
283
Seeking the Truth from Mobile Evidence. http://dx.doi.org/10.1016/B978-0-12-811056-0.00019-4
Copyright © 2018 Elsevier Inc. All rights reserved.

CHAPTER 19

Android User Enabled Security: Passwords
and Gesture

Information in This Chapter

	•	 �Security on Androids

	•	 �Simple security values

	•	 �The password lock

	•	 �Hashcat

	•	 �The pattern lock (gesture)

	•	 �Using a rainbow table

	•	 �SHA-1 exercise

Introduction—Security on Androids

Since their inception, Android devices (the first being the HTC G1) have provided the user
the ability to employ simple security measures. As the operating system versions changed,
different types of security also evolved. Today, the consumer can rely on embedded secu-
rity features from a specific OS or exclusive settings based on the make and model. There
is also an ability to download and install specific applications for the same purpose. Some
of the more popular and embedded by OS and/or make and model, include but are not
limited to:
 
	•	 �PIN
	•	 �Password
	•	 �Pattern (gesture)
	•	 �Fingerprint
	•	 �Facial recognition
	•	 �Knock lock

It would be unnecessary to dedicate an entire chapter showing each of these security types.
Instead, this chapter will primarily address the password and gesture lock. This is continuing
to be one of the more popular user enabled security measures employed on Androids. Some

284  Chapter 19

of you may be reading this and saying, “My ______ (fill in the blank) unit/machine/utility can
get past that security. What do I need to know more about this process?”

Yes, in the forensic utility market, many makes and models are supported for bypassing
the gesture lock. There are some examiners, however, who may find the need to testify on
the process or, in some cases, manually obtain the lock value(s) to enter the phone for
visual validation, manual documentation, or to enable/disable a setting to perform an
additional examination. The content in this chapter will allow the examiner to have more
insight into at least one of the more popular security measures that is stored on an
Android.

Simple Security Values

Before the advent of smartphones, the operating system on some phones would simply store
the actual user value within the operating system. This means that if the user placed a handset
lock code of 1325 on a simple bar or flip phone, that value would be stored in the basic
encoding for the phone, usually in ASCII or Unicode. It could easily be located by employing
encoding search techniques using popular tools such as Cellebrite's Physical Analyzer. Also,
many of the devices will contain the user PIN and user security code just a few offsets from
one another within the file system. On some phones, the security code is used to bypass the
PIN if it is unknown. In a past criminal investigation several years ago, a homicide victim
decided to change his 4-digit PIN and 6-digit (default) security codes. The phone was a
Motorola iDEN. At the time of this incident, automatic tools were limited, and large vendors
such as Cellebrite did support the phone for physical extraction, but the parsing on SMS and
other user areas was limited. Logical settings, however, would parse the required fields for the
case. A test phone of the same model was used to place a different (known) value for the PIN
and 6-digit security code. Using the Find—Code tab in Physical Analyzer, the values on the
test phone were easily located. They were an offset apart and had unique characters before
and after these security codes. A RegEX expression was then used to locate the values on the
victim’s phone, unlock the GUI, and allow a logical parsing of several SMS messages related
to his death. The point of explaining this case is to convey that these values were on the
phone, in their original state. This was typically how phones stored the security imposed by
the user. There are many phones still sold today that work this way. These generally fall into
the pay-as-you-go, simple “burner-phone” categories. They lack sophisticated operating
systems and have limited features. Many are supported by several commercial forensic tools,
while others may lock down their USB data port.

Fig. 19.1 is a file system from an LG VX8100 that was acquired from Bitpim. Within the
nvm_security folder we can see the default 6-digit security value of 000000. The user
enabled security PIN is below this, toward the end of offset 90 as 1397 (bottom image in
Fig. 19.1).

Android User Enabled Security: Passwords and Gesture  285

Smartphones

In most cases when the user employs a specific type of security on a smartphone, the
actual value is converted out of this simple format shown in Fig. 19.1. Depending on which
type of security the user chooses, it runs a check against a specific hash value of that
security when the user wants to enter the GUI. It is important that examiners understand
that when it comes to the gesture and password locks, we are not addressing the entire file

Figure 19.1
Example of default security and user set PIN values of an LG VX8100 mobile phone.

286  Chapter 19

system encryption, but simply the security (value) encryption that is performed each time a
user enters the phone. This is not to say that there is no hardware-based encryption that
may be going on with newer chip sets. Many readers are probably aware of issues with
newer iPhones. This also applies to newer devices using the UFS chip. This will become
even more problematic, and new techniques will hopefully address exploits for these
issues.

