
401401

11Chapter11The job of a system administrator is to keep one or more sys-
tems in a useful and convenient state for users. On a Linux
system, the administrator and user may both be you, with
you and the computer being separated by only a few feet.
Alternatively, the system administrator may be halfway
around the world, supporting a network of systems, with you
being one of thousands of users. On one hand, a system
administrator can be one person who works part-time taking
care of a system and perhaps is also a user of the system. On
the other hand, several administrators can work together full-
time to keep many systems running.

In This Chapter

Running Commands with root
Privileges 403

sudo: Running a Command with
root Privileges 406

The Upstart Event-Based init
Daemon 416

SysVinit (rc) Scripts: Start and
Stop System Services 423

Recovery (Single-User) Mode 428

rpcinfo: Displays Information
About portmap 446

TCP Wrappers: Secure a Server
(hosts.allow and hosts.deny) . . 448

Setting Up a chroot Jail 450

DHCP: Configures Network
Interfaces 454

nsswitch.conf: Which Service
to Look at First 458

PAM . 461

11
System
Administration:
Core Concepts

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

404 Chapter 11 System Administration: Core Concepts

• Some restrictions and safeguards that are built in to some commands do not
apply to a user with root privileges. For example, a user with root privileges
can change any user’s password without knowing the old password.

When you are running with root privileges in a command-line environment, by con-
vention the shell displays a special prompt to remind you of your status. By default,
this prompt is (or ends with) a pound sign (#). You can gain or grant root privileges
in a number of ways:

• When you bring the system up in recovery mode (page 428), you are
logged in as the user named root.

• The sudo utility allows specified users to run selected commands with root
privileges while they are logged in as themselves. You can set up sudo to
allow certain users to perform specific tasks that require root privileges
without granting them systemwide root privileges. See page 406 for more
information on sudo.

• Some programs ask for your password when they start. If sudo is set up to
give you root privileges, when you provide your password, the program
runs with root privileges. When a program requests a password when it
starts, you stop running as a privileged user when you quit using the pro-
gram. This setup keeps you from remaining logged in with root privileges
when you do not need or intend to be.

• Any user can create a setuid (set user ID) file. Setuid programs run on
behalf of the owner of the file and have all the access privileges that the
owner has. While you are running as a user with root privileges, you can
change the permissions of a file owned by root to setuid. When an ordi-
nary user executes a file that is owned by root and has setuid permissions,

Console security

security Ubuntu Linux is not secure from a user at the console. Additional security measures, such as
setting bootloader and BIOS passwords, can help secure the console. However, when a user
has physical access to the hardware, as console users typically do, it is very difficult to secure
a system from that user.

Least privilege

caution When you are working on any computer system, but especially when you are working as the sys-
tem administrator (with root privileges), perform any task using the least privilege possible. When
you can perform a task logged in as an ordinary user, do so. When you must run a command with
root privileges, do as much as you can as an ordinary user, use sudo so that you have root priv-
ileges, complete the part of the task that has to be done with root privileges, and revert to being
an ordinary user as soon as you can. Because you are more likely to make a mistake when you
are rushing, this concept becomes more important when you have less time to apply it.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Running Commands with root Privileges 405

the program has effective root privileges. In other words, the program can
do anything a user with root privileges can do that the program normally
does. The user’s privileges do not change. Thus, when the program finishes
running, all user privileges are as they were before the program started.
Setuid programs owned by root are both extremely powerful and
extremely dangerous to system security, which is why a system contains
very few of them. Examples of setuid programs that are owned by root
include passwd, at, and crontab. For more information refer to “Setuid and
Setgid Permissions” on page 204.

optional The following techniques for gaining root privileges depend on unlocking the root
account (setting up a root password) as explained on page 415.

• You can give an su (substitute user) command while you are logged in as
yourself. When you then provide the root password, you will have root
privileges. For more information refer to “su: Gives You Another User’s
Privileges” on page 415.

• Once the system is up and running in multiuser mode (page 431), you can
log in as root. When you then supply the root password, you will be run-
ning with root privileges.

Some techniques limit how someone can log in as root. For example, PAM (page 461)
controls the who, when, and how of logging in. The /etc/securetty file controls which
terminals (ttys) a user can log in on as root. The /etc/security/access.conf file adds
another dimension to login control (see the comments in the file for details).

root-owned setuid programs are extremely dangerous
security Because a root-owned setuid program allows someone who does not know the root password and

cannot use sudo to gain root privileges, it is a tempting target for a malicious user. Also, program-
ming errors that make normal programs crash can become root exploits in setuid programs. A
system should have as few of these programs as necessary. You can disable setuid programs at
the filesystem level by mounting a filesystem with the nosuid option (page 490). See page 437 for
a command that lists all setuid files on the local system.

Do not allow root access over the Internet

security Prohibiting root logins using login over a network is the default policy of Ubuntu and is imple-
mented by the PAM securetty module. The /etc/security/access.conf file must contain the names
of all users and terminals/workstations that you want a user to be able to log in as root. Initially
every line in access.conf is commented out.

You can, however, log in as root over a network using ssh (page 627). As shipped by Ubuntu, ssh
does not follow the instructions in securetty or access.conf. In addition, in /etc/ssh/sshd_config,
Ubuntu sets PermitRootLogin to yes to permit root to log in using ssh (page 644).

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

406 Chapter 11 System Administration: Core Concepts

sudo: Running a Command with root Privileges
Classically a user gained root privileges by logging in as root or by giving an su
(substitute user) command and providing the root password. When an ordinary
user executed a privileged command in a graphical environment, the system would
prompt for the root password. More recently the use of sudo (www.sudo.ws) has
taken over these classic techniques of gaining root privileges.

Ubuntu strongly encourages the use of sudo. In fact, as shipped, Ubuntu locks the root
account (there is no password) so you cannot use the classic techniques. There are
many advantages of using sudo over using the root account for system administration:

• When you run sudo, it requests your password—not the root password—
so you have to remember only one password.

• The sudo utility logs all commands it executes. This log can be useful for
retracing your steps if you make a mistake and for system auditing.

• The sudo utility allows implementation of a finer-grained security policy
than does the use of su and the root account. Using sudo, you can enable
specific users to execute specific commands—something you cannot do
with the classic root account setup.

• Using sudo makes it harder for a malicious user to gain access to a system.
When there is an unlocked root account, a malicious user knows the user-
name of the account she wants to crack before she starts. When the root
account is locked, the user has to determine the username and the pass-
word to break into a system.

