
283
Seeking the Truth from Mobile Evidence. http://dx.doi.org/10.1016/B978-0-12-811056-0.00019-4
Copyright © 2018 Elsevier Inc. All rights reserved.

CHAPTER 19

Android User Enabled Security: Passwords
and Gesture

Information in This Chapter

	•	 	Security	on	Androids

	•	 	Simple	security	values

	•	 	The	password	lock

	•	 	Hashcat

	•	 	The	pattern	lock	(gesture)

	•	 	Using	a	rainbow	table

	•	 	SHA-1	exercise

Introduction—Security on Androids

Since	their	inception,	Android	devices	(the	first	being	the	HTC	G1)	have	provided	the	user	
the	ability	to	employ	simple	security	measures.	As	the	operating	system	versions	changed,	
different	types	of	security	also	evolved.	Today,	the	consumer	can	rely	on	embedded	secu-
rity	features	from	a	specific	OS	or	exclusive	settings	based	on	the	make	and	model.	There	
is	also	an	ability	to	download	and	install	specific	applications	for	the	same	purpose.	Some	
of	the	more	popular	and	embedded	by	OS	and/or	make	and	model,	include	but	are	not	
limited	to:

	•	 	PIN
	•	 	Password
	•	 	Pattern	(gesture)
	•	 	Fingerprint
	•	 	Facial	recognition
	•	 	Knock	lock

It	would	be	unnecessary	to	dedicate	an	entire	chapter	showing	each	of	these	security	types.	
Instead,	this	chapter	will	primarily	address	the	password	and	gesture	lock.	This	is	continuing	
to	be	one	of	the	more	popular	user	enabled	security	measures	employed	on	Androids.	Some	

284 Chapter 19

of	you	may	be	reading	this	and	saying,	“My ______ (fill in the blank) unit/machine/utility can
get past that security. What do I need to know more about this process?”

Yes,	in	the	forensic	utility	market,	many	makes	and	models	are	supported	for	bypassing	
the	gesture	lock.	There	are	some	examiners,	however,	who	may	find	the	need	to	testify	on	
the	process	or,	in	some	cases,	manually	obtain	the	lock	value(s)	to	enter	the	phone	for	
visual	validation,	manual	documentation,	or	to	enable/disable	a	setting	to	perform	an	
additional	examination.	The	content	in	this	chapter	will	allow	the	examiner	to	have	more	
insight	into	at	least	one	of	the	more	popular	security	measures	that	is	stored	on	an	
Android.

Simple Security Values

Before	the	advent	of	smartphones,	the	operating	system	on	some	phones	would	simply	store	
the	actual	user	value	within	the	operating	system.	This	means	that	if	the	user	placed	a	handset	
lock	code	of	1325	on	a	simple	bar	or	flip	phone,	that	value	would	be	stored	in	the	basic	
encoding	for	the	phone,	usually	in	ASCII	or	Unicode.	It	could	easily	be	located	by	employing	
encoding	search	techniques	using	popular	tools	such	as	Cellebrite's	Physical	Analyzer.	Also,	
many	of	the	devices	will	contain	the	user	PIN	and	user	security	code	just	a	few	offsets	from	
one	another	within	the	file	system.	On	some	phones,	the	security	code	is	used	to	bypass	the	
PIN	if	it	is	unknown.	In	a	past	criminal	investigation	several	years	ago,	a	homicide	victim	
decided	to	change	his	4-digit	PIN	and	6-digit	(default)	security	codes.	The	phone	was	a	
Motorola	iDEN.	At	the	time	of	this	incident,	automatic	tools	were	limited,	and	large	vendors	
such	as	Cellebrite	did	support	the	phone	for	physical	extraction,	but	the	parsing	on	SMS	and	
other	user	areas	was	limited.	Logical	settings,	however,	would	parse	the	required	fields	for	the	
case.	A	test	phone	of	the	same	model	was	used	to	place	a	different	(known)	value	for	the	PIN	
and	6-digit	security	code.	Using	the	Find—Code	tab	in	Physical	Analyzer,	the	values	on	the	
test	phone	were	easily	located.	They	were	an	offset	apart	and	had	unique	characters	before	
and	after	these	security	codes.	A	RegEX	expression	was	then	used	to	locate	the	values	on	the	
victim’s	phone,	unlock	the	GUI,	and	allow	a	logical	parsing	of	several	SMS	messages	related	
to	his	death.	The	point	of	explaining	this	case	is	to	convey	that	these	values	were	on	the	
phone,	in	their	original	state.	This	was	typically	how	phones	stored	the	security	imposed	by	
the	user.	There	are	many	phones	still	sold	today	that	work	this	way.	These	generally	fall	into	
the	pay-as-you-go,	simple	“burner-phone”	categories.	They	lack	sophisticated	operating	
systems	and	have	limited	features.	Many	are	supported	by	several	commercial	forensic	tools,	
while	others	may	lock	down	their	USB	data	port.