This chapter will discuss the security aspect of both the password lock and the pattern lock
employed on Androids. It will conclude with focusing on manually creating a hash value
based on a binary file created from the gesture pattern.

The Password Lock

When a user sets up a password lock, he/she can employ his/her own choice of data that
contain special characters, numbers, letters, or any combination of the same. If the user sets
up a password lock, it is given a hash that uses a combination of SHA-1 and MD5. The value
is also salted. Salt or salting is the process of adding additional security, as it randomizes the
hash. This can prevent dictionaries and rainbow tables from breaking the hash values that are
always the same, such as what readers will see when we discuss the gesture value. The
Android password can be complex, with 4–16 characters in length. There are 94 possible
characters per space, with users having the choice of lower/uppercase letters, digits, and
punctuation. The good news (if it can be called that) is that there are no spaces allowed. If we
manually locate the value within the file password.key (Data/System/) location, the password
hash has a 72-byte hexadecimal value. From left to right, it is comprised of the first 40 bytes
showing the SHA-1 hash. This is immediately followed by the remaining 32 bytes of the MD5
hash. Because the value is salted, the salt value must be recovered first. Salt is represented in
hexadecimal as a random 64-bit integer. Salt is stored in settings.db (SQLite database file),
which is named lockscreen.password_salt. This will be within the (rebuilt) file system shown
here:

data/data/com.android.providers.settings/databases/settings.db

If examiners have pulled a binary that has not been rebuilt and decoded with tools such as
Physical Analyzer, it is a little bit more time-consuming to locate the password.key and
the salt value. If examiners conduct an ASCII search for “lockscreen.password_salt,” they
will obtain at least one hit that places them in general the area they need to look for the
entire salt value. The salt is a string of the hexadecimal representation of a random 64-bit
integer. The value along with the MD5 or SHA-1 from the password key location can
then be used to brute force attack the values with Hashcat. Here are some steps to help
examiners locate the salt when they have a physical file from a JTAG, ISP, or chip-off
examination.

Android User Enabled Security: Passwords and Gesture  287

Hashcat

Hashcat is a free, open-source tool, which supports several different algorithms, and can be
installed in multiple operating systems [1]. Using their latest list from the version available at
the time this was written (3.30), the following algorithms can be attacked:
 