Some users question whether sudo is less secure than su. Because both rely on
passwords, they share the same strengths and weaknesses. If the password is com-
promised, the system is compromised. However, if the password of a user who is
allowed by sudo to do one task is compromised, the entire system may not be at
risk. Thus, if used properly, the finer granularity of sudo’s permissions structure
can make it a more secure tool than su. Also, when sudo is used to invoke a single
command, it is less likely that a user will be tempted to keep working with root
privileges than if the user opens a root shell with su.

There is a root account, but no root password

tip As installed, Ubuntu locks the root account by not providing a root password. This setup prevents
anyone from logging in to the root account (except when you bring the system up in recovery
mode [page 428]). There is, however, a root account (a user with the username root—look at the
first line in /etc/passwd). This account/user owns files (give the command ls –l /bin) and runs
processes (give the command ps –ef and look at the left column of the output). The root account
is critical to the functioning of an Ubuntu system.

The sudo utility enables you to run a command as though it had been run by a user logged in as
root. This book uses the phrase “working with root privileges” to emphasize that, although you
are not logged in as root, when you use sudo you have the powers of the root user.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Running Commands with root Privileges 407

Using sudo may not always be the best, most secure way to set up a system. On a
system used by a single user, there is not much difference between using sudo and
carefully using su and a root password. In contrast, on a system with several users,
and especially on a network of systems with central administration, sudo can be set
up to be more secure than su. If you are a dyed-in-the-wool UNIX/Linux user who
cannot get comfortable with sudo, it is easy enough to give the root account a pass-
word and use su. See page 415.

When you install Ubuntu, the first user you set up is included in the admin group.
As installed, sudo is configured to allow members of the admin group to run with
root privileges. Because there is no root password, initially the only way to perform
privileged administrative tasks from the command line is for the first user to run
them using sudo. Graphical programs call other programs, such as gksudo (see the
adjacent tip), which in turn call sudo for authentication.

Timestamp By default, sudo asks for your password (not the root password) the first time
you run it. At that time, sudo sets your timestamp. After you supply a password,
sudo will not prompt you again for a password for 15 minutes, based on your
timestamp.

In the following example, Sam tries to set the system clock working as the user sam,
a nonprivileged user. The date utility displays an error message followed by the
expanded version of the date he entered. When he uses sudo to run date to set the
system clock, sudo prompts him for his password, and the command succeeds.

$ date 10151620
date: cannot set date: Operation not permitted
Wed Oct 15 16:20:00 PDT 2008

$ sudo date 10151620
[sudo] password for sam:
Wed Oct 15 16:20:00 PDT 2008

Next Sam uses sudo to unmount a filesystem. Because he gives this command within
15 minutes of the previous sudo command, he does not need to supply a password:

$ sudo umount /music
$

Run graphical programs using gksudo not sudo

caution Use gksudo (or kdesu from KDE) instead of sudo when you run a graphical program that
requires root privileges. Although both utilities run a program with root privileges, sudo uses
your configuration files, whereas gksudo uses root’s configuration files. Most of the time this dif-
ference is not important, but sometimes it is critical. Some programs will not run when you call
them with sudo. Using gksudo can prevent incorrect permissions from being applied to files
related to the X Window System in your home directory. In a few cases, misapplying these per-
missions can prevent you from logging back in. In addition, you can use gksudo in a launcher
(page 107) on the desktop or on a panel.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

408 Chapter 11 System Administration: Core Concepts

Now Sam uses the –l option to check which commands sudo will allow him to run.
Because he was the first user registered on the system (and is therefore a member of
the admin group), he is allowed to run any command as any user.

$ sudo -l
User sam may run the following commands on this host:
 (ALL) ALL

Spawning a root
shell

When you have several commands you need to run with root privileges, it may be
easier to spawn a root shell, give the commands without having to type sudo in
front of each one, and exit from the shell. This technique defeats some of the safe-
guards built in to sudo, so use it carefully and remember to return to a nonroot shell
as soon as possible. (See the tip on least privilege on page 404.) Use the sudo –i
option to spawn a root shell:

$ pwd
/home/sam
$ sudo -i
id
uid=0(root) gid=0(root) groups=0(root)
pwd
/root
exit
$

In this example, sudo spawns a root shell, which displays a # prompt to remind you
that you are running with root privileges. The id utility displays the identity of the
user running the shell. The exit command (you can also use CONTROL-D) terminates the
root shell, returning the user to his normal status and his former shell and prompt.

sudo’s environment The pwd builtin in the preceding example shows one aspect of the modified environ-
ment the –i option (page 409) creates. This option spawns a root login shell (a shell
with the same environment as a user logging in as root would have) and executes
root’s startup files (page 277). Before issuing the sudo –i command, the pwd builtin
shows /home/sam as Sam’s working directory; after the command it shows /root,
root’s home directory, as the working directory. Use the –s option (page 409) to
spawn a root shell without modifying the environment. When you call sudo without
an option, it runs the command you specify in an unmodified environment. To dem-
onstrate, the following example has sudo run pwd without an option. The working
directory of a command run in this manner does not change.

$ pwd
/home/sam
$ sudo pwd
/home/sam

Redirecting output The following command fails because, although the shell that sudo spawns executes
ls with root privileges, the nonprivileged shell that the user is running redirects the
output. The user’s shell does not have permission to write to /root.

$ sudo ls > /root/ls.sam
-bash: /root/ls.sam: Permission denied

There are several ways around this problem. The easiest is to pass the whole com-
mand line to a shell running under sudo:

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Running Commands with root Privileges 409

$ sudo bash -c 'ls > /root/ls.sam'

The bash –c option spawns a shell that executes the string following the option and
then terminates. The sudo utility runs the spawned shell with root privileges. You
can quote the string to prevent the nonprivileged shell from interpreting special
characters. You can also spawn a root shell with sudo –i, execute the command, and
exit from the privileged shell. (See the preceding section.)

optional Another way to deal with the problem of redirecting output of a command run by
sudo is to use tee (page 240):

$ ls | sudo tee /root/ls.sam
...

This command writes the output of ls to the file but also displays it. If you do not
want to display the output, you can have the nonprivileged shell redirect the output
to /dev/null (page 471). The next example uses this technique to do away with the
screen output and uses the –a option to tee to append to the file instead of overwrit-
ing it:

$ ls | sudo tee -a /root/ls.sam > /dev/null

Options
You can use command-line options to control how sudo runs a command. Following
is the syntax of an sudo command line:

sudo [options] [command]

where options is one or more options and command is the command you want to
execute. Without the –u option, sudo runs command with root privileges. Some of
the more common options follow; see the sudo man page for a complete list.

