
CHAPTER

11Operating System Security

CHAPTER OUTLINE

Introduction..172

Operating system hardening...172

Remove all unnecessary software ...173

Alert! .. 173

Remove all unessential services...174

Alter default accounts...175

Apply the principle of least privilege ..176

Perform updates...177

Turn on logging and auditing ...178

Protecting against malware ...178

Additional resources ...179

Anti-malware tools..179

Executable space protection..180

More advanced...180

Software firewalls and host intrusion detection...180

Software firewalls ...181

Host intrusion detection..181

Operating system security tools ...181

Scanners ...182

Alert!..183

Vulnerability assessment tools ...183

Exploit frameworks ...183

Operating system security in the real world ..185

Summary ..185

Exercises ...186

References ...186

INFORMATION IN THIS CHAPTER

• Operating system hardening

• Protecting against malware

171The Basics of Information Security. DOI: http://dx.doi.org/10.1016/B978-0-12-800744-0.00011-7

© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-800744-0.00011-7

• Software firewalls and host intrusion detection

• Operating system security tools

INTRODUCTION

When we seek to protect our data, processes, and applications against concerted

attacks, one of the largest areas in which we find weaknesses is on the operating

system that hosts all of these (be it a computer, router, or smartphone). If we do

not take care to protect our operating systems, we really have no basis for getting

to a reasonably strong security posture.

There are a number of ways by which we can mitigate the various threats and

vulnerabilities we might face from an operating system perspective. One of the

easiest categories we can point out is operating system hardening. We can use

this technique when we are configuring hosts that might face hostile action in

order to decrease the number of openings through which an attacker might ulti-

mately reach us.

We can also add tools and applications to our operating system that are

designed to combat some of the techniques attackers might use against us. The

most common and obvious of these is the use of anti-malware tools, which we

will discuss later in this chapter, that protect us from the broad variety of mali-

cious code to which our system might be exposed, particularly if it is Internet fac-

ing. In the same general class of software, we can also look to software firewalls

and host-based intrusion detection systems (HIDS) in order to block unwanted

traffic and to alert us when undesirable network traffic is arriving at, or originat-

ing from, our systems.

Additionally we can use the large number of security tools that are available

to help us detect potentially vulnerable areas on our hosts. We might use such

tools to find services that we did not discover during our hardening effort, locate

network services that are known to contain exploitable flaws, validate our patch-

ing is up to date and generally inspect/audit our systems.

Through the combination of all these efforts, once again to return to the con-

cept of defense in depth, we can mitigate many of the security issues we might

find on the hosts for which we are responsible.

Operating system hardening
When we look at operating system hardening, we arrive at a new concept in infor-

mation security. One of the main goals of operating system hardening is to reduce

the number of available avenues through which our operating system might be

attacked. The total of these areas is referred to as our attack surface [1]. The

larger our attack surface is, the greater chance we stand of an attacker

172 CHAPTER 11 Operating System Security

successfully penetrating our defenses. Each area in which we are potentially inse-

cure adds to our attack surface, and each area in which we have applied security

measures decreases it.

There are six main ways in which we can decrease our attack surface, as listed

here and shown in Figure 11.1:

1. Removing unnecessary software

2. Removing or turning off unessential services

3. Making alterations to common accounts

4. Applying the principle of least privilege

5. Applying software updates in a timely manner

6. Making use of logging and auditing functions

Remove all unnecessary software
Alert!
We should always exercise great care when making changes to operating system

settings, tools, and software. Some of the changes we might make could have

unintended effects on the way our operating system functions, and a production

machine is not the place to learn this through experience. Researching changes

carefully and testing on lab systems before we make changes is always a good

policy.

Each piece of software installed on our operating system adds to our attack

surface. Some software may have a much greater effect than others, but they all

add up. If we are truly seeking to harden our operating system, we need to take a

FIGURE 11.1

Six main hardening categories.

173Operating system hardening

hard look at the software that should be loaded on it, and take steps to ensure that

we are working with the bare minimum need for a functional system.

If we are preparing a Web server, for instance, we should have the Web server

software, any libraries or code interpreters that are needed to support the Web

server, and any utilities that deal with the administration and maintenance of the

operating system, such as backup software and remote access tools. We should

remove applications like Microsoft office or services like File Transfer Protocol

(FTP). We really have no reason to install anything else if the system is truly

going to function solely as a Web server.

