
SUPPORTING THE IT VALUE CHAIN

The customer and partner community is communicating quite clearly…
that what they’re looking for is an integrated family of applications that
minimize their cost structures going forward.

—Tom Siebel
CEO, Siebel Systems131

Having completed an examination of the enterprise IT value chain, let’s turn to the ques-
tion of how to support it in an integrated and comprehensive manner. Currently,
IT as a value chain is supported by fragmented data and processes, contained with-
in functional silos, suffering from much redundancy and lack of integrity.

As Roger Burlton notes,

It’s one thing to have enterprise information available whenever you want it. It’s something else
for that information to have integrity. Integrity for data management purposes means that, if
the information is redundant, it must be consistent…. [This is] key if you want to avoid differ-
ent people making decisions based on information that varies but that should be the same.132

Because of this requirement for data consistency, the architectural analysis then moves
to a data model. Enterprise IT can be represented by a comprehensible set of informa-
tion concepts, which I will detail and then cross-reference to the process model.

The cross-referencing among process, data, and system will be further explored
in terms of pattern analysis. If you don’t know what a pattern is, read on!

P
A

R
T

109

II

BetZ-Chapter 03.indd 109BetZ-Chapter 03.indd 109 9/22/06 11:43:21 AM9/22/06 11:43:21 AM

Discussing the large-scale technical enablement of IT immediately brings up the
question of other large-scale applications, such as those used by human resources,
fi nance, customer relationship management, and supply chain organizations. The
overall term for such applications is “enterprise resource planning,” a concept now
relevant to IT itself.

 Enterprise Resource Planning?

Companies that attempted to install ERP encountered grave diffi culties,
for they were unprepared for the shifts in jobs and power that focusing on
end-to-end processes entailed. Companies that managed their installation
in terms of process change rather than software were far more successful.

—Michael Hammer133

There are differing representations of what the major enterprise “resources” are, but
one reasonable version is the following:

� Liquid capital
� Fixed (productive) capital
� Stock of goods
� People

However, as Peter Drucker noted, a distinguishing feature of the 20th century
was the emergence of knowledge (information) as a resource to be exploited in and
of itself, with emergent properties at scale requiring signifi cant experience, special-
ization, and infrastructure for support.134 Hence the emergence of information as
a fi rst-class enterprise resource.135 Treating information in this respect parallels the
evolution of other enterprise resources; a small company may not need a dedicated
human resources or supply chain system, but as the company grows, the pressures
for increasing professionalization of their management grow.

The same is true of information, albeit at a larger scale: a $100 million company
might have an IT organization of a couple dozen staff members, who understand
the system architectures through experience. However, when that $100 million
company becomes a $500 million or $30 billion fi rm with hundreds of distinct
systems and thousands of servers, informal understanding becomes impossible and
the IT capability requires its own management infrastructure, with capabilities
analogous to the ERP systems found for other major value chains and functional
areas.

When the $100
million company
becomes a $30
billion enterprise
with hundreds of
distinct systems
and thousands of
servers, informal
 understanding
becomes
 impossible.

When the $100
million company
becomes a $30
billion enterprise
with hundreds of
distinct systems
and thousands of
servers, informal
 understanding
becomes
 impossible.

110 part two Supporting the IT Value Chain

BetZ-Chapter 03.indd 110BetZ-Chapter 03.indd 110 9/22/06 11:43:22 AM9/22/06 11:43:22 AM

The original manufacturing resource planning (MRP) systems focused on core
manufacturing functions such as materials management and work planning. Their
comprehensive approach expanded and evolved through MRP II and the fi rst-
generation ERP systems; ERP, circa 2006, generally means large-scale systems that
support multiple large, complex business processes for entire enterprises, processes
such as human resource management, manufacturing logistics and supply chain,
and fi nancial management, as well as next-generation resource management for
customer relationships, intellectual property, and information and its technological
infrastructure.

Enterprise Resource Planning for IT?
As I was starting to make sense of what metadata management might mean for an
 integration competency center, an enterprise architect approached me and asked,
“What’s the difference between an ITIL confi guration management database and a
metadata repository”? I pondered this for some time, and then saw (General Motors
CIO) Ralph Szygenda’s call for “ERP for IT.” That gave me the answer—there is
no essential difference. They are two attempts at answering the same problems of
enterprise IT.

IT as a general organization capability, just like its counterparts in Finance or
Human Resources or Manufacturing, has processes and data elements it needs to
manage. It manages the defi nition of process, data, and system architectures; the cre-
ation and operation of physical data and software artifacts implementing them; hard-
ware computing platforms supporting those artifacts; and process concepts: change
and incident tickets, work orders, services and systems as cooperatively defi ned with
the client, and more. It also manages the human and fi nancial resources necessary
to support the IT capability.

