQL Server
instance.

There are unfortunately no standard SQL Server Integration Services packages
of Hadoop queries which can be documented as each environment is different. These
differences include the web server software which is used, the data points which are
captured, the key words which need to be included or excluded based on the names
of web pages, parameters which are expected, etc.

HOW TO PROTECT YOURSELF FROM AN SQL INJECTION
ATTACK
Once the command gets to the database to be run by the database engine, it is too
late to protect yourself from the SQL Injection attack. The only way to truly protect
your database application from an Injection attack is to do so within the applica-
tion layer. Any other protection simply would not be anywhere nearly as effective.
Some people think that doing a character replacement within the T-SQL code will
effectively protect you, and it might to some extent. But depending on how the T-
SQL is set up and how the dynamic SQL string is built, it probably would not, at
least not for long.

NET PROTECTION AGAINST SQL INJECTION
The only surefire way to protect yourself is to parameterize every query that you
send to the database. This includes your stored procedure calls, as well as your inline
dynamic SQL calls. In addition, you never want to pass string values that the front-
end application has allowed the user to enter directly into dynamic SQL within your
stored procedure calls. If you have cause to use dynamic SQL within your stored
procedures (and yes, there are perfectly legitimate reasons for using dynamic SQL),
then the dynamic SQL needs to be parameterized just like the code that is calling the
stored procedure or inline dynamic SQL Script. This is done by declaring parameters
within the T-SQL statement, and adding those parameters to the SQLCommand ob-
ject that has the SQL Command that you will be running, as shown in Examples 9.5
and 9.6.

273

EXAMPLE 9.5
VB.NET code showing how to use parameters to safely call a stored procedure.

EXAMPLE 9.6
C# code showing how to use parameters to safely call a stored procedure.

How to protect yourself from an SQL injection attack

274 CHAPTER 9  SQL injection attacks

As you can see in the above, .NET code using a parameter to pass in the value is
easy to do, adding just a couple of extra lines of code. The same can be done with an
inline dynamic SQL string, as shown in Examples 9.7 and 9.8.

EXAMPLE 9.7
VB.NET code showing how to use parameters to safely call an inline dynamic
SQL String.

EXAMPLE 9.8
C# code showing how to use parameters to safely call an inline dynamic SQL
String.

275How to protect yourself from an SQL injection attack

Once each parameter that is being passed into the database has been protected,
the .NET code (or whatever language is being used to call the database) becomes
safe. Any value that is passed from the client side to the database will be passed into
the database as a value to the parameter. In the example code shown at the beginning
of this chapter, the string value that has been passed into the application would then
force an error to be returned from the client Microsoft SQL Server database as the
value would be passed into a parameter with a numeric data type.

Using the sample query shown in the .NET sample code in Examples 9.7 and 9.8,
if the user were to pass in similar attack code to what is shown in the SQL Server

NOTE
Do Not Trust Anything or Anyone!
The golden rule when dealing with SQL Injection is to not trust any input from the website or front-
end application. This includes hidden fields and values from dropdown menus. Nothing should be
passed from the front end to the database without being cleaned and properly formatted, as any
value passed in from the front end could be compromised.

Hidden fields are probably the SQL Injection attacker’s best friend. Because they are hidden
from the end user’s view and are only used by system processes, they are sometimes assumed to be
safe values. However, changing the values that are passed in from a safe value to a dangerous value
is a trivial matter for a script kitty, much less a skilled attacker.

When dealing with SQL Injection, the mantra to remember is NEVER, NEVER, NEVER,
NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER,
NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, NEVER, ever, trust anything that
is sent to the application tier from the end user, whether or not the end user knows that he submitted
the value.

276 CHAPTER 9  SQL injection attacks

sample code in Example 9.2, the query that would be executed against the database
would look like the one shown in Example 9.9. This resulting query is now safe to
run as the result which is executed against the database engine contains all the attack
code as a part of the value.

EXAMPLE 9.9
Sample T-SQL code showing the resulting T-SQL Code that would be ex-
ecuted against the database if an attacker were to put in an attack code against
the prior sample .NET code.

In the sample code you can see that while the attack code has been passed to
the engine, it has been passed as part of the value of the WHERE clause. However,
because this is within the value of the parameter, it is safe because the parameter
is not executable. If attackers were to pass in the same command with a single
quote in front of it, in an attempt to code the parameter, and then execute their own
code, the single quote would be automatically doubled by the .NET layer when it
passed to the SQL Server database again, leaving a safe parameter value as shown
in Example 9.10.