–b (background) Runs command in the background.

–i (initial login environment) Spawns the shell that is specified for root (or another
user specified by –u) in /etc/passwd, running root’s (or the other user’s) startup files,
with some exceptions (e.g., TERM is not changed). Does not take a command.

–k (kill) Resets the timestamp (page 407) of the user running the command, which
means the user must enter a password the next time she runs sudo.

–L (list defaults) Lists the parameters that you can set on a Defaults line (page 413) in
the sudoers file. Does not take a command.

–l (list commands) Lists the commands the user who is running sudo is allowed to
run on the local system. Does not take a command.

–s (shell) Spawns a new root (or another user specified by –u) shell as specified in the
/etc/passwd file. Similar to –i but does not change the environment. Does not take a
command.

–u user Runs command with the privileges of user. Without this option sudo runs command
with root privileges.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

410 Chapter 11 System Administration: Core Concepts

sudoers: Configuring sudo
As installed, sudo is not as secure and robust as it can be if you configure it care-
fully. The sudo configuration file is /etc/sudoers. The best way to edit sudoers is to
use visudo by giving this command: sudo visudo. The visudo utility locks, edits, and
checks the grammar of the sudoers file. By default, visudo calls the nano editor. You
can set the VISUAL environment variable to cause visudo to call vi with the follow-
ing command:

$ export VISUAL=vi

Replace vi with the textual editor of your choice. Put this command in a startup file
(page 277) to set this variable each time you log in.

In the sudoers file, comments, which start with a pound sign (#), can appear any-
where on a line. In addition to comments, this file holds two types of entries: aliases
and user privilege specifications. Each of these entries occupies a line, which can be
continued by terminating it with a backslash (\).

User Privilege Specifications
The format of a line that specifies user privileges is as follows (the whitespace
around the equal sign is optional):

user_list host_list = [(runas_list)] command_list

• The user_list specifies the user(s) this specification line applies to. This list
can contain usernames, groups (prefixed with %), and user aliases (next
section).

• The host_list specifies the host(s) this specification line applies to. This list
can contain one or more hostnames, IP addresses, or host aliases (dis-
cussed in the next section). You can use the builtin alias ALL to cause the
line to apply to all systems that refer to this sudoers file.

• The runas_list specifies the user(s) the commands in the command_list can
be run as when sudo is called with the –u option (page 409). This list can
contain usernames, groups (prefixed with %), and runas aliases (discussed
in the next section). Must be enclosed within parentheses. Without
runas_list, sudo assumes root.

Always use visudo to edit the sudoers file
caution A syntax error in the sudoers file can prevent you from using sudo to gain root privileges. If you

edit this file directly (without using visudo), you will not know that you introduced a syntax error
until you find you cannot use sudo. The visudo utility checks the syntax of sudoers before it
allows you to exit. If it finds an error, it gives you the choice of fixing the error, exiting without sav-
ing the changes to the file, or saving the changes and exiting. The last is usually a poor choice, so
visudo marks the last choice with (DANGER!).

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Running Commands with root Privileges 411

• The command_list specifies the utilities this specification line applies to.
This list can contain names of utilities, names of directories holding utili-
ties, and command aliases (discussed in the next section). All names must
be absolute pathnames; directory names must end with a slash (/).

If you follow a name with two adjacent double quotation marks (""), the user will
not be able to specify any command-line arguments, including options. Alterna-
tively, you can specify arguments, including wildcards, to limit the arguments a user
is allowed to use.

Examples The following user privilege specification allows Sam to use sudo to mount and
unmount filesystems (run mount and umount with root privileges) on all systems (as
specified by ALL) that refer to the sudoers file containing this specification:

sam ALL=(root) /bin/mount, /bin/umount

The (root) runas_list is optional. If you omit it, sudo allows the user to run the com-
mands in the command_list with root privileges. In the following example, Sam
takes advantage of these permissions. He cannot run umount directly; instead, he
must call sudo to run it.

$ whoami
sam
$ umount /music
umount: only root can unmount /dev/sdb7 from /music
$ sudo umount /music
[sudo] password for sam:
$

If you replace the line in sudoers described above with the following line, Sam is not
allowed to unmount /p03, although he can still unmount any other filesystem and
can mount any filesystem:

sam ALL=(root) /bin/mount, /bin/umount, !/bin/umount /p03

The result of the preceding line in sudoers is shown below. The sudo utility does not
prompt for a password because Sam has entered his password within the last 15
minutes.

$ sudo umount /p03
Sorry, user sam is not allowed to execute '/bin/umount /p03' as root on localhost.

The following line limits Sam to mounting and unmounting filesystems mounted on
/p01, /p02, /p03, and /p04:

sam ALL= /bin/mount /p0[1-4], /bin/umount /p0[1-4]

The following commands show the result:

$ sudo umount /music
Sorry, user sam is not allowed to execute '/bin/umount /music' as root on localhost.
$ sudo umount /p03
$

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

412 Chapter 11 System Administration: Core Concepts

Default privileges
for admin group

As shipped, the sudoers file contains the following lines:

Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

This user privilege specification applies to all systems (as indicated by the ALL to
the left of the equal sign). As the comment says, this line allows members of the
admin group (specified by preceding the name of the group with a percent sign:
%admin) to run any command (the rightmost ALL) as any user (the ALL within
parentheses). When you call it without the –u option, the sudo utility runs the com-
mand you specify with root privileges, which is what sudo is used for most of the
time.

If the following line were in sudoers, it would allow members of the wheel group to
run any command as any user with one exception: They would not be allowed to run
passwd to change the root password.

%wheel ALL=(ALL) ALL, !/usr/bin/passwd root

optional In the %admin ALL=(ALL) ALL line, if you replaced (ALL) with (root), or if you
omitted (ALL), you would still be able to run any command with root privileges.
You would not, however, be able to use the –u option to run a command as another
user. Typically, when you can have root privileges, this limitation is not an issue.
Working as a user other than yourself or root allows you to use the least privilege
possible to accomplish a task, which is a good idea.

For example, if you are in the admin group, the default entry in the sudoers file
allows you to give the following command to create and edit a file in Sam’s home
directory. Because you are working as Sam, he will own the file and be able to read
from and write to it.