	•	 �MD4, MD5, Half MD5 (left, mid, right), SHA1, SHA-224, SHA-256, SHA-384, SHA-

512, SHA-3 (Keccak), SipHash, RipeMD160, Whirlpool, DES (PT = $salt, key = $pass),
3DES (PT = $salt, key = $pass), GOST R 34.11-9, GOST R 34.11-2012 (Streebog)
256-bit, GOST R 34.11-2012 (Streebog) 512-bit, Double MD5, Double SHA1,
md5($pass.$salt), md5($salt.$pass), md5(unicode($pass).$salt), md5($salt.
unicode($pass)), md5(sha1($pass)), md5($salt.md5($pass)), md5($salt.$pass.$salt),
md5(strtoupper(md5($pass))), sha1($pass.$salt), sha1($salt.$pass),
sha1(unicode($pass).$salt), sha1($salt.unicode($pass)), sha1(md5($pass)),
sha1($salt.$pass.$salt), sha1(CX), sha256($pass.$salt), sha256($salt.$pass),
sha256(unicode($pass).$salt), sha256($salt.unicode($pass)), sha512($pass.$salt),
sha512($salt.$pass), sha512(unicode($pass).$salt), sha512($salt.unicode($pass)),
HMAC-MD5 (key = $pass), HMAC-MD5 (key = $salt), HMAC-SHA1 (key = $pass),
HMAC-SHA1 (key = $salt), HMAC-SHA256 (key = $pass), HMAC-SHA256
(key = $salt), HMAC-SHA512 (key = $pass), HMAC-SHA512 (key = $salt), PBKDF2-
HMAC-MD5, PBKDF2-HMAC-SHA1, PBKDF2-HMAC-SHA256, PBKDF2-HMAC-
SHA512, MyBB, phpBB3, SMF, vBulletin, IPB, Woltlab Burning Board, osCommerce,
xt:Commerce, PrestaShop, Mediawiki B type, Wordpress, Drupal, Joomla, PHPS, Django
(SHA-1), Django (PBKDF2-SHA256), EPiServer, ColdFusion 10+, Apache MD5-APR,
MySQL, PostgreSQL, MSSQL, Oracle H: Type (Oracle 7+), Oracle S: Type (Oracle
11+), Oracle T: Type (Oracle 12+), Sybase, hMailServer, DNSSEC (NSEC3), IKE-PSK,
IPMI2 RAKP, iSCSI CHAP, Cram MD5, MySQL Challenge-Response Authentication
(SHA1), PostgreSQL Challenge-Response Authentication (MD5), SIP Digest
Authentication (MD5), WPA, WPA2, NetNTLMv1, NetNTLMv1 + ESS, NetNTLMv2,
Kerberos 5 AS-REQ Pre-Auth etype 23Kerberos 5 TGS-REP etype 23, Netscape LDAP
SHA/SSHA, LM, NTLM, Domain Cached Credentials (DCC), MS Cache, Domain
Cached Credentials 2 (DCC2), MS Cache 2, MS-AzureSync PBKDF2-HMAC-SHA256,
descrypt, bsdicrypt, md5crypt, sha256crypt, sha512crypt, bcrypt, scrypt, OSX v10.4,
OSX v10.5, OSX v10.6, OSX v10.7, OSX v10.8, OSX v10.9, OSX v10.10, AIX {smd5},
AIX {ssha1}, AIX {ssha256}, AIX {ssha512}, Cisco-ASA, Cisco-PIX, Cisco-IOS, Cisco
8, Cisco 9, Juniper IVE, Juniper Netscreen/SSG (ScreenOS), Android PIN,
Windows 8 + phone PIN/Password, GRUB 2, CRC32, RACF, Radmin2, Redmine,
OpenCart, Citrix Netscaler, SAP CODVN B (BCODE), SAP CODVN F/G
(PASSCODE), SAP CODVN H (PWDSALTEDHASH) iSSHA-1, PeopleSoft,
PeopleSoft PS_TOKEN, Skype, WinZip, 7-Zip, RAR3-hp, RAR5, AxCrypt, AxCrypt in

288  Chapter 19

memory SHA1, PDF 1.1–1.3 (Acrobat 2–4), PDF 1.4–1.6 (Acrobat 5–8), PDF 1.7 Level
3 (Acrobat 9), PDF 1.7 Level 8 (Acrobat 10–11), MS Office <= 2003 MD5, MS Office
<= 2003 SHA1, MS Office 2007, MS Office 2010, MS Office 2013, Lotus Notes/Domino
5, Lotus Notes/Domino 6, Lotus Notes/Domino 8, Bitcoin/Litecoin wallet.dat,
Blockchain, My Wallet, 1Password, agilekeychain, 1Password, cloudkeychain, Lastpass,
Password Safe v2, Password Safe v3, Keepass 1 (AES/Twofish) and Keepass 2 (AES),
Plaintext, eCryptfs, Android FDE <= 4.3, Android FDE (Samsung DEK), TrueCrypt,
VeraCrypt [1].

The use of Hashcat could easily take up a couple of different chapters. We will not spend too
much time covering the exact steps of this program. In previous versions, the user needed to
specify if they needed oclHashcat, for AMD graphic cards, or CudaHashcat, if they used
Nvidia. They have combined the use into one program, and some of the examples used in this
chapter used version 3.30.

When we attempt to break the password on an Android, Hashcat has the ability to break the
entire string of 72 bytes, along with the salt, but the time evolved tremendously increases. If
we focus on separating these hashes, and then locating the salt, it makes the attack much
easier to manage. Of course, the longer the password, the more time needed. Most individuals
do not use all 16 characters and generally keep their password relatively short. The food for
thought here is if you have a robust forensic machine, why not try it? Hashcat usually runs an
estimated time on how long the process will take. From there you can decide if you want to
continue or keep it running and hand it over to your replacement after you retire with 30 years
of service.

If we are dealing with a raw physical pull that has not been decoded, we can use the search
technique previously described (lockscreen.password_salt) to locate the general area to find the
salt. As we look at the search results, we need to examine the byte value directly in front of this
search hit. It will be in a range between 0×0F and 0×35. That byte provides the examiner the
length of the salt. Directly in front of these series of bytes, there will be a byte displaying the
value of 0×3D. This byte represents a string length of 24, which is the length of our value we are
looking for. Fig. 19.2 depicts an actual salt value that represents these values we just explained
and the ASCII search hit that was used. For readers who are viewing this book electronically,
they are color coded and labeled to illustrate this further. Once we locate the salt integer, it needs
to be converted to hexadecimal. In older versions of Hashcat, the uppercase letters in the
converted value must be converted to lowercase to conduct brute force attempts. The newer
version of Hashcat (3.30) no longer requires this step. Fig. 19.3 depicts the salt value from the
settings.db area, which is much easier to locate. Again, depending on which type of extraction
examiners have performed, the method needed for locating the salt will be determined.
Obviously, the database is much easier and preferred, if this is possible in your casework.