EXAMPLE 9.10
The resulting T-SQL code that would be executed against the database when
an attacker passes in an attack string with a single quote in an attempt to by-
pass the protection provided by the .NET application layer.

PROTECTING DYNAMIC SQL WITHIN STORED PROCEDURES FROM
SQL INJECTION ATTACK
When you have dynamic SQL within your stored procedures, you need to use a
double protection technique to prevent the attack. The same procedure needs to
be used to protect the application layer and prevent the attack from succeeding
at that layer. However, if you use simple string concatenation within your stored
procedure, then you will open your database backup to attack. Looking at a sample
stored procedure and the resulting T-SQL that will be executed against the data-
base by the stored procedure; we can see that by using the simple string concat-
enation, the database is still susceptible to the SQL Injection attack, as shown in
Example 9.11.

277

EXAMPLE 9.11
T-SQL stored procedure that accepts a parameter from the application layer
and concatenates the passed-in value to the static portion of the string, execut-
ing whatever attack code the attacker wishes against the database engine.

Because of the value attack, the value being passed into the SQL Server Engine is
passed in through the application layer, and the SQL Server engine does as it is instructed
to do, which is to run the query. However, if we parameterize the dynamic SQL within
the stored procedure, then the execute SQL code will be rendered harmless just as it
would be if the dynamic SQL was executed against the database by the application layer.
This is done via the sp_executesql system stored procedure as shown in Example 9.12.

EXAMPLE 9.12
T-SQL stored procedure that accepts a parameter from the application layer
and uses parameterization to safely execute the query passing whatever attack
code the users input safely against the database as a simple string value.

How to protect yourself from an SQL injection attack

278 CHAPTER 9  SQL injection attacks

USING “EXECUTE AS” TO PROTECT DYNAMIC SQL
One of the best security related features within the SQL Server database engine is
the “EXECUTE AS” T-SQL Syntax. This feature allows you to impersonate an-
other login (at the instance level) or another user (at the database level) giving
the administrator the ability to test commands and object access by using another,
usually lower privileged, account without needing to have the password for the
account. In order to impersonate another account within the SQL Server instance
the login or user which is going the impersonation must have the right to imper-
sonate the other account within the SQL Server instance. The IMPERSONATION
right can be granted at the login level or the user level to Windows users, Windows
groups or SQL Server users.

The “EXECUTE AS” feature is actually made up of two different commands.
The first being “EXECUTE AS” and the second being “REVERT.” The “EXECUTE
AS” command (shown in Examples 9.12 and 9.13 later in this section) is used to
begin the impersonation of another set of credentials; while the “REVERT” com-
mand (also shown in Examples 9.13 and 9.14 later in this section) is used to revert
from the impersonated credentials back to the prior credentials. The prior creden-
tials could be either the original credentials which were used to log into the data-
base engine or a different set of credentials which were impersonated with a prior
“EXECUTE AS” statement. It is important to note that “REVERT” may not always
bring you back to the original credentials which the instance was logged into as
“EXECUTE AS” statements can be nested several layers deep and there is no coun-
ter which can be used to identify how many iterations of “EXECUTE AS” have
been entered through.

When using the “EXECUTE AS” the account remains impersonated for the life-
time of the session within the context of the execution of the “EXECUTE AS”
statement. This means that if you run “EXECUTE AS” within a SQL Server Man-
agement Studio window all commands within that window will be executed within
the context of those credentials until the “REVERT” command is run. When the
“EXECUTE AS” statement is used within a stored procedure to impersonate an
account the impersonated account will remain for the duration of the stored pro-
cedures execution or until the “REVERT” statement within the stored procedure,
whichever comes first.

Impersonating a Login
As mentioned in the previous section, the EXECUTE AS statement can be used to
impersonate logins at the instance level. This allows you to have the rights of the
impersonated account within that query window. To demonstrate this functional-
ity we can create a new login which has no extra permissions, and then use “EX-
ECUTE AS” to impersonate this login then query for the list of available logins on
the instance by querying the sys.server_principals system catalog view as shown in
Example 9.13.

