
EXCEPTIONS

This chapter discusses an aspect of Java that you will think has been lifted right off
the System i. You are, no doubt, plenty familiar with the concept of exceptions on

the System i. They were part of the original architecture of the System i (and System/38)
that was a harbinger of things to come. Well, now their time has arrived! Let’s begin by
briefly reviewing the i5/OS exception architecture.

SYSTEM I EXCEPTION MODEL OVERVIEW

On the System i, the idea of sending messages from one program to another is a long-es-
tablished part of the programming model. All operating system APIs and functions send
messages when something unexpected happens—something “exceptional.” These are
sent both explicitly when you code a call to these APIs, and implicitly when they are in-
voked by a language runtime (such as an RPG database input/output operation). Lan-
guage runtimes themselves also send messages when a programming error such as
“divide by zero” or “array index out of bounds” happens.

421

10

Messages on the System i embed two important pieces of information:

■ Error-message text, often with runtime substitution variables to pinpoint the
problem (such as a source sequence number or error code).

■ The severity, which for program-to-program messages is either *ESCAPE,
*STATUS, or *NOTIFY.

All error messages have a unique seven-character message identifier that can be explicitly
monitored for.

The System i message-exception model is most obvious when you are writing CL (Con-
trol Language) programs and you code explicit MONMSG (Monitor Message) statements for
each command call. It is possible to monitor for explicit messages (such as MCH0601), a
range of messages (such as by using 0000 for the numeric part of the message ID), or
function checks (CPF9999). The function check monitors typically give sweeping “if any-
thing at all happens, tell me about it” messages. Notice also that CL programs often send
their own messages for diagnostic, status, or exceptional situations by using the
SNDPGMMSG (Send Program Message) command. Programmers have learned that mes-
sages, when used properly, can be an effective way out of a troublesome situation such as
receiving unexpected input.

The OPM exception model
In the Original Programming Model (OPM, meaning pre-ILE) days, exception messages
were handled like this:

1. Does the program call-stack entry that received the message handle it (monitor
for it or have code waiting to receive it)?

2. If yes, done.

3. If no, send a function check (message CPF9999) to that same program call-stack
entry.

4. Does the program call-stack entry that received the message handle CPF9999?

5. If yes, done.

422

CHAPTER 10: EXCEPTIONS

6. If no, blow away that program and send (percolate) that CPF9999 to the previ-
ous entry in the call stack.

7. Repeat the previous step until the CPF9999 is handled. (Ultimately, the job ends
or the interactive command line returns control.)

The ILE exception model
When writing new ILE programs, the exception model is changed in the following ways:

■ The original exception message is passed all the way up the call stack until a
handler is found for it (that is, code that is willing to receive it). It is not converted
to a function check right away.

■ If nobody on the call stack (to the control boundary, which is an activation group,
an OPM program, or the job boundary) handles this message, it is converted to a
function check (CPF9999) and the process is repeated for the function check.

■ If the original message is handled by somebody on the call stack, the entries
above it are terminated.

■ If nobody handles the original message, each is then given a chance to handle the
function check, starting at the original call-stack entry that received the message.

Each entry in the call stack that does not handle the function check is typically removed
from the call stack (depending on the user’s answer to an inquiry message), and the next
entry is given a chance to handle it. Further, the call stack itself is different in ILE. Not
only does it contain programs, but it also contains procedures, which can have their own
unique exception-handling support.

RPG III exception-handling
Now that you have seen the generic system support for exceptions, let’s look closer at
what is involved in RPG itself. As you recall, RPG III divides exceptions into two camps:

■ File errors. These can occur when processing files, such as “record not found.”

■ Program errors. These are programming errors, such as “divide by zero.”

423

SYSTEM I EXCEPTION MODEL OVERVIEW

RPG III offers three ways to handle exceptions:

■ Error indicators (Resulting Error Indicator) on many op-codes. These are set by
the language at runtime if the op-code fails.

■ The INFSR error subroutine for file errors.

■ The *PSSR error subroutine for program errors.

You can also code special data structures (INFDS and PSDS) that the language will update
at runtime to indicate the error that occurred (in the *STATUS subfield). When returning
from an error subroutine, the value of factor two on the ENDSR (End Subroutine) op-code
can be used to determine where control returns. We will not bore you with further details
because we assume that you are already intimately familiar with this process and
architecture.