If this seems misguided, consider some questions.
The defi nition of an “entity” would generally be accepted as “metadata.” Is the

name of the analyst who defi ned that entity metadata? Many tools can and do
store it. What about the project in which the model was created? What about the
fi nancials underlying that project? The software quality practices? Were inspections
carried out on the data model?

A logical evolutionary step for metadata repositories was to extend their data
 dictionaries to include the programs that accessed the various data elements. But are
the change tickets that put those programs into production metadata? Are incident
tickets related to those programs metadata? Is the headcount and budget required to
maintain the system in production ongoing?

FO
O

D
FOR THOUGH

TFO
O

D
FOR THOUGH

T

 Enterprise Resource Planning? 111

(continued)

BetZ-Chapter 03.indd 111BetZ-Chapter 03.indd 111 9/22/06 11:43:23 AM9/22/06 11:43:23 AM

Hence my argument that it’s all really just “ERP for IT” (a.k.a. IT resource planning,
IT business management, or integrated IT management). The acronym ITRP, for IT
resource planning, will be used.

ERP is used evocatively and provocatively in this book. Reality check: the repu-
tation of real-world ERP systems is not distinguished. There have been widely pub-
licized failures of implementation and acceptance.

Secondarily, ERP systems have a poor technical reputation; earlier versions
traced their lineage back to mainframe, fl at fi le–based systems with intricate, pro-
prietary, and obscure architectures. Their monolithic architectures have proved
infl exible and costly to upgrade. Such a platform would have serious challenges
in supporting internal IT business processes, which depend on complex data
structures requiring state-of-the-art infrastructure and are quite varied in their
interactions.

However, it clearly has been an advance to have one system covering accounts
payable, accounts receivable, payroll, and general ledger, where previously those
systems might have been separate and joined by ineffi cient interfaces.

IT governance presents similar challenges: even thought the track record of ERP
systems has not been stellar, there seems little alternative. As will be detailed in the
following analysis, the major IT process areas produce and consume common data
and suffer greatly when no system of record exists. Unifi cation is the challenge of
the day.

Component-based architectures (most recently SOA) are an alternative para-
digm, holding the promise of loose coupling and easier interoperability among
systems; however, this paradigm is still emerging. Standards-based integration of
loosely coupled ITRP systems would be ideal but may be diffi cult to achieve given
the momentum of more traditional enterprise application software approaches and
the immaturity of SOA.

Tail Chasing
Chris: I was just talking to one of your consultants and he was recommending we

put in place a portfolio management tool. It seems to me that such a tool is
an application that will manage applications.

Kelly: Right. It’s kind of like metadata, which is data about your data.
Chris: My head is hurting.

The history
of ERP systems
is not
distinguished.

The history
of ERP systems
is not
distinguished.

The major IT
process areas
produce and
 consume
 common data
and suffer
greatly when
no system of
record exists.

The major IT
process areas
produce and
 consume
 common data
and suffer
greatly when
no system of
record exists.

DIALOGDIALOG

112 part two Supporting the IT Value Chain

BetZ-Chapter 03.indd 112BetZ-Chapter 03.indd 112 9/22/06 11:43:23 AM9/22/06 11:43:23 AM

Kelly: And one of the services in your service catalog is “service creation and
management.” It’s the service of managing services!

Chris: I guess I shouldn’t get too bent out of shape; after all, the Human Resources
people have to manage their own staff, and Finance gets a budget for its
own operations. But it still seems like a hall of mirrors.

Kelly: Welcome to IT. We’re going to talk about the requirements of requirements
management, by the way. And don’t forget your new Six Sigma initia-
tive. You realize, of course, that the essence of Six Sigma is a process that
 manages processes?

 Enterprise Resource Planning? 113

BetZ-Chapter 03.indd 113BetZ-Chapter 03.indd 113 9/22/06 11:43:24 AM9/22/06 11:43:24 AM

BetZ-Chapter 03.indd 114BetZ-Chapter 03.indd 114 9/22/06 11:43:24 AM9/22/06 11:43:24 AM

115

c
h

a
p

t
e

r
3

A Supporting Data Architecture

I would not give a fi g for the simplicity this side of complexity, but
I would give my life for the simplicity on the other side of complexity.

—Oliver Wendell Holmes136

 3.1 Metrics: Gateway from Process to Data

As you have seen, process-centric thinking is a hallmark of modern business practices.
COBIT, CMM, and ITIL, at their base, are process frameworks. They focus on

overall functional capabilities and the sequences of activities (business processes)
that add value for the customer (internal or external).

Business processes require optimization, and to optimize them they must be
measured. The concept of metrics management is essential to process improvement
frameworks such as Six Sigma. Processes are controlled by metrics.