279How to protect yourself from an SQL injection attack

EXAMPLE 9.13
Sample code showing the creation of a new login then the use of that login
using the “EXECUTE AS” T-SQL sytax.

When running the sample code as shown in Example 9.13 a result set will be re-
turned which shows the “sa” login, the “anotherLogin” login and the various server
roles (more about fixed server roles can be found in Chapter 12) on the instance. If
the same select statement is run by a member of the sysadmin fixed server role that
then more (possibly many more) logins will be shown including all the certificate
logins which are created by default, and the various “NT SERVICE” accounts which
are created automatically when the various SQL Server services are run under the
local system accounts (more about these local accounts can be found in Chapter 12).

Impersonating a User
In addition to impersonating logins at the instance level, users can also be imperson-
ated at the database level as well. This allows you access to the objects which the
user has within the database as well as rights to objects which can be accessed in
other databases via the public role or the guest account. In the example shown in
Example 9.14 we create a new database, the change into the new database; creating
a new loginless user within the database using that user to query the sys.databases
system catalog view. The resulting record set includes only the master, tempdb and
the new Impersonation databases as the modem and msdb databases are not access-
able via through the public role.

EXAMPLE 9.14
Using the “EXECUTE AS” statement within a database to impersonate a
database user.

280 CHAPTER 9  SQL injection attacks

REMOVING EXTENDED STORED PROCEDURES
In addition to running all code from the application layer as parameterized com-
mands instead of dynamically generated T-SQL, you should also remove the system
procedures that can be used to export data. The procedures in question that you will
want to remove are xp_cmdshell, xp_startmail, xp_sendmail, sp_makewebtask, and
sp_send_dbmail. You may also want to remove the procedures that configure Da-
tabase Mail such as sysmail_add_account_sp and sysmail_add_profileaccount_sp,
so that attackers cannot use these procedures to give themselves a way to email out
information from the database. Of course, you will want to make sure that you are
not using these procedures in any released code and that you have Database Mail
configured before removing your ability to configure it.

Of course, removing system stored procedures poses a risk of causing system
upgrades to fail, so you will want to keep copies of these objects handy so that you
can put the objects back before database version upgrades.

Unfortunately, this is not a surefire way to prevent an attacker from using these pro-
cedures. Crafty attackers can actually put these procedures back after they see that they
have been removed. This is especially true of the extended stored procedures called
DLLs (Dynamic Link Libraries), which must be left in their normal locations because
other extended stored procedures that you do not want to remove are part of the same
DLLs. The only saving grace is that you have to be a highly privileged user within
the database engine to put an extended stored procedure into the SQL Server engine.
Thus, the only way that an attacker could successfully put the extended stored proce-
dures back would be to log into the database with a highly privileged account. If your
application logs into the database engine using a highly privileged account, all bets are
off as the attacker now has the rights needed to put the extended stored procedures back.

NOT USING BEST PRACTICE CODE LOGIC CAN HURT YOU
The application login process is probably the most important one that an attacker
may want to take advantage of. Many times when developers are building a login

281How to protect yourself from an SQL injection attack

process within their application, the front-end developer will use a query similar to
the one shown in Example 9.15. After the query shown in Example 9.15 is run, if
there is a record in the record set then the user logged in correctly so we grab the
values from the first row and move on.

EXAMPLE 9.15
Sample query for authentication

Attackers wishing to exploit this situation would be able to get past the login
screen, probably being logged in with a high level of permissions. This is done by
adding a small text string in the username field such as “user OR 1=1 –”What this will
do is change the code shown in Example 9.16 into the code shown in Example 9.17.
Example 9.18 shows the T-SQL code that would be executed against the database
engine.

EXAMPLE 9.16
The way a sample record set looks when validating a user account.

EXAMPLE 9.17
The way the code looks when the attack code has been inserted.

EXAMPLE 9.18
The executable part of the code against the database engine from the prior
sample code.

Because of the OR clause in the prior sample code, it does not matter if there is
a record where the UserName column equals user because the 1 = 1 section will tell
the database to return every record in the database.

282 CHAPTER 9  SQL injection attacks

As you can see in the sample code above, the code that gets executed against
the database engine would return the entire User table. Assuming that the front-
end application simply takes the first record from the record set returned from the
database, the attacker would then be logged into the application, probably with an
administrative-level account. Preventing this sort of attack is easy; refer back to the
beginning of this section of this chapter for the sample .NET code. Now that the user
has been logged in, potentially with administrative rights, the user does not need to
use any additional dynamic SQL to get access to your customer data, as he or she will
now have full access through your normal administrative system.