$ sudo -u sam vi ~sam/reminder
$ ls -l ~sam/reminder
-rw-r--r-- 1 sam sam 15 Mar 9 15:29 /home/sam/reminder

Aliases
An alias enables you to rename and/or group users, hosts, or commands. Following
is the format of an alias definition:

alias_type alias_name = alias_list

where alias_type is the type of alias (User_Alias, Runas_Alias, Host_Alias,
Cmnd_Alias), alias_name is the name of the alias (by convention in all uppercase
letters), and alias_list is a comma-separated list of one or more elements that make
up the alias. Preceding an element of an alias with an exclamation point (!) negates
it.

User_Alias The alias_list for a user alias is the same as the user_list for a user privilege specifi-
cation (discussed in the previous section). The following lines from a sudoers file
define three user aliases: OFFICE, ADMIN, and ADMIN2. The alias_list that
defines the first alias includes the usernames mark, sam, and sls; the second includes

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Running Commands with root Privileges 413

two usernames and members of the admin group; and the third includes all mem-
bers of the admin group except Max.

User_Alias OFFICE = mark, sam, sls
User_Alias ADMIN = max, zach, %admin
User_Alias ADMIN2 = %admin, !max

Runas_Alias The alias_list for a runas alias is the same as the runas_list for a user privilege spec-
ification (discussed in the previous section). The following SM runas alias includes
the usernames sam and sls:

Runas_Alias SM = sam, sls

Host_Alias Host aliases are meaningful only when the sudoers file is referenced by sudo running
on more than one system. The alias_list for a host alias is the same as the host_list
for a user privilege specification (discussed in the previous section). The following
line defines the LCL alias to include the systems named dog and plum:

Host_Alias LCL = dog, plum

If you want to use fully qualified hostnames (hosta.example.com instead of just
hosta) in this list, you must set the fqdn flag (discussed in the next section), which
can slow the performance of sudo.

Cmnd_Alias The alias_list for a command alias is the same as the command_list for a user priv-
ilege specification (discussed in the previous section). The following command
alias includes three files and, by including a directory (denoted by its trailing /),
incorporates all the files in that directory:

Cmnd_Alias BASIC = /bin/cat, /usr/bin/vi, /bin/df, /usr/local/safe/

Defaults (Options)
You can change configuration options from their default values by using the
Defaults keyword. Most values in this list are flags that are implicitly Boolean (can
either be on or off) or strings. You turn on a flag by naming it on a Defaults line,
and you turn it off by preceding it with a !. The following line in the sudoers file
would turn off the lecture and fqdn flags and turn on tty_tickets:

Defaults !lecture,tty_tickets,!fqdn

This section lists some common flags; see the sudoers man page for a complete list.

env_reset Causes sudo to reset the environment variables to contain the LOGNAME, SHELL,
USER, USERNAME, and SUDO_* variables only. The default is on. See the sudoers
man page for more information.

fqdn (fully qualified domain name) Performs DNS lookups on FQDNs (page 1109) in the
sudoers file. When this flag is set, you can use FQDNs in the sudoers file, but doing so
may negatively affect sudo’s performance, especially if DNS is not working. When this
flag is set, you must use the local host’s official DNS name, not an alias. If hostname
returns an FQDN, you do not need to set this flag. The default is on.

insults Displays mild, humorous insults when a user enters a wrong password. The default
is off. See also passwd_tries.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

414 Chapter 11 System Administration: Core Concepts

lecture=freq Controls when sudo displays a reminder message before the password prompt.
Possible values of freq are never (default), once, and always. Specifying !lecture is
the same as specifying a freq of never.

mailsub=subj (mail subject) Changes the default email subject for warning and error messages
from the default *** SECURITY information for %h *** to subj. The sudo
utility expands %h within subj to the local system’s hostname. Place subj between
quotation marks if it contains shell special characters (page 146).

mailto=eadd Sends sudo warning and error messages to eadd (an email address; the default is root).
Place eadd between quotation marks if it contains shell special characters (page 146).

mail_always Sends email to the mailto user each time a user runs sudo. The default is off.

mail_badpass Sends email to the mailto user when a user enters an incorrect password while running
sudo. The default is off.

mail_no_host Sends email to the mailto user when a user whose username is in the sudoers file but
who does not have permission to run commands on the local host runs sudo. The
default is off.

mail_no_perms Sends email to the mailto user when a user whose username is in the sudoers file but
who does not have permission to run the requested command runs sudo. The
default is off.

mail_no_user Sends email to the mailto user when a user whose username is not in the sudoers file
runs sudo. The default is on.

passwd_tries=num
The num is the number of times the user can enter an incorrect password in
response to the sudo password prompt before sudo quits. The default is 3. See also
insults and lecture.

rootpw Causes sudo to accept only the root password in response to its prompt. Because
sudo issues the same prompt whether it is asking for your password or the root
password, turning this flag on may confuse users. Do not turn on this flag if you
have not unlocked the root account (page 415) as you will not be able to use sudo.
To fix this problem, bring the system up in recovery mode (page 428) and turn off
(remove) this flag. The default is off, causing sudo to prompt for the password of
the user running sudo. See the adjacent tip.

shell_noargs Causes sudo, when called without any arguments, to spawn a root shell without
changing the environment. The default is off. This option is the same as the sudo –s
option.

Using the root password in place of your password

tip If you have set up a root password (page 415), you can cause graphical programs that require a
password to require the root password in place of the password of the user who is running the
program by turning on rootpw. The programs will continue to ask for your password, but will
accept only the root password. Making this change causes an Ubuntu system to use the root pass-
word in a manner similar to the way some other distributions use this password.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

448 Chapter 11 System Administration: Core Concepts

Securing a Server
Two ways you can secure a server are by using TCP wrappers and by setting up a
chroot jail. This section describes both techniques.

TCP Wrappers: Secure a Server (hosts.allow and
hosts.deny)
Follow these guidelines when you open a local system to access from remote systems:

• Open the local system only to systems you want to allow to access it.

• Allow each remote system to access only the data you want it to access.

• Allow each remote system to access data only in the appropriate manner
(readonly, read/write, write only).

libwrap As part of the client/server model, TCP wrappers, which can be used for any dae-
mon that is linked against libwrap, rely on the /etc/hosts.allow and /etc/hosts.deny
files as the basis of a simple access control language (ACL). This access control lan-
guage defines rules that selectively allow clients to access server daemons on a local
system based on the client’s address and the daemon the client tries to access. The
output of ldd shows that one of the shared library dependencies of sshd is libwrap:

$ ldd /usr/sbin/sshd | grep libwrap
libwrap.so.0 => /lib/libwrap.so.0 (0xb7ec7000)

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Setting Up a Server 449

hosts.allow and
hosts.deny

Each line in the hosts.allow and hosts.deny files has the following format:

daemon_list : client_list [: command]

where daemon_list is a comma-separated list of one or more server daemons (such
as portmap, vsftpd, or sshd), client_list is a comma-separated list of one or more cli-
ents (see Table 11-2, “Specifying a client,” on page 444), and the optional command
is the command that is executed when a client from client_list tries to access a server
daemon from daemon_list.