But what is a metric? A metric is a measurement. It is information, not activity—
information that drives activity.

What is information? Information is actionable, context-relevant data. So, met-
rics at their base are data.

This brings us nicely to the next major architectural view: data. When archi-
tecting systems (defi ned as combinations of people, process, and technology) the
concept of “data” is critical. The frameworks imply shared data, but they do not go
far in discussing its implications, which are signifi cant.

The metrics-
based manage-
ment control
of processes
requires carefully
and clearly
 structured data.

The metrics-
based manage-
ment control
of processes
requires carefully
and clearly
 structured data.

BetZ-Chapter 03.indd 115BetZ-Chapter 03.indd 115 9/22/06 11:43:24 AM9/22/06 11:43:24 AM

116 chapter three A Supporting Data Architecture

In reading the major frameworks as requirements specifi cations, the need for a
consistent data architecture emerges; however, to date the major frameworks have
been circumspect about this reality, consigning it to some unspecifi ed other forum
(which defaults to the intellectual property of consulting fi rms or vendor application
products).

Trends are always carried to the extreme, and BPM is no exception. One of the
unfortunate extremes of BPM thinking (an extreme not represented by its careful
thought leaders but evident among some practitioners) is the idea that process is
everything and data is nothing, or is some mere technicality whose consideration
can be deferred to the developers.

The consequences of this are clear from an enterprise architecture perspective:
processes can’t be fully optimized, because the “things” that the processes are
 managing are still unclear to the process stakeholders. In many cases redundancy
is the result: two processes may be managing the same thing but calling it by two
different names. Or—for example, with the broad ITIL concepts of Confi guration
Item and Change— different things may be lumped inappropriately together in a
given process context.

This is compounded by the current vendor landscape, in which many
 vendors are selling overlapping products that refer to the same logical concepts
with different terminology—sometimes, this appears to be a deliberate strategy
to create the illusion of product differentiation where none exists. Without a
sound, product-independent data perspective, ITRP and its implementers will
be hostage to product vendors.

Of the views this book takes—process and function, data, and system—data
is the most precise. Even at the verbal, conceptual level, it provides the basis for
system interoperability, business rules, and application design. The data neces-
sary to the domain of IT management is a fascinating topic. It’s not impossible,
as some seem to feel—the data structures needed to run IT, although tricky
in some ways, are comparable in number and complexity to other functional
areas.

IT Metrics

Business processes require metrics, and at the most general and abstract the
use of metrics to assess and guide process is called “performance management”
or “business performance management” (sometimes abbreviated BPM and
 confused with business process management).

Processes are
controlled by
metrics, and
metrics are
based on data.

Processes are
controlled by
metrics, and
metrics are
based on data.

Data has been
either absent or,
at best, a sec-
ond-class citizen
in much of the
IT governance
literature and
frameworks.

Data has been
either absent or,
at best, a sec-
ond-class citizen
in much of the
IT governance
literature and
frameworks.

Without a prod-
uct-independent
data perspective,
ITRP and its
implementers
will be hostage
to product
vendors.

Without a prod-
uct-independent
data perspective,
ITRP and its
implementers
will be hostage
to product
vendors.

BetZ-Chapter 03.indd 116BetZ-Chapter 03.indd 116 9/22/06 11:43:24 AM9/22/06 11:43:24 AM

A hierarchical metrics structure is characteristic of performance management
and the business intelligence methods supporting it. The hierarchy of metrics may
progress from simple operational reporting to complex, derived leading indicators.
Such approaches have become well established in many types of business activi-
ties, and attention is now turning to measuring IT similarly. Unfortunately, there
is no established suite of IT metrics comparable to standard fi nancial measures of
corporate performance. This is an area of activity for a number of standards bodies,
academics, and other players.137

Business intelligence software at its most sophisticated provides robust support
for building expressions based on metrics. Before investing in a limited-function
service-level management tool, it may be worthwhile considering this as a special
case of a business intelligence problem and handle it through standard business
intelligence or data warehousing techniques.

Both ITIL and COBIT have extensive coverage of metrics, which this book will
not replicate. However, consider a couple of examples from those frameworks.

Example 1: Change Management. ITIL, in the “Change Management”
 section, calls for tracking the number of Incidents traced to Changes. This implies
the existence of separate Incident and Change data entities, which can be joined
together and summarized to derive the counts. This is a clear statement of data
requirements.

Example 2: Technology Obsolescence. COBIT, in the Acquire and Main-
tain Technology Infrastructure Control Objective, calls for the metric “# of critical
business processes supported by obsolete (or soon to be) infrastructure.”138 This
implies the existence of business process and technology entities. The technol-
ogy entity would require a life cycle state or obsolescence attribute of some kind
(implying, in turn, a process for maintaining this information). A good data
architect will also question whether business processes should be tied directly to
technology platforms or tied fi rst to IT services, which are then dependent on
technologies.