To combat this problem the application should be verifying that the values within
the record set which are returned are actually the values which are expected by compar-
ing the value in the username column to ensure that it matches the username which the
user entered. If the two values then match the user is allowed to continue. If the user-
names do not match, then we know that something has gone horribly wrong, a generic
error should be returned to the end user, and alerts should be triggered within the ap-
plication which alert the systems administration team that something has gone wrong.

WHAT TO RETURN TO THE END USER
The next important thing to configure within the front-end application is what errors
are returned to the end user. When the database throws an error, you should be sure
to mask the error from the end user. The end user does not have any need to know the
name of either the primary key or the foreign key that has been violated. You might
want to return something that the end user can give to customer service or the help
desk so that the actual error message can be looked up.

What this has to do with SQL Injection is important. If the attacker is able to
send in code that breaks the query and returns an error, the error may well contain
the name of a table or other database object within the error message. For example,
if the attacker sends in an attack string of “Group by CustomerId–” to a query that
looks like “SELECT * FROM Customers WHERE UserName = ‘UserName’ AND
Password = ‘Password’,” creating the query “SELECT * FROM Customers WHERE
UserName = ‘UserName‘ Group by CustomerId– AND Password = ‘Password’.” The
default error message that SQL Server would return gives the attackers more informa-
tion than they had before. It tells them the table name. The attacker can use this same
technique to figure out which columns are in the table. Overall, being able to see the
actual SQL Server error message, even if the error does not give the attacker any data-
base schema information, it tells the attacker that the attack attempt was successful. By
using the sp_MSforeachtable system stored procedure and the raiserror function, the
attackers could easily return the list of every table in the database, giving them a wealth
of information about the database schema, which could then be used in future attacks.

There is more useful information that an attacker could get thanks to the error
message being returned. For example, if the users were to run a stored procedure in
another database that they did not have access to, the error message would return the
username of the user – for example, if the attacker sends in an attack string “; exec

283How to protect yourself from an SQL injection attack

model.dbo.Working –.” It does not matter if the procedure exists or not, for the attack-
er would not get that far. The error returned from this call is shown in Example 9.19.

EXAMPLE 9.19
Error message returned by an attacker running a stored procedure that does
not exist.

Msg 916, Level 14, State 1, Line 1
The server principal “test” is not able to access the database “model” under

the current security context.

The model database is an excellent database to try this against, as typically no
users have access to the model database. If the attacker gets an error message saying
that the procedure does not exist, the attacker now knows that the login that the ap-
plication is logging into the database has some high-level permissions, or the model
database has some screwed-up permissions.

After finding the username, the attacker can easily enough find the name of the
local database that the application is running within. This can be done by trying to
create a table in the database. This is because the error message when creating a table
includes the database name. For example, if the attack code “; create table mytable
(c1 int);--” is sent, the error message shown in Example 9.20 will be returned.

EXAMPLE 9.20
Error message returned when creating a table when you do no have rights
returning the name of the database to the attacker.

Msg 262, Level 14, State 1, Line 1
CREATE TABLE permission denied in database “MyApplicationDatabase.”

These various values can be used in later attacks to clear the database of its data
or to export the data from the database.

NOTE
Why Are SQL Injection Attacks Still Possible?
One major reason why SQL Injection attacks are still possible today is that there is so much bad
information circulating about how to protect yourself from an SQL Injection attack. For example,
an article published by Symantec at http://www.symantec.com/connect/articles/detection-sql-
injection-and-cross-site-scripting-attacks says that all you need to protect yourself is to verify
the inputs using a regular expression that searches for the single quote and the double dash, as
well as the strings “sp” and “xp.” As you can see throughout this chapter, SQL Injection attacks
can occur without tripping these regular expressions, and considering the high number of false
positives that looking for a single quote would give you (especially if you like doing business
with people of Irish descent), the protection would be minimal at best. If you were to read this
article and follow its instructions you would be leaving yourself open to SQL Injection attacks.