Fig.	19.1	is	a	file	system	from	an	LG	VX8100	that	was	acquired	from	Bitpim.	Within	the	
nvm_security	folder	we	can	see	the	default	6-digit	security	value	of	000000.	The	user	
enabled	security	PIN	is	below	this,	toward	the	end	of	offset	90	as	1397	(bottom	image	in	
Fig.	19.1).

Android User Enabled Security: Passwords and Gesture 285

Smartphones

In	most	cases	when	the	user	employs	a	specific	type	of	security	on	a	smartphone,	the	
actual	value	is	converted	out	of	this	simple	format	shown	in	Fig.	19.1.	Depending	on	which	
type	of	security	the	user	chooses,	it	runs	a	check	against	a	specific	hash	value	of	that	
security	when	the	user	wants	to	enter	the	GUI.	It	is	important	that	examiners	understand	
that	when	it	comes	to	the	gesture	and	password	locks,	we	are	not	addressing	the	entire	file	

Figure 19.1
Example of default security and user set PIN values of an LG VX8100 mobile phone.

286 Chapter 19

system	encryption,	but	simply	the	security	(value)	encryption	that	is	performed	each	time	a	
user	enters	the	phone.	This	is	not	to	say	that	there	is	no	hardware-based	encryption	that	
may	be	going	on	with	newer	chip	sets.	Many	readers	are	probably	aware	of	issues	with	
newer	iPhones.	This	also	applies	to	newer	devices	using	the	UFS	chip.	This	will	become	
even	more	problematic,	and	new	techniques	will	hopefully	address	exploits	for	these	
issues.

This	chapter	will	discuss	the	security	aspect	of	both	the	password lock	and	the	pattern lock
employed	on	Androids.	It	will	conclude	with	focusing	on	manually	creating	a	hash	value	
based	on	a	binary	file	created	from	the	gesture	pattern.

The Password Lock

When	a	user	sets	up	a	password	lock,	he/she	can	employ	his/her	own	choice	of	data	that	
contain	special	characters,	numbers,	letters,	or	any	combination	of	the	same.	If	the	user	sets	
up	a	password	lock,	it	is	given	a	hash	that	uses	a	combination	of	SHA-1	and	MD5.	The	value	
is	also	salted.	Salt	or	salting	is	the	process	of	adding	additional	security,	as	it	randomizes	the	
hash.	This	can	prevent	dictionaries	and	rainbow	tables	from	breaking	the	hash	values	that	are	
always	the	same,	such	as	what	readers	will	see	when	we	discuss	the	gesture	value.	The	
Android	password	can	be	complex,	with	4–16	characters	in	length.	There	are	94	possible	
characters	per	space,	with	users	having	the	choice	of	lower/uppercase	letters,	digits,	and	
punctuation.	The	good	news	(if	it	can	be	called	that)	is	that	there	are	no	spaces	allowed.	If	we	
manually	locate	the	value	within	the	file	password.key	(Data/System/)	location,	the	password	
hash	has	a	72-byte	hexadecimal	value.	From	left	to	right,	it	is	comprised	of	the	first	40	bytes	
showing	the	SHA-1	hash.	This	is	immediately	followed	by	the	remaining	32	bytes	of	the	MD5	
hash.	Because	the	value	is	salted,	the	salt	value	must	be	recovered	first.	Salt	is	represented	in	
hexadecimal	as	a	random	64-bit	integer.	Salt	is	stored	in	settings.db	(SQLite	database	file),	
which	is	named	lockscreen.password_salt.	This	will	be	within	the	(rebuilt)	file	system	shown	
here:

data/data/com.android.providers.settings/databases/settings.db

If	examiners	have	pulled	a	binary	that	has	not	been	rebuilt	and	decoded	with	tools	such	as	
Physical	Analyzer,	it	is	a	little	bit	more	time-consuming	to	locate	the	password.key	and	
the	salt	value.	If	examiners	conduct	an	ASCII	search	for	“lockscreen.password_salt,”	they	
will	obtain	at	least	one	hit	that	places	them	in	general	the	area	they	need	to	look	for	the	
entire	salt	value.	The	salt	is	a	string	of	the	hexadecimal	representation	of	a	random	64-bit	
integer.	The	value	along	with	the	MD5	or	SHA-1	from	the	password	key	location	can	
then	be	used	to	brute	force	attack	the	values	with	Hashcat.	Here	are	some	steps	to	help	
examiners	locate	the	salt	when	they	have	a	physical	file	from	a	JTAG,	ISP,	or	chip-off	
examination.

