
i

i

“Davidhoff” — 2012/5/16 — 16:26 — page 3 — #1

i

i

i

i

i

i

Chapter 1

Practical Investigative Strategies

‘‘A victorious army first wins and then seeks battle; a defeated army first battles and then
seeks victory.’’ ---Sun Tsu, The Art of War1

Evidence scattered around the world. Not enough time. Not enough staff. Unrealistic
expectations. Internal political conflicts. Gross underestimation of costs. Mishandling of
evidence. Too many cooks in the kitchen. Network forensic investigations can be tricky. In
addition to all the challenges faced by traditional investigators, network forensics investiga-
tors often need to work with unfamiliar people in different countries, learn to interact with
obscure pieces of equipment, and capture evidence that exists only for fleeting moments.
Laws surrounding evidence collection and admissibility are often vague, poorly understood,
or nonexistent. Frequently, investigative teams find themselves in situations where it is not
clear who is in charge, or what the team can accomplish.

An organized approach is key to a successful investigation. While this book is primar-
ily designed to explore technical topics, in this chapter, we touch on the fundamentals of
investigative management. This is particularly important because network forensics inves-
tigations often involve coordination between multiple groups and evidence that may be
scattered around the globe.

We begin by presenting three cases from different industries in order to give you some
examples of how network forensics is used to support investigations in the real world. Next,
we explore the fundamentals of evidence collection and distinctions that are made between
different types of evidence in many courts. We discuss the challenges specific to network-
based evidence, such as locating evidence on a network and questions of admissibility.
Finally, we present the OSCAR investigative methodology, which is designed to give you an
easy-to-remember framework for approaching digital investigations.

1.1 Real-World Cases

How is network forensics used in real life? In this section, we present three cases:

• Hospital Laptop Goes Missing

• Catching a Corporate Pirate

• Hacked Government Server

1. Sun Tsu (Author), Lionel Giles (Translator), The Art of War, El Paso Norte Press, 2005. 3
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4 Chapter 1 Practical Investigative Strategies

These cases have been chosen to provide examples of common IT security incidents and
illustrate how network forensics is frequently used. Although these cases are based on real-
life experiences, they have been modified to protect the privacy of the organizations and
individuals involved.

1.1.1 Hospital Laptop Goes Missing

A doctor reports that her laptop has been stolen from her office in a busy U.S. metropolitan
hospital. The computer is password-protected, but the hard drive is not encrypted. Upon
initial questioning, the doctor says that the laptop may contain copies of some patient lab
results, additional protected health information (PHI) downloaded from email attachments,
schedules that include patient names, birth dates, and IDs, notes regarding patient visits,
and diagnoses.

1.1.1.1 Potential Ramifications

Since the hospital is regulated by the United States’ Health Information Technology for Eco-
nomic and Clinical Health (HITECH) Act and Health Insurance Portability and Account-
ability Act (HIPAA), it would be required to notify individuals whose PHI was breached.2

If the breach is large enough, it would also be required to notify the media. This could cause
significant damage to the hospital’s reputation, and also cause substantial financial loss,
particularly if the hospital were held liable for any damages caused due to the breach.

1.1.1.2 Questions

Important questions for the investigative team include:

1. Precisely when did the laptop go missing?

2. Can we track down the laptop and recover it?

3. Which patient data was on the laptop?

4. How many individuals’ data was affected?

5. Did the thief leverage the doctor’s credentials to gain any further
access to the hospital network?

1.1.1.3 Technical Approach

Investigators began by working to determine the time when the laptop was stolen, or at least
when the doctor last used it. This helped establish an outer bound on what data could have
been stored on it. Establishing the time that the laptop was last in the doctor’s possession
also gave the investigative team a starting point for searching physical surveillance footage
and access logs. The team also reviewed network access logs to determine whether the
laptop was subsequently used to connect to the hospital network after the theft and, if so,
the location that it connected from.

2. “HITECH Breach Notification Interim Final Rule,” U.S. Department of Health and Human Services,
http://www.hhs.gov/ocr/privacy/hipaa/understanding/coveredentities/breachnotificationifr.html.
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1.1 Real-World Cases 5

There are several ways investigators could try to determine what time the laptop went
missing. First, they could interview the doctor to establish the time that she last used it,
and the time that she discovered it was missing. Investigators might also find evidence in
wireless access point logs, Dynamic Host Control Protocol (DHCP) lease assignment logs,
Active Directory events, web proxy logs (if there is an enterprise web proxy), and of course
any sort of laptop tracking software (such as Lojack for Laptops) that might have been in
use on the device.

Enterprise wireless access point (WAP) logs can be especially helpful for determining
the physical location in the facility where a mobile device was most recently connected,
and the last time it was connected. In order to ensure uniform availability of wireless net-
works, enterprises typically deploy a fleet of WAPs that all participate in the same network.
Although they appear to the end user as a single wireless network, network operators can
view which mobile devices were connected to specific access points throughout the building.
Some enterprises even have commercial software that can graphically represent the move-
ment of wirelessly connected devices as they traverse the physical facility. If the laptop was
still connected to the hospital’s wireless network as the thief exited the building, investiga-
tors might be able to use wireless access point logs to show the path that the thief navigated
as he or she exited the building. This might also be correlated with video surveillance logs
or door access control logs.

Once investigators established an approximate time of theft, they could narrow down
the patient information that might have been stored on the system. Email logs could reveal
when the doctor last checked her email, which would place an outer bound on the emails that
could have been replicated to her laptop. These logs might also reveal which attachments
were downloaded. More importantly, the hospital’s email server would have copies of all of
the doctor’s emails, which would help investigators gather a list of patients likely to have
been affected by the breach. Similarly, hospital applications that provide access to lab results
and other PHI might contain access logs, which could help investigators compile a list of
possible data breach victims.

There might be authentication logs from Active Directory domain controllers, VPN con-
centrators, and other sources that indicate the laptop was used to access hospital resources
even after the theft. If so, this might help investigators track down the thief. Evidence of
such activities could also indicate that additional information was compromised, and that
the attacker’s interests went beyond merely gaining a new laptop.

1.1.1.4 Results

Leveraging wireless access point logs, the investigative team was able to pinpoint the time of
the theft and track the laptop through the facility out to a visitor parking garage. Parking
garage cameras provided a low-fidelity image of the attacker, a tall man wearing scrubs, and
investigators also correlated this with gate video of the car itself as it left the lot with two
occupants. The video was handed to the police, who were able to track the license plate.
The laptop was eventually recovered amongst a stack of stolen laptops.

The investigative team carefully reviewed VPN logs and operating system logs stored
on the central logging server and found no evidence that the doctor’s laptop was used to
attempt any further access to hospital IT resources. Hard drive analysis of the recovered
laptop showed no indication that the system had been turned on after the theft. After
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6 Chapter 1 Practical Investigative Strategies

extensive consultation with legal counsel, hospital management concluded that patient data
had ultimately not been leaked.

In response to the incident, the hospital implemented full-disk encryption for all laptop
hard drives, and deployed physical laptop locking mechanisms.

1.1.2 Catching a Corporate Pirate

GlobalCorp, Inc., has a centrally managed intrusion detection system, which receives alerts
from sites around the world. Central security staff notice an alert for peer-to-peer (P2P) file-
sharing, and on closer inspection see filename references to movies that are still in theaters.
Fearing legal ramifications of inaction, they investigate.

1.1.2.1 Potential Ramifications

Management at GlobalCorp, Inc., were highly concerned that an employee was using the
company network for trafficking in pirated intellectual property. If this activity were
detected, the owner of the intellectual property might sue the company. This case occurred
in 2003, at the height of Digital Millennium Copyright Act (DMCA) fervor, and it was
assumed that if an individual within the company was illicitly trading pirated music or
movies, then it could place the company at risk of costly legal battles.

1.1.2.2 Questions

Important questions for the investigative team include:

1. Where is the source of the P2P traffic physically located?

2. Which user is initiating the P2P traffic?

3. Precisely what data is being shared?

1.1.2.3 Technical Approach

Using the IP address from the IDS alerts, investigators identified the physical site that was
the source of the traffic. In order to specifically identify the client system, its location, and
primary user, investigators worked with local network management staff.

Meanwhile, intrusion analysts in the central office began capturing all of the P2P-related
packets involving the IP address in question. The local facility confirmed that this IP address
was part of a local DHCP pool on the wired local area network (LAN). Intrusion analysts
reviewed DHCP lease assignment logs for relevant time periods, and recovered the media
access control (MAC) address associated with the suspicious activity. From the MAC address
investigators identified the manufacturer of the network card (Dell, in this case).

In order to trace the IP address to a specific office, local networking staff logged into
switches and gathered information mapping the IP address to a physical port. The physical
port was wired to a cubicle occupied by an email system administrator. Investigators entered
his office after hours one evening and recovered his desktop for forensic analysis.

Upon examination, however, it was clear that the confiscated desktop was not the source
of the P2P activity. The MAC address of the network card in the confiscated system (a
Hewlett-Packard desktop) was not consistent with the MAC address linked to the suspicious
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1.1 Real-World Cases 7

activity. Subsequent analysis of the company’s email server produced evidence that the
suspect, an email system administrator, had leveraged privileged access to read emails of
key networking staff involved in the investigation.

Local networking staff took caution to communicate out-of-band while coordinating the
remainder of the investigation. Investigators conducted a thorough search of the premises
for a system with the MAC address implicated. The matching desktop was eventually found
in the desktop staging area, buried in a pile of systems queued for reimaging.

1.1.2.4 Results

Network forensic analysts examined full packet captures grabbed by the IDS, and were
ultimately able to carve out video files and reconstruct playable copyrighted movies that
were still in theaters. Hard drive analysis of the correct desktop produced corroborating
evidence that the movies in the packet capture had been resident on the hard drive. The hard
drive also contained usernames and email addresses linking the hard drive and associated
network traffic with the suspect.