284 CHAPTER 9  SQL injection attacks

DATABASE FIREWALLS
There are products available on the market today which are called database fire-
walls. These database firewalls are either software packages which run on the server
which is running the SQL Server service, or they are an appliance which runs on its
own hardware (or virtual machine). In either case the concept of these applications
is simple, they intercept every SQL query which the application sends to the SQL
Server’s endpoint and if the application feels that the query is a SQL Injection query,
based on the text of the query being sent in, the query will be terminated before the
query ever gets to the SQL Server database engine.

While these appliances can do a good job with most basic SQL Injection attacks
their ability to prevent more complex attacks is not well known. Because of this vari-
able in the effectiveness of the database firewalls they should be part of the solution
not the only solution for SQL Injection attacks.

TEST, TEST, TEST
One of the most important things that must be done when protecting a SQL Server
database against a SQL Injection attack is to test the application regularly for SQL
Injection vulnerabilities. This is can be done either internally by in house personal
by using penetration testing applications or by outsourcing this function to trusted
vendors who specialize in penetration testing. At the minimum penetration testing
should be performed every time there is a major software package release, as well as
quarterly to ensure that none of the minor releases which have been released during
the quarter are susceptible to SQL Injection attacks.

In a perfect world penetration testing would be performed at every software re-
lease. But these penetration tests take time and resources, and the reality is that most
companies do not have the resources available to do this sort of constant and consis-
tent penetration testing.

CLEANING UP THE DATABASE AFTER A SQL INJECTION ATTACK
There are a few different attacks that an attacker can perform against an SQL Server
database. As shown so far in this chapter, delete commands can be passed into the
SQL engine. However, other commands can be executed as well. Usually, attack-
ers do not want to delete data or take a system offline; they instead want to use the
SQL Server to help launch other attacks. A simple method is to identify tables and

FAQ
IFRAME Versus PopUp
Often people ask if a popup blocker would prevent this iframe attack from affecting the end user, and
the answer is no, it would not. An iframe does not show a web browser popup on the users screen. An
iframe is an inline frame which shows within the displayed webpage. An iframe with a height of 0
would be totally invisible to the end user, but it could be requesting data from a webpage on another
website, passing information from the user’s computer back to this unknown website. The website that
is called from the iframe could then exploit vulnerabilities in the end user’s web browser to install key
loggers or command and control software turning the end user’s computer into a member of a bot-net.

285Cleaning up the database after a SQL injection attack

columns that are used to display data on the website that uses the database as a back-
end. Then extra data is included in the columns of the database, which will allow
attacking code to be executed against the database. This can be done using an update
statement that puts an HTML iframe tag into each row of a table. This way when cus-
tomers view the website, they get the iframe put into their web browser, which could
be set to a height of 0 so that it is not visible. This hidden iframe could then install
viruses or spyware on the user’s computer without their knowledge.

Once this attack has occurred and viruses or spyware have been installed on
the customer’s computer, the most important thing now is to stop additional users’
computers from being attacked. This means going through every record of every
table looking for the attack code that is pushing the iframe to the customer’s web
browser. Obviously, you can go through each table manually looking for the records
in question, or you can use the included sample code, shown in Example 9.21, which
searches through each column in every table for the problem code and removes it. All
you need to do is supply the variable with the attack code. The only columns that are
not cleaned by this code are columns that use the TEXT or NTEXT data types. This
is because the TEXT and NTEXT data types require special attention as they do not
support the normal search functions.

NOTE
Notes About Using This Sample Code
Before running the included T-SQL code, be sure to make a full backup of the database in case of
accidental data modification. The larger the database that you run this against, the longer it will
take. When running this sample code, it is recommended that you change the output type from
the default output style of grid to text by pressing <CTRL > + T, in order to reduce the resources
needed to run the query. The included code will execute against all versions of Microsoft SQL
Server from version 7 to 2014.

NOTE
SQL Injection is Serious Business
In case you had not guessed after reading this chapter, SQL Injection attacks are a very serious
threat. Normally when an SQL Injection attack is launched, it is not launched against a single
website. An attacker will often write a program that will check as many websites as possible
before the attacker is taken off the Internet. The last successful large-scale attack on the Internet
(as of the writing of this book) successfully changed the data in tens of thousands of separate
databases that run tens of thousands of different websites. At the time of the attack, this was
verified by searching on Google for the text of the code that was inserted into the attacked
databases and looking at the number of domains that Google returned with matches.