ILE RPG (RPG IV) exception-handling

How have things changed for RPG IV? That is a good question, but the answer could eas-
ily fill an entire chapter on its own. For more detailed information, consult the ILE
RPG/400 Programmer’s Guide (SC09-2074). However, in a nutshell, the basics follow:

■ You still have error indicators, INFSR and *PSSR subroutines, and INFDS and PSDS

data structures.

■ The INFSR subroutine and INFDS data structures are identified on the F-spec with
the new INFSR(xxx) and INFDS(xxx) keywords.

■ The INFSR subroutines apply only to the mainline code, not to procedures. You
will have to rely on error indicators for file-processing in a procedure.

■ The *PSSR subroutines are local to the procedure where they are declared. (Yes,
you can define subroutines inside procedures.) This means you need one for every
procedure (although they could all call a common subprocedure) and one for the
mainline code.

424

CHAPTER 10: EXCEPTIONS

■ The *PSSR subroutines inside procedures must have a blank factor two on the
ENDSR statement—and if control reaches that far, the procedure will end there.
Unfortunately, you have to rely on GOTO prior to ENDSR to continue processing.

■ The INFDS and PSDS data structures are global in scope. That means that they are
accessible by all procedures.

■ There is an entirely new option: an ILE exception-handling bindable API,
CEEHDLR. This registers an ILE exception handler for this procedure, and its undo
cousin (CEEHDLU) “unregisters” an ILE exception handler. Using these APIs gives
you a language-neutral way of dealing with exceptions in ILE. Typically, then,
you code a call to CEEHDLR at the beginning of your procedure and a call to
CEEHDLU at the end.

■ The %ERROR built-in function can replace error indicators. If you specify an error
extender on your op-code (by adding E in parentheses after the op-code), you can
test if %ERROR returns one after the operation to establish whether an error
occurred. You can also use the new %STATUS built-in-function to return the status
code of that error. Other related built-in-functions are %OPEN to test if the given
file is open, and %EOF, %EQUAL, and %FOUND to test if the previous operation
resulted in an end of file, an exact record match, or a record match, respectively.

New MONITOR operation in RPG V5R1
Worth noting is an awesome capability added in V5R1 of RPG that makes exception-
handling in much easier, and offers support very much similar to the Java exception sup-
port you will see shortly. As of V5R1, you can place one or more operation statements
that may result in errors between a MONITOR and ENDMON set of op-code statements. The
idea is that if any of the statements inside the monitor group results in an error, control
will go to a particular ON-ERROR group.

You code one or more ON-ERROR operations within the monitor group, but after the state-
ment you are monitoring. Each ON-ERROR op-code specifies a colon-separated list of sta-
tus codes in free-form factor two, for which it is responsible. If an error happens during
execution of any of the monitored statements, control will flow to the ON-ERROR state-
ment that matches the status code of the error. You place your statements for handling the
error after the ON-ERROR statement. All statements up to the next ON-ERROR or ENDMON
statement are executed in this case. To handle the “otherwise” cases, you can specify

425

SYSTEM I EXCEPTION MODEL OVERVIEW

special values in factor two instead of status codes. These are *FILE, *PROGRAM, and
*ALL, which match on any file error, program error, or any error at all, respectively.

The following example is from the RPG IV reference manual:

* The MONITOR block consists of the READ statement and the IF group.
* - The first ON-ERROR block handles status 1211 which
* is issued for the READ operation if the file is not open.
* - The second ON-ERROR block handles all other file errors.
* - The third ON-ERROR block handles the string-operation status
* code 00100 and array index status code 00121.
* - The fourth ON-ERROR block (which could have had a factor 2
* of *ALL) handles errors not handled by the specific ON-ERROR
* operations.
* If no error occurs in the MONITOR block, control passes from the
* ENDIF to the ENDMON.

C MONITOR
C READ FILE1
C IF NOT %EOF
C EVAL Line = %SUBST(Line(i) :
C %SCAN('***': Line(i)) + 1)
C ENDIF
C ON-ERROR 1211
C ... handle file-not-open
C ON-ERROR *FILE
C ... handle other file errors
C ON-ERROR 00100 : 00121
C ... handle string error and array-index error
C ON-ERROR
C ... handle all other errors
C ENDMON

If you have not discovered MONITOR and ON-ERROR yet, check them out!

EXCEPTIONS IN JAVA

The System i and RPG exception model has taught discipline when it comes to proactively
designing support for error situations. If you don’t follow this practice, you risk exposing
those ugly function checks to your users. So, doing more work up-front prevents problems
in the long run. You produce more robust, fault-tolerant code that is cheaper to maintain.
(So, it is safe to say that RPG programmers are exceptional!) The Java designers have taken
these noble goals to heart. (Actually, they are a reasonably standard OO thing.)