Our problems begin to arise when we see other software installed on the

machine, often with the best of intentions. For example, let us say that one of our

developers logs in remotely and needs to make a change to a Web page on the

fly, so they install the Web development software they need. Then they need to

evaluate the changes, so they install their favorite Web browser and the associated

media plug-ins, such as Adobe Flash and Acrobat Reader, as well as a video

player to test the video content. In very short order, not only do we have software

that should not be there, but the software quickly becomes outdated since it is not

patched, because it is not “officially” installed so is not part of the configuration

management plan. At this point, we have a relatively serious security issue on an

Internet-facing machine.

Remove all unessential services
In the same vein as removing unneeded software, we should also remove or dis-

able unessential services. Many operating systems ship with a wide variety of ser-

vices turned on in order to share information over the network, locate other

devices, synchronize the time, allow files to be accessed and transferred, and per-

form other tasks. We may also find that services have been installed by various

applications, to provide the tools and resources on which the application depends

in order to function.

Turning operating services off can be an exercise in experimentation and frus-

tration. In many cases, such services are not named in a fashion that indicates

their actual function, and tracking down what each of them is doing may require

a bit of research. One of the best things to do first when we are seeking to locate

such extraneous services is to determine the network ports on which the system is

actually listening for network connections. Many operating systems have built-in

utilities that will allow us to do this, such as netstat on Microsoft operating sys-

tems, but we can also put Nmap to use for such tasks.

As we discussed in Chapter 10, Nmap can allow us to discover the devices on

our networks, but it can also allow us to determine on which network ports a

given system is listening. If we run the following Nmap command:

Nmap ,IP address.

we will see results similar to those shown in Figure 11.2.

174 CHAPTER 11 Operating System Security

In this case, we can immediately point out several common services running

on the target:

• Port 22 Remote access to the system, secured with Secure Shell (SSH)

• Port 53 Domain name system (DNS), which translates friendly names to IP

addresses

• Port 80 Hypertext Transfer Protocol (HTTP), which serves Web content

• Port 443 Hypertext Transfer Protocol Secure (HTTPS), which serves Web

pages secured with Secure Sockets Layer (SSL) and/or Transport Layer

Security (TLS)

Several other ports are open as well, running various services. We can use this

information as a starting place for closing down undesirable services. In the case

of our example target, ports 22, 80, and 443 being open might be notable if we

did not intend to allow remote access or serve Web content.

Alter default accounts
A common weakness in many operating systems is the use of accounts known to

be standard. In many operating systems (as well as some applications), we can

find the equivalent of a guest account and an administrator account. We may also

find a variety of others, including those intended for the use of support personnel,

to allow services or utilities to operate, and a plethora of others, widely varying

by the operating system vendor, version, and so forth. Such accounts are com-

monly referred to as default accounts.

FIGURE 11.2

Nmap scan result.

175Operating system hardening

In some cases, the default accounts may come equipped with excessively liberal

permissions to regulate the actions they are allowed to carry out, which can cause a

great deal of trouble when they are being used by an informed attacker. We may

also find that default accounts are set with a particular password or no password at

all. If we allow such accounts to remain on the system with their default settings,

we may be leaving the proverbial doors that protect access to our system wide

open so that attackers can simply stroll right in and make themselves at home.

Typical measures we would take to mitigate such security risks are generally

very simple to carry out. We should first decide whether the accounts are needed at

all, and disable or remove any we will not be using. In the case of guest accounts,

support accounts, and others of a similar nature, we can often quickly and easily turn

the accounts off or remove them entirely without causing problems for ourselves. In

the case of administrative accounts, often with names such as administrator, admin,

or root, we may not be able to safely remove them from the system, or the operating

system may prevent us from doing so. In most cases, however, such accounts can be

renamed in order to confound attackers who might attempt to make use of them.

Lastly, we should not leave any account with a default password, no matter what its

status; as such passwords are often documented and well known.