Android User Enabled Security: Passwords and Gesture 287

Hashcat

Hashcat	is	a	free,	open-source	tool,	which	supports	several	different	algorithms,	and	can	be	
installed	in	multiple	operating	systems	[1].	Using	their	latest	list	from	the	version	available	at	
the	time	this	was	written	(3.30),	the	following	algorithms	can	be	attacked:

	•	 	MD4,	MD5,	Half	MD5	(left,	mid,	right),	SHA1,	SHA-224,	SHA-256,	SHA-384,	SHA-

512,	SHA-3	(Keccak),	SipHash,	RipeMD160,	Whirlpool,	DES	(PT	=	$salt,	key	=	$pass),	
3DES	(PT	=	$salt,	key	=	$pass),	GOST	R	34.11-9,	GOST	R	34.11-2012	(Streebog)	
256-bit,	GOST	R	34.11-2012	(Streebog)	512-bit,	Double	MD5,	Double	SHA1,	
md5($pass.$salt),	md5($salt.$pass),	md5(unicode($pass).$salt),	md5($salt.
unicode($pass)),	md5(sha1($pass)),	md5($salt.md5($pass)),	md5($salt.$pass.$salt),	
md5(strtoupper(md5($pass))),	sha1($pass.$salt),	sha1($salt.$pass),	
sha1(unicode($pass).$salt),	sha1($salt.unicode($pass)),	sha1(md5($pass)),	
sha1($salt.$pass.$salt),	sha1(CX),	sha256($pass.$salt),	sha256($salt.$pass),	
sha256(unicode($pass).$salt),	sha256($salt.unicode($pass)),	sha512($pass.$salt),	
sha512($salt.$pass),	sha512(unicode($pass).$salt),	sha512($salt.unicode($pass)),	
HMAC-MD5	(key	=	$pass),	HMAC-MD5	(key	=	$salt),	HMAC-SHA1	(key	=	$pass),	
HMAC-SHA1	(key	=	$salt),	HMAC-SHA256	(key	=	$pass),	HMAC-SHA256	
(key	=	$salt),	HMAC-SHA512	(key	=	$pass),	HMAC-SHA512	(key	=	$salt),	PBKDF2-
HMAC-MD5,	PBKDF2-HMAC-SHA1,	PBKDF2-HMAC-SHA256,	PBKDF2-HMAC-
SHA512,	MyBB,	phpBB3,	SMF,	vBulletin,	IPB,	Woltlab	Burning	Board,	osCommerce,	
xt:Commerce,	PrestaShop,	Mediawiki	B	type,	Wordpress,	Drupal,	Joomla,	PHPS,	Django	
(SHA-1),	Django	(PBKDF2-SHA256),	EPiServer,	ColdFusion	10+,	Apache	MD5-APR,	
MySQL,	PostgreSQL,	MSSQL,	Oracle	H:	Type	(Oracle	7+),	Oracle	S:	Type	(Oracle	
11+),	Oracle	T:	Type	(Oracle	12+),	Sybase,	hMailServer,	DNSSEC	(NSEC3),	IKE-PSK,	
IPMI2	RAKP,	iSCSI	CHAP,	Cram	MD5,	MySQL	Challenge-Response	Authentication	
(SHA1),	PostgreSQL	Challenge-Response	Authentication	(MD5),	SIP	Digest	
Authentication	(MD5),	WPA,	WPA2,	NetNTLMv1,	NetNTLMv1	+	ESS,	NetNTLMv2,	
Kerberos	5	AS-REQ	Pre-Auth	etype	23Kerberos	5	TGS-REP	etype	23,	Netscape	LDAP	
SHA/SSHA,	LM,	NTLM,	Domain	Cached	Credentials	(DCC),	MS	Cache,	Domain	
Cached	Credentials	2	(DCC2),	MS	Cache	2,	MS-AzureSync	PBKDF2-HMAC-SHA256,	
descrypt,	bsdicrypt,	md5crypt,	sha256crypt,	sha512crypt,	bcrypt,	scrypt,	OSX	v10.4,	
OSX	v10.5,	OSX	v10.6,	OSX	v10.7,	OSX	v10.8,	OSX	v10.9,	OSX	v10.10,	AIX	{smd5},	
AIX	{ssha1},	AIX	{ssha256},	AIX	{ssha512},	Cisco-ASA,	Cisco-PIX,	Cisco-IOS,	Cisco	
8,	Cisco	9,	Juniper	IVE,	Juniper	Netscreen/SSG	(ScreenOS),	Android	PIN,	
Windows	8	+	phone	PIN/Password,	GRUB	2,	CRC32,	RACF,	Radmin2,	Redmine,	
OpenCart,	Citrix	Netscaler,	SAP	CODVN	B	(BCODE),	SAP	CODVN	F/G	
(PASSCODE),	SAP	CODVN	H	(PWDSALTEDHASH)	iSSHA-1,	PeopleSoft,	
PeopleSoft	PS_TOKEN,	Skype,	WinZip,	7-Zip,	RAR3-hp,	RAR5,	AxCrypt,	AxCrypt	in	