When a client requests a connection to a server, the hosts.allow and hosts.deny files
on the server system are consulted as follows until a match is found:

1. If the daemon/client pair matches a line in hosts.allow, access is granted.

2. If the daemon/client pair matches a line in hosts.deny, access is denied.

3. If there is no match in the hosts.allow or hosts.deny file, access is granted.

The first match determines whether the client is allowed to access the server. When
either hosts.allow or hosts.deny does not exist, it is as though that file was empty.
Although it is not recommended, you can allow access to all daemons for all clients
by removing both files.

Examples For a more secure system, put the following line in hosts.deny to block all access:

$ cat /etc/hosts.deny
...
ALL : ALL : echo '%c tried to connect to %d and was blocked' >> /var/log/tcpwrappers.log

This line prevents any client from connecting to any service, unless specifically per-
mitted to do so in hosts.allow. When this rule is matched, it adds a line to the file
named /var/log/tcpwrappers.log. The %c expands to client information and the
%d expands to the name of the daemon the client attempted to connect to.

With the preceding hosts.deny file in place, you can include lines in hosts.allow that
explicitly allow access to certain services and systems. For example, the following
hosts.allow file allows anyone to connect to the OpenSSH daemon (ssh, scp, sftp)
but allows telnet connections only from the same network as the local system and
users on the 192.168. subnet:

$ cat /etc/hosts.allow
sshd: ALL
in.telnet: LOCAL
in.telnet: 192.168.* 127.0.0.1
...

The first line allows connection from any system (ALL) to sshd. The second line
allows connection from any system in the same domain as the server (LOCAL).
The third line matches any system whose IP address starts 192.168. and the local
system.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

450 Chapter 11 System Administration: Core Concepts

Setting Up a chroot Jail
On early UNIX systems, the root directory was a fixed point in the filesystem. On mod-
ern UNIX variants, including Linux, you can define the root directory on a per-process
basis. The chroot utility allows you to run a process with a root directory other than /.

The root directory appears at the top of the directory hierarchy and has no parent.
Thus a process cannot access files above the root directory because none exists. If,
for example, you run a program (process) and specify its root directory as /tmp/jail,
the program would have no concept of any files in /tmp or above: jail is the pro-
gram’s root directory and is labeled / (not jail).

By creating an artificial root directory, frequently called a (chroot) jail, you prevent a
program from accessing, executing, or modifying—possibly maliciously—files out-
side the directory hierarchy starting at its root. You must set up a chroot jail properly
to increase security: If you do not set up a chroot jail correctly, you can make it easier
for a malicious user to gain access to a system than if there were no chroot jail.

Using chroot
Creating a chroot jail is simple: Working with root privileges, give the command
/usr/sbin/chroot directory. The directory becomes the root directory and the pro-
cess attempts to run the default shell. The following command sets up a chroot jail in
the (existing) /tmp/jail directory:

$ sudo /usr/sbin/chroot /tmp/jail
/usr/sbin/chroot: cannot run command '/bin/bash': No such file or directory

This example sets up a chroot jail, but when it attempts to run the bash shell, it fails.
Once the jail is set up, the directory that was named jail takes on the name of the
root directory, /. As a consequence, chroot cannot find the file identified by the path-
name /bin/bash. In this situation the chroot jail works correctly but is not useful.

Getting a chroot jail to work the way you want is more complicated. To have the
preceding example run bash in a chroot jail, create a bin directory in jail
(/tmp/jail/bin) and copy /bin/bash to this directory. Because the bash binary is
dynamically linked to shared libraries, you need to copy these libraries into jail as
well. The libraries go in lib.

The next example creates the necessary directories, copies bash, uses ldd to display
the shared library dependencies of bash, and copies the necessary libraries to lib.
The linux-gate.so.1 file is a dynamically shared object (DSO) provided by the kernel
to speed system calls; you do not need to copy it.

$ pwd
/tmp/jail
$ mkdir bin lib
$ cp /bin/bash bin
$ ldd bin/bash

linux-gate.so.1 => (0xffffe000)
libncurses.so.5 => /lib/libncurses.so.5 (0xb7f44000)
libdl.so.2 => /lib/tls/i686/cmov/libdl.so.2 (0xb7f40000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7dff000)
/lib/ld-linux.so.2 (0xb7f96000)

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Setting Up a Server 451

$ cp /lib/{libncurses.so.5,ld-linux.so.2} lib
$ cp /lib/tls/i686/cmov/{libdl.so.2,libc.so.6} lib

Now start the chroot jail again. Although all the setup can be done by an ordinary
user, you must be working with root privileges to run chroot:

$ sudo /usr/sbin/chroot /tmp/jail
bash-3.2# pwd
/
bash-3.2# ls
bash: ls: command not found
bash-3.2# exit
exit
$

This time chroot finds and starts bash, which displays its default prompt (bash-3.2#).
The pwd command works because it is a shell builtin (page 247). However, bash can-
not find the ls utility because it is not in the chroot jail. You can copy /bin/ls and its
libraries into the jail if you want users in the jail to be able to use ls. An exit com-
mand allows you to escape from the jail.

If you provide chroot with a second argument, it takes that argument as the name
of the program to run inside the jail. The following command is equivalent to the
preceding one:

$ sudo /usr/sbin/chroot /home/sam/jail /bin/bash

To set up a useful chroot jail, first determine which utilities the users of the chroot jail
need. Then copy the appropriate binaries and their libraries into the jail. Alterna-
tively, you can build static copies of the binaries and put them in the jail without
installing separate libraries. (The statically linked binaries are considerably larger
than their dynamic counterparts. The base system with bash and the core utilities
exceeds 50 megabytes.) You can find the source code for most common utilities in
the bash and coreutils source packages.

The chroot utility fails unless you run it with root privileges. The preceding examples
used sudo to gain these privileges. The result of running chroot with root privileges is a
root shell (a shell with root privileges) running inside a chroot jail. Because a user with
root privileges can break out of a chroot jail, it is imperative that you run a program in
the chroot jail with reduced privileges (i.e., privileges other than those of root).