Apply the principle of least privilege
As we discussed in Chapter 3, the principle of least privilege dictates that we

only allow a party the absolute minimum permission needed for it to carry out its

function. Depending on the operating system in question, we may find this idea

put into practice to a greater or a lesser extent. In almost any modern operating

system, we can find the tasks a particular user is allowed to carry out separated

into those that require administrative privileges and those that do not.

In general, normal operating system users are allowed to read and write files,

and perhaps execute scripts or programs, but they are limited to doing so within a

certain restricted portion of the file system. Normal users are generally not

allowed to carry out tasks such as modifying the way hardware functions, making

changes to the files on which the operating system itself depends, and installing

software that can change or affect the entire operating system. Such activities are

generally restricted to those users that are allowed administrative access.

On most UNIX and Linux-like operating systems, we can often see such roles

strictly enforced. Although it would be possible for the administrator of such a

system to allow all users to act with the privileges of an administrator, this is gen-

erally not the convention and administrative or “root” access is often guarded

carefully. On Microsoft operating systems, we can often find the exact opposite

to be true. On a windows system the default is to give users more control, so care

needs to be taken to change permissions to be more restrictive. While there are

more threats focused on MS due to the fact they have larger market share, the

security posture for any system is based on the administrator. The same paradigm

exists between Apple IOS and Android IOS in the smartphone market.

176 CHAPTER 11 Operating System Security

When we allow the average system user to regularly function with administra-

tive privileges, we leave ourselves open to a wide array of security issues. If the

user executes a malware-infected file or application, he does so as the administra-

tor and that program has considerably more freedom to alter the operating system

and other software installed on the host. If an attacker compromises a user’s

account, and that account has been given administrative rights, we have now

given the keys to the entire system directly to the attacker. Nearly any type of

attack we might discuss, launched from nearly any source, will have considerably

more impact when allowed access to administrative rights on a host. Thus one of

the first actions a hacker will take if they break in via a user account is privilege

escalation. It is important to monitor admin accounts for misuse!

If, instead, we limit the privileges on our systems to the minimum needed in

order to allow our users to perform their required tasks, we go a long way toward

mitigating many security issues. In many cases, attacks will fail entirely when an

attacker attempts to run them from a user account running with a limited set of

permissions. This is a very cheap security measure we can put in place and is

simple to implement. Many users will complain about the inability to install new

software, so it is key to have policy supporting this practice and ensure users

understand the reason for the policy.

Perform updates
Regular and timely updates to our operating systems and applications are critical

to maintaining strong security. New attacks are published on a regular basis, and

if we do not apply the security patches released by the vendors that manufacture

our operating systems and applications, we will likely fall victim very quickly to

a large number of well-known attacks.

We can look to the various items of malware propagating over the Internet at

any given time as an excellent example of this idea. Many pieces of malware are

able to spread by exploiting known vulnerabilities that have long since been

patched by the software vendors. Although it does pay to be prudent when plan-

ning to install software updates and to test them thoroughly before doing so, it is

generally unwise to delay this process for very long.

One of the most crucial times to ensure that we have properly patched a sys-

tem is directly after we have finished installing it. If we connect a newly installed

and completely unpatched system to our network, we may see it attacked and

compromised in very short order, even on internal networks. The commonly con-

sidered best practice in such a situation is to download the patches onto remov-

able media and use this media to patch the system before ever connecting it to a

network. Part of solid configuration management program is to monitor patch

announcements. There are services that will do this for you. You must also con-

sider auto patching for systems like your home computer. Patching is one of the

most important parts of your security program (even it is part of the IT depart-

ment function).

177Operating system hardening

Turn on logging and auditing
Last, but certainly not least, we should configure and turn on the appropriate logging

and auditing features for our system. Although the particulars of how we

configure such services may vary slightly depending on the operating system in

question, and the use to which the system is to be put, we generally need to be able

to keep an accurate and complete record of the important processes and activities

that take place on our systems. We will generally want to log significant events such

as the exercise of administrative privileges, users logging in to and out of the system,

or failing to log in, changes made to the operating system, and a number of similar

activities taking place. For a simple Windows OS, there are over 200 security-

related logs that can be turned on so it is important to find the right balance of logs

and storage. Key logs should be tied to alerts and a monitoring program.