Case closed!

1.1.3 Hacked Government Server

During a routine antivirus scan, a government system administrator was alerted to suspicious
files on a server. The files appeared to be part of a well-known rootkit. The server did not
host any confidential data other than password hashes, but there were several other systems
on the local subnet that contained Social Security numbers and financial information of
thousands of state residents who had filed for unemployment assistance. The administrative
account usernames and passwords were the same for all servers on the local subnet.

1.1.3.1 Potential Ramifications

State laws required the government to notify any individuals whose Social Security numbers
were breached. If the servers containing this sensitive information were hacked, the state
might be required to spend large amounts of money to send out notifications, set up hotlines
for affected individuals, and engage in any resulting lawsuits. In addition, disclosure of a
breach might damage the careers of high-ranking elected state officials.

1.1.3.2 Questions

Important questions for the investigative team include:

• Was the server in question truly compromised?

• If so, how was the system exploited?

• Were any other systems on the local network compromised?

• Was any confidential information exported?

1.1.3.3 Technical Approach

The server in question appeared to contain files with names that fit the pattern for a well-
known rootkit. Investigators began by examining these files and concluded that they were,
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8 Chapter 1 Practical Investigative Strategies

indeed, malicious software. The rootkit files were found in the home directory of an old local
administrator account that staff had forgotten even existed.

Investigators found that the local authentication logs had been deleted. Fortunately, all
servers on the subnet were configured to send logs to a central logging server, so instead
investigators reviewed Secure Shell (SSH) logs from the central logging server that were
associated with the account. From the SSH logs, it was clear that the account had been the
target of a brute-force password-guessing attack. Investigators used visualization tools to
identify the times that there were major spikes in the volume of authentication attempts.
A subsequent password audit revealed that the account’s password was very weak.

The SSH logs showed that the source of the brute-force attack was a system located
in Brazil. This was surprising to IT staff because according to network documentation the
perimeter firewall was supposed to be configured to block external access to the SSH port
of servers on the subnet under investigation. Investigators gathered copies of the current,
active firewall configuration and found that it did not match the documented policy—in
practice, the SSH port was directly accessible from the Internet. Subsequently, investigators
analyzed firewall logs and found entries that corroborated the findings from the SSH logs.

When one system in the environment is compromised, there is a significant probability
that the attacker may use credentials from that system to access other systems. IT staff
were concerned that the attacker might have used the stolen account credentials to access
other systems on the local subnet.

Fortunately, further analysis of the server hard drive indicated that the attacker’s access
was short-lived; the antivirus scan had alerted on the suspicious files shortly after they were
created. Investigators conducted a detailed analysis of authentication logs for all systems
on the local subnet, and found no other instances of suspicious access to the other servers.
Furthermore, there were no records of logins using the hacked account on any other servers.
Extensive analysis of the firewall logs showed no suspicious data exportation from any servers
on the local subnet.

1.1.3.4 Results

Investigators concluded that the server under investigation was compromised but that no
other systems on the local subnet had been exploited and no personal confidential informa-
tion had been breached. To protect against future incidents, the state IT staff corrected the
errors in the firewall configuration and implemented a policy in which firewall rules were
audited at least twice per year. In addition, staff removed the old administrator account
and established a policy of auditing all server accounts (including privileges and password
strength) on a quarterly basis.

1.2 Footprints

When conducting network forensics, investigators often work with live systems that cannot
be taken offline. These may include routers, switches, and other types of network devices, as
well as critical servers. In hard drive forensics, investigators are taught to minimize system
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1.3 Concepts in Digital Evidence 9

modification when conducting forensics. It is much easier to minimize system modification
when working with an offline copy of a write-protected drive than with production network
equipment and servers.

In network forensics, investigators also work to minimize system modification due to
forensic activity. However, in these cases investigators often do not have the luxury of an
offline copy. Moreover, network-based evidence is often highly volatile and must be collected
through active means that inherently modify the system hosting the evidence. Even when
investigators are able to sniff traffic using port monitoring or tapping a cable, there is always
some impact on the environment, however small. This impact can sometimes be minimized
through careful selection of acquisition techniques, but it can never be eliminated entirely.

Every interaction that an investigator has with a live system modifies it in some way,
just as an investigator in real life modifies a crime scene simply by walking on the floor. We
use the term “footprint” throughout this book to refer to the impact that an investigator
has on the systems under examination.

You will always leave a footprint. Often, the size of the footprint required must be
weighed against the need for expediency in data collection. Take the time to record your
activities carefully so that you can demonstrate later that important evidence was not
modified. Always be conscious of your footprint and tread lightly.

1.3 Concepts in Digital Evidence

What is evidence? The Compact Oxford English Dictionary defines “evidence” as:3

evidence (noun)

1. information or signs indicating whether a belief or proposition is true or
valid.

2. information used to establish facts in a legal investigation or admissible as
testimony in a law court.

In this book, we are concerned with both of the above definitions. Our goal in many
investigations is to compile a body of evidence suitable for presentation in court proceedings
(even if we hope never to end up in court!). Both relevance to the case and admissibility are
important, but the first goal is to ascertain the facts of the matter and understand truly
and correctly what has transpired.

Consequently, we define “evidence” in the broadest sense as any observable and record-
able event, or artifact of an event, that can be used to establish a true understanding of the
cause and nature of an observed occurrence.

Of course, it’s one thing to be able to reconstruct and understand the events that com-
prise an occurrence, and yet another to be able to demonstrate that in such a way that

3. “Oxford Dictionaries Online—English Dictionary and Language Reference,” Oxford Dictionaries,
http://www.askoxford.com/concise oed/evidence?view=uk.
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Chapter 2

Technical Fundamentals

‘‘If you know the enemy and know yourself, you need not fear the results of a hundred
battles.’’ ---Sun Tsu, The Art of War1

The Internet ecosystem is varied and complex. In any network forensic investigation, there
are an enormous number of places where evidence may live, some more accessible than
others. Often, network-based evidence exists in places that local networking staff may not
have considered, leaving it up to the investigator to review the network diagrams and make
suggestions for evidence collection.

On the flip side, many networks are configured for functionality and performance, not
for monitoring or auditing—and certainly not for forensic investigations. As a consequence,
the specific instrumentation or evidence that an investigator might wish for may not exist.
Many vendors do not include rich data recording capabilities into their products, and even
when they do, such capacities are often disabled by default. For example, local switches may
not be configured to export flow record data, or server logfiles might roll over and overwrite
themselves on a daily basis.

From Nortel’s line of enterpise-class networking equipment to Linksys’ ubuquitous
WRT54G router series in homes and small businesses, organizations can select from a wide
variety of equipment for any networking function. As a result, the experience of the network
forensic analyst is sure to be varied, inconsistent, and challenging.

In this chapter, we take a high-level look at classes of networking devices, discuss their
value for the forensic investigator, and briefly touch upon how their contents might be re-
trieved. Subsequently, we review the concept of protocols and the OSI model in the context
of network forensic investigations. Finally, we talk about key protocols in the Internet Proto-
col suite, including IPv4, IPv6, TCP, and UDP. This will provide you with a strong technical
and conceptual foundation, which we build upon throughout the remainder of this book.

2.1 Sources of Network-Based Evidence

Every environment is unique. Large financial institutions have very different equipment,
staff, and network topologies than local government agencies or small health care offices.
Even so, if you walk into any organization you will find similarities in network equipment
and common design strategies for network infrastructure.

1. Sun Tsu (Author), Lionel Giles (Translator), The Art of War, El Paso Norte Press, 2005. 23
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24 Chapter 2 Technical Fundamentals

There are many sources of network-based evidence in any environment, including routers,
web proxies, intrusion detection systems, and more. How useful is the evidence on each
device? This varies depending on the type of investigation, the configuration of the specific
device, and the topology of the environment.

Sometimes data from different sources can overlap, which is useful for correlation. Other
times the data sources are merely complementary, each containing snippets of evidence
not found elsewhere. In this section, we review the types of network equipment that are
commonly found in organizations and discuss the types of evidence that can be recovered
from each.

2.1.1 On the Wire

Physical cabling is used to provide connectivity between stations on a LAN and the local
switches, as well as between switches and routers. Network cabling typically consists of
copper, in the form of either twisted pair (TP) or coaxial cable. Data is signaled on copper
when stations on the shared medium independently adjust the voltage. Cabling can also
consist of fiber-optic lines, which are made of thin strands of glass. Stations connected via
fiber signal data through the presence or absence of photons. Both copper and fiber-optic
mediums support digital signaling.

Forensic Value Network forensic investigators can tap into physical cabling to copy and
preserve network traffic as it is transmitted across the line. Taps can range from “vampire”
taps, which literally puncture the insulation and make contact with copper wires, to sur-
reptitious fiber taps, which bend the cable and cut the sheathing to reveal the light signals
as they traverse the glass. Many commercial vendors also manufacture infrastructure taps,
which can plug into common cable connectors and are specifically designed to replicate
signals to a passive station without degrading the original signal. (Please see Chapter 3,
“Evidence Acquisition,” for more details.)

2.1.2 In the Air

An increasingly popular way to transmit station-to-station signals is via “wireless” network-
ing, which consists of radio frequency (RF) and (less commonly) infrared (IR) waves. The
wireless medium has made networks very easy to set up. Wireless networks can easily be
deployed even without “line-of-sight”—RF waves can and do travel through air, wood, and
brick (though the signal will be degraded substantially by particularly dense materials). As
a result, enterprises and home users can deploy wireless networks without the expense and
hassle of installing cables.

Forensic Value Essentially, wireless access points act as hubs, broadcasting all signals so
that any station within range can receive them. As a result, it is often trivial for investigators
to gain access to traffic traversing a wireless network. The traffic may be encrypted, in which
case investigators would have to either legitimately obtain the encryption key or break the
encryption to access the content.