426

CHAPTER 10: EXCEPTIONS

Java also provides the feature of exceptions for unexpected situations, and it has language
constructs for sending and monitoring them. The consequences of ignoring them are even
more frightening than on the System i. In fact, Java goes a step further than simply end-
ing your program at runtime if you fail to monitor for an exception that happens. It actu-
ally tries to catch, at compile time, where you missed coding in monitors for potential
exceptions. To accomplish this, it has further language syntax for defining, for each
method, the exceptions that callers of this method need to monitor for.

The Java exception model at a glance

In a nutshell, Java’s exception support includes the following:

■ Exceptions in Java are simply objects of classes that extend the Throwable class.

■ Java comes with many predefined exception classes, which can be found in the
JDK documentation.

■ System errors extend the Error class, while your own exceptions extend the
Exception class. Both of these classes extend the Throwable class.

■ Exception objects include message text retrievable via the getMessage method.

■ Any code can throw an exception when it detects an error, by using the throw

operator and passing it an exception class object.

■ Any method that throws an exception must identify all exceptions it throws on the
throws clause of the method definition.

■ Many methods in Java-supplied classes throw exceptions.

■ To call any method that throws exceptions, you must put the method call inside a
try block, followed by one or more catch blocks.

■ The catch block defines a parameter that is an object of an exception class. If an
exception of that class or a child of that class is thrown, this catch block gets
control.

427

EXCEPTIONS IN JAVA

■ The catch block for a given try block can optionally be followed by a finally

block, which is always executed whether an exception is thrown or not.

■ As an alternative to putting an exception-throwing method call inside a try block,
you can percolate the exception up the call stack by just defining the throws

clause for those potential exceptions in your own method.

■ Constructors can throw exceptions, too. If they do, the new operation is cancelled,
and no object is created.

The following “exceptional” sections expand on these concepts.

Exception objects in Java
In contrast to RPG, Java does not have error indicators. It provides only the concept of
exception messages, such as the System i exception model. What are these messages?
They are Java objects, of course! There is a Java-defined class named Throwable, which
all Java exceptions inherit from. This class is in the Java-supplied package java.lang,
which all Java code implicitly imports. Any Java class that directly or indirectly extends
Throwable is an “exception” in Java, whether that class is Java-supplied or written by
you. You use unique language syntax to send these exceptions back up the method
call-stack, and to monitor for them in code you call.

Objects of the Throwable class contain a string describing the exception, which is retriev-
able with the getMessage method. Another useful method in this class is
printStackTrace, which prints out a method call-stack trace from the point where this
exception was sent. Java programmers are particularly fond of this method because it is
very useful in debugging. Here is an example of printStackTrace:

java.lang.NumberFormatException: abc
at java.lang.Integer.parseInt(Integer.java:409)
at java.lang.Integer.parseInt(Integer.java:458)
at

ShowPrintStackTrace.convertStringToInt(ShowPrintStackTrace.java:20)
at ShowPrintStackTrace.main(ShowPrintStackTrace.java:8)

This is from the exception NumberFormatException that the method parseInt in class
Integer throws when it is given a string to convert to integer and that string contains
non-numeric characters. You see that the stack trace starts with the name of the exception
class, followed on the same line by the message text from the exception object (in this

428

CHAPTER 10: EXCEPTIONS

case abc, which is the invalid input used). Following that is the method-call stack, start-
ing with the method that threw the exception (parseInt, in this case). Note the same
method is listed twice in the example, indicating it calls itself recursively. The stack trace
ends with the method that called printStackTrace. In this case, this is the main method
in class ShowPrintStackTrace, shown in Listing 10.1. (The syntax of the try/catch
blocks shown in Listing 10.1 is discussed later in this chapter.)

Listing 10.1: The Class ShowPrintStackTrace,
which Generates an Exception and Stack Trace

public class ShowPrintStackTrace
{

public static void main(String args[])
{

try
{

convertStringToInt("abc");
}
catch(NumberFormatException exc)
{

System.out.println(exc.getMessage());
exc.printStackTrace();

}
}

public static int convertStringToInt(String stringToConvert)
throws NumberFormatException

{
return (Integer.parseInt(stringToConvert));

}
} // end ShowPrintStackTrace class

System i exceptions have a severity associated with them, as well as a unique message
ID. Java exceptions (or Throwable objects) have this information, too. The severity and
unique ID is implicit with the particular class of the exception object. In other words,
there are many exception classes (that extend the Throwable class), so the exact error can
be determined by the exact exception object used. This means the class, itself, is equiva-
lent to a message ID because it uniquely identifies the error.