Depending on the environment into which we will be placing the system, we

may also want to include additional features to supplement the tools built into the

operating system for these purposes. We may want to install a variety of monitor-

ing tools that watch the functionality of the system and alert us to issues with the

system itself or anomalies that might show in the various system or application

logs. We might also want to install supplementary logging architecture in order to

monitor the activities of multiple machines or to simply allow duplicate remote

copies of logs to be maintained outside the system to help ensure that we have an

unaltered record of the activities that might have taken place on the system.

In addition to the hardening methods discussed above, there are a number of specific
hardening standards. Some of the more commonly discussed are the Security Technical
Implementation Guides (STIGs)1 from the US Defense Information Systems Agency (DISA)
and the hardening guidelines2 available from the US National Security Agency (NSA)

It is also important to note that while logs are key to a post event investiga-

tion, actually reviewing the logs is a vital part of the process. If we collect logs

but never review them we will miss detecting attacks early and suffer much

greater overall impact.

Protecting against malware
A large concern at present is the mind-boggling number and variety of malware

present on the networks, systems, and storage devices around the globe. Using

such tools, attackers can disable systems, steal data, conduct social engineering

1http://iase.disa.mil/stigs/.
2http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml.

178 CHAPTER 11 Operating System Security

http://iase.disa.mil/stigs/
http://www.nsa.gov/ia/mitigation_guidance/security_configuration_guides/operating_systems.shtml

attacks, blackmail users, gather intelligence, and perform a number of other

attacks.

A good example of a particularly complex and impactful item of malware to

examine is Stuxnet. Stuxnet was first discovered in July 2009, albeit in a some-

what weaker form than what it ultimately reached [2]. Although the number of

systems infected with it was much lower in comparison to some of the other

major malware outbreaks that have taken place over the years, it had a much

more specific focus in that it targeted the Supervisory Control and Data

Acquisition (SCADA) systems that run various industrial processes. In the case of

this attack, it was a nation state attacking another nation state’s military capability.

Additional resources
For considerably more details on what Stuxnet does and how it does it, see the

“W32.Stuxnet Dossier” from Symantec, available at www.symantec.com/content/

en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf.

The ultimate goal of Stuxnet appears to have been the sabotage of SCADA

systems, largely targeted at portions of the equipment running in the nuclear pro-

gram in Iran [3]. Stuxnet has raised the bar for malware from largely being a

virtual-based attack to actually being physically destructive.

Anti-malware tools
Most anti-malware applications detect threats in the same way the IDS we dis-

cussed in Chapter 10 do: either by matching against a signature or by detecting

anomalous activities taking place. Anti-malware tools do tend to depend more

heavily on signatures than on anomaly detection, which is typically referred to in

the anti-malware field as heuristics. Malware signatures are usually updated by

the vendor of the application at least once a day and may be updated more often

than that if the need arises.

Anti-malware tools generally detect malware in one of two main ways: either

by detecting the presence of, or traffic indicative of, malware in real time or by

performing scans of the files and processes already in place on the system. When

malware is found, responses by the anti-malware tool may include killing any

associated processes and deleting the files, killing the processes and quarantining

the files so that they are not able to execute but are not deleted, or simply leaving

whatever has been detected alone. Leaving the files intact is not a typical

response but may be required as anti-malware tools do sometimes detect security

tools and other files that are not malware, which we may want to leave alone and

ignore in the future.

We can find anti-malware tools deployed on mobile devices, individual sys-

tems, and a variety of servers but monitored at the enterprise level as a matter of

course for large enterprise environments in order to protect these systems. We

179Additional resources

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

may also find such tools installed on proxy servers in order to filter malware out

of the incoming and outgoing traffic. This is very common in the case of proxies

for e-mail, as many items of malware use e-mail as a method of propagation. In

the case where malware is detected by such a tool, we may see the e-mail rejected

entirely, or we may merely see the malware stripped out of the message body or

the offending attachment removed.

Executable space protection
Executable space protection is a hardware- and software-based technology that

can be implemented by operating systems in order to foil attacks that use the

same techniques we commonly used in malware. In short, executable space pro-

tection prevents certain portions of the memory used by the operating system and

applications from being used to execute code. This means classic attacks such as

buffer overflows that depend on being able to execute their commands in hijacked

portions of memory may be prevented from functioning at all. Many operating

systems also use address space layout randomization (ASLR) [4] in order to shift

the contents of the memory in use around so that tampering with it is even more

difficult.