There are several ways to reduce the privileges of a user. For example, you can put
su or sudo in the jail and then start a shell or a daemon inside the jail, using one of
these programs to reduce the privileges of the user working in the jail. A command
such as the following starts a shell with reduced privileges inside the jail:

$ sudo /usr/sbin/chroot jailpath /usr/bin/sudo -u user /bin/bash &

where jailpath is the pathname of the jail directory, and user is the username
under whose privileges the shell runs. The problem with this scenario is that sudo
and su as compiled for Ubuntu, call PAM. To run one of these utilities you need to
put all of PAM, including its libraries and configuration files, in the jail, along with
sudo (or su) and the /etc/passwd file. Alternatively, you can recompile su or sudo.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

452 Chapter 11 System Administration: Core Concepts

The source code calls PAM, however, so you would need to modify the source so it
does not call PAM. Either one of these techniques is time-consuming and introduces
complexities that can lead to an insecure jail.

The following C program1 runs a program with reduced privileges in a chroot jail.
Because this program obtains the UID and GID of the user you specify on the com-
mand line before calling chroot(), you do not need to put /etc/passwd in the jail.
The program reduces the privileges of the specified program to those of the speci-
fied user. This program is presented as a simple solution to the preceding issues so
you can experiment with a chroot jail and better understand how it works.

$ cat uchroot.c

/* See svn.gna.org/viewcvs/etoile/trunk/Etoile/LiveCD/uchroot.c for terms of use. */

#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>

int main(int argc, char * argv[])
{

if(argc < 4)
{

printf("Usage: %s {username} {directory} {program} [arguments]\n", argv[0]);
return 1;

}
/* Parse arguments */
struct passwd * pass = getpwnam(argv[1]);
if(pass == NULL)
{

printf("Unknown user %s\n", argv[1]);
return 2;

}
/* Set the required UID */
chdir(argv[2]);
if(chroot(argv[2])

||
setgid(pass->pw_gid)
||
setuid(pass->pw_uid))

{
printf("%s must be run as root. Current uid=%d, euid=%d\n",

argv[0],
(int)getuid(),
(int)geteuid()
);

return 3;
}
char buf[100];
return execv(argv[3], argv + 3);

}

1. Thanks to David Chisnall and the Étoilé Project (etoileos.com) for the uchroot.c program.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Setting Up a Server 453

The first of the following commands compiles uchroot.c, creating an executable file
named uchroot. Subsequent commands move uchroot to /usr/local/bin and give it
appropriate ownership.

$ cc -o uchroot uchroot.c
$ sudo mv uchroot /usr/local/bin
$ sudo chown root:root /usr/local/bin/uchroot
$ ls -l /usr/local/bin/uchroot
-rwxr-xr-x 1 root root 7922 Jul 17 08:26 /usr/local/bin/uchroot

Using the setup from earlier in this section, give the following command to run a
shell with the privileges of the user sam inside a chroot jail:

$ sudo /usr/local/bin/uchroot sam /tmp/jail /bin/bash

Running a Service in a chroot Jail
Running a shell inside a jail has limited usefulness. Instead, you are more likely to
want to run a specific service inside the jail. To run a service inside a jail, make sure
all files needed by that service are inside the jail. Using uchroot, the format of a com-
mand to start a service in a chroot jail is

$ sudo /usr/local/bin/uchroot user jailpath daemonname

where jailpath is the pathname of the jail directory, user is the username that runs
the daemon, and daemonname is the pathname (inside the jail) of the daemon that
provides the service.

Some servers are already set up to take advantage of chroot jails. You can set up
DNS so that named runs in a jail (page 808), for example, and the vsftpd FTP server
can automatically start chroot jails for clients (page 667).

Security Considerations
Some services need to be run by a user/process with root privileges but release
their root privileges once started (Apache, Procmail, and vsftpd are examples). If
you are running such a service, you do not need to use uchroot or put su or sudo
inside the jail.

A process run with root privileges can potentially escape from a chroot jail. For this
reason, always reduce privileges before starting a program running inside the jail.
Also, be careful about which setuid (page 204) binaries you allow inside a jail—a
security hole in one of them could compromise the security of the jail. In addition,
make sure the user cannot access executable files that he uploads to the jail.

Keeping multiple chroot jails

tip If you plan to deploy multiple chroot jails, it is a good idea to keep a clean copy of the bin and lib
directories somewhere other than one of the active jails.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

454 Chapter 11 System Administration: Core Concepts

DHCP: Configures Network Interfaces
Instead of storing network configuration information in local files on each system,
DHCP (Dynamic Host Configuration Protocol) enables client systems to retrieve
network configuration information from a DHCP server each time they connect to
the network. A DHCP server assigns IP addresses from a pool of addresses to clients
as needed. Assigned addresses are typically temporary but need not be.

This technique has several advantages over storing network configuration informa-
tion in local files:

• A new user can set up an Internet connection without having to deal with
IP addresses, netmasks, DNS addresses, and other technical details. An
experienced user can set up a connection more quickly.

• DHCP facilitates assignment and management of IP addresses and related
network information by centralizing the process on a server. A system
administrator can configure new systems, including laptops that connect
to the network from different locations, to use DHCP; DHCP then assigns
IP addresses only when each system connects to the network. The pool of
IP addresses is managed as a group on the DHCP server.

• IP addresses can be used by more than one system, reducing the total num-
ber of IP addresses needed. This conservation of addresses is important
because the Internet is quickly running out of IPv4 addresses. Although a
particular IP address can be used by only one system at a time, many end-
user systems require addresses only occasionally, when they connect to the
Internet. By reusing IP addresses, DHCP has lengthened the life of the IPv4
protocol. DHCP applies to IPv4 only, as IPv6 (page 371) forces systems to
configure their IP addresses automatically (called autoconfiguration) when
they connect to a network.

DHCP is particularly useful for an administrator who is responsible for maintain-
ing a large number of systems because individual systems no longer need to store
unique configuration information. With DHCP, the administrator can set up a
master system and deploy new systems with a copy of the master’s hard disk. In
educational establishments and other open-access facilities, the hard disk image
may be stored on a shared drive, with each workstation automatically restoring
itself to pristine condition at the end of each day.