However, investigators can still gather a lot of information from encrypted wireless net-
works. Although data packets that traverse a wireless network may be encrypted, commonly
management and control frames are not. In the clear, wireless access points advertise their
names, presence, and capabilities; stations probe for access points; and access points re-
spond to probes. Even when analyzing encrypted wireless traffic, investigators can identify
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2.1 Sources of Network-Based Evidence 25

MAC addresses of legitimate authenticated stations, unauthenticated stations and suspi-
cious stations that may be attacking the wireless network. Investigators can also conduct
volume-based statistical traffic analysis and analyze these patterns.

With access to unencrypted or decrypted wireless traffic, of course, investigators can
review the full packet captures in detail.

2.1.3 Switches

Switches are the glue that hold our LANs together. They are multiport bridges that phys-
ically connect multiple stations or network segments together to form a LAN. In modern
deployments, we tend to see switches connected to other switches connected to other switches
ad nauseum to form a complex switched network environment.

In a typical deployment, organizations have “core” switches, which aggregate traffic from
many different segments, as well as “edge” switches,2 which aggregate stations on individual
segments. Consequently, traffic from one station to another within an enterprise may traverse
any number of switches, depending on the physical network topology and the locations of
the stations within it.

Forensic Value Switches contain a “content addressable memory” (CAM) table, which
stores mappings between physical ports and each network card’s MAC address. Given a
specific device’s MAC address, network investigators can examine the switch to determine
the corresponding physical port, and potentially trace that to a wall jack and a connected
station.

Switches also provide a platform from which investigators can capture and preserve net-
work traffic. With many types of switches, network staff can configure one port to “mirror”
(copy) traffic from any or all other ports or VLANs, allowing investigators to capture traffic
from the mirroring port with a packet sniffer. Please see Section 3.1.4.1 for more detail.

2.1.4 Routers

Routers connect different subnets or networks together and facilitate transmission of packets
between different network segments, even when they have different addressing schemes.

Routers add a layer of abstraction that enables stations on one LAN to send traffic
destined for stations on another LAN. Internetworking using routers is what allows us to
build campus-wide metropolitan area networks (MANs) or connect remote offices around the
globe via wide area networks (WANs). From a certain perspective, the entire global Internet
is nothing but a global area network (GAN), connected through a complex multilayer web
of routers.

Forensic Value Where switches have CAM tables, routers have routing tables. Routing
tables map ports on the router to the networks that they connect. This allows a forensic
investigator to trace the path that network traffic takes to traverse multiple networks. (Note
that this path can vary dynamically based on network traffic levels and other factors.)

Depending on the specific device’s capabilities, routers may also function as packet filters,
denying the transmission of certain types of traffic based on source, destination, or port.

2. “Encyclopedia—PC Magazine,” http://www.pcmag.com/encyclopedia term/0,2542,t=edge+switch&i=
42362,00.asp.
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26 Chapter 2 Technical Fundamentals

Routers may log denied traffic (or sometimes maintain statistics on allowed traffic). Many
enterprise-class routers can be configured to send logs and flow record data to a central
logging server, which is extremely helpful for investigators, as this makes it very easy to
correlate events from multiple sources. Logs stored on the router itself may be volatile and
subject to erasure if the device is rebooted or if the available storage is exceeded.

In short, routers are the most rudimentary network-based intrusion detection systems in
our arsenal, and also the most widely deployed.

2.1.5 DHCP Servers

The Dynamic Host Configuration Protocol (DHCP) is widely used as the mechanism for
assigning IP addresses to LAN stations, so that they can communicate with other stations
on the local network, as well as with systems across internetworked connections. In the
early days of networking, administrators had to manually configure individual desktops with
static IP addresses. DHCP was developed to provide automated IP address assignments,
which could change dynamically as needed, dramatically reducing manual workload for
administrators. DHCP service is often provided by the edge devices that perform routing
between networks (routers, wireless access points, etc.), but it is not uncommon to find this
service provided by infrastructure servers instead.

Forensic Value Frequently, investigations begin with the IP address of a host that is sus-
pected of being involved in some sort of adverse event—whether it was the victim of an
attack, the origin, or perhaps both. One of the first tasks the investigator must undertake
is to identify and/or physically locate the device based on its IP address.

When DHCP servers assign (or “lease”) IP addresses, they typically create a log of the
event, which includes the assigned IP address, the MAC address of the device receiving
the IP address, and the time the lease was provided or renewed. Other details, such as the
requesting system’s hostname, may be logged as well. Consequently, DHCP logs can show
an investigator exactly which physical network card was assigned the IP address in question
during the specified time frame.

2.1.6 Name Servers

Just as we need a mechanism to map MAC addresses to IP addresses, we also need a
mechanism to map IP addresses to the human-readable names that we assign to systems
and networks. To accomplish this, enterprises typically use the Domain Name System (DNS),
in which individual hosts query central DNS servers when they need to map an IP address
to a hostname, or vice versa. DNS is a recursive hierarchical distributed database; if an
enterprise’s local DNS server does not have the information to resolve a requested IP address
and hostname, it can query another DNS server for that information.

Forensic Value DNS servers can be configured to log queries for IP address and hostname
resolutions. These queries can be very revealing. For example, if a user on an internal desktop
browses to a web site, the user’s desktop will make a DNS query to resolve the host and
domain names of the web server prior to retrieving the web page. As a result, the DNS
server may contain logs that reveal connection attempts from internal to external systems,
including web sites, SSH servers, external email servers, and more.

DNS servers can log not only queries, but also the corresponding times. Therefore, foren-
sic investigators can leverage DNS logs to build a timeline of a suspect’s activities.
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2.1.7 Authentication Servers

Authentication servers are designed to provide centralized authentication services to users
throughout an organization so that user accounts can be managed in one place, rather than
on hundreds or thousands of individual computers. This allows enterprises to streamline
account provisioning and audit tasks.

Forensic Value Authentication servers typically log successful and/or failed login attempts
and other related events. Investigators can analyze authentication logs to identify brute-
force password-guessing attacks, account logins at suspicious hours or unusual locations,
or unexpected privileged logins, which may indicate questionable activities. Unlike analysis
of authentication logs on a single hard drive, a central authentication server can provide
authentication event information about all devices within an entire authentication domain,
including desktops, servers, network devices, and more.

2.1.8 Network Intrusion Detection/Prevention Systems

Unlike the devices we’ve discussed so far, network intrusion detection systems (NIDSs) and
their newer incarnations, network intrusion prevention systems (NIPSs), were specifically de-
signed to provide security analysts and forensic investigators with information about network
security–related events. Using several different methods of operation, NIDS/NIPS devices
monitor network traffic in real time for indications of any adverse events as they transpire.
When incidents are detected, the NIDS/NIPS can alert security personnel and provide in-
formation about the event. NIPSs may further be configured to block the suspicious traffic
as it occurs.

The effectiveness of NIDS/NIPS deployments depends on many factors, including pre-
cisely where sensors are placed in the network topology, how many are installed, and whether
they have the capacity to inspect the increasing volumes and throughputs of traffic we see in
the modern enterprise environment. While NIDS/NIPS may not be able to inspect, or alert
on, every event of interest, with a well-engineered deployment, they can prove indispensable.

Forensic Value At a high level, the forensic value of a NIDS/NIPS deployment is obvious:
They are designed to provide timely data pertaining to adverse events on the network.
This includes attacks in progress, command-and-control traffic involving systems already
compromised, or even simple misconfigurations of stations.

The value of this data provided by NIDS/NIPS is highly dependent upon the capabilities
of the device deployed and its configuration. With many devices it is possible to recover the
entire contents of the network packet or packets that triggered an alert. Often, however, the
data that is preserved contains little more than the source and destination IP addresses,
the TCP/UDP ports, and the time the event occurred. During an ongoing investigation,
forensic investigators can request that network staff tune the NIDS to gather more granular
data for specific events of interest or specific sources and destinations. (Please see Chapter 7
for more detail.)

2.1.9 Firewalls

Firewalls are specialized routers designed to perform deeper inspection of network traffic in
order to make more intelligent decisions as to what traffic should be forwarded and what
traffic should be logged or dropped. Unlike most routers, modern firewalls are designed to
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make decisions based not only on source and destination IP addresses, but also based on
the packet payloads, port numbers, and encapsulated protocols.

These days, nearly every organization has deployed firewalls on their network perimeters—
the network boundaries between the enterprise and their upstream provider. In an enterprise
environment, firewalls are also commonly deployed within internal networks to partition net-
work segments in order to provide enclaves that are protected from each other. Even home
users often have at least rudimentary firewall capabilities built into home routers, which are
leased from their ISPs or purchased off-the-shelf.

Forensic Value Originally, event logging was of secondary importance for firewall man-
ufacturers. Firewalls were not initially designed to alert security personnel when security
violations were taking place, even though they were most definitely designed to implement
security policies to prevent violations.

Today, modern firewalls have granular logging capabilities and can function as both
infrastructure protection devices and fairly useful IDSs as well. Firewalls can be configured
to produce alerts and log allowed or denied traffic, system configuration changes, errors, and
a variety of other events. These logs can help operators manage the network and also serve
as evidence for forensic analysts.

2.1.10 Web Proxies

Web proxies are commonly used within enterprises for two purposes: first, to improve per-
formance by locally caching web pages and, second, to log, inspect, and filter web surfing
traffic. In these deployments, web traffic from local clients is funneled through the web proxy.
The web proxy may either allow or deny the web page request (often based on published
blacklists of known inappropriate or malicious sites or on keywords in the outbound web
traffic).

Once the page is retrieved, the web proxy may inspect the returned content and choose to
allow, block, or modify it. For performance, the web proxy may cache the web page and later
serve it to other local clients upon request so that there is no need to make multiple requests
across the external network for the same web sites within a short period of time. The precise
functionality of the web proxy is strongly dependant upon the specific configuration; some
organizations choose to limit logging and run their web proxy only for performance reasons,
whereas other organizations heavily monitor and filter incoming and outbound web traffic
for security reasons.