More advanced
A buffer overflow attack works by inputting more data than an application is

expecting from a particular input—for example, by entering 1000 characters into

a field that was only expecting 10. Depending on how the application was written,

we may find that the extra 990 characters are written somewhere into memory,

perhaps over memory locations used by other applications or the operating sys-

tem. It is sometimes possible to execute commands by specifically crafting the

excess data.

Executable space protection requires two components to function: a hardware

component and a software component. Both of the main CPU chip manufacturers,

Intel and AMD, support executable space protection, with Intel calling it the

Execute Disable (XD) bit [5] and AMD calling it Enhanced Virus Protection [6].

The software implementation of executable space prevention can be found in

many common operating systems. Both executable space prevention and ASLR

can be found in many operating systems from Microsoft and Apple, as well as a

number of Linux distributions, just to name a few.

Software firewalls and host intrusion detection
In addition to the tools we can use on the network to detect and filter out undesir-

able traffic, such as firewalls and IDS, we can add another layer of security at the

180 CHAPTER 11 Operating System Security

host level by implementing a very similar set of tools here. Although we may

often find firewalls and IDS implemented at the network level in the form of

purpose-built appliances, the actual functions they perform are generally carried

out via specialized software resident on the devices. Similar software can be

installed directly onto the hosts residing on our networks.

Software firewalls
Properly configured software firewalls are a very useful additional layer of secu-

rity we can add to the hosts residing on our networks. Such firewalls generally

contain a subset of the features we might find on a large firewall appliance but

are often capable of very similar packet filtering and stateful packet inspection.

We often find the rulesets of such applications expressed in terms of the particular

applications and ports allowed to send and receive traffic on the various network

interfaces that exist on the host. Such softwares can range from the relatively sim-

ple versions that are built into and ship with common operating systems, such as

Windows and OS X, to large versions intended for use on corporate networks that

include centralized monitoring and the capability for considerably more complex

rules and management options.

Host intrusion detection
HIDS are used to analyze the activities on or directed at the network interface of

a particular host. They have many of the same advantages as network-based intru-

sion detection systems (NIDS) have but with a considerably reduced scope of

operation. As with software firewalls, such tools may range from simple con-

sumer versions to much more complex commercial versions that allow for cen-

tralized monitoring and management.

A potential flaw with centrally managed HIDS is that, in order for the soft-

ware to report an attack to the management mechanism in real time, the informa-

tion needs to be communicated over the network. If the host in question is being

actively attacked via the same network we would report over, we may not be able

to do this. We can attempt to mitigate such issues by sending a regular beacon

from the device to the management mechanism, allowing us to assume a problem

if we stop seeing multiple devices unexpectedly, but this might not be a complete

approach.

Operating system security tools
As we discussed in our coverage of the tools we might use to evaluate our net-

work security in Chapter 10, a number of the same or similar tools can also be

used to assess the security of our hosts. We can use scanners to examine how our

hosts interact with the rest of the devices on the network, vulnerability assessment

181Operating system security tools

tools to help point out particular areas where we might find applications or ser-

vices that may be open to attack, privilege escalation tools to gain unauthorized

access on our systems, and various exploit frameworks to allow us access to a

broad array of tools and attacks that might be used by those who would attempt

to subvert our security. The tools we will discuss in this section do not resemble

an exhaustive list, but we will hit a few of the highlights.

Scanners
We can use a large number of scanning tools to assist in detecting various secu-

rity flaws when we are looking at hosts. Although we discussed this in

Chapter 10 from a network perspective, such tools can also be used to enhance

the security of our hosts. We can look for open ports and versions of services that

are running, examine banners displayed by services for information, examine the

information our systems display over the network, and perform a large number of

similar tasks.

Earlier in this chapter, when we were discussing hardening, we looked at a

very simple example of using Nmap to look at a device over the network in order

to discover the ports that had services listening on them. Nmap actually has a

very large and broad set of functionality and can give us considerably more infor-

mation if we ask it to do so. In Figure 11.3, we can see the results of an Nmap

FIGURE 11.3

Nmap scan result.