More Information
Web www.dhcp.org

DHCP FAQ: www.dhcp-handbook.com/dhcp_faq.html

HOWTO DHCP Mini HOWTO

How DHCP Works
Using dhclient, the client contacts the server daemon, dhcpd, to obtain the IP
address, netmask, broadcast address, nameserver address, and other networking

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Setting Up a Server 455

parameters. In turn, the server provides a lease on the IP address to the client. The
client can request the specific terms of the lease, including its duration; the server
can limit these terms. While connected to the network, a client typically requests
extensions of its lease as necessary so its IP address remains the same. This lease
may expire once the client is disconnected from the network, with the server giving
the client a new IP address when it requests a new lease. You can also set up a
DHCP server to provide static IP addresses for specific clients (refer to “Static Ver-
sus Dynamic IP Addresses” on page 366). DHCP is broadcast based, so both client
and server must be on the same subnet (page 369).

When you install Ubuntu, the system runs a DHCP client, connects to a DHCP
server if it can find one, and configures its network interface. You can use firestarter
(page 824) to configure and run a DHCP server.

DHCP Client
A DHCP client requests network configuration parameters from the DHCP server
and uses those parameters to configure its network interface.

Prerequisites
Make sure the following package is installed:

• dhcp3-client

dhclient: The DHCP Client
When a DHCP client system connects to the network, dhclient requests a lease
from the DHCP server and configures the client’s network interface(s). Once a
DHCP client has requested and established a lease, it stores the lease information
in a file named dhclient.interface.leases, which is stored in /var/lib/dhcp3. The
interface is the name of the interface that the client uses, such as eth0. The system
uses this information to reestablish a lease when either the server or the client
needs to reboot. You need to change the default DHCP client configuration file,
/etc/dhcp3/dhclient.conf, only for custom configurations.

The following /etc/dhcp3/dhclient.conf file specifies a single interface, eth0:

$ cat /etc/dhcp3/dhclient.conf
interface "eth0"
{
send dhcp-client-identifier 1:xx:xx:xx:xx:xx:xx;
send dhcp-lease-time 86400;
}

In the preceding file, the 1 in the dhcp-client-identifier specifies an Ethernet net-
work and xx:xx:xx:xx:xx:xx is the MAC address (page 1118) of the device control-
ling that interface. See page 457 for instructions on how to determine the MAC
address of a device. The dhcp-lease-time is the duration, in seconds, of the lease on
the IP address. While the client is connected to the network, dhclient automatically
renews the lease each time half of the lease time is up. The lease time of 86,400 sec-
onds (or one day) is a reasonable choice for a workstation.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

456 Chapter 11 System Administration: Core Concepts

DHCP Server
A DHCP server maintains a list of IP addresses and other configuration parameters.
Clients request network configuration parameters from the server.

Prerequisites
Install the following package:

• dhcp3-server

dhcp3-server init
script

When you install the dhcpd3-server package, the dpkg postinst script attempts to
start the dhcpd3 daemon and fails because dhcpd3 is not configured—see
/var/log/syslog for details. After you configure dhcpd3, call the dhcp3-server init
script to restart the dhcpd3 daemon:

$ sudo /etc/init.d/dhcp3-server restart

dhcpd: The DHCP Daemon
A simple DCHP server (dhcpd) allows you to add clients to a network without
maintaining a list of assigned IP addresses. A simple network, such as a home LAN
sharing an Internet connection, can use DHCP to assign a dynamic IP address to
almost all nodes. The exceptions are servers and routers, which must be at known
network locations to be able to receive connections. If servers and routers are con-
figured without DHCP, you can specify a simple DHCP server configuration in
/etc/dhcp3/dhcpd.conf:

$ cat /etc/dhcp3/dhcpd.conf
default-lease-time 600;
max-lease-time 86400;

option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option routers 192.168.1.1;
option domain-name-servers 192.168.1.1;
option domain-name "example.com";

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.2 192.168.1.200;
}

The /etc/default/dhcp3-server file specifies the interfaces that dhcpd serves requests
on. By default, dhcpd uses eth0. To use another interface or to use more than one
interface, set the INTERFACES variable in this file to a SPACE-separated list of the
interfaces you want to use; enclose the list within quotation marks.

The preceding configuration file specifies a LAN where both the router and DNS
server are located on 192.168.1.1. The default-lease-time specifies the number of
seconds the dynamic IP lease will remain valid if the client does not specify a dura-
tion. The max-lease-time is the maximum time allowed for a lease.

The information in the option lines is sent to each client when it connects. The
names following the word option specify what the following argument represents.
For example, the option broadcast-address line specifies the broadcast address of
the network. The routers and domain-name-servers options allow multiple values
separated by commas.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

Setting Up a Server 457

The subnet section includes a range line that specifies the range of IP addresses the
DHCP server can assign. If case of multiple subnets, you can define options, such as
subnet-mask, inside the subnet section. Options defined outside all subnet sections
are global and apply to all subnets.

The preceding configuration file assigns addresses in the range from 192.168.1.2 to
192.168.1.200. The DHCP server starts at the bottom of this range and attempts to
assign a new IP address to each new client. Once the DHCP server reaches the top
of the range, it starts reassigning IP addresses that have been used in the past but are
not currently in use. If you have fewer systems than IP addresses, the IP address of
each system should remain fairly constant. Two systems cannot use the same IP
address at the same time.

Once you have configured a DHCP server, restart it using the dhcpd init script
(page 456). When the server is running, clients configured to obtain an IP address
from the server using DHCP should be able to do so.

Static IP Addresses
As mentioned earlier, routers and servers typically require static IP addresses.
Although you can manually configure IP addresses for these systems, it may be
more convenient to have the DHCP server provide them with static IP addresses.

When a system that requires a specific static IP address connects to the network and
contacts the DHCP server, the server needs a way to identify the system so it can assign
the proper IP address to that system. The DHCP server uses the MAC address
(page 1118) of the system’s Ethernet card (NIC) as an identifier. When you set up the
server, you must know the MAC address of each system that requires a static IP address.

Determining a MAC
address

The ifconfig utility displays the MAC addresses of the Ethernet cards in a system. In
the following example, the MAC addresses are the colon-separated series of hexa-
decimal number pairs following HWaddr:

$ ifconfig | grep -i hwaddr
eth0 Link encap:Ethernet HWaddr BA:DF:00:DF:C0:FF
eth1 Link encap:Ethernet HWaddr 00:02:B3:41:35:98

Run ifconfig on each system that requires a static IP address. Once you have deter-
mined the MAC addresses of these systems, you can add a host section to the
/etc/dhcp3/dhcpd.conf file for each one, instructing the DHCP server to assign a
specific address to that system. The following host section assigns the address
192.168.1.1 to the system with the MAC address of BA:DF:00:DF:C0:FF:

$ cat /etc/dhcp3/dhcpd.conf
...
host router {
 hardware ethernet BA:DF:00:DF:C0:FF;
 fixed-address 192.168.1.1;
 option host-name router;
}

The name following host is used internally by dhcpd. The name specified after
option host-name is passed to the client and can be a hostname or an FQDN. After
making changes to dhcpd.conf, restart dhcpd using the dhcpd init script (page 456).