There really is no explicit severity associated with an exception in Java, but you can think
of the child classes of Error as being critical, of RuntimeException as being severe, and
all others as being normal. (These child classes are described shortly.) There are no

429

EXCEPTIONS IN JAVA

informational or warning exceptions, since all Java exceptions can cause a program
abend if not prevented or handled. Regular return codes are used instead of exceptions for
informational and warning situations.

In addition to the implicit ID and severity that the class type implies for Java exceptions,
message text is associated with each exception object, retrieved using getMessage, as
mentioned earlier. This is also true of System i exceptions, of course.

The primary subclasses of Throwable are Error and Exception. The Error exceptions
are typically non-recoverable system errors, such as “out of memory.” The Exception er-
rors are further subclassed by RunTimeException and other classes, as shown in Figure
10.1. The RunTimeException errors are programming errors you make, such as an array
index out of bounds. (Hey, it happens.) The other subclasses of Exception are, typically,
related to preventable user-input errors.

You typically do not monitor for Error exceptions or subclasses in Java. For one thing,
you usually can’t do much about them. What’s more, you will never send one of these ex-
ceptions yourself. These exceptions are sent only by the system. What you need to be
concerned with are Exception exceptions (good name, is it not?) and their sub-
classes—both for sending and for handling. You have our permission to also ignore
RunTimeException and its subclasses. These are used by Java to tell you that you made a
programming error, not for you to tell others that you made a programming error. So,
your code will probably send and handle only subclasses of Exception, except those that
subclass RuntimeException.

430

CHAPTER 10: EXCEPTIONS

Figure 10.1: The major child classes of the Java Throwable class

There is little point in listing all of the subclasses here because, as you will see, every
class you use clearly documents the Exception subclass objects it might send. You will
learn them as you need them. (After all, it’s probably safe to say that you don’t know all
the System i system and language runtime exception message IDs by heart.) We have no
doubt that you will need them!

The last point to make about Throwable objects (it is only Exception objects that you really
care about) is that you can define your own. You will probably need to do this in Java if
you are writing robust code or, more precisely, when you are writing robust code. If you
discover an unexpected error situation in your error-checking code, such as bad input or an
expected resource not found, you should send an exception, not a return code. Return codes,
such as an integer value, should be used to identify valid possible results, not to identify ex-
ceptional situations. For example, “end of file” is a valid possible result, while “file not
found” is an exceptional situation. The first will almost always happen; with good input, the
latter should almost never happen. It, in other words, is a frequency call. Having decided
that you should send an exception, your next step is to peruse the Java documentation for an
existing Exception subclass that applies to your situation.

Searching Java documentation for classes
It is time to learn how to find the JDK documentation for a particular class. In this case,
you are interested in seeing a list of the classes that extend the Throwable class in the
java.lang package, since that will show all the available predefined exceptions in Java.
This will be important when you write your Java code, so you can look for existing ex-
ceptions for your own code to throw. Hopefully, the name of the exception class will give
a clue to its intended use; from there, you can drill down to the detailed documentation
about that class.

First, you must have downloaded and unzipped the JDK documentation file. (When using
WinZip to do this, just specify the c:\ drive or the drive you installed the JDK itself on,
and select the “use folder names” checkbox from the WinZip Classic interface.)

Once your JDK documentation is properly expanded, navigate to the docs\api subdirec-
tory of the jdk folder. This is where all your JDK documentation searches start.
Typically, when looking for documentation for a particular package, class, or method,
you simply double-click or open the index.html file in this docs\api directory. How-
ever, in this case, you are looking for something special: a list of all the JDK classes that
extend Exception. To find this, go into subdirectory java\lang and open file

431

EXCEPTIONS IN JAVA

e package-tree.html. Scroll down until the java.lang.Exception class, and you’ll see
something like this:

class java.lang.Exception
class java.lang.ClassNotFoundException
class java.lang.CloneNotSupportedException
class java.lang.IllegalAccessException
class java.lang.InstantiationException
class java.lang.InterruptedException
class java.lang.NoSuchFieldException
class java.lang.NoSuchMethodException

This shows you a nice tree view of how classes extend each other. Remember, every
class that extends Exception (but not RuntimeException) is an exception you might po-
tentially use. To get more detail on any one class, just click its name. Mind you, this is
only of limited value, as it does not show you all the child exception classes in other
packages. We suggest you also open this file in the java\util and java\io directories,
as they contain most of the useful and reusable exception classes.