182 CHAPTER 11 Operating System Security

scan directed against a network printer. In this case, we asked Nmap to also look

for the particular versions of the services it found and to attempt to identify the

operating system running on the device. If we look at port 9220 in the listing, we

can see that the service is hp-gsg, which, although a bit cryptic, might give us

somewhat of a clue that it is a service specific to HP printers, but if we look at

the version information on the same line, we can see very specifically that the ser-

vice is HP Generic Scan Gateway 1.0. Based on this information, we might have

a much better chance of successfully being able to attack the device.

Alert!
Looking closer at the Nmap results in Figure 11.3, you will note that Nmap told

us the device being scanned was a printer, but it also told us it was running Mac

OS X as an operating system. Sometimes Nmap’s OS fingerprints can be a little

skewed from what is actually on the device, so it is often best to verify the output

from Nmap with another tool if something looks odd.

In addition to the many features built into Nmap, we can create custom Nmap

functionality of our own, through the use of the Nmap Scripting Engine (NSE).

Vulnerability assessment tools
Vulnerability assessment tools, which often include some portion of the feature

set we might find in a tool such as Nmap, are aimed specifically at the task of

finding and reporting network services on hosts that have known vulnerabilities.

One such well-known scanning tool is Tenable’s Nessus. Although Nessus

was, at one time, a free tool, it is no longer entirely so. Nessus is now primarily a

commercial tool, with a limited free license available for noncommercial use.

Nessus is chiefly a graphically interfaced vulnerability assessment tool, as shown

in Figure 11.4. In essence, Nessus will conduct a port scan on a target, then

attempt to determine what services and versions of service are running on any

ports it finds open. Nessus will then report back with a specific list of vulnerabil-

ities that we might find on a given device.

As we mentioned, Nessus, as a part of its feature set, includes a port scanner,

as a port scan is needed in order to find the listening services before we can iden-

tify the vulnerabilities that might be resident in them. Nessus also includes some

other functionalities, including the ability to add custom features to the tool

through the Nessus Attack Scripting Language (NASL).

Exploit frameworks
A category of tools, or more accurately, a category of sets of tools, called an

exploit framework, enjoyed a rise in popularity in the first few years of the 2000s

and is still going strong. Many exploit frameworks provide a variety of tools,

183Alert!

including network mapping tools, sniffers, and many more, but one of the main

tools we can find in exploit frameworks is, logically, the exploit.

Exploits are small bits of software that take advantage of, or exploit, flaws in

other software or applications in order to cause them to behave in ways that were

not intended by their creators. Exploits are commonly used by attackers to gain

access to systems or gain additional privileges on them when they already have

access.

Exploit frameworks, such as Rapid7’s Metasploit, as shown in Figure 11.5,

Immunity CANVAS, and Core Impact provide large sets of prepackaged exploits

in order to make them simple to use and to make a larger library available to us

than we might have if we had to put them together individually. Many exploit

frameworks come in the form of graphically interfaced tools that can be run in

FIGURE 11.4

Nessus.

FIGURE 11.5

Metasploit Pro.

184 CHAPTER 11 Operating System Security

much the same way that any other application functions. Some tools can even be

configured to automatically seek out and attack systems, spreading further into

the network as they gain additional access. We commonly see the use of exploit

frameworks in penetration testing.

Operating system security in the real world
The operating system security measures we discussed in this chapter are in com-

mon use in companies around the globe. The various steps we went over when

we discussed hardening operating systems are usually implemented by any com-

petent organization that is building servers for deployment, particularly in cases

where these servers will be Internet facing. Depending on the organization in

question and its security posture, we may or may not find such measures to have

been carried out on client machines. Although such basic hardening measures are

a way in which we can increase our security with relative ease, we do so at the

potential expense of ease of use and productivity.

The use of anti-malware tools, HIDS, and software firewalls is also rather

ubiquitous in many organizations of any appreciable size. We will commonly see

anti-malware tools installed on proxy servers filtering Web and mail traffic as it

enters from the Internet. Without such tools in place, even if we have very strong

border security in the form of firewalls and IDS, when something does manage to

make it through these measures, it will cause great havoc on our internal

networks.