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

458 Chapter 11 System Administration: Core Concepts

nsswitch.conf: Which Service to Look at First
With the advent of NIS and DNS, finding user and system information was no
longer a simple matter of searching a local file. Where once you looked in
/etc/passwd to get user information and in /etc/hosts to find system address infor-
mation, you can now use several methods to obtain this type of information. The
/etc/nsswitch.conf (name service switch configuration) file specifies which methods
to use and the order in which to use them when looking for a certain type of infor-
mation. You can also specify which action the system should take based on whether
a method succeeds or fails.

Format Each line in nsswitch.conf specifies how to search for a piece of information, such
as a user’s password. A line in nsswitch.conf has the following format:

info: method [[action]] [method [[action]]...]

where info specifies the type of information the line describes, method is the method
used to find the information, and action is the response to the return status of the
preceding method. The action is enclosed within square brackets.

How nsswitch.conf Works
When called upon to supply information that nsswitch.conf describes, the system
examines the line with the appropriate info field. It uses the methods specified on
the line, starting with the method on the left. By default, when it finds the desired
information, the system stops searching. Without an action specification, when a
method fails to return a result, the system tries the next action. It is possible for the
search to end without finding the requested information.

Information
The nsswitch.conf file commonly controls searches for usernames, passwords, host IP
addresses, and group information. The following list describes most of the types of
information (info in the syntax given earlier) that nsswitch.conf controls searches for.

automount Automount (/etc/auto.master and /etc/auto.misc, page 756)
bootparam Diskless and other booting options (See the bootparam man page.)
ethers MAC address (page 1118)
group Groups of users (/etc/group, page 474)
hosts System information (/etc/hosts, page 475)
networks Network information (/etc/networks)
passwd User information (/etc/passwd, page 476)
protocols Protocol information (/etc/protocols, page 477)
publickey Used for NFS running in secure mode
rpc RPC names and numbers (/etc/rpc, page 478)
services Services information (/etc/services, page 479)
shadow Shadow password information (/etc/shadow, page 479)

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

nsswitch.conf: Which Service to Look at First 459

Methods
Following is a list of the types of information that nsswitch.conf controls searches
for (method in the format above). For each type of information, you can specify one
or more of the following methods:2

files Searches local files such as /etc/passwd and /etc/hosts
nis Searches the NIS database; yp is an alias for nis
dns Queries the DNS (hosts queries only)
compat ± syntax in passwd, group, and shadow files (page 460)

Search Order
The information provided by two or more methods may overlap: For example, both
files and nis may provide password information for the same user. With overlapping
information, you need to consider which method you want to be authoritative (take
precedence); place that method at the left of the list of methods.

The default nsswitch.conf file lists methods without actions, assuming no overlap
(which is normal). In this case, the order is not critical: When one method fails, the
system goes to the next one and all that is lost is a little time. Order becomes critical
when you use actions between methods or when overlapping entries differ.

The first of the following lines from nsswitch.conf causes the system to search for
password information in /etc/passwd and, if that fails, to use NIS to find the infor-
mation. If the user you are looking for is listed in both places, the information in the
local file is used and is considered authoritative. The second line uses NIS to find an
IP address given a hostname; if that fails, it searches /etc/hosts; if that fails, it checks
with DNS to find the information.

passwd files nis
hosts nis files dns

Action Items
Each method can optionally be followed by an action item that specifies what to do
if the method succeeds or fails. An action item has the following format:

[[!]STATUS=action]

where the opening and closing square brackets are part of the format and do not
indicate that the contents are optional; STATUS (uppercase by convention) is the
status being tested for; and action is the action to be taken if STATUS matches the
status returned by the preceding method. The leading exclamation point (!) is
optional and negates the status.

2. There are other, less commonly used methods. See the default /etc/nsswitch.conf file and the
nsswitch.conf man page for more information. Although NIS+ belongs in this list, it is not implemented as
a Linux server and is not discussed in this book.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

460 Chapter 11 System Administration: Core Concepts

STATUS Values for STATUS are

NOTFOUND The method worked but the value being searched for was not
found. The default action is continue.

SUCCESS The method worked and the value being searched for was found; no
error was returned. The default action is return.

UNAVAIL The method failed because it is permanently unavailable. For example,
the required file may not be accessible or the required server may be down. The
default action is continue.

TRYAGAIN The method failed because it was temporarily unavailable. For
example, a file may be locked or a server overloaded. The default action is continue.

action Values for action are

return Returns to the calling routine with or without a value.

continue Continues with the next method. Any returned value is overwritten by a
value found by a subsequent method.

Example The following line from nsswitch.conf causes the system first to use DNS to search
for the IP address of a given host. The action item following the DNS method tests
whether the status returned by the method is not (!) UNAVAIL.

hosts dns [!UNAVAIL=return] files

The system takes the action associated with the STATUS (return) if the DNS
method does not return UNAVAIL (!UNAVAIL)—that is, if DNS returns SUCCESS,
NOTFOUND, or TRYAGAIN. The result is that the following method (files) is
used only when the DNS server is unavailable. If the DNS server is not unavailable
(read the two negatives as “is available”), the search returns the domain name or
reports that the domain name was not found. The search uses the files method
(checks the local /etc/hosts file) only if the server is not available.

compat Method: ± in passwd, group, and shadow Files
You can put special codes in the /etc/passwd, /etc/group, and /etc/shadow files that
cause the system, when you specify the compat method in nsswitch.conf, to com-
bine and modify entries in the local files and the NIS maps.

A plus sign (+) at the beginning of a line in one of these files adds NIS information;
a minus sign (–) removes information. For example, to use these codes in the
passwd file, specify passwd: compat in nsswitch.conf. The system then goes through
the passwd file in order, adding or removing the appropriate NIS entries when it
reaches each line that starts with a + or –.

Although you can put a plus sign at the end of the passwd file, specify passwd: compat
in nsswitch.conf to search the local passwd file, and then go through the NIS map,
it is more efficient to put passwd: file nis in nsswitch.conf and not modify the
passwd file.

Sobell, Mark; ISBN 0137003889, Copyright 2009 Mark G. Sobell