288 Chapter 19

memory	SHA1,	PDF	1.1–1.3	(Acrobat	2–4),	PDF	1.4–1.6	(Acrobat	5–8),	PDF	1.7	Level	
3	(Acrobat	9),	PDF	1.7	Level	8	(Acrobat	10–11),	MS	Office	<=	2003	MD5,	MS	Office	
<=	2003	SHA1,	MS	Office	2007,	MS	Office	2010,	MS	Office	2013,	Lotus	Notes/Domino	
5,	Lotus	Notes/Domino	6,	Lotus	Notes/Domino	8,	Bitcoin/Litecoin	wallet.dat,	
Blockchain,	My	Wallet,	1Password,	agilekeychain,	1Password,	cloudkeychain,	Lastpass,	
Password	Safe	v2,	Password	Safe	v3,	Keepass	1	(AES/Twofish)	and	Keepass	2	(AES),	
Plaintext,	eCryptfs,	Android	FDE	<=	4.3,	Android	FDE	(Samsung	DEK),	TrueCrypt,	
VeraCrypt	[1].

The	use	of	Hashcat	could	easily	take	up	a	couple	of	different	chapters.	We	will	not	spend	too	
much	time	covering	the	exact	steps	of	this	program.	In	previous	versions,	the	user	needed	to	
specify	if	they	needed	oclHashcat,	for	AMD	graphic	cards,	or	CudaHashcat,	if	they	used	
Nvidia.	They	have	combined	the	use	into	one	program,	and	some	of	the	examples	used	in	this	
chapter	used	version	3.30.

When	we	attempt	to	break	the	password	on	an	Android,	Hashcat	has	the	ability	to	break	the	
entire	string	of	72	bytes,	along	with	the	salt,	but	the	time	evolved	tremendously	increases.	If	
we	focus	on	separating	these	hashes,	and	then	locating	the	salt,	it	makes	the	attack	much	
easier	to	manage.	Of	course,	the	longer	the	password,	the	more	time	needed.	Most	individuals	
do	not	use	all	16	characters	and	generally	keep	their	password	relatively	short.	The	food	for	
thought	here	is	if	you	have	a	robust	forensic	machine,	why	not	try	it?	Hashcat	usually	runs	an	
estimated	time	on	how	long	the	process	will	take.	From	there	you	can	decide	if	you	want	to	
continue	or	keep	it	running	and	hand	it	over	to	your	replacement	after	you	retire	with	30	years	
of	service.

If	we	are	dealing	with	a	raw	physical	pull	that	has	not	been	decoded,	we	can	use	the	search	
technique	previously	described	(lockscreen.password_salt)	to	locate	the	general	area	to	find	the	
salt.	As	we	look	at	the	search	results,	we	need	to	examine	the	byte	value	directly	in	front	of	this	
search	hit.	It	will	be	in	a	range	between	0×0F	and	0×35.	That	byte	provides	the	examiner	the	
length	of	the	salt.	Directly	in	front	of	these	series	of	bytes,	there	will	be	a	byte	displaying	the	
value	of	0×3D.	This	byte	represents	a	string	length	of	24,	which	is	the	length	of	our	value	we	are	
looking	for.	Fig.	19.2	depicts	an	actual	salt	value	that	represents	these	values	we	just	explained	
and	the	ASCII	search	hit	that	was	used.	For	readers	who	are	viewing	this	book	electronically,	
they	are	color	coded	and	labeled	to	illustrate	this	further.	Once	we	locate	the	salt	integer,	it	needs	
to	be	converted	to	hexadecimal.	In	older	versions	of	Hashcat,	the	uppercase	letters	in	the	
converted	value	must	be	converted	to	lowercase	to	conduct	brute	force	attempts.	The	newer	
version	of	Hashcat	(3.30)	no	longer	requires	this	step.	Fig.	19.3	depicts	the	salt	value	from	the	
settings.db	area,	which	is	much	easier	to	locate.	Again,	depending	on	which	type	of	extraction	
examiners	have	performed,	the	method	needed	for	locating	the	salt	will	be	determined.	
Obviously,	the	database	is	much	easier	and	preferred,	if	this	is	possible	in	your	casework.