This book’s data model was derived through just such systematic consideration
of ITIL, COBIT, and other industry literature serving as requirements statements.

IT performance measurement is a nontrivial and evolving fi eld; refer to the
 references and footnotes for discussion of specifi c IT metrics. The discussion
here is focused on the architectural requirements of metrics management gener-
ally, including their basis on clean, normalized, well-architected data (an aspect
 overlooked in most discussions).

There is no
established suite
of IT metrics
comparable to
standard fi nan-
cial measures
of corporate
performance.

There is no
established suite
of IT metrics
comparable to
standard fi nan-
cial measures
of corporate
performance.

 3.1 Metrics: Gateway from Process to Data 117

BetZ-Chapter 03.indd 117BetZ-Chapter 03.indd 117 9/22/06 11:43:24 AM9/22/06 11:43:24 AM

118 chapter three A Supporting Data Architecture

Rollups and Dimensions

Most reporting is characterized by a requirement to summarize detailed data along
standard hierarchies. In data warehousing, such standard hierarchies are known as
“dimensions.” In the ITSM and IT governance space, these common dimensions
include the following:

� Organizational hierarchy
� Organizational and IT strategic goals
� Application portfolio (rolling up into both the organizational hierarchy and the

service-level agreements, or SLAs)
� Service (in the ITSM sense, if separate from application)
� Program or project portfolio
� Data subject areas (hierarchical, not relational)
� SLAs
� Enterprise calendar
� Enterprise operational locations and hierarchy (e.g., District and Region)

Some of these will be well understood by the enterprise’s data warehousing group
(e.g., calendar and location); others will be new ground. A well-known challenge in
data warehousing is “nonconformed dimensions,” that is, dimensions that are not
in synch across different systems—for example, different calendars in use by differ-
ent lines of business. Intractable process and political diffi culties may emerge in the
search for conformance. Generally, the dimensions should be managed by the IT
portfolio and architecture processes (preferably with Data Management guidance),
and the facts should be managed by the operational processes.

The application portfolio is perhaps the most important and diffi cult. Orga-
nizations may have 10 or more different lists of applications, causing no end of
confusion around what IT is doing and who owns it.

The project portfolio can also be a source of pain. As with systems, people tend
to refer to projects by myriad imprecise names. What is the system of record for
projects? Does every system that references a project do so using an unambiguous
project identifi er or picklist derived from the system of record? Or is just the project
name casually typed in with no check for accuracy?

Another problem is the challenging topic of “slowly changing dimensions.” Sup-
pose incidents are rolling up by application portfolio and organizational hierarchy,
with trending reports over the years. Then reorganization happens. How should

Intractable
process and
political diffi cul-
ties may emerge
in the search for
standardized
reference data.

Intractable
process and
political diffi cul-
ties may emerge
in the search for
standardized
reference data.

BetZ-Chapter 03.indd 118BetZ-Chapter 03.indd 118 9/22/06 11:43:25 AM9/22/06 11:43:25 AM

this be handled? There are three approaches, all with pros and cons that need to be
understood in depth.139

A related matter is the establishment of common IT reference data (generally
termed “master data management,” or MDM in the industry). Dimension
 conformance is an issue of MDM, but MDM is somewhat broader in implication
(e.g., Server might not be a true dimension, but ensuring that there is an accurate
single list is an MDM problem). See Figure 4.26 and the related discussion.

Generally, the metrics-based management control of processes requires carefully
and clearly structured data. This chapter thus turns to a detailed examination of the
conceptual data structures involved in IT management.

 3.2 A Conceptual Data Model

Data modeling is arguably the most widely used technique in modern
systems analysis and design, but it isn’t always used well. Too often, tech-
nically oriented “modelers” jump straight into excruciating detail, dense
jargon, and complex graphics, incomprehensible to process-oriented
participants and other mere mortals.

The root problem is a misconception—data modeling has been
equated with database design. That’s like equating architecture with the
drafting of construction blueprints. Of course, the architect’s work will
eventually lead to precise, detailed blueprints, just as the data modeler’s
work will eventually lead to precise, detailed database designs, but…it
can’t start there, or the subject-matter experts will soon mentally “check
out.” Without their participation, the data model won’t be a useful and
accurate description of their business. And that’s exactly how a data
model should be regarded—not as a database design, but as a description
of a business.

—Alec Sharp140

Data Model Discussion
Chris: One thing that has us all puzzled is exactly how the ITRP concepts fi t together

and work with other non-ITSM concepts. There’s a lot of terminology, and it
seems like things overlap sometimes. For example, what is the relationship

The metrics-
based manage-
ment control
of processes
requires carefully
and clearly struc-
tured data.