If you find an existing exception that meets your needs, such as IOException, use it by
throwing an object of that class. If you cannot find one that will work in your situation, or
you prefer your own exceptions, create a new class that extends Exception (or one of its
children), and design the constructor to call the parent’s constructor with a string to be
used as the error text. You can either hard-code this string or accept it as a parameter to
your own constructor. An example of such a custom exception is shown in Listing 10.2,
designed to report a string that is not a valid United States zip code (postal code).

Listing 10.2: An Extension of the Exception Class

public class BadZipCode extends Exception
{

public BadZipCode(String errorText) // constructor
{

super(errorText);
}

} // end class BadZipCode

This is the simplest possible exception class. The constructor simply takes a string and
passes it to its parent (Exception), which will store it so code can later retrieve it via the
getMessage method. You could elaborate on it though, and store additional information
accessible with new getXXX methods, if you wanted. For example, you could ask the code

432

CHAPTER 10: EXCEPTIONS

that throws this exception to pass to the constructor a string telling the name of the
method and class it is being thrown from, and log this information in a file. Since it is
your class, you can do whatever you desire. However, at a minimum, you need to call the
parent’s constructor and pass a string.

Remember, all your new exceptions will automatically inherit the getMessage and
printStackTrace methods of the root exception class Throwable.

Sending Java exceptions with the throw operator
Having decided that you will send an exception in your error-checking code, how do you
do it? First, you have to instantiate an instance of the particular Exception child class,
which almost always requires a string parameter that is the text extractable with a
getMessage call later. Then, you use the Java throw operator:

BadZipCode excObj = new BadZipCode("Zip code is not all numeric");
throw (excObj);

These steps can be combined into one statement, of course:

throw (new BadZipCode("Zip code is not all numeric"));

The throw operator is similar to CL’s SNDPGMMSG command on the System i. You can either
send an instance of one of Java’s predefined exception classes (such as IOException), or
you can send an instance of your own exception class (such as BadZipCode). This choice is
comparable to deciding whether to use a supplied CPF or MCH message on the System i, or to
create your own new message in your own message file. By the way, the generic message
CPF9898 ("&1") that many of us use on the System i is similar to the generic Exception

class in Java. On the System i, you substitute your own message text in CPF9898. You can
do the same in the constructor of Exception, as shown below:

throw (new Exception("You made a big mistake there pal!"));

It is important to remember that you never throw exceptions that are of type Error. You
use Exception because Error exceptions are for dramatic system errors and are thrown
only by the system.

433

EXCEPTIONS IN JAVA

What does using throw do? It ends your method! Any code following the throw state-
ment is not executed. You have done the equivalent of sending an escape message in a
CL program. The current method is removed from the stack, and the exception is sent
back to the line of code that called this method. If that code does not monitor for this ex-
ception, the method it is in is also terminated. The exception is sent back to the caller of
the method, just as in RPG function-check percolation. It continues until it finds an entry
in the call stack that monitors for this exact exception (or one of the parents of this partic-
ular exception class, as you will see).

Who throws what
In Java, callers of your method must monitor for any exceptions that you throw. They do
this using a try/catch block, identifying the exception to monitor for in the catch block
parameter. This is not unlike System i programming, where calls to CL programs must
take care to monitor for any messages sent by the called CL program.

If you have done any CL programming, you know how painful it can be to get those
MONMSG statements just right. You typically have to examine the CL reference manual for
each CL command you call, to see what messages that command might send. And you
can only hope that the list includes any messages that its nested command or program
calls might send.

How many times have you wished for an automated way to determine this list? For ex-
ample, it would be nice to have a tool that, given a CL command as input, returns a list of
all the possible messages that particular CL command might send. OO language pro-
grammers face a similar problem when trying to determine the exceptions any particular
method call might result in. Java designers thought about this problem. They knew that if
they didn’t come up with a solution, the exception architecture in Java would suffer two
real-use problems:

■ Programmers would not use it enough, which would lead to too much error-prone
code (human nature being what it is). This would lead to a bad image of Java.

■ Programmers who did decide to place sensitive method calls inside try/catch
blocks would find it painful to determine what exceptions each method could
possibly throw. Programmers would be dependent on all methods having proper
and up-to-date documentation about what exceptions they throw (much as you are
dependent on this for System i commands).