Figure 19.2
Breakdown of locating the salt value in Hex View and converting the integer value to hexadecimal.

Figure 19.3
Breakdown of locating the salt value from the com.android.providers.settings/databases/settings.

db location and converting the integer value.

290 Chapter 19

Hashcat	can	attempt	brute	force	with	the	SHA-1	or	MD5	followed	by	the	salt	value.	Use	one	
or	the	other,	but	to	save	time,	not	the	entire	combined	72-byte	(SHA-1/MD5)	password	
combination.	From	left	to	right,	the	first	40	bytes	are	the	SHA-1,	followed	by	the	remaining	
bytes	for	MD5.	Since	the	MD5	is	shorter	(32	bytes),	it	is	much	easier	to	use	that	value	from	
the	password.key	location	to	attempt	the	attack.

The	first	four	screenshots	(figures)	contained	on	the	companion	site	deal	directly	with	the	
help	list	from	Hashcat.	The	first	figure,	Fig.	19.1	(companion	site),	is	obtained	from	
Hashcat	3.30.	This	is	directly	from	the	help	command	(C:\>hashcat64.exe	-h),	which	
displays	the	various	options	and	commands	that	can	be	used.	This	first	screenshot	is	just	
some	of	the	choices,	there	are	more.	Fig.	19.1	(companion	site)	shows	the	first	choice,	
which	is	the	“Options.”	Fig.	19.2	(companion	site)	is	a	few	of	the	“Hash	modes.”	Again,	not	
the	entire	list	of	all	the	choices.	Fig.	19.3	(companion	site)	depicts	the	“Attack	Modes.”	The	
last	figure	from	Hashcat	3.30	(companion	site,	Fig.	19.4)	shows	some	“Basic	Examples”	
and	links	to	where	people	can	locate	additional	help.

Obviously,	the	tool	runs	in	the	command	line	(Run As Administrator)	and,	depending	on	the	
video	card	used,	will	represent	which	additional	line	codes	a	user	would	use.	If	we	install	
Hashcat	in	the	root	of	C:	drive	in	Windows,	we	could	use	a	command	line	on	a	64-bit	
Windows	machine	that	is	running	a	supported	GPU	as	the	following:

C:\.Hashcat64.exe-a3-m110	AE36A990BF8300123E43EBF01E39EE41335F1406:	
b6c0bdef9c965d96

Using	the	embedded	Hashcat	general	help	list	would	show	that	-a 3	is	a	brute	force	attack	
option,	and	qualifier	noted	as	-m	is	our	option	for	hash	type,	and	the	110	is	used	for	SHA-1	
($pass.$salt).	If	we	had	used	the	MD5	value,	the	command	would	be	the	same	except	we	
would	change	the	110	to	10	for	the	MD5	($pass.$salt).

This	combination	of	salting	the	hash	value	made	from	a	SHA-1	and	MD5	is	not	always	
followed	in	every	Android.	Samsung,	for	example,	changed	some	of	the	rules.	Samsung	III	
and	higher	no	longer	utilize	the	SHA-1	and	MD5	combination	and	instead	take	the	hash	and	
salt	and	perform	1024	SHA-1	interactions.

Using	John	Lehr’s	“Android	Password	Possibilities”	chart	[2],	let	us	put	this	into	perspective	
with	a	length	and	number	of	password	possibilities	comparison:

Length (PW) Number of (PW) possibilities

4 78,074,896
5 3,339,040,224
6 689,869,781,056
7 64,847,759,419,264
8 6,095,689,385,410,816

Android User Enabled Security: Passwords and Gesture 291

Length (PW) Number of (PW) possibilities

9 572,994,802,228,616,704
10 53,861,511,409,489,970,176
11 5,062,982,072,492,057,196,544
12 475,920,314,814,253,376,475,136
13 44,736,509,592,539,817,388,662,784
14 4,205,231,901,698,742,834,534,301,696
15 395,291,798,759,681,826,446,224,359,424
16 37,157,429,083,410,091,685,945,089,785,856

As	we	can	see,	tools	such	as	Hashcat	are	needed	to	speed	up	the	process	of	brute	force	cracking	
passwords.	Readers	can	locate	additional	information	regarding	Hashcat	through	Internet	
searches.	Another	interesting	way	some	examiners	are	tackling	the	problem,	is	by	daisy	
chaining	several	high-end	graphic	cards	and	create	a	machine	dedicated	to	cracking	passwords.