The metrics-
based manage-
ment control
of processes
requires carefully
and clearly struc-
tured data.

DIALOGDIALOG

 3.2 A Conceptual Data Model 119

(continued)

BetZ-Chapter 03.indd 119BetZ-Chapter 03.indd 119 9/22/06 11:43:25 AM9/22/06 11:43:25 AM

120 chapter three A Supporting Data Architecture

between a Confi guration Item and an Asset? Also, some of what ITIL calls
for is not exactly how we do business. Do all Confi guration Items go through
our data center change control process? What is the relationship between
a Service Request and an Incident? Is a Service a Confi guration Item? Is a
Service Offering? Are Applications Services?

Kelly: That’s why we’re going to turn to one of the most important aspects of enter-
prise architecture: the creation of a conceptual data model.

Chris: A conceptual data model? What good is that? We’re probably not
going to build anything—we’re going to purchase products. Sounds pretty
 technical.

Kelly: That’s why I call it a conceptual data model, and yes, it’s relevant even if you
are purchasing products. There are a lot of vendors out there selling various
fl avors of IT enablement and IT governance tools, and they have a lot of
overlap between their products, often with slightly different terminology.

A conceptual data model is not technical—it’s about clarifying the lan-
guage describing our problem domain so that we understand exactly what
we mean by a Confi guration Item and how it might relate to a Service.
And this is something you need to put together independent of the prod-
ucts—because it’s going to be your road map that helps you determine what
products you need.

Chris: Will it help me translate the vendor-speak?
Kelly: Absolutely. One vendor may have a “service catalog entry” and an “order,”

and another vendor may call the same two things a “template” and a “service
instance” In the conceptual data model (also called a “reference model”),
they are Service Offering and Service. It doesn’t matter what the vendors call
them, but you need to understand that any service request management solu-
tion should have both concepts. Doing the data model helps us understand
our requirements better and communicate them to the vendor.

How do we gain more precision around hard-to-defi ne concepts like Change or Con-
fi guration Item? One technique used for many years is an “entity relationship model.”
Other (not necessarily synonymous) terms used in this general area are “conceptual
model,” “logical model,” “domain model,” “ontology,” and “class model.”

An entity relationship model helps clarify language by relating concepts together
in certain ways:

� A Confi guration Item may have many Changes applied to it, and a Change may
be applied to multiple Confi guration Items (many to many).

How do we gain
more precision
around hard-to-
defi ne concepts
like Change or
Confi guration
Item.

How do we gain
more precision
around hard-to-
defi ne concepts
like Change or
Confi guration
Item.

BetZ-Chapter 03.indd 120BetZ-Chapter 03.indd 120 9/22/06 11:43:25 AM9/22/06 11:43:25 AM

� A Machine may be related to one and only one Asset, and an Asset may be
related to one and only one Machine (one to one).

� A Confi guration Item may be a Service, Process, or Application (subtyping).

These relationships are visually represented as shown in Figure 3.1.141

Some data modeling methodologists emphasize naming the relationships (typi-
cally with a verb phrase such as “is a part of”), but others do not see this as critical,
and this book does not systematically do this.142

Using these tools, we can start to carefully structure the relationships between
the various loosely used terms of IT governance (Figure 3.2).

Vive La Difference
Your Organization’s concepts and terminology will be different. Count on it. This
does not make either your Organization or this model right or wrong. The point is to
start asking the questions: Why does the model call for two concepts when we use
one? One concept where we use two? Do we have any ability to relate concept
A to B as the model calls for? Do we need it? Why do we relate X to Y when the
model doesn’t?

KEY POINTKEY POINT

Figure 3.1 Data modeling key.

A

D F H

Supertype

Subtype

Supertype

Subtype

J

G

*
Many to
many

*

E

1
One to
many

*

C

1
One to
one

1

B

Unspecified—
assume many
to many

Self relationship—
a J can be
associated with
other Js

 3.2 A Conceptual Data Model 121

BetZ-Chapter 03.indd 121BetZ-Chapter 03.indd 121 9/22/06 11:43:26 AM9/22/06 11:43:26 AM

122 chapter three A Supporting Data Architecture

Figure 3.2 IT enablement conceptual model.

Configuration Item (CI)

Operational CI

Production CI

Deployed Object

Deployed Software System

Event

Release

Problem

Project

Request for
Change

Incident

Service
Request

Assembly CI

Service Offering

Business
Process

Service

Deploy Point

Deployed
Component Datastore

Document

Machine

OS Instance (Server)

Technology
Product

Metadata
Contract

Metric

Known
Error

Asset

Strategy

Agreement

Ordered
Service

Application

Location

Hosting ServiceOrderable
Service

Idea

Demand
RequestProgram

UsesContains

Overwhelmed?
If this model looks overwhelming to you, you might want to review the section later in this
chapter titled “An Iterative and Incremental Approach to Confi guration Data Maturation.”