Figure 19.2
Breakdown of locating the salt value in Hex View and converting the integer value to hexadecimal.

Figure 19.3
Breakdown of locating the salt value from the com.android.providers.settings/databases/settings.

db location and converting the integer value.

290  Chapter 19

Hashcat can attempt brute force with the SHA-1 or MD5 followed by the salt value. Use one
or the other, but to save time, not the entire combined 72-byte (SHA-1/MD5) password
combination. From left to right, the first 40 bytes are the SHA-1, followed by the remaining
bytes for MD5. Since the MD5 is shorter (32 bytes), it is much easier to use that value from
the password.key location to attempt the attack.

The first four screenshots (figures) contained on the companion site deal directly with the
help list from Hashcat. The first figure, Fig. 19.1 (companion site), is obtained from
Hashcat 3.30. This is directly from the help command (C:\>hashcat64.exe -h), which
displays the various options and commands that can be used. This first screenshot is just
some of the choices, there are more. Fig. 19.1 (companion site) shows the first choice,
which is the “Options.” Fig. 19.2 (companion site) is a few of the “Hash modes.” Again, not
the entire list of all the choices. Fig. 19.3 (companion site) depicts the “Attack Modes.” The
last figure from Hashcat 3.30 (companion site, Fig. 19.4) shows some “Basic Examples”
and links to where people can locate additional help.

Obviously, the tool runs in the command line (Run As Administrator) and, depending on the
video card used, will represent which additional line codes a user would use. If we install
Hashcat in the root of C: drive in Windows, we could use a command line on a 64-bit
Windows machine that is running a supported GPU as the following:

C:\.Hashcat64.exe-a3-m110 AE36A990BF8300123E43EBF01E39EE41335F1406:
b6c0bdef9c965d96

Using the embedded Hashcat general help list would show that -a 3 is a brute force attack
option, and qualifier noted as -m is our option for hash type, and the 110 is used for SHA-1
($pass.$salt). If we had used the MD5 value, the command would be the same except we
would change the 110 to 10 for the MD5 ($pass.$salt).

This combination of salting the hash value made from a SHA-1 and MD5 is not always
followed in every Android. Samsung, for example, changed some of the rules. Samsung III
and higher no longer utilize the SHA-1 and MD5 combination and instead take the hash and
salt and perform 1024 SHA-1 interactions.

Using John Lehr’s “Android Password Possibilities” chart [2], let us put this into perspective
with a length and number of password possibilities comparison:

Length (PW) Number of (PW) possibilities

4 78,074,896
5 3,339,040,224
6 689,869,781,056
7 64,847,759,419,264
8 6,095,689,385,410,816

Android User Enabled Security: Passwords and Gesture  291

Length (PW) Number of (PW) possibilities

9 572,994,802,228,616,704
10 53,861,511,409,489,970,176
11 5,062,982,072,492,057,196,544
12 475,920,314,814,253,376,475,136
13 44,736,509,592,539,817,388,662,784
14 4,205,231,901,698,742,834,534,301,696
15 395,291,798,759,681,826,446,224,359,424
16 37,157,429,083,410,091,685,945,089,785,856

As we can see, tools such as Hashcat are needed to speed up the process of brute force cracking
passwords. Readers can locate additional information regarding Hashcat through Internet
searches. Another interesting way some examiners are tackling the problem, is by daisy
chaining several high-end graphic cards and create a machine dedicated to cracking passwords.

Q. Why decode the password lock?

In most forensic scenarios, the examiner has performed a physical pull, and for various
case-related reasons, decoding of the password lock is needed. It may be a case where a file
system or logical pull is necessary, and the examiner must get into the GUI of the device to
enable the USB debugging. There may also be cases where the examiner needs to view
application data under an exigent situation or validate data. Whatever the reason, there may
be times when the physical examination is not enough for the case requirements.