Q. Why decode the password lock?

In	most	forensic	scenarios,	the	examiner	has	performed	a	physical	pull,	and	for	various	
case-related	reasons,	decoding	of	the	password	lock	is	needed.	It	may	be	a	case	where	a	file	
system	or	logical	pull	is	necessary,	and	the	examiner	must	get	into	the	GUI	of	the	device	to	
enable	the	USB	debugging.	There	may	also	be	cases	where	the	examiner	needs	to	view	
application	data	under	an	exigent	situation	or	validate	data.	Whatever	the	reason,	there	may	
be	times	when	the	physical	examination	is	not	enough	for	the	case	requirements.

The	actual	pull	itself	when	there	is	a	password	lock	enabled	can	be	accomplished	with	rooted	
Androids,	debugging	being	enabled	already,	or	in	some	cases	using	JTAG	or	ISP	pulls.	There	
are	some	newer	Androids	that	will	not	support	rooting	and/or	JTAP/ISP.	Because	of	the	
complexity	of	some	passwords,	python	scripts	could	take	in	some	cases,	over	8500	millennia	
to	complete.	However,	forensic	machines	that	employ	higher-end	graphic	card	or	multiple	
cards	could	crack	the	same	password	in	hours.	There	are	specific	limitations	and	there	may	be	
situations	where	the	passcode	cannot	be	brute	forced	in	the	examiner’s	lifetime	or	at	least	
without	more	hardware	costs	being	employed	on	the	host	machine.

The Pattern Lock (Gesture)

The	GUI	of	the	Android	shows	the	pattern	lock	as	a	series	of	round	dots	as	shown	in	the	
simple	illustration	in	Fig.	19.4.	There	are	totally	nine—three	in	three	rows.	If	we	number	
each	of	these	and	begin	counting	from	left	to	right	and	continue	counting	left	to	right,	each	
will	have	its	own	number.	Like	the	password	lock,	the	security	does	not	store	the	values	of	
each	of	these	as	a	number,	but	SHA-1	hashes	the	value,	and	stores	the	SHA-1.	Users	who	
create	a	pattern	are	not	allowed	to	move	over	one	point	several	times,	and	there	are	only	
895,924	variants	to	the	pattern	on	an	Android.	The	hashed	SHA-1	value	given	to	the	bytes	

292 Chapter 19

is	placed	in	the	file	system	in	the	gesture.key	file,	again	with	the	same	path	as	before:	/
data/system.	Computers	begin	counting	at	value	0.	The	first	gesture	is	not	a	value	of	1	
converted	to	bytes	then	SHA-1,	but	rather	a	value	of	0.	This	means	that	the	values	start	at	
zero	and	end	with	eight,	not	nine.	The	hexadecimal	equivalent	of	each	single	point	is	0×00,	
through	0×08.

Figure 19.4
Illustration to show the numbering of the 9 pattern (dots) on the screen of an Android and how they

are counted in hexadecimal.

If	we	created	the	minimum	length	of	a	gesture	pattern	of	four	areas	and	begin	with	the	
numbered	values	used	1,2,3,4	(left	side	image	in	Fig.	19.5),	this	would	utilize	corresponding	
bytes	00	01	02	03,	which	would	in	turn	perform	a	SHA-1	hash.	The	resulting	hash	algorithm	
would	be	stored	on	the	Android	in	the	gesture.key	location	as:

A02A05B025B928C039CF1AE7E8EE04E7C190C0DB

Android User Enabled Security: Passwords and Gesture 293

If	we	create	the	gesture	combination	of	9,8,7,6,5,4,3,2,1,	it	would	show	as	what	is	depicted	in	
the	right	side	image	in	Fig.	19.5,	and	convert	the	bytes	to	the	SHA-1	value,	which	is	also	
stored	in	the	gesture.key	location	as:

853822DCEE4C6B59D4A9F0C4CDAF97989E29C83A

Extraction Summary

There	are	commercially	available	forensic	programs	that	can	decode	the	gesture	pattern	and	
display	it	in	the	summary	of	the	report.	For	example,	if	we	decode	the	gesture	pattern	on	an	
LG	LS-670,	it	may	display	within	the	summary	as	unlock	pattern	
1->2->3->6->9->8->5->4->7.