There are also “anonymizing proxies,” which are set up with the explicit purpose of
providing anonymity to clients who deliberately funnel web surfing traffic through them.
End clients send their traffic through an anonymous web proxy so that the remote web
server only sees the proxy’s IP address rather than the end-user’s IP address. Depending
on the precise configuration of the anonymizing proxy, the proxy server may still cache
extensive information regarding the end-user’s web surfing behavior.

Forensic Value Web proxies can be a gold mine for forensic investigators, especially when
they are configured to retain granular logs for an extended period of time. Whereas forensic
analysis of a single hard drive can produce the web surfing history for users of a single device,
an enterprise web proxy can literally store the web surfing logs for an entire organization.

There are many commercial and free applications that can interpret web proxy logs
and provide visual reports of web surfing patterns according to client IP address or even
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username (i.e., when correlated with Active Directory logs). This can help forensic analysts
gather lists of users who may have succumbed to a phishing email, investigate a roving user’s
inappropriate web surfing habits, or identify the source of web-based malware. If the web
proxy is configured to cache web pages, it is even possible to retrieve the content that an
end-user viewed or carve malware out of a cached web page for further analysis.

2.1.11 Application Servers

Every organization has a variety of application servers, which vary depending on the orga-
nization’s industry, mission, size, budget, and many other factors. Common types of appli-
cation servers include:

• Database servers

• Web servers

• Email servers

• Chat servers

• VoIP/voicemail servers

Forensic Value There are far too many kinds of application servers for us to review every
one in depth (there have been dozens if not hundreds of books published on each type
of application server). However, when you are leading an investigation, keep in mind that
there are many possible sources of network-based evidence. Review local network diagrams
and application documentation to identify the sources that will be most useful for your
investigation.

2.1.12 Central Log Servers

Central log servers aggregate event logs from a wide variety of sources, such as authentication
servers, web proxies, firewalls, and more. Individual servers are configured to send logs to the
central log server, where they can be timestamped, correlated, and analyzed by automated
tools and humans far more easily than if they resided on disparate systems.

The precise contents of a central logging server vary enormously depending on the orga-
nization and applicable regulations. Once a luxury that many enterprises did not bother to
invest in, deployment of central logging servers has been spurred by regulations and indus-
try standards. As a result, they are much more common today than they were just a few
years ago.

Forensic Value Much like intrusion detection systems, central log servers are designed to
help security professionals identify and respond to network security incidents. Even if an
individual server is compromised, logs originating from it may remain intact on the central
log server. Furthermore, devices such as routers, which typically have very limited storage
space, may retain logs for very short periods of time, but the same logs may be sent in real
time to a central log server and preserved for months or years. Some organizations have
installed commercial log analysis products that can provide forensic analysts with complex
reports and graphical representations of log data, correlated across a variety of sources.
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Malware Forensics

‘‘andy; I’m just doing my job, nothing personal, sorry’’
---String found within the W32/MyDoom self-mailer worm code, circa 20041

Malware is big business. As computers themselves have evolved to be increasingly networked,
so too has malicious software, or “malware.” Many people have remarked upon the strong
analogies between malware and natural organisms, from self-reproductive techniques to the
emergence of evolution. In real life, viruses, parasites, and bacteria spread by piggybacking
on the normal mechanisms that hosts use to communicate and exchange resources. Similarly,
as personal computers evolved from isolated word processors into complex network-oriented
communications devices, the strategies and behaviors of malware have become increasingly
network-oriented.

There are many goals of malware forensics, including:

• Understanding malware and associated vulnerabilities in order to produce antivirus/
IDS signatures

• Detecting compromised systems on the network

• Determining the scope of a breach, after the fact

• Containing an infection

• Tracking down the source of malware

• Gathering evidence for court

In this chapter, we explore malware forensics, particularly as it relates to network foren-
sics, and discuss how network instrumentation can be used to help identify and track malware
on the network. We begin by reviewing a few of the recent trends in malware evolution,
and discuss how they impact network forensic techniques. Next, we discuss propagation,
command-and-control, and payload behaviors, including ways that these can be detected
and addressed through network forensics. Finally, we look to the future and discuss how
network forensic investigators can prepare for the malware of tomorrow.

1. G.Sinclair,“Win32.Mydoom.B@mm(Win32.Novarg.B@mm)RemovalTool,” bitdefender,January28,2004,
http://www.bitdefender.com/VIRUS-1000035-en–Win32.Mydoom.B@mm-(Win32.Novarg.B@mm).html.
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12.1 Trends in Malware Evolution

Once upon a time, malware was spread via floppy disks by infecting the MBR upon boot or
through transfer of infected files and programs (i.e., freeware utilities). While USB drives
and similar physical devices are still a notable source of malware, the vast majority of
malware activity occurs over the network. Even when the malware is injected via a physical
storage medium, it typically still communicates over the network after infecting a new
host. Network forensics and malware analysis have increasingly overlapped as malware has
evolved to become more dependant on the network for propagation, control, and payload
functionality.

12.1.1 Botnets

Modern botnets are the convergence of advancements in remote control, automated propa-
gation, and hierarchical, distributed management techniques. Despite their sophistication,
botnets are not anything new. Long before the “Storm” botnet compromised millions of
systems worldwide,2 there were, for example, the rudimentary Tribe Flood Network and tri-
noo (1999), which were distributed networks of compromised hosts controlled by attackers
through hierarchical, redundant command-and-control channels. The evolution of botnets
from their early roots has been strongly influenced by the development of intrusion detection
systems, which led malware developers to incorporate sophisticated IDS evasion and anti-
forensic features.

12.1.1.1 Early Developments in Distributed Management

During the early to mid-1990s, attackers developed methods to remotely control compro-
mised systems through the network. As networking became ubiquitous, there was an ex-
plosion of malware that took advantage of networked resources in order to send out email
spam, conduct distributed denial-of-service (DDoS) attacks, host pirated software, and more.
During this time period, compromised systems were dubbed “zombies” because they had
rudimentary remote control and automation, usually limited to DDoS attacks or other sim-
ple behaviors.

During the late 1990s, attackers developed advanced systems for centrally coordinating
the activities of hundreds or even thousands of compromised systems. The Tribe Flood
Network (TFN), for example, emerged around 1999 in order to facilitate DDoS attacks.3

Notably, it was designed with redundant command-and-control channels (often referred to
as “C&C” or “C2” channels) so that attacker systems controlled a network of compromised
“client” systems, which in turn controlled an even larger network of “daemon” systems,
which could be instructed to simultaneously attack victims upon command.4

2. Bruce Schneier, “Gathering ‘Storm’ Superworm Poses Grave Threat to PC Nets,” Wired.com, October 4,
2007, http://www.wired.com/politics/security/commentary/securitymatters/2007/10/securitymatters 1004.

3. Dave Dittrich, “Tribe Flood Network,” November 1, 1999, http://staff.washington.edu/dittrich/talks/cert/
tfn.html.

4. Dave Dittrich, “The ‘Tribe Flood Network’ Distributed Denial of Service Attack Tool,” October 21, 1999,
http://staff.washington.edu/dittrich/misc/tfn.analysis.
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The Tribe Flood Network 2000 (TFN2K) system incorporated additional anti–network
forensics techniques, such as randomized and encrypted C&C packets that made traffic
filtering difficult.5

12.1.1.2 Early Developments in Full-Featured Control

At the same time, other “black hat” and “gray hat” developers were focusing on extending
the features of remote access trojans (RATs), designed to facilitate remote control of indi-
vidual compromised endpoints. During the late 1990s, RATs such as the Back Orifice and
Sub7 applications emerged. These provided remote attackers with a wide range of features,
enabling powerful, point-and-click control of zombies. Neither BackOrifice nor Sub7 were ini-
tially designed for a hierarchical management of a distributed network of agents; the goal was
to provide flexible, full-featured remote control of a compromised host by a single attacker.

Ultimately, botnet authors married sophisticated endpoint control with automated prop-
agation techniques, automated self-update mechanisms, and multilayer, hierarchical, and/or
peer-to-peer C&C channels. Botnets today incorporate many of the same features as legiti-
mate enterprise networks, including internal DNS, web, email, and software update mecha-
nisms. In accomplishing this, botnet authors have essentially built the equivalent of enter-
prise systems management software that scales far better than many aboveboard commercial
offerings. This all succeeds in a hostile environment where thousands of people are constantly
trying to disassemble the network. No wonder botnet developers are making money!

12.1.1.3 Implications for Network Forensics

To date, the most mature and most publicized aspects of malware analysis continue to focus
on reverse-engineering the behavior of samples caught “in the wild.” This is conducted in an
effort to understand the nature and mechanisms of compromise and to develop reliable anti-
virus or IDS signatures for detecting the presence of malware. Such samples have historically
been recovered by identifying a known-to-be-compromised host and extracting the malicious
code from the running or powered-down system (i.e., from either memory or disk). Given
the accompanying maturity of malware authors’ attempts to obfuscate or hide their code
on the compromised host, this can be a Herculean, if not impossible task.

As a result, network forensics has had to step into the breach—quite literally. Once
malware began to emerge that was difficult or impossible to detect simply by monitoring
host-based system activity, defenders turned to monitoring and analyzing hosts’ external
network behaviors to find, track, block, and prevent malware.

12.1.2 Encryption and Obfuscation

Encryption techniques have been used in malware since the early 1990s, when the Cascade
virus encrypted its own payload in order to avoid detection by antivirus software.6 Malware
authors use encryption to hide functionality and create random-appearing payloads that are

5. Jason Barlow and Woody Thrower, “TFN2k An Analysis,” Packet Storm, March 7, 2000, http://
packetstormsecurity.org/files/view/10135/TFN2k Analysis-1.3.txt.