The actual pull itself when there is a password lock enabled can be accomplished with rooted
Androids, debugging being enabled already, or in some cases using JTAG or ISP pulls. There
are some newer Androids that will not support rooting and/or JTAP/ISP. Because of the
complexity of some passwords, python scripts could take in some cases, over 8500 millennia
to complete. However, forensic machines that employ higher-end graphic card or multiple
cards could crack the same password in hours. There are specific limitations and there may be
situations where the passcode cannot be brute forced in the examiner’s lifetime or at least
without more hardware costs being employed on the host machine.

The Pattern Lock (Gesture)

The GUI of the Android shows the pattern lock as a series of round dots as shown in the
simple illustration in Fig. 19.4. There are totally nine—three in three rows. If we number
each of these and begin counting from left to right and continue counting left to right, each
will have its own number. Like the password lock, the security does not store the values of
each of these as a number, but SHA-1 hashes the value, and stores the SHA-1. Users who
create a pattern are not allowed to move over one point several times, and there are only
895,924 variants to the pattern on an Android. The hashed SHA-1 value given to the bytes

292  Chapter 19

is placed in the file system in the gesture.key file, again with the same path as before: /
data/system. Computers begin counting at value 0. The first gesture is not a value of 1
converted to bytes then SHA-1, but rather a value of 0. This means that the values start at
zero and end with eight, not nine. The hexadecimal equivalent of each single point is 0×00,
through 0×08.

Figure 19.4
Illustration to show the numbering of the 9 pattern (dots) on the screen of an Android and how they

are counted in hexadecimal.

If we created the minimum length of a gesture pattern of four areas and begin with the
numbered values used 1,2,3,4 (left side image in Fig. 19.5), this would utilize corresponding
bytes 00 01 02 03, which would in turn perform a SHA-1 hash. The resulting hash algorithm
would be stored on the Android in the gesture.key location as:

A02A05B025B928C039CF1AE7E8EE04E7C190C0DB

Android User Enabled Security: Passwords and Gesture  293

If we create the gesture combination of 9,8,7,6,5,4,3,2,1, it would show as what is depicted in
the right side image in Fig. 19.5, and convert the bytes to the SHA-1 value, which is also
stored in the gesture.key location as:

853822DCEE4C6B59D4A9F0C4CDAF97989E29C83A

Extraction Summary

There are commercially available forensic programs that can decode the gesture pattern and
display it in the summary of the report. For example, if we decode the gesture pattern on an
LG LS-670, it may display within the summary as unlock pattern
1->2->3->6->9->8->5->4->7.

SHA-1 Exercise

To help better understand the values that are stored in the gesture.key location, there is a
simple exercise that replicates the stored gesture that is hash as a SHA-1. Several of the tools

Figure 19.5
Two different examples of gesture security patterns (1,2,3,4 and 1,2,3,4,5,6,7,8,9).

294  Chapter 19

used in this example are free. The example also uses Physical Analyzer to view the file after
we create it. Viewing the file that was created is not necessary but it does help validate that no
mistakes were made with the bytes that were created. Also, other free viewers such as FTK
Imager will work. To start with, download a free hex creation tool. The one that is shown in
this example is called Hex Editor XVI32 and is created by Christian Mas. XVI32 is a free-
ware hex editor running under Windows 9x/NT/2000/XP/Vista/7. The name XVI32 is derived
from XVI, the roman notation for the number 16 [3].

Once Hex Editor XVI32 is downloaded and installed, go to Edit—Insert String. This will
bring up the Insert window. Leave the Text string and “as Unicode Latin (UTF-16LE)”
settings blank. Select the Hex string setting. Leave all the other settings in their default
settings as seen when the program first opens. In the blank box below the Hex string
setting, type a simple gesture pattern of 00 01 02 03. The field will automatically space the
bytes accordingly. This represents a user creating a pattern lock from left to right on the
GUI of the phone of 1,2,3,4 as shown in our previous example (image) contained in the left
side of Fig. 19.5. Once this has been completed, select OK. The file must be saved. Select
File—Save as, and name the file. In the example provided, the file was named 01_
through_04. In the “Save as type” make certain (*.*) is selected. On the companion site,
Fig. 19.5 depicts the first two steps when creating the file using the Hex Editor XVI32
program. Fig. 19.6 of the companion site also shows the naming configuration the file needs
to be saved in.