SHA-1 Exercise

To	help	better	understand	the	values	that	are	stored	in	the	gesture.key	location,	there	is	a	
simple	exercise	that	replicates	the	stored	gesture	that	is	hash	as	a	SHA-1.	Several	of	the	tools	

Figure 19.5
Two different examples of gesture security patterns (1,2,3,4 and 1,2,3,4,5,6,7,8,9).

294 Chapter 19

used	in	this	example	are	free.	The	example	also	uses	Physical	Analyzer	to	view	the	file	after	
we	create	it.	Viewing	the	file	that	was	created	is	not	necessary	but	it	does	help	validate	that	no	
mistakes	were	made	with	the	bytes	that	were	created.	Also,	other	free	viewers	such	as	FTK	
Imager	will	work.	To	start	with,	download	a	free	hex	creation	tool.	The	one	that	is	shown	in	
this	example	is	called	Hex	Editor	XVI32	and	is	created	by	Christian	Mas.	XVI32	is	a	free-
ware	hex	editor	running	under	Windows	9x/NT/2000/XP/Vista/7.	The	name	XVI32	is	derived	
from	XVI,	the	roman	notation	for	the	number	16	[3].

Once	Hex	Editor	XVI32	is	downloaded	and	installed,	go	to	Edit—Insert String.	This	will	
bring	up	the	Insert	window.	Leave	the	Text string	and	“as Unicode Latin (UTF-16LE)”
settings	blank.	Select	the	Hex string	setting.	Leave	all	the	other	settings	in	their	default	
settings	as	seen	when	the	program	first	opens.	In	the	blank	box	below	the	Hex string
setting,	type	a	simple	gesture	pattern	of	00	01	02	03.	The	field	will	automatically	space	the	
bytes	accordingly.	This	represents	a	user	creating	a	pattern	lock	from	left	to	right	on	the	
GUI	of	the	phone	of	1,2,3,4	as	shown	in	our	previous	example	(image)	contained	in	the	left	
side	of	Fig.	19.5.	Once	this	has	been	completed,	select	OK.	The	file	must	be	saved.	Select	
File—Save as,	and	name	the	file.	In	the	example	provided,	the	file	was	named	01_
through_04.	In	the	“Save	as	type”	make	certain	(*.*)	is	selected.	On	the	companion	site,	
Fig.	19.5	depicts	the	first	two	steps	when	creating	the	file	using	the	Hex	Editor	XVI32	
program.	Fig.	19.6	of	the	companion	site	also	shows	the	naming	configuration	the	file	needs	
to	be	saved	in.

This	file	can	be	opened	with	a	hex	viewer	or	FTK	Imager.	The	next	step	is	to	create	a	
SHA-1	hash	value.	Again,	there	are	several	free	programs	available,	and	FTK	Imager	can	
create	both	an	MD5	and	SHA-1,	exporting	the	values	to	a	.csv	file.	In	our	example,	we	
use	DigitalVolcano	Hash	Tool	1.1.	“A freeware utility to calculate the hash of multiple
files. This is a 128-bit number usually expressed as a 32-character hexadecimal number.
It can be said to be the ‘signature’ of a file or string and is used in many applications,
including checking the integrity of downloaded files. This compact application helps you
quickly and easily list the hashes of your files” [4].	This	free	utility	allows	the	user	to	
hash	desired	files	using	MD5,	SHA-1,	SHA-256,	SHA-384,	SHA-512,	and	CRC-32	
algorithms.

Once	the	program	is	downloaded	and	installed,	we	select	SHA-1,	and	then	select	our	
saved	*.	*	file,	and	in	our	example	of	1,2,3,4	(bytes	00	01	02	03),	the	SHA-1	value	
created	is:

a02a05b025b928c039cf1ae7e8ee04e7c190c0db

If	we	take	a	dictionary	of	possible	SHA-1	patterns	(Rainbow	Table)	that	use	all	the	variants	
possible,	we	will	see	that	this	SHA-1	matches	our	pattern	of	1,2,3,4	(or	0,1,2,3).	The	

Android User Enabled Security: Passwords and Gesture 295

Figure 19.6
DigitalVolcano Hash Tool and comparison with an Android Gesture dictionary (Rainbow Table).

companion	site	(Chapter	19),	contains	text	file	titled	“Gesture Dictionary_Rainbow table—
Notepad.”	This	was	used	to	compare	the	SHA-1	value	we	created	from	our	bytes	of	00	01	02	
03.	Fig.	19.6	shows	the	SHA-1	value	created	using	DigitalVolcano	Hash	Tool	1.1	followed	by	
pasting	the	value	using	Ctrl	+	F	keys	into	the	dictionary.	The	matching	values	are	highlighted	in	
the	bottom	image	of	Figure	19.6.