Pictures such as this only tell part of the story. They require a detailed discussion
of each box (or entity), what it means, and how to interpret the lines (relationships)
to the other boxes.

KEY POINTKEY POINT

BetZ-Chapter 03.indd 122BetZ-Chapter 03.indd 122 9/22/06 11:43:26 AM9/22/06 11:43:26 AM

Figure 3.2 is a conceptual data model. It is primarily about refi ning language
and concepts. The goal of this model is not technical precision but rather resonance
with common industry usages, which overlap and are not well delineated. It’s an
attempt to push common usage toward more rigor and admittedly encounters a
number of problems in this effort.

It also deliberately omits a number of details that would be necessary to realize
a solution. Attributes obviously are not included (e.g., Serial Number on Machine
or Date Signed on Contract). Omitted entities are generally intersection entities
and dependent entities that elaborate on the core concepts. Some notes on possible
approaches for elaborating this into a full logical data model are covered in the data
defi nitions.

Building a model such as this for an industry that is not yet mature in its pro-
cess best practices and terminology is challenging. The relationships among entities
such as Release, RFC, Service Request, Project, and Confi guration Item might
have many permutations. This is a reference model, presented as a starting point
for your own analysis. Reasonable professionals may come to different conclusions
about which entities should be related to which.

This picture, technically speaking, is not the model. It is only one view on the
model. One characteristic of a good conceptual data model is that its central con-
cepts can be represented with a one-page view; there are always more details to add.
Thus, in the subsequent sections other entities will appear, along with relationships
not drawn in Figure 3.2.

It’s All about the Language
Chris: Wow. What a picture. I’m getting a little glassy eyed.
Kelly: That’s OK. Just take it a couple boxes at a time, and here are some useful

reminders:
First, it’s all about the language. This picture is a long way from anything

we’re going to build; it’s here to help us understand how our project, inci-
dent, change, monitoring, confi guration, and service management systems
relate.

Second, there’s a trick to reading the lines. Where you see an arrow or
a box inside a box you should read it as “is a.” For example, an Applica-
tion is a Deployable Object. Where you see a number or star on either
end, then you can read it as “has” or “is associated with.” For example, an
Application has Components, or an Asset is associated with a Machine.

Chris: That makes it easier. It’s still pretty complicated though!
Kelly: Well, let’s go through it in some detail.

A conceptual
data model
 refi nes language
and concepts.
It’s not technical.

A conceptual
data model
 refi nes language
and concepts.
It’s not technical.

DIALOGDIALOG

 3.2 A Conceptual Data Model 123

BetZ-Chapter 03.indd 123BetZ-Chapter 03.indd 123 9/22/06 11:43:27 AM9/22/06 11:43:27 AM

124 chapter three A Supporting Data Architecture

 3.3 IT Process Entities

This section is concerned with the IT entities that are not confi guration items.
Generally, all conceptual entities that are not confi guration items can be thought
of as “IT process entities.”

We start with the fi rst subgrouping, Strategy, and related entities.

Strategy

A Strategy is a top-level organizational direction or guidance toward the overall
mission. The term Strategy is used generically here and might include concepts
such as mission, goal, and objective detailed into a more concrete framework.

Strategies have two avenues into lower-level IT data: they drive Programs and
Projects to implement new functionality, and they require the support of Busi-
ness Processes to achieve ongoing success. (Notice that for graphical simplicity the
Strategy–Business Process and Release–Confi guration Item links were not drawn
in the main data model in Figure 3.2 and appear as thinner lines. There will be
other cases of such omissions.)

Strategies are related to other Strategies (this is the meaning of the “U”-shaped
line on the left side of the Strategy entity).

Strategies should be measurable using Metrics; this relationship is critical to the
establishment of digital dashboards.

Program

A Program is an ongoing, large-scale organizational commitment and corre-
sponding investment toward meeting a major goal or objective of the enterprise.
A Program typically consists of one or more Projects.

Idea

An Idea is an initial, typically business-generated, opportunity for IT services. It is
minimally qualifi ed.

Demand Request

An Idea becomes a Demand Request after going through some form of IT assessment
for sizing or capacity impacts and preliminary feasibility. A Demand Request is a

BetZ-Chapter 03.indd 124BetZ-Chapter 03.indd 124 9/22/06 11:43:27 AM9/22/06 11:43:27 AM

fully qualifi ed request for an IT service change, awaiting full funding authorization
to become a Project.