434

CHAPTER 10: EXCEPTIONS

The Java designers decided to force method designers to specify up-front, in the method
signature, what exceptions are thrown by that method. This is done by specifying a
throws clause on your method signature, like this:

public void myMethod(ZipCode zipcode) throws BadZipCode

You must specify this if you explicitly throw an exception or your compile will fail. If
you throw multiple exceptions, they must all be specified, comma-separated, as in:

public void openFile(String filename) throws FileNotFound,
FileNotAvailable

By putting this information into the method declaration, it automatically ends up in the
JavaDoc documentation, which solves the documentation problem. Further, it explicitly
tells the compiler what exceptions your method throws, so the compiler can subsequently
force all code that calls this method to monitor for those exceptions. If any calling code
does not have a catch block for each of the exceptions listed, then that calling code will
not compile. This solves the lazy-programmer problem.

It may be that the calling code does not know how to handle the error indicated by the ex-
ception. If so, there is a way out. As an alternative to monitoring for exceptions with a
try/catch block, the method containing the called code can simply repeat the throws

clause on its own signature. If this is the case, if the called method throws an exception,
the calling code simply percolates it back up to its own caller. The stack is peeled at the
line of code that called the exception-throwing method. This can continue all the way up
the stack to the root method—main in the first class. If it does not specify a try/catch
block, you have a problem, as main is the root of the call stack, so it has no call-
ing-method to percolate to. In this case, if main does not specify a try/catch for the of-
fending exception, that code will simply not compile. If there were a way to compile it,
though, the program would die at runtime in much the same way an System i program
dies with an “unmonitored exception.” Isn’t it nice that the compiler works so hard to
eliminate all these errors up-front, before your users get the chance to?

Let’s bring this all together with an example. Listing 10.3 shows a class designed to en-
capsulate a United States zip code. It takes the string with the zip code as input in the
constructor and stores it away. As a convenience, it also offers a static verify method to
ensure that a given string is a valid United States zip code. (Note that it handles both ver-
sions, with and without a box office code.)

435

EXCEPTIONS IN JAVA

Listing 10.3: The ZipCode Class to Encapsulate a Zip Code

public class ZipCode
{

protected String code;
protected static final String DIGITS = "0123456789";

public ZipCode(String zipcode) throws BadZipCode
{

if (verify(zipcode))
code = zipcode;

}

public static boolean verify(String code) throws BadZipCode
{

code = zipcode.trim();
int codeLen = code.length();
StringBuffer codeBuffer = new StringBuffer(code);
BadZipCode excObj = null;
switch (codeLen)
{

case 10: // must be nnnnn-nnnn
if (code.charAt(5) != '-')
{
excObj = new BadZipCode("Dash missing in

6th position for '" + code + "'");
break;

}
else
codeBuffer.setCharAt(5, '0');

// deliberately fall through remaining case
case 5: // must be nnnnn

if (RPGString.check(DIGITS, codeBuffer.toString())
!= -1)

excObj = new BadZipCode("Non-numeric zip code '"
+ code + "'");

break;
default:

excObj = new BadZipCode("Zip code '" + code +
"' not of form nnnnn or nnnnn-nnnn");

} // end switch
if (excObj != null)

throw excObj;
return (excObj != null);

} // end verify method

public String toString()
{

return code;
}

} // end ZipCode class

436

CHAPTER 10: EXCEPTIONS

In the interest of reuse, this class uses the static check method from Chapter 7 to verify
that the string has only digits. Alternatively, you could have walked the string, calling the
static method isDigit (from the Character class) on each character.

The verify method throws the BadZipCode exception from Listing 10.2 if it detects an
error. It simply places different text in the exception for each error situation. The con-
structor calls the verify method to ensure it has been given a valid string. Because this
call to verify is not encased in a try/catch block, the throws clause must be re-speci-
fied on the constructor itself. This means all code that tries to instantiate this class must
put the call to new inside a try block, followed by a catch block for BadZipCode. If the
constructor does throw the exception, the new operation will be aborted. (You will see an
example of this after the try/catch syntax is discussed in the next section.)

Sometimes, your calling code might decide to handle a thrown exception, but then throw
it again anyway. This is legal, and can be done with a simple throw exc; statement in
your catch block. In this case, because you are throwing this exception (albeit, again),
you must define it in your method’s throw clause.

In summary, if your method code does not monitor for an exception it might receive, you
must specify that exception in your method’s throws clause in addition to any exceptions
your code explicitly throws, or re-throws.