This file can be opened with a hex viewer or FTK Imager. The next step is to create a
SHA-1 hash value. Again, there are several free programs available, and FTK Imager can
create both an MD5 and SHA-1, exporting the values to a .csv file. In our example, we
use DigitalVolcano Hash Tool 1.1. “A freeware utility to calculate the hash of multiple
files. This is a 128-bit number usually expressed as a 32-character hexadecimal number.
It can be said to be the ‘signature’ of a file or string and is used in many applications,
including checking the integrity of downloaded files. This compact application helps you
quickly and easily list the hashes of your files” [4]. This free utility allows the user to
hash desired files using MD5, SHA-1, SHA-256, SHA-384, SHA-512, and CRC-32
algorithms.

Once the program is downloaded and installed, we select SHA-1, and then select our
saved *. * file, and in our example of 1,2,3,4 (bytes 00 01 02 03), the SHA-1 value
created is:

a02a05b025b928c039cf1ae7e8ee04e7c190c0db

If we take a dictionary of possible SHA-1 patterns (Rainbow Table) that use all the variants
possible, we will see that this SHA-1 matches our pattern of 1,2,3,4 (or 0,1,2,3). The

Android User Enabled Security: Passwords and Gesture  295

Figure 19.6
DigitalVolcano Hash Tool and comparison with an Android Gesture dictionary (Rainbow Table).

companion site (Chapter 19), contains text file titled “Gesture Dictionary_Rainbow table—
Notepad.” This was used to compare the SHA-1 value we created from our bytes of 00 01 02
03. Fig. 19.6 shows the SHA-1 value created using DigitalVolcano Hash Tool 1.1 followed by
pasting the value using Ctrl + F keys into the dictionary. The matching values are highlighted in
the bottom image of Figure 19.6.

296  Chapter 19

This rainbow table can be utilized to decode any SHA-1 value that is in the gesture.key
location. This is also how Physical Analyzer decodes the same entry. By understanding how
the pattern is stored, as well as how to replicate and decode the same SHA-1 byte values,
examiners should now have a better understanding of this security feature on Androids.

Chapter Summary Key Points

Simple (nonsmart style) phones typically store the user enabled security credentials on the
phone. The values are usually easy to decode. As phones become more complex, so do the
types of security features that are available to the user. Android users continue to employ both
the gesture pattern and password. The user can create a password with various combinations
of characters up to 16 entries. Android passwords use a combination of SHA-1 and MD5. The
value is also salted with a random integer. If examiners are decoding a file that has not been
rebuilt with databases, they can employ search techniques to locate the general area of the salt
value for the password lock. If the partitions and subsequent databases have been rebuilt, the
salt location is much easier to find.

The integer value of the salt will need to be converted to hexadecimal, and uppercase letters
converted to lowercase, when examiners use older versions of Hashcat to brute force the
password. Once this is completed, the SHA-1 or MD5 can be combined with the converted
salt value. Specific line commands can be found in the help menu to assist with using
Hashcat. The system used must have a specific type of video card and driver. The more cards
that are used, the faster the brute force works.

The gesture pattern that users store on their Androids is stored as a SHA-1 value. This will be
in the gesture.key location within the file system. Examiners can manually decode this value
using a dictionary (Rainbow Table). To help better understand how the bytes of the gesture
are stored, examiners can replicate the actual bytes, create a SHA-1 value, and manually
locate the same value in a dictionary. This can help to better understand the process and assist
during any explanations needed during the judicial process.

This chapter briefly touches on how two popular forms of Android security are stored, and
how examiners may go about locating and potentially cracking the security. There are many
more forms of security at the user’s disposal. If you happen to own an Android and use either
the gesture pattern or password security, hopefully you understand these concepts even more.

References

	[1]	 �Hashcat, Advanced Password Recovery, January 6, 2017. https://hashcat.net/hashcat/.
	[2]	 �What’s in an Android Password?, December 31, 2012.

http://linuxsleuthing.blogspot.com/2012/10/android-pinpassword-cracking-halloween.html.
	[3]	 �Freeware Hex Editor XVI32, June 26, 2012. http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm.
	[4]	 �Digital Volcano Software. https://www.digitalvolcano.co.uk/hash.html.

https://hashcat.net/hashcat/
http://linuxsleuthing.blogspot.com/2012/10/android-pinpassword-cracking-halloween.html
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
https://www.digitalvolcano.co.uk/hash.html

	19 - Android User Enabled Security: Passwords and Gesture
	Introduction—Security on Androids
	Simple Security Values
	Smartphones

	The Password Lock
	Hashcat
	The Pattern Lock (Gesture)
	Extraction Summary

	SHA-1 Exercise
	Chapter Summary Key Points
	References