Project

A Project is a defi ned set of manageable activities to achieve a well-specifi ed mission
(e.g., Demand Request fulfi llment), usually represented by some set of deliverables
or enumerated changes, with explicitly allocated resources (time, money, staff),
executed and measured within the scope of those resources. A Project has one or
more Releases (see the “Release” section). Projects in many cases are constrained to
a fi scal year. A Project should always be associated to a Demand Request.

Projects may be non-IT (e.g., construction projects), but that usage is out of
scope for this book.

A Project before it is approved may be considered a Demand Request.
Projects relate to Confi guration Items either directly or (more rigorously)

through defi ned, named Releases. This ambiguity can be seen in Figure 3.3.
Projects may be grouped into larger Programs (not represented in the model).

A Program is an ongoing, large-scale organizational commitment and corresponding
investment toward meeting a major goal or objective of the enterprise. A Program
typically consists of one or more Projects.

Figure 3.3 Strategy and related entities.

Configuration Item (CI)

Project

Business
Process

Strategy

Release

Idea

Demand Request
Metric

Program

1

*

1

*

1

*

 3.3 IT Process Entities 125

BetZ-Chapter 03.indd 125BetZ-Chapter 03.indd 125 9/22/06 11:43:27 AM9/22/06 11:43:27 AM

126 chapter three A Supporting Data Architecture

Strategy–Program–Project versus Idea–Demand

The model graphically depicts two competing paradigms: one from the top
down, the other from the bottom up. A traditional top-down IT planning model
would state that Strategy drives Program drives Project. However (especially when
 executed using an annual time frame), this is not an agile method for responsive
IT. An event-driven, business-responsive demand process is also necessary. Aligning
these two paradigms will be a different exercise for every organization; commonly,
Demand Requests are evaluated against the annual strategy baseline.

(Request for) Change

A Change is an authorization to alter the state of some Confi guration Item. ITIL
defi nes Change as follows:

The addition, modifi cation or removal of approved, supported or baselined hard-
ware, network, software, application, environment, system, desktop build or associated
 documentation.

It defi nes request for change (RFC) as follows:

Form, or screen, used to record details of a request for a Change to any CI within an infra-
structure or to procedures and items associated with the infrastructure.143

There is much additional discussion of Change in ITIL. However, the scope
of Change in this framework is somewhat more limited; business-driven RFCs are
Demand Requests.

This model does not distinguish between Changes and RFCs. However, an oper-
ational confi guration management tool may detect unapproved Changes for which
there are no RFCs; these can be considered Events and potentially Incidents.

A Change is a
work order or
authorization to
alter the state of
some Confi gura-
tion Item.

A Change is a
work order or
authorization to
alter the state of
some Confi gura-
tion Item.

Figure 3.4 Change and Release context.

Configuration
Item (CI)

Release

Problem Request for Change

Service Request

BetZ-Chapter 03.indd 126BetZ-Chapter 03.indd 126 9/22/06 11:43:27 AM9/22/06 11:43:27 AM

Change as Transaction
On a more architectural level, Changes can be analyzed using principles of transac-
tion processing as a useful metaphor.144 Changes, like transactional logical units of
work, should have the following characteristics:

� Atomic
� Consistent
� Isolated
� Durable

In the context of enterprise IT, an atomic Change is “all or nothing”; either the
Change is successfully applied or it is rolled back completely. If a Change has some
part that would be rolled back and another part would stay, it should be framed
as two Changes. ITIL does allow “partial rollback” but clearly indicates this is not
 preferred.145

A consistent Change means that the change, when deployed, leaves the item in a
stable state. Characteristics no longer needed by the new version of the item should
be removed as part of the change. New functionality should integrate seamlessly with
the previous functionality without an undesired or unexpected effect. Any temporary
states during the Change that deviate from normal practice are removed (e.g., tem-
porary copies or parallel execution).

An isolated Change means (in theory) that it can go in without affecting other
changes or item functionality, and is not affected by other concurrent changes. This
would be hard to achieve in all cases but is nevertheless something to strive for.
Achieving logical isolation of Changes is a goal for an integrated Release and
Change Management process.

A durable Change is one that, once executed, is stable and permanent. For
example, all instances of the new software in all deployment locations persist, and
older software is not inadvertently reinstalled (e.g., during a system restoration pro-
cess). This example requires attention to the Defi nitive Software Library.

Change–Confi guration Item
This is perhaps the most important relationship in all of ITSM. Simply, a Change
by defi nition affects confi guration items (CIs), and CIs are objects under change
control. This is far simpler to state and to model than to execute in the real world.
A naïve approach to implementing this concept will result in unmanageable data.
Clearly, it is not optimal for a Change record to have to be related to 1500 individual

FO
O

D
FOR THOUGH

TFO
O

D
FOR THOUGH

T

 3.3 IT Process Entities 127

BetZ-Chapter 03.indd 127BetZ-Chapter 03.indd 127 9/22/06 11:43:28 AM9/22/06 11:43:28 AM

128 chapter three A Supporting Data Architecture

CIs, yet this is what a simplistic approach will arrive at (e.g., in putting in an initial
release of a software package with many separate binary assets).