Monitoring for Java exceptions with try/catch blocks

Now that you know how to send or throw an exception to the callers of your code when
you have detected an error, let’s discuss what those callers do to monitor for or process it.
To monitor for an exception, there is additional Java language syntax. The Java syntax
for monitoring for messages builds on this, allowing you to specify a try/catch combina-
tion, as follows:

try
{
// try-block: one or more statements of code

}
catch (Exception exc)
{
// catch-block: code to handle the exception

}

437

EXCEPTIONS IN JAVA

The idea is to place any method call statement that might throw exceptions inside a try

block. Because it is a block, you can actually place one or more statements inside it. If
any of the statements inside the try block do throw an exception, the catch block will
get control, and any code after the exception-throwing call will not be executed. The con-
trol flows immediately to the catch block upon receipt of a thrown exception.

The catch block defines a parameter, which is the exception it will handle. Java passes
that exception object at runtime if an exception is thrown. Your catch block code can
use methods on the object to display information to the end-user, if desired. For example,
you may do something like the following inside your catch-block:

System.out.println(exc.getMessage());

Recalling the zip code example, Listing 10.4 is a method included in the ZipCode class
for testing purposes. Given a string, it will try to instantiate and return a ZipCode object.
Also included is a main method that uses this method.

Listing 10.4: Testing the ZipCode Class

public static ZipCode testZipCode(String code)
{

System.out.println("Testing '" + code + "'...");
ZipCode testCode = null;
try
{
testCode = new ZipCode(code);

}
catch (BadZipCode exc)
{
System.out.println(" ERROR: " + exc.getMessage());

}
return testCode;

}
// For testing from the command line.
public static void main(String args[])
{

// test two valid zip codes, 3 invalid zip codes...
testZipCode("12345");
testZipCode("12345-6789");
testZipCode("1234567890");
testZipCode("abc");
testZipCode("123");

}

438

CHAPTER 10: EXCEPTIONS

If you want to see this in action, here is the output of running this class:

Testing '12345'...
Testing '12345-6789'...
Testing '1234567890'...
ERROR: Dash missing in 6th position for '1234567890'

Testing 'abc'...
ERROR: Zip code 'abc' not of form nnnnn or nnnnn-nnnn

Testing '123'...
ERROR: Zip code '123' not of form nnnnn or nnnnn-nnnn

As another example of the same problem (verifying an input string and, if valid, creating
an object to wrapper it), Listing 10.5 is a PhoneNumber class that throws a
PhoneNumberException exception.

Listing 10.5: The PhoneNumber Class that Throws PhoneNumberException

public class PhoneNumber
{

protected String number;
protected static final String PHONEDIGITS = "0123456789.- ";

protected PhoneNumber(String number)
{

this.number = number;
}
public String toString()
{

return number;
}

public static PhoneNumber createPhoneNumber(String number)
throws PhoneNumberException

{
PhoneNumber numberObject = null;
if ((RPGString.check(PHONEDIGITS, number) != -1) ||

(number.length() < 10) ||
(number.length() > 12))

throw new PhoneNumberException("Phone number '" +
number + "' does not appear to be valid");

else
numberObject = new PhoneNumber(number);

return numberObject;
}

public static void main(String args[])
{

439

EXCEPTIONS IN JAVA

Listing 10.5: The PhoneNumber Class that Throws PhoneNumberException
(continued)

System.out.println("Testing...");
testPhoneNumber("5551112222");
testPhoneNumber("555-111-2222");
testPhoneNumber("555.111.2222");
testPhoneNumber("555 111 2222");
testPhoneNumber("a");
testPhoneNumber("1");
testPhoneNumber("555/666/7777");
testPhoneNumber("123456789012345");

}
private static void testPhoneNumber(String number)
{

PhoneNumber nbr = null;
try {

nbr = createPhoneNumber(number);
System.out.println(nbr + " is valid");

} catch (PhoneNumberException exc) {
System.out.println("Error: " + exc.getMessage());

}
}

}

Notice that Listing 10.5 takes a slightly different approach with the constructor. Rather
than making the constructor public and defining it to throw exceptions, this code makes it
protected so that only family members can instantiate it, and designs it not to throw ex-
ceptions. You don’t want the public using new to instantiate PhoneNumber objects; rather,
you want them to call your createPhoneNumber factory method, which will return a new
PhoneNumber object. However, it won’t do that unless the input string is a valid phone
number, so you can guarantee the input to the constructor is always valid. If it is not, then
the PhoneNumberException exception object is thrown. (This is not shown, but it is very
similar to BadZipCode in Listing 10.2.) There is some code in main to test this, and run-
ning it gives this:

5551112222 is valid
555-111-2222 is valid
555.111.2222 is valid
555 111 2222 is valid
Error: Phone number 'a' does not appear to be valid
Error: Phone number '1' does not appear to be valid
Error: Phone number '555/666/7777' does not appear to be valid
Error: Phone number '123456789012345' does not appear to be valid

440

CHAPTER 10: EXCEPTIONS

Note that the class doesn’t pretend to know a universal syntax for phone numbers. We’re
sure you can improve on the validation routine.