6. Peter Szor, The Art of Computer Virus Research and Defense (Upper Saddle River, NJ: Addison-Wesley,
2005).
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difficult for antivirus software and IDS systems to detect. Over time, malware has evolved
increasingly sophisticated techniques to obscure decryptors and decryption keys (at times
even requiring the malware to brute-force decrypt itself) in order to evade detection and
forensic analysis.

12.1.2.1 Early IDS/Antivirus Evasion

Early network-based techniques to evade detection included session splicing and fragmen-
tation. In session splicing, the attacker chops up a string from a session and splits it across
multiple packets to foil NIDS/NIPS pattern matching. The network monitoring device must
reassemble the session in order to detect the string, which is processor-intensive. Similarly,
fragmentation attacks are designed to split individual packets into much smaller packets.
The NIDS/NIPS must reassemble the packet fragments to properly analyze them, which
uses up significant resources.

12.1.2.2 Modern Web Obfuscation/Encryption

Modern malware, which is often web-based, commonly leverages obfuscation techniques
to embed malicious code (i.e., JavaScript) in web pages. Obfuscation takes the form of
simple Base64 encoding or XOR-ing, or more complex layered systems of obfuscation. While
malware analysts can and do de-obfuscate malicious code, often using automated tools, these
techniques help attackers evade web filters and NIDS/NIPS systems, which are often unable
to properly de-obfuscate on the fly.7

12.1.2.3 Hiding C&C Channels

With the rise of remote-control zombies and the maturation of C&C channels, malware
began incorporating obfuscation and encryption not only to disguise the injection vectors
and payloads, but also to hide the content of the C&C channel itself. This was a very
important development that allowed botnets to evade detection and analysis through net-
work forensics of packet contents, long after the initial compromise. For example, Symantec
researcher Gilou Tenebro writes that the Waledac worm’s HTTP-based command-and-
control messages “[go] through at least four transformations before being sent to its peer.
Anybody monitoring the HTTP packets on the wire will not easily be able to comprehend the
messages.”8

The result is that network forensic investigators must increasingly turn to statistical flow
analysis rather than content-based analysis in order to efficiently detect and dissect malware
on the network.

12.1.2.4 Maintaining Control

Encryption is used not just to evade detection and analysis by network defenders but also
to ensure that the botherders maintain control of their networks. Some botnets require

7. “Malicious Hidden Iframes using Publicly Available Base64 encode/decode Script,” Zscaler Research,
May 2, 2010, http://research.zscaler.com/2010/05/malicious-hidden-iframes-using-publicly.html.

8. Gilou Tenebro, “W32.Waledac Threat Analysis,” Symantec, 2009, http://www.symantec.com/content/
en/us/enterprise/media/security response/whitepapers/W32 Waledac.pdf.
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client and/or server systems to cryptographically authenticate to the C&C channel, fur-
ther foiling attempts by network forensic analysts to investigate or interfere with botnet
functionality.

An interesting twist, illustrated by the Storm worm, is the use of encryption for the
purposes of segmenting botnets to facilitate resale. Botnets themselves have become valuable
commodities, rented and sold through underground black markets for purposes such as
distributing spam, coordinating DDoS attacks, and stealing financial information. In 2007,
the Storm worm began to use a weak (40-byte) encryption key to encrypt communications
between peer-to-peer nodes (later, this was beefed up to 64-bit RSA encryption). While
this made it more difficult to recover the contents of the packets on the fly, and added
significant time and effort to traffic content analysis, malware analysts could still reverse-
engineer samples to recover encryption keys and decrypt the packet contents. Joe Stewart of
SecureWorks commented that the encryption did ensure that “each node will only be able
to communicate with nodes that use the same key. This effectively allows the Storm author
to segment the Storm botnet into smaller networks. This could be a precursor to selling
Storm to other spammers, as an end-to-end spam botnet system, complete with fast-flux
DNS and hosting capabilities.”9

Note that Waledec, known as a “new and improved version of the Storm botnet,”
upgraded to AES 128-bit and RSA 1,024-bit encryption (along with Base64 encoding).10

12.1.3 Distributed Command-and-Control Systems

Early on, attackers realized that maintaining control of a compromised host was both chal-
lenging and also very important. With ongoing access facilitated by C&C channels, malware
authors could use compromised hosts for a wide variety of purposes, and adapt on-the-fly
as needed. Today, botherders have such excellent control over their networks that many are
able to segment and sell botnets, easily transferring control to third parties.

In this section, we follow the evolution of C&C channels from simple, direct connections
with central servers (i.e., IRC) to highly complex, distributed, redundant multilayer systems
with built-in security features.

12.1.3.1 The Early Days: Internet Relay Chat (IRC)

Early botnets relied upon centralized control systems in which compromised agents commu-
nicated directly with a small group of central servers. Internet Relay Chat (IRC) has been a
very common mechanism for malware command-and-control since the emergence of worms
such as “Pretty Park” in 1999. Malware was hard-coded with server IP addresses or domain
names, as well as IRC channel information, and then infected systems connected back to
the central servers to drop off information about infected systems and/or receive commands
and updates.

9. Joe Stewart, “The Changing Storm,” Dell SecureWorks, October 14, 2007, http://www.secureworks.com/
research/blog/index.php/2007/10/15/the-changing-storm/.

10. G. Sinclair, C. Nunnery, and B.B.H. Kang, “The Waledac Protocol: The How and Why,” in Ma-
licious and Unwanted Software (MALWARE), 2009 4th International Conference , 2010, 6977, http://
isr.uncc.edu/paper/WaledacProtocolHowWhyMalware2009 remediation.pdf.
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12.1.3.2 Drawbacks of Centralized C&C

Of course, centralized command-and-control channels had some major drawbacks for mal-
ware developers. They made it very easy for forensic analysts and security professionals
to identify and track down compromised systems. Local organizations could simply alert
on connection attempts to specific IP addresses or domains and block them, crippling
the botnet. ISPs could shut down central command-and-control servers on their networks.
Especially to the extent that IRC—a plain-text communications protocol—was being used,
it was fairly straightforward to inspect, detect, and block that channel’s abuse. (Within
most organizations, IRC is really only used by botnets, with few users engaged in anything
remotely legitimate via that protocol.)

The Stuxnet worm, which targets industrial control systems primarily in Iran, is an
excellent example of how a sophisticated worm can be crippled due to reliance on a central-
ized command-and-control system. As described by researchers at Symantec:

[The Stuxnet agent] contacts the command and control server on port 80 and
sends some basic information about the compromised computer to the attacker
via HTTP. Two command and control servers have been used in known samples:

www[.]mypremierfutbol[.]com

www[.]todaysfutbol[.]com

The two URLs above previously pointed to servers in Malaysia and Denmark;
however they have since been redirected to prevent the attackers from controlling
any compromised computers.

Symantec set up sensors in July 2010 to track connection attempts back to Stuxnet
command-and-control servers. Interestingly, in August 2010 they noted a sudden drop in
newly infected connection attempts from Iran, as shown in Figure 12–1. “Looking at newly
infected IP addresses per day, on August 22 we observed that Iran was no longer report-
ing new infections. This was most likely due to Iran blocking outward connections to the
command-and-control servers, rather than a drop-off in infections.” This illustrates how
forensic analysts and security professionals can disrupt the operations of botnets—and other
forensic analysts—simply by identifying and blocking known ports, IP addresses, and do-
mains used for central command-and-control.11

12.1.3.3 Evolution Toward Distributed C&C

Newer botnets have been moving toward a partially distributed, rather than fully central-
ized, command-and-control architecture. In the distributed command-and-control model,
individual endpoint agents do not connect directly back to a central server. Rather, they
connect to servers in a redundant, distributed network. Distributed models typically involve
a multilevel hierarchy so that systems at each level communicate with each other, and at
least some systems in each level can communicate with systems in the level above. Using a

11. N. Falliere, L. Murchu, and E. Chien, “W32.Stuxnet Dossier: Version 1.4 (February 2011),” Syman-
tec, 2011, http://www.symantec.com/content/en/us/enterprise/media/security response/whitepapers/w32
stuxnet dossier.pdf.
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Figure 12–1. A chart from Symantec’s “W32.Stuxnet Dossier,” which illustrates a sudden drop
in reported newly infected connection attempts from Iran (black). The infections were tracked
based on connections to central C&C servers, which were likely blocked by Iran on August
22, 2010.12 Reprinted with permission. [Note: Image colors have been modified to print in
grayscale.]

distributed model, attackers can send commands and updates from a relatively small num-
ber of central servers to thousands or millions of compromised hosts, and the compromised
hosts can pass information back up the chain with far greater redundancy and lower risk of
detection/disruption.

12.1.3.4 Advantages of Distributed C&C

Distributed C&C offers the following advantages:

• Redundancy—If a C&C server is blocked or shut down, the functionality of the botnet
is not affected.

• Detection Evasion—It is more difficult for forensic analysts to detect distributed C&C
traffic. Centralized C&C traffic can be captured and analyzed at the perimeter of
a LAN, where enterprises tend to focus monitoring resources, whereas a far greater
percentage of decentralized C&C traffic is contained within a LAN and may never
reach the perimeter firewall/IDS. Furthermore, organizations that track infections
Internet-wide may never see evidence of internal botnet nodes, which communicate
only between themseves. The Stuxnet worm actually incorporated some distributed
C&C traffic in order to enable infections and updates of compromised hosts on internal
LANs. Distributed C&C traffic is also less likely to generate a spike in traffic relating
to a few systems, which commonly trigger alerts.

12. Ibid.
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• Attacker Concealment—Distributed C&C channels make it far more difficult to track
attacks back to central servers, since compromised endpoint nodes do not directly
communicate back to central servers. In the mid-2000s, authorities such as the FBI
began to investigate and prosecute botherders as part of coordinated programs in-
cluding “Operation: Bot Roast.” These legal actions provided greater incentives for
attackers to place more layers of indirection in between themselves and compromised
botnet endpoints.13, 14

• Asymmetry—Distributed C&C peers can result in a sufficiently “meshed network”
that the defender’s containment and eradication efforts are reduced to a frustrating
and ineffective game of “Whac-A-Mole.” Small levels of effort on the attacker’s part
can necessitate a disproportionate level of effort from the responders. Depending on
the scale, this can be a game-changing element.