Falling prey to these attacks puts users and customers at major risk, as these attacks often are
trying to install viruses or Trojan horses on the end user’s computer, so that confidential data such
as credit card numbers, and banking usernames and passwords can be gathered by the attacker and
used to commit future fraud against the users and customers of the attacked websites. This can lead
to months or years of credit report problems and the like.

One final point to keep in mind: If you use your own company’s websites or services, then the
SQL Injection attacker is attempting to attack you as you are also a customer. So do yourself a favor
and protect the database so that you do not get viruses or Trojan horses installed on your computer
through your own company’s website.

286 CHAPTER 9  SQL injection attacks

EXAMPLE 9.21
T-SQL Code that will clean a database that has had its values updated to send
unvalued code to users.

287Other front end security issues

OTHER FRONT END SECURITY ISSUES
Any time the general public is invited to touch your servers (usually via a web brows-
er, but it could be via any application which talks to a server) there is the potential for
problems. This is because of the simple fact that people write the code, and people
access the application. The first group of people are perfectly capable of making
mistakes, or just being junior level professionals (even if they have senior level titles)
and taking shortcuts in the code to get the project they are working on done. These
shortcuts can lead to exploits which the second group of people can easily (though
sometimes not so easily) exploit to get access to information that they should not
have, or to damage in some way the information stored in the SQL Server (or other)
database.

THE WEB BROWSER URL IS NOT THE PLACE FOR SENSITIVE DATA
One shortcut, which only the truly inexperienced developer will use is to put sensi-
tive information into the URL bar of the client web browser. Some things, which
should never be placed into the URL bar as part of the websites query string include:

•	 Username
•	 Password
•	 Account Number
•	 Social Security Number (or other national ID number)
•	 Driver’s License Numbers
•	 Any kind of identifying information

The reason that you do not want to put this information into the URL bar is that
would make it very easy for someone to change the value. This includes storing
these values as hidden form fields being passed from one page to another. Proper
secure application development practices tell us that we should only be storing this

WARNING
The SQL Server Session State Database Is Evil, Evil I Tell You
While there is no security issue with using the Microsoft Session State Database functionality
which comes with Internet Information Server (IIS) and Microsoft SQL Server there is a major
performance issue once the site starts to really grow. SQL Server was not designed to be a good
key value store which is exactly what the session state database is. As the session state database
begins to grow you will see all sorts of performance problems including ghost records, locking and
blocking problems, index fragmentation issues (the indexes become basically 100% fragmented
very quickly), IO problems, massive page splitting to name just a few. To get the best performance
from Session State look at one of the in memory session state providers. The .NET framework
includes one by default on all Windows Servers, it just needs to have its service started and there are
several other options available. You may have noticed that I did not mention using the session state
database in this chapter, and now you know why.

288 CHAPTER 9  SQL injection attacks

information in a server side variable which is accessed via the automatically gener-
ated session information which the web server creates and manages.

The first excuse that people usually make at this point is that they need mul-
tiple web servers and the session information would not be available is the end user
switches to another web server. The answer to this situation is actually very simple,
its called using the .NET session state service (there are other third party session state
services available as well).

If the website which is being developed continues to grow to MySpace (in its
heyday, not today), Facebook, or Twitter sized then you need to find another solu-
tion than an in memory session state server. If you do not the in memory session
state server will quickly become your bottleneck and another solution will need to
be found as a single session state server (or even a session state farm) probably can-
not effectively manage having hundreds of millions of records being accessed and
modified regularly. In these cases it might make sense to either tie the user to the web
server in question for the duration of the session visit, or store some small piece of
information in an encrypted form, as well as the checksum or hash of that value in a
cookie on the users system which can then be used to find the rest of the information
that the user is looking for.

USING xEVENTS TO MONITOR FOR SQL INJECTION
Extended Events, also known as xEvents, are typically thought of as a perfor-
mance monitoring tool not a security monitoring tool. However, there is not any-
thing that says that Extended Events cannot be used to monitor for SQL Injection
attacks.

While doing this in SQL Server 2008 or SQL Server 2008 R2 is not very easy,
SQL Server 2012 introduced a bit of new xEvents functionality which makes this

STORY TIME
It Is Not Just The Small Companies or the Junior Developers Who Make These
Mistakes
In the middle of 2011, there was a little data disclosure issue at a small credit card and banking
company called CitiBank. In the infinite wisdom of the developers at CitiBank they decided to
include the account number of the person who was signed into the CitiBank portal in the URL
bar, then use this handy piece of information to do lookups for the account information instead of
relying of the username and password, or a session variable to hold this information.