296 Chapter 19

This	rainbow	table	can	be	utilized	to	decode	any	SHA-1	value	that	is	in	the	gesture.key	
location.	This	is	also	how	Physical	Analyzer	decodes	the	same	entry.	By	understanding	how	
the	pattern	is	stored,	as	well	as	how	to	replicate	and	decode	the	same	SHA-1	byte	values,	
examiners	should	now	have	a	better	understanding	of	this	security	feature	on	Androids.

Chapter Summary Key Points

Simple	(nonsmart	style)	phones	typically	store	the	user	enabled	security	credentials	on	the	
phone.	The	values	are	usually	easy	to	decode.	As	phones	become	more	complex,	so	do	the	
types	of	security	features	that	are	available	to	the	user.	Android	users	continue	to	employ	both	
the	gesture	pattern	and	password.	The	user	can	create	a	password	with	various	combinations	
of	characters	up	to	16	entries.	Android	passwords	use	a	combination	of	SHA-1	and	MD5.	The	
value	is	also	salted	with	a	random	integer.	If	examiners	are	decoding	a	file	that	has	not	been	
rebuilt	with	databases,	they	can	employ	search	techniques	to	locate	the	general	area	of	the	salt	
value	for	the	password	lock.	If	the	partitions	and	subsequent	databases	have	been	rebuilt,	the	
salt	location	is	much	easier	to	find.

The	integer	value	of	the	salt	will	need	to	be	converted	to	hexadecimal,	and	uppercase	letters	
converted	to	lowercase,	when	examiners	use	older	versions	of	Hashcat	to	brute	force	the	
password.	Once	this	is	completed,	the	SHA-1	or	MD5	can	be	combined	with	the	converted	
salt	value.	Specific	line	commands	can	be	found	in	the	help	menu	to	assist	with	using	
Hashcat.	The	system	used	must	have	a	specific	type	of	video	card	and	driver.	The	more	cards	
that	are	used,	the	faster	the	brute	force	works.

The	gesture	pattern	that	users	store	on	their	Androids	is	stored	as	a	SHA-1	value.	This	will	be	
in	the	gesture.key	location	within	the	file	system.	Examiners	can	manually	decode	this	value	
using	a	dictionary	(Rainbow	Table).	To	help	better	understand	how	the	bytes	of	the	gesture	
are	stored,	examiners	can	replicate	the	actual	bytes,	create	a	SHA-1	value,	and	manually	
locate	the	same	value	in	a	dictionary.	This	can	help	to	better	understand	the	process	and	assist	
during	any	explanations	needed	during	the	judicial	process.

This	chapter	briefly	touches	on	how	two	popular	forms	of	Android	security	are	stored,	and	
how	examiners	may	go	about	locating	and	potentially	cracking	the	security.	There	are	many	
more	forms	of	security	at	the	user’s	disposal.	If	you	happen	to	own	an	Android	and	use	either	
the	gesture	pattern	or	password	security,	hopefully	you	understand	these	concepts	even	more.

References

	[1]	 	Hashcat,	Advanced	Password	Recovery,	January	6,	2017.	https://hashcat.net/hashcat/.
	[2]	 	What’s	in	an	Android	Password?,	December	31,	2012.	

http://linuxsleuthing.blogspot.com/2012/10/android-pinpassword-cracking-halloween.html.
	[3]	 	Freeware	Hex	Editor	XVI32,	June	26,	2012.	http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm.
	[4]	 	Digital	Volcano	Software.	https://www.digitalvolcano.co.uk/hash.html.

https://hashcat.net/hashcat/
http://linuxsleuthing.blogspot.com/2012/10/android-pinpassword-cracking-halloween.html
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
https://www.digitalvolcano.co.uk/hash.html

	19 - Android User Enabled Security: Passwords and Gesture
	Introduction—Security on Androids
	Simple Security Values
	Smartphones

	The Password Lock
	Hashcat
	The Pattern Lock (Gesture)
	Extraction Summary

	SHA-1 Exercise
	Chapter Summary Key Points
	References