For example, the Downadup worm (also known as Conficker), which was capable of self-
updating, responded to defense mechanisms by evolving increasingly distributed and dy-
namic C&C systems. The initial infections of W32.Downadup.A contacted one of 250 pseu-
dorandom domains in five top-level domains each day for updates. Later, W32.Downadup.B
expanded the number of top-level domains to eight.

With the update to W32.Downadup.C, the worm significantly changed its strategy for
registering and querying domain names for use when downloading new instructions. This
made it far more difficult for security professionals to alert upon and track its spread.
As described by Porras et al. (SRI International) in their analysis of Conficker, “C further
increases Conficker’s top-level domain (TLD) spread from five TLDs in Conficker A, to eight
TLDs in B, to 110 TLDs that must now be involved in coordination efforts to track and
block C’s potential DNS queries. With this latest escalation in domain space manipulation,
C . . . represents a significant challenge to those hoping to track its census.”15

This was a classic example of asymmetric warfare, in that the malware author had only
to recode his or her instruction set to expand the array of TLDs to be searched, and to
redistribute. The result was an order-of-magnitude increase in effort required by human
responders in order to identify and contain a threat that was largely automated.

News headlines in April 2009 reported that “Experts Bicker Over Conficker Numbers: Is
it 4.6 million infected PCs or not?”16 The number of infected systems became increasingly
difficult to estimate as the malware evolved. “The Working Group got its data by setting up
‘sinkhole’ servers at points on the Internet used by infected machines to download instruc-
tions,” reported Bob McMillan of the IDG News Service. “They did this by taking over the
Internet domains that Conficker is programmed to visit to search for those instructions. . . .
To complicate matters further, a new variant of Conficker was spotted last week, and this

13. C. Schiller et al, InfoSecurity 2008 Threat Analysis (Burlington, MA: Elsevier, 2008), 19.

14. Dan Goodin, “FBI Logs its Millionth Zombie Address,” The Register, June 13, 2007, http://www
.theregister.co.uk/2007/06/13/millionth botnet address/.

15. Phillip Porras, Hassen Saidi, Vinod Yegneswaran, “An Analysis of Conficker C,” SRI International,
March 8, 2009, http://mtc.sri.com/Conficker/addendumC/.

16. Robert McMillian, “Experts Bicker Over Conficker Numbers,” Techworld, April 15, 2009, http://news
.techworld.com/security/114307/experts-bicker-over-conficker-numbers/.
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one communicates primarily using peer-to-peer techniques, which are not easily measured
by the Working Group’s sinkhole servers.”

12.1.3.5 Peer-to-Peer C&C

The Storm worm took distributed command-and-control to new extremes. Designed from
the start with a distributed, multilayer model, Storm incorporated the Overnet/eDonkey
peer-to-peer filesharing protocol for distributed, dynamic C&C between endpoint nodes. Joe
Stewart, Director of Malware Research at Dell SecureWorks, wrote, “When Storm Worm
runs, it attempts to link up with other infected hosts via peer-to-peer networking. Through
this conduit it gets a URL that points to a second-stage executable, which in turn down-
loads additional stages onto the infected system. The protocol in use is actually the eDon-
key/Overnet protocol, which has been adapted by the virus author as a means to distribute
the second-stage URL without being shut down as it might be if the URL was hard-coded
in the body of the virus or was downloaded from another website.”17, 18

In short, the Storm botnet uses a peer-to-peer network of compromised hosts to dy-
namically communicate and change the locations of higher-layer C&C nodes, undercutting
the effectiveness of network flow analysis. Botherders can distribute locations of many C&C
servers and change them as necessary. Bruce Schneier writes, “[E]ven if a C&C node is taken
down, the system doesn’t suffer. Like a hydra with many heads, Storm’s C&C structure is
distributed.”19

12.1.4 Automatic Self-Updates

Malware that survives is malware that can adapt. During the late 1990s, malware emerged
that was designed to automatically update its own code over the network, allowing attackers
to arbitrarily change propagation strageties, payloads, and other behavior on the fly. This
was an enormous leap forward. Before this time, an attacker had to reinfect or manually
update systems in order to spread new code. Automatic self-updates enabled attackers to
easily adapt and maintain their footholds on compromised systems by improving code and
quickly distributing it to a large number of compromised systems.

12.1.4.1 Early Self-Updating Systems

The first self-updating systems were very simple. In 1999, the W95/Babylonia self-mailer
worm automatically checked a web site for updates after infection. This functionality was
completely destroyed when authorities disabled the web site.20

17. Joe Stewart, “Storm Worm DDoS Attack”, Dell SecureWorks, February 8, 2007, http://www
.secureworks.com/research/threats/storm-worm/.

18. Joe Stewart, “Inside the Storm: Protocols and Encryption of the Storm Botnet” (Secure-
Works, 2008), http://www.blackhat.com/presentations/bh-usa-08/Stewart/BH US 08 Stewart Protocols
of the Storm.pdf.

19. Bruce Schneier, “Gathering ‘Storm’ Superworm Poses Grave Threat to PC Nets,” Wired, October 4, 2007,
http://www.wired.com/politics/security/commentary/securitymatters/2007/10/securitymatters 1004.

20. Peter Szor, The Art of Computer Virus Research and Defense, 345.
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12.1.4.2 Authenticated Updates

More sophisticated update systems began to emerge the following year. For example, in late
2000, the W95/Hybris worm was released. It was a global collaborative effort that included
experienced malware authors from several countries. The W95/Hybris worm was designed
to check for updates from a web site and newsgroups. The designers realized that without
any sort of authentication system, defenders would be able to publish their own updates and
disable the worm network. To protect against this, the W95/Hybris worm used RSA public-
key encryption and a 128-bit hash algorithm. The attackers distributed a public key with
the virus, and then cryptographically signed updates with the corresponding private key.
Before installing updates, the compromised systems checked the integrity and authenticity
of the updates.21

In 2004, the authors of the widespread MyDoom self-mailer worm learned the importance
of authenticating updates. Once a system is compromised, MyDoom opens a backdoor on a
TCP port and listens for connections. Attackers can connect to the backdoor and upload and
execute arbitrary files.22 Backdoors of this type can allow worms to automatically distribute
updated software. However, in the case of MyDoom, other malware authors took advantage
of the backdoor and used it to spread their own worms (such as “W32/Doomjuice”) to
systems previously infected with early versions of MyDoom.23

12.1.4.3 Going Meta: Updating the Updating System

Modern malware uses automatic self-updates to distribute changes not just in propagation
mechanisms and payloads, but also the command-and-control system itself. For example,
the Waledac (late 2008) command-and-control network is a distributed hierarchy that auto-
matically self-updates over HTTP. This includes a layer of reverse proxy systems (referred
to by researchers as “TSL” servers, after a Windows registry entry used by the malware to
store server locations). “Repeater nodes obtain the list of TSL servers’ IP addresses simply
by asking a fellow repeater node for the current TSL server list,” wrote researchers Sinclar,
Nunnery, and Kang of the University of North Carolina at Charlotte. “[T]he author(s) of
Waledac sign TSL IP updates using a RSA signature. The signature uses a private key held
by the attacker(s) to sign the entire payload of the TSL update (excluding the signature
portion, of course). Each Waledac binary contains a copy of the public key in order to verify
that unauthorized entities have not altered the contents of the TSL update. If Waledac de-
tects that the signature does not match the calculated signature value, the binary discards
the TSL IP update. The use of a public/private key pair to sign the TSL update prevents
defenders from inserting themselves into the TSL tier as well as prevents defenders from
disrupting the upper tier communication.”24

21. Peter Szor, The Art of Computer Virus Research and Defense, 347.

22. “Threat Description: Worm:W32/Mydoom,” F-Secure, 2009, http://www.f-secure.com/v-descs/
novarg.shtml.

23. Peter Szor, The Art of Computer Virus Research and Defense, 351.

24. G. Sinclair, C. Nunnery, and B.B.H. Kang, “The Waledac Protocol: The How and Why,” in Malicious
and Unwanted Software (MALWARE), 2009 4th International Conference , 2010, 6977, http://isr.uncc.edu/
paper/WaledacProtocolHowWhyMalware2009 remediation.pdf.
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Figure 12–2. Symantec’s timeline of the Waledac worm’s propagation mechanisms. The
Waledac worm uses automatic self-update mechanisms to routinely distribute new spam tem-
plates. Reprinted with permission.25

12.1.4.4 Success and Failure

Waledac’s automatic self-update system has been an integral component to its success.
Waledac spreads through email, and also uses email as a vector to advertise products. Often,
the topic of the spam emails is related to timely holidays or events, such as Christmas or
Valentine’s Day, as shown in Figure 12–2. Frequent updates helped make Waledac’s social
engineering tactics very effective.

Waledac’s automatic self-update system has also been key to its demise. Although
Waledac cryptographically signs lists of “TSL” servers, the lower-layer peer-to-peer net-
works of compromised Waledac systems do not cryptographically validate lists of peer IP
addresses exchanged through the network. Eventually, researches were able to infiltrate lower
layers of the Waledac network by setting up their own fake Waledac bots. The IP addresses
of the fake Waledac bots were propagated through the peer-to-peer exchange system.

As part of Microsoft’s “Operation b49” coordinated takedown effort in early 2010, re-
searchers used fake Waledac bots to “poison” the lower-layer peer-to-peer command-and-
control system so that “all communication to the C&C infrastructure [was] redirected to
[the Operation b49] infrastructure.” This tactic, combined with an effective dismantling of
the Waledac fast-flux network, cut off compromised endpoints so that they could not re-
ceive updates and commands through the Waledac C&C channels.26 Although the endpoint
nodes were still infected, once cut off from the command-and-control channel, they could
no longer receive updates and were outside the control of the botherders.27, 28

25. Gilou Tenebro, “”Waledac: An Overview,” Symantec, August 12, 2010, http://www.symantec.com/
connect/blogs/waledac-overview.