The tools we discussed in this chapter and in Chapter 10 are some of the sta-

ples of the security industry. A huge number and variety of such tools might be

used in any given environment for any number of uses, but taking the time to

learn some of those that are more commonly seen, such as Nmap and Nessus,

will be helpful to anyone entering the security field. We may see larger and cost-

lier commercial tools at use in a given environment, but they will often be in use

side by side with the old standbys.

SUMMARY

One of the primary tools we can use in our efforts to secure the operating systems

for which we are responsible is hardening. The main tasks, when we seek to

harden an operating system, are to remove all unnecessary software, remove all

unessential services, alter the default accounts on the system, utilize the principle

of least privilege, apply updates to software in an appropriate manner, and con-

duct logging and auditing.

We can also apply various additional layers of security to our operating sys-

tems in the form of additional software. We can install anti-malware tools in an

185Summary

effort to detect, prevent, and remove malware when we encounter it. We can put

firewall technology to use directly on our hosts, in order to filter out undesirable

traffic as it enters or exits our network interfaces. We can also install HIDS in

order to detect attacks as they come at us over the network.

In our efforts to secure our operating systems, we can make use of a variety of

security tools in order to find the security flaws that might be present. A number

of scanning tools are available, with Nmap being one of the most well known

among them. We can also make use of vulnerability assessment tools in order to

locate specific security flaws in our services or network-enabled software, such as

Nessus. Additionally, we can use exploit frameworks to attack systems in an

effort to gain access to them or to gain elevated privilege levels, with Metasploit

being one of the better-known tools.

EXERCISES
1. What is a vector for malware propagation?

2. What is an exploit framework?

3. What is the difference between a port scanner and a vulnerability

assessment tool?

4. Explain the concept of an attack surface.

5. Why might we want a firewall on our host if one already exists on the

network?

6. What is operating system hardening?

7. What is the XD bit and why do we use it?

8. What does executable space protection do for us?

9. How does the principle of least privilege apply to operating system

hardening?

10. Download Nmap from www.nmap.org and install it. Conduct a basic scan

of scanme.nmap.org using either the Zenmap GUI or the command line.

What ports can you find open?

References
[1] Schneider FB, editor. Trust in cyberspace. Washington, DC: National Academy Press;

1998, ISBN-13: 9780309065580.

[2] Falliere N, Murchu LO, Chien E. W32.Stuxnet Dossier. Symantec 2011.

186 CHAPTER 11 Operating System Security

http://www.nmap.org

[3] Barnes Ed. Mystery surrounds cyber missile that crippled Iran’s nuclear weapons

ambitions, Fox News, ,www.foxnews.com/scitech/2010/11/26/secret-agent-crippled-

irans-nuclear-ambitions/.; November 26, 2010 [accessed 24.10.13].

[4] Barrantes EG, Ackley DH, Palmer TS, Zovi DD, Forrest S, Stefanovic D.

Randomized instruction setemulation to disrupt binary code injection attacks.

Proceedings of the tenth ACM conference on computer and communications security;

2003. ISBN: 1581137389.

[5] Intel Corporation. Execute disable bit and enterprise security, Intel.com, ,www.intel.

com/technology/xdbit/index.htm.; 2011 [accessed 24.10.13].

[6] Advanced Micro Devices, Inc. Enhanced virus protection, AMD.com, ,www.amd.com/

us/products/technologies/enhanced-virus-protection/Pages/enhanced-virus-protection.

aspx.; 2011 [accessed 24.10.13].

187References

http://www.foxnews.com/scitech/2010/11/26/secret-agent-crippled-irans-nuclear-ambitions/
http://www.foxnews.com/scitech/2010/11/26/secret-agent-crippled-irans-nuclear-ambitions/
http://www.intel.com/technology/xdbit/index.htm
http://www.intel.com/technology/xdbit/index.htm
http://www.amd.com/us/products/technologies/enhanced-virus-protection/Pages/enhanced-virus-protection.aspx
http://www.amd.com/us/products/technologies/enhanced-virus-protection/Pages/enhanced-virus-protection.aspx
http://www.amd.com/us/products/technologies/enhanced-virus-protection/Pages/enhanced-virus-protection.aspx

This page intentionally left blank