Needless to say the results were pretty predictable. Someone figured out that once you signed
into the CitiBank portal you could simply change the account number at the top and view someone
else’s account information. Based on all on and off the record answers it appears that the people that
did this only gathered customer information, but the results could have been much, much worse.
New credit cards could have been issued, accounts could have been closed, I general massive havoc
could have been rained down upon the customers of CitiBank; all because a developer decided to
stick a value in the URL bar and then trust that value.

289Using xEvents to monitor for SQL injection

possible. That functionality is the ability to define a filter against the text of the SQL
Statement as shown in Example 9.22.

EXAMPLE 9.22
Creating an Extended Events Session to capture keywords in queries which
may be issued against the SQL Server Database Instance in a SQL Injection
Attack.

As the code in Example 9.22 is reviewed, special attention should be paid to
the where clause within the ACTION portion of the declaration. This is where the
clause that separates the functionality of SQL Server 2012 from the earlier releases
of xEvents.

NOTE
xEvents is Out of Scope of This Book
While diving into xEvents a little bit, this is not an xEvents book. For more information about
xEvents look for any of the current books on xEvents such as THIS BOOK by Jonathan Kehayias.

NOTE
Monitor for the xEvent Name
Whenever setting up anything which monitors for an attack like this, you should always monitor for
the name of the monitor to see if anyone attempts to make changes to the monitor. In the case of the
same code in Example 9.22 we monitor for the name of the event session so that if someone turns
the session off we would capture the command which turns it off.

290 CHAPTER 9  SQL injection attacks

Viewing the data which is captured by this extended event is easy enough using
the query shown in Example 9.23. A query like this could be scheduled to run hourly
or nightly (changing the WHERE clause as needed) and if there are records returned
send an alert to the database administration team or whoever is responsible for own-
ership of the SQL Server instance with the output of the query so that they can take
action on the potential intrusion.

EXAMPLE 9.23
Showing sample code which reads the xEvents session capture.

Sadly as of the writing of this book in Early 2014, Extended Events are not avail-
able in the Microsoft Azure SQL Database offering so this type of monitoring would
not be available to users of the Microsoft Azure SQL Database platform.

SUMMARY
SQL Injection attacks pose some of the greatest dangers to the database and cus-
tomers because they are typically used to directly affect the information that the
customer sees and can be rather easily used to attempt to push malicious code to
clients’ computers. These attacks are very popular with attackers because they are a
relatively easy way to exploit systems design. They are also popular because they are
easy to reproduce once a site is found to be easy to compromise, as it usually takes
a long time to correct all the potential attack points in a website. This length of time
leaves the website and database open to attack for a long period of time as companies
are usually unwilling to shut down their customer facing websites while the website
design is being repaired.

Because of the way that the SQL Injection attacks work, the Database Adminis-
trator, Database Developer, Application Developer, and Systems Administrator all
need to work together to ensure that they are correctly protecting the data within the

291Reference

database and the company network at large. As the database and application develop-
ers begin getting in the habit of writing code that is not susceptible to SQL Injection
attacks, the current project will become more secure, as will future projects that the
team members work on.

SQL Azure is just as susceptible to an SQL Injection attack as any other SQL
Instance. What the attacker can do within the instance is much less dangerous simply
because there are many fewer features available. For example, protection against xp_
cmdshell is not a priority because xp_cmdshell is not available on an SQL Azure in-
stance. Neither are features such as database mail or SQL mail, so protecting against
attackers that plan to use these vectors does not need to be done. As time goes on,
and more features are added to Windows Azure SQL Database, this may change;
however, as of this writing, this information is accurate.

With proper planning (such as proper object security design) and proper monitor-
ing (such as using xEvents to capture suspect statements) we can prevent many of the
potential SQL Injection problems and when those problems do show up, we can track
the statements to see that something happened and what happened.

REFERENCE
Wall Street Journal, Others, Hit in Mass SQL attack – SC Magazine US. IT Security News and

Security Product Reviews – SC Magazine US. n.d. Web. October 21, 2010.