Monitoring for multiple Java exceptions
The catch statement, not the try statement, is actually equivalent to CL’s MONMSG. Al-
though both try and catch are necessary syntactically, it is the catch statement that tells
Java which exception type you are monitoring for. If your try block gets an exception
that the catch statement did not identify in its parameter, it is as though you never had
the try/catch block. Your method is ended, and either the exception is sent back to the
previous call-stack entry, or compile will fail if you don’t identify the missed exception
on your throws statement on your method signature.

What if you call a method that throws more than one possible exception? How do you de-
fine the catch statement when you need to monitor for multiple possible exceptions?
Two options exist:

■ Suppose it does not matter to you which exception happened; it only matters that
some exception happened. You can define a parent exception class type on the
catch. The catch will actually get control of any exception that is of the defined
type or lower on the hierarchy chain. This is similar to specifying MCH0000 on the
CL MONMSG command. Alternatively, to catch all exceptions, specify the root
parent of all catchable exceptions: Exception. (Some people use Throwable.)
This is equivalent to specifying CPF9999 on the CL MONMSG command.

■ Define multiple catch blocks after the try block. This is perfectly legal. The
exception object received will be compared to each catch statement’s parameter,
in turn, until a match on type is found (or the catch defines a child of the thrown
exception class type). Use this technique when it is important to your error-
recovery code to know exactly what exception was thrown. The need for unique
error-handling code is also a good criterion to use when deciding whether you
need to define your own exception classes.

441

EXCEPTIONS IN JAVA

Here is an example:

try
{

someObject.callSomeMethod();
}
catch (FileNotFound exc)
{
. . .

}
catch (FileNotAvailable exc)
{
. . .

}

Finally, there is finally. This is an optional block you can define at the end of all your
catch statements:

try
block

catch (exception-type-1 identifier)
block

catch (exception-type-2 identifier)
block

finally
block

You might think this is what will get control in an exception situation if none of the
catch statements handled a particular exception type. This is only partly correct, how-
ever. The finally block, if present, is always executed. That is, it is executed whether or
not an exception was received in the try block, and whether or not a catch block pro-
cessed it. For example, if a BadZipCode exception is thrown by code in the try block, the
code inside the BadZipCode catch block will be executed as well as the code inside the
finally block.

The finally statement is typically used to do code that has to be done no matter what,
such as closing any open files. No statement inside a try block, not even a return state-
ment, can circumvent the finally block, if it is present. If the try block does have a
return statement, then the finally block will be run and the try block’s return state-
ment will be honored. (It is, however, possible to override the try block’s return in the
finally statement by coding another return statement.)

442

CHAPTER 10: EXCEPTIONS

SUMMARY

This chapter covered the following:

■ A review of the System i and RPG exception model

■ An introduction to the Java exception model

■ The Java Exception class hierarchy

■ The Java throw operator, which is like CL’s SNDPGMMSG

■ The Java try/catch/finally statement, which is like CL’s MONMSG

■ The catch block, which catches the defined exception or any exception that is a
child of it

■ The finally block, which if present is always executed

■ The Java throws clause for method signatures

■ The fact that throwing an exception in a constructor is legal, and cancels the
instantiation

■ The two popular methods all exceptions have: printStackTrace and getMessage

■ How to write your own exception classes by extending the Exception class or one
of its children.

■ The two hierarchies into which Java-supplied exceptions are divided: those that
extend Error and do not need to be monitored, and those that extend Exception

and do need to be monitored

443

SUMMARY

	New Ta ble of Con tents
	Chap ter 10: Ex cep tions 421
	Sys tem i ex cep tion model over view 421
	The OPM ex cep tion model 422
	The ILE ex cep tion model 423
	RPG III ex cep tion-han dling 423
	ILE RPG (RPG IV) ex cep tion-han dling 424
	New MONITOR op er a tion in RPG V5R1 425

	Ex cep tions in Java 426
	The Java ex cep tion model at a glance 427
	Ex cep tion ob jects in Java 428
	Searching Java doc u men ta tion for classes 431
	Sending Java ex cep tions with the throw op er a tor 433
	Mon i toring for Java ex cep tions with try/catch blocks 437

	Sum mary 443

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