26. Ben Stock, “If Only Botmasters Used Google Scholar . . . The Takedown of the Waledac Botnet,” March
10, 2011, http://www.enisa.europa.eu/act/res/botnets/workshop-presentations/ben-stock-presentation.

27. Nick Wingfield and Ben Worthen, “Microsoft Battles Cyber Criminals—WSJ.com,” Wall Street Journal,
February 26, 2010, http://online.wsj.com/article/SB10001424052748704240004575086523786147014.html?
mod=WSJ hps sections business.

28. Gilou Tenebro, “”Waledac: An Overview,” Symantec, August 12, 2010, http://www.symantec.com/
connect/blogs/waledac-overview.
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12.4 Case Study: Ann’s Aurora

The Case: Ann Dercover is after SaucyCorp’s Secret Sauce recipe. She’s been trailing the
lead developer, Vick Timmes, to figure out how she can remotely access SaucyCorp’s servers.
One night, while conducting reconnaissance, she sees him log into his laptop (10.10.10.70)
and VPN into SaucyCorp’s headquarters.

Leveraging her connections with international hacking organizations, Ann obtains an
exploit for Internet Explorer and launches a client-side spear phishing attack against Vick
Timmes. Ann carefully crafts an email to Vick containing tips on how to improve secret
sauce recipes and sends it. Seeing an opportunity that could get him that Vice President
of Product Development title (and corner office) that he’s been coveting, Vick clicks on the
link. Ann is ready to strike . . .

Meanwhile . . . Knowing that he is a high-value target, long ago Vick Timmes set up a traffic
monitoring system on his home network. When suspicious activity is discovered relating to
Vick’s account at SaucyCorp, he provides investigators with packet captures so they can help
him identify a compromise.

Challenge: You are the forensic investigator. Your mission is to:

• Identify the source of the compromise.

• Recover malware from the packet capture and provide it to investigators for further
analysis.

Network:

• Vick Timmes’s internal computer: 10.10.10.70

• External host: 10.10.10.10 [Note that for the purposes of this case study, we are treating
10.10.10.70 as a system on “the Internet.” In real life, this is a reserved nonroutable
IP address space.]

Evidence: You are provided with one file containing data to analyze:

• evidence-malware.pcap—A packet capture (.pcap) file containing a small amount
of network traffic from Vick Timmes’s home network.

12.4.1 Analysis: Intrusion Detection

Since we’re not quite sure what nastiness lurks in this packet capture, let’s begin by running
it through an IDS. For this case, we’ll use Snort, configured with extra malware detection
rules from SRI International’s Malware Threat Center.85

85. “Most Effective Malware-Related Snort Signatures,” SRI International, 2011, http://mtc.sri.com/
live data/signatures/.
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$ snort -c /etc/snort/snort.conf -r evidence -malware.pcap

Running in IDS mode

--== Initializing Snort ==--

Initializing Output Plugins!

Initializing Preprocessors!

Initializing Plug -ins!

Parsing Rules file "/etc/snort/snort.conf"

...

===============================================================================

Snort processed 2554 packets.

===============================================================================

Breakdown by protocol (includes rebuilt packets):

ETH: 2554 (100.000%)

ETHdisc: 0 (0.000%)

VLAN: 0 (0.000%)

IPV6: 0 (0.000%)

IP6 EXT: 0 (0.000%)

IP6opts: 0 (0.000%)

IP6disc: 0 (0.000%)

IP4: 2554 (100.000%)

IP4disc: 0 (0.000%)

TCP 6: 0 (0.000%)

UDP 6: 0 (0.000%)

ICMP6: 0 (0.000%)

ICMP -IP: 0 (0.000%)

TCP: 2553 (99.961%)

UDP: 1 (0.039%)

ICMP: 0 (0.000%)

TCPdisc: 0 (0.000%)

UDPdisc: 0 (0.000%)

ICMPdis: 0 (0.000%)

FRAG: 0 (0.000%)

FRAG 6: 0 (0.000%)

ARP: 0 (0.000%)

EAPOL: 0 (0.000%)

ETHLOOP: 0 (0.000%)

IPX: 0 (0.000%)

OTHER: 0 (0.000%)

DISCARD: 0 (0.000%)

InvChkSum: 0 (0.000%)

S5 G 1: 0 (0.000%)

S5 G 2: 0 (0.000%)

Total: 2554

===============================================================================

Action Stats:

ALERTS: 13

LOGGED: 13

PASSED: 0

===============================================================================

...
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HTTP Inspect - encodings (Note: stream -reassembled packets included):

POST methods: 0

GET methods: 2

Headers extracted: 2

Header Cookies extracted: 0

Post parameters extracted: 0

Unicode: 0

Double unicode: 0

Non -ASCII representable: 0

Base 36: 0

Directory traversals: 0

Extra slashes ("//"): 0

Self -referencing paths ("./"): 0

Total packets processed: 1660

===============================================================================

dcerpc2 Preprocessor Statistics

Total sessions: 0

===============================================================================

===============================================================================

Snort exiting

After running Snort on the packet capture, we check the alerts file, /var/log/alerts.
Notably, Snort produced the following alerts, based on one of the Malware Threat Center’s
rules:

[**] [1:5001684:99] E3[rb] BotHunter Malware Windows executable (PE) sent

from remote host [**]

[Priority: 0]

04/28 -17:40:00.841061 10.10.10.10:4444 -> 10.10.10.70:1036

TCP TTL:64 TOS:0x0 ID :37696 IpLen :20 DgmLen :1500 DF

***A**** Seq: 0xE31E89E1 Ack: 0x72ACC97B Win: 0x16D0 TcpLen: 20

...

[**] [1:5001684:99] E3[rb] BotHunter Malware Windows executable (PE) sent

from remote host [**]

[Priority: 0]

04/28 -17:42:03.220699 10.10.10.10:4445 -> 10.10.10.70:1044

TCP TTL:64 TOS:0x0 ID :24030 IpLen :20 DgmLen :1500 DF

***A**** Seq: 0x559CF78D Ack: 0x75FAD66D Win: 0x16D0 TcpLen: 20

The rule that fired was as follows:

# -- Egg Download , Inbound: 5347 of 8211, from 12/23 to 05/31

alert tcp $EXTERNAL_NET !20 -> $HOME_NET any (msg:"E3[rb] BotHunter Malware

Windows executable (PE) sent from remote host"; content: "MZ"; content: "

PE|00 00|"; within :250; flow: established; sid :5001684; rev :99;)

This rule searches for the content “MZ” (the magic number of Windows executable files)
and then “PE|00 00|” within 250 bytes of the first match. This indicates that the remote
host sent a Windows executable (PE) file to a local system.
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12.4.2 TCP Conversation: 10.10.10.10:4444–10.10.10.70:1036

Let’s examine the first stream that triggered this alert to see if we can recover the executable
file and gain information about its function. First, we list all TCP conversations in the packet
capture, as shown below using tshark (the output has been edited to fit on the page). No-
tice that in this packet capture, there are 10 TCP conversations, all of which are between
10.10.10.10 (remote host) and Vick’s computer, 10.10.10.70. One of these conversations relates
to 10.10.10.10:4444 (remote host on TCP port 4444). Judging by the source and destination
ports on both systems, this is the conversation that triggered the Snort alert above.

It is also worth noting that 8 of the 10 TCP conversations in this packet capture relate
to 10.10.10.10:4445 (remote host on TCP port 4445). There is also one conversation relating
to 10.10.10.10:8080 (remote host, TCP port 8080).

$ tshark -q -n -z conv ,tcp -r evidence -malware.pcap

================================================================================

TCP Conversations

Filter:<No Filter >

| <- | -> |

|Frames Bytes|Frames Bytes |

10.10.10.10:4444 <-> 10.10.10.70:1036 424 120920 979 1293203

10.10.10.10:4445 <-> 10.10.10.70:1044 263 26876 664 869359

10.10.10.10:4445 <-> 10.10.10.70:1043 15 930 15 900

10.10.10.10:4445 <-> 10.10.10.70:1042 15 930 15 900

10.10.10.10:4445 <-> 10.10.10.70:1041 15 930 15 900

10.10.10.10:4445 <-> 10.10.10.70:1040 15 930 15 900

10.10.10.10:4445 <-> 10.10.10.70:1039 15 930 15 900

10.10.10.10:4445 <-> 10.10.10.70:1038 15 930 15 900

10.10.10.10:4445 <-> 10.10.10.70:1037 15 930 15 900

10.10.10.10:8080 <-> 10.10.10.70:1035 5 946 8 6463

Using tcpflow, let’s reconstruct and save the first stream which triggered the Snort alert
above, 10.10.10.10:4444<−>10.10.10.70:1036:

$ tcpflow -vr evidence -malware.pcap 'src host 10.10.10.10 and src port 4444

and dst host 10.10.10.70 and dst port 1036 '

tcpflow [23578]: tcpflow version 0.21 by Jeremy Elson <jelson@circlemud.org >

tcpflow [23578]: looking for handler for datalink type 1 for interface

evidence -malware.pcap

tcpflow [23578]: found max FDs to be 16 using OPEN_MAX

tcpflow [23578]: 010.010.010.010.04444 -010.010.010.070.01036: new flow

tcpflow [23578]: 010.010.010.010.04444 -010.010.010.070.01036: opening new

output file

12.4.2.1 File Carving: 10.10.10.10:4444–10.10.10.70:1036

Now, let’s use the Foremost file carving tool to see if there are any files of interest in this
TCP conversation:

$ foremost -T -i 010.010.010.070.01036 -010.010.010.010.04444

$ cat /tmp/output_Fri_Jun__3_11_44_01_2011/audit.txt

Foremost version 1.5.7 by Jesse Kornblum , Kris Kendall , and Nick Mikus
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Audit File

Foremost started at Fri Jun 3 11:44:01 2011

Invocation: foremost -T -i 010.010.010.010.04444 -010.010.010.070.01036

Output directory: /tmp/output_Fri_Jun__3_11_44_01_2011

Configuration file: /etc/foremost.conf

------------------------------------------------------------------

File: 010.010.010.010.04444 -010.010.010.070.01036

Start: Fri Jun 3 11:44:01 2011

Length: 1 MB (1239098 bytes)

Num Name (bs=512) Size File Offset Comment

0: 00000000. dll 730 KB 4 04/03/2010 04:07:31

Finish: Fri Jun 3 11:44:01 2011

1 FILES EXTRACTED

exe:= 1

------------------------------------------------------------------

Foremost finished at Fri Jun 3 11:44:01 2011

It looks like Foremost carved out an executable file. We take the cryptographic check-
sums, as shown below:

$ md5sum 00000000. dll

b062cb8344cd3e296d8868fbef289c7c 00000000. dll

$ sha256sum 00000000. dll

14 f489f20d7858d2e88fdfffb594a9e5f77f1333c7c479f6d3f1b48096d382fe 00000000.

dll

Next, let’s run this executable through an antivirus scanner, ClamAV, to see if it is
known malware:86

$ clamscan 00000000. dll

00000000. dll: OK

----------- SCAN SUMMARY -----------

Known viruses: 970347

Engine version: 0.96.5

Scanned directories: 0

Scanned files: 1

Infected files: 0

Data scanned: 0.71 MB

Data read: 0.71 MB (ratio 1.01:1)

Time: 4.889 sec (0 m 4 s)

ClamAV did not recognize the file we carved as malware. However, it is possible that a
different antivirus scanner might have a signature for it. Another option for the investigator

86. “Clam AntiVirus,” 2011, http://www.clamav.net/.
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is to upload the executable file to an online service such as VirusTotal, which “analyzes
suspicious files and URLs and facilitates the quick detection of viruses, worms, trojans, and
all kinds of malware detected by antivirus engines.”87 There are benefits and drawbacks to
using a service such as VirusTotal. The benefits are that you get free analysis of any file you
upload, and can take advantage of collective intelligence gathered from the global malware
research community and multiple antivirus vendors. The drawback is that you must provide
a copy of your suspicious file to a third party, which may raise issues of security and privacy.

For this case, we will upload our suspicious sample to VirusTotal. As you can see from
the results below, 31 out of 43 antivirus vendors flagged the file as suspicious. There does not
appear to be a clear consensus as to what the suspicious file is, precisely; it was variously
identified as “TR/Swrort.A.964,” “Trojan.Generic.4165076,” “UnclassifiedMalware,” and
more.

Here are the results from VirusTotal:

File name: 00000000. dll

Submission date: 2011 -06 -03 17:40:49 (UTC)

Current status: finished

Result: 31/ 43 (72.1%)

Antivirus Version Last Update Result

AhnLab -V3 2011.06.04.00 2011.06.03 Win -Trojan/Xema.variant

AntiVir 7.11.9.3 2011.06.03 TR/Swrort.A.964

Antiy -AVL 2.0.3.7 2011.06.03 -

Avast 4.8.1351.0 2011.06.03 Win32:Hijack -GL

Avast5 5.0.677.0 2011.06.03 Win32:Hijack -GL

AVG 10.0.0.1190 2011.06.03 Generic2_c.ADPV

BitDefender 7.2 2011.06.03 Trojan.Generic .4165076

CAT -QuickHeal 11.00 2011.06.03 Trojan.Swrort.a

ClamAV 0.97.0.0 2011.06.03 -

Commtouch 5.3.2.6 2011.06.03 W32/MalwareS.BHOC

Comodo 8934 2011.06.03 UnclassifiedMalware

DrWeb 5.0.2.03300 2011.06.03 -

Emsisoft 5.1.0.5 2011.06.03 Virus.Win32.Hijack!IK

eSafe 7.0.17.0 2011.06.02 -

eTrust -Vet 36.1.8365 2011.06.03 -

F-Prot 4.6.2.117 2011.06.03 W32/MalwareS.BHOC

F-Secure 9.0.16440.0 2011.06.03 Trojan.Generic .4165076

Fortinet 4.2.257.0 2011.06.03 -

GData 22 2011.06.03 Trojan.Generic .4165076

Ikarus T3 .1.1.104.0 2011.06.03 Virus.Win32.Hijack

Jiangmin 13.0.900 2011.06.01 Trojan/Generic.cfa

K7AntiVirus 9.104.4763 2011.06.03 Riskware

Kaspersky 9.0.0.837 2011.06.03 -

McAfee 5.400.0.1158 2011.06.03 Generic.dx!spo

McAfee -GW-Edition 2010.1D 2011.06.03 Generic.dx!spo

Microsoft 1.6903 2011.06.03 Trojan:Win32/Swrort.A

NOD32 6177 2011.06.03 probably a variant of Win32/Agent.FZFSSSB

Norman 6.07.07 2011.06.03 W32/Suspicious_Gen2.ATQPC

nProtect 2011 -06 -03.02 2011.06.03 Trojan/W32.Agent .748032.U

Panda 10.0.3.5 2011.06.03 Trj/Downloader.MDWNDARY

PCTools 7.0.3.5 2011.06.03 Trojan.Gen

Prevx 3.0 2011.06.03 -

87. “VirusTotal—Free Online Virus, Malware and URL Scanner,” 2011, http://www.virustotal.com/.
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Rising 23.60.03.09 2011.06.03 -

Sophos 4.66.0 2011.06.03 Troj/Swrort -B

SUPERAntiSpyware 4.40.0.1006 2011.06.03 -

Symantec 20111.1.0.186 2011.06.03 Trojan.Gen

TheHacker 6.7.0.1.215 2011.06.02 -

TrendMicro 9.200.0.1012 2011.06.03 TROJ_GEN.R07C1DI

TrendMicro -HouseCall 9.200.0.1012 2011.06.03 TROJ_GEN.R07C1DI

VBA32 3.12.16.0 2011.06.03 Trojan.Win32.Rozena.gjd

VIPRE 9473 2011.06.03 Trojan.Win32.Generic!BT

ViRobot 2011.6.3.4494 2011.06.03 -

VirusBuster 14.0.66.0 2011.06.03 Trojan.Swrort!CpBH1zymeR4

Additional information

MD5 : b062cb8344cd3e296d8868fbef289c7c

SHA1 : b22683394afda7c3fa1d559169ce479c1fdad4f9

SHA256: 14 f489f20d7858d2e88fdfffb594a9e5f77f1333c7c479f6d3f1b48096d382fe

...

File size : 748032 bytes

First seen: 2010 -05 -22 23:31:53

Last seen : 2011 -06 -03 17:40:49

TrID:

DOS Executable Generic (100.0%)

...

PEInfo: PE structure information

[[ basic data ]]

entrypointaddress: 0x627C5

timedatestamp ....: 0x4BB6BF03 (Sat Apr 03 04:07:31 2010)

machinetype ......: 0x14c (I386)

[[ 4 section(s) ]]

name , viradd , virsiz , rawdsiz , ntropy , md5

.text , 0x1000 , 0x757E8 , 0x75800 , 6.68, d691fd422e760657489d7308f452d24a

.rdata , 0x77000 , 0x25C6C , 0x25E00 , 5.97, 69 cdfb2a638cbc03d431ca94f329d42d

.data , 0x9D000 , 0x166EC , 0x11400 , 5.16, bb850f7bbadd797bf072f6a1c88a5ed4

.reloc , 0xB4000 , 0x9AB2 , 0x9C00 , 5.82, 1722 d6b7db1ed23d9b035a3184fca518

...

ThreatExpert:

http ://www.threatexpert.com/report.aspx?md5=b062cb8344cd3e296d8868fbef289c7c

...

Notice that at the end of the VirusTotal report, there is another link to a “ThreatExpert”
page, as shown in Figure 12–9. According to ThreatExpert, the executable is “A malicious
trojan horse or bot that may represent security risk for the compromised system and/or its
network environment.”

Certainly worth saving for further analysis . . .

12.4.2.2 Traffic Analysis: 10.10.10.10:4444–10.10.10.70:1036

Now let’s take a closer look at the stream that we carved this file from, to see if we can gain
any insight as to its function. Recall that we carved this executable file from the following
TCP conversation:

10.10.10.10:4444 <-> 10.10.10.70:1036
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Figure 12–9. ThreatExpert’s report on the executable file that we carved out.

Using Wireshark, we can filter on this conversation. In Figure 12–10, we can see that the
conversation occurred on April 28, 2010. It began at 17:40:00.577135000 and completed at
17:41:26.898764000. As you can see in Figure 12–10(a), the first three packets show a com-
plete TCP handshake: 10.10.10.70 (Vick’s computer) sends a TCP SYN, the remote server
(10.10.10.10) sends a TCP SYN/ACK, and then 10.10.10.70 sends an ACK, completing the
handshake.

Using Wireshark’s “Protocol Hierarchy Statistics” feature, we can see that the conversa-
tion contains only IPv4/TCP traffic and no higher-layer protocols were identified. See Figure
12–11 for details. By default, Wireshark decodes protocols based on known port numbers,
so this may be caused by a higher-layer protocol running on an unusual port, or simply a
protocol that is not known to Wireshark.
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(a)

(b)

Figure 12–10. This screenshot shows the TCP conversation between 10.10.10.10:4444 and
10.10.10.70:1036 on April 28, 2010. The top image (a) illustrates that the conversation
began at 17:40:00.577135000, while the bottom image (b) shows that it completed at
17:41:26.898764000.
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