There are various techniques for mitigating and simplifying this, mostly invol-
ving encapsulation and abstraction. If a logical Application CI is defi ned, for exam-
ple, it can be presumed to include all lower-level physical binary Components.
Whether or not to inventory those binaries in the CMDB is one of the most critical
decisions the ITSM implementer faces. For high security organizations this may be
done, but it is questionable whether lower-criticality information systems organiza-
tions truly require it, especially in a world of purchased software where the physi-
cal architecture of a software product is less and less of a concern for the package
vendor’s customers.

Alternatively, the concept of assembly CI (which is also a CI) can be used. An
Application plus its Datastores and Deploy Points might be a logical assembly CI. This
is where the issue of Logical versus Physical CI comes in, pointing up the importance
of having a defi ned process for maintaining logical Applications and related assembly
CIs. It is not recommended to allow individuals the ability to create high-visibility logi-
cal CIs; this results in a chaotic environment. Everyone must agree that there is one
Application (e.g., Quadrex), composed of, for example, these 50 Components.

Change–Service Request
Changes may require a Service Request to implement, for example, if database adminis-
tration services are part of the service catalog and the addition of a new table is handled
as a Service Request. This will depend on the maturity of the IT organization.

Change–Release
Changes are tied to Releases. In this framework, a Release is typically associated with
a Project and results in one or more RFCs to add or alter CIs for a given IT service.

Production Change and the Software Development Life Cycle
RFCs in this architecture, and the concept of Change generally, are not applied
to project deliverables. This is in keeping with the ITIL philosophy that “changes
to any components that are under the control of an applications development
 project—for example, applications software, documentation or procedures—do
not come under Change Management but would be subject to project Change
Management procedures…. [The] Change Management process manages Changes
to the day-to-day operation of the business. It is no substitute for the organisa-
tion-wide use of methods…to manage and control projects.”146 While the project

Whether or not
to inventory all
binary software
components in
the CMDB is
an important
decision.

Whether or not
to inventory all
binary software
components in
the CMDB is
an important
decision.

BetZ-Chapter 03.indd 128BetZ-Chapter 03.indd 128 9/22/06 11:43:28 AM9/22/06 11:43:28 AM

change management concepts are similar, they are managed in a project context
that is quite different from production operations and out of scope for this book
because they are extensively covered in the project management literature.

Release

In this framework, a Release is the gateway from the software development life
cycle into the ITSM world. It is one of the most important concepts for which
to develop an enterprise approach. A Release is (if narrowly defi ned) a distinct
 package of new or changed functionality deployed to production, usually enabling
new capabilities and/or addressing known Problems.

ITIL says “a Release should be under Change Management and may consist of
any combination of hardware, software, fi rmware and document CIs…. The term
‘Release’ is used to describe a collection of authorised Changes to an IT service.”147

Releases, like Changes, should be transactional, although their larger grain
makes this more challenging.

The concept of assembly CI may be helpful in supporting a Release’s various
elements. However, some consider a Release to primarily be a dependent entity of
an Application.

Note that release management as an overall capability includes planning and
harmonizing all Releases in the environment, not just managing Releases for an
individual Project or Program (the enterprise release managers should interface
with the program or project release managers).

Project–Release
The relationship between Project and Release can work two ways: a Project may
have several (smaller-grained) Releases, and a large-grained enterprise Release may
coordinate across multiple Projects. This fl exibility of interpretation, coupled with
narrower and broader scopes for Release, make it a particularly diffi cult concept
from a conceptual modeling perspective.

Change–Release
A Release may have a number of Changes associated with it, but a Change should be
“owned by” only one Release. That is to say, two different Releases should not be cited
as justifi cation for one Change. (See the “Justify Change” pattern in Chapter 5.)

A Release usually affects multiple CIs; however, CIs can be grouped, as with the
assembly CI.

Release is the
gateway from
the software
development life
cycle into the
ITSM world.

Release is the
gateway from
the software
development life
cycle into the
ITSM world.

 3.3 IT Process Entities 129

BetZ-Chapter 03.indd 129BetZ-Chapter 03.indd 129 9/22/06 11:43:28 AM9/22/06 11:43:28 AM

130 chapter three A Supporting Data Architecture

Project, Release, and Change

The ITIL conception of the relationship between Project, Release, and Change is
presented in Figure 3.5.

Note that in ITIL terms, an RFC precedes the establishment of a Project, in
theory.148 The Release might also result in smaller-grained RFCs for change control
(e.g., actual physical deployments); thus, there is a conceptual diffi culty in distin-
guishing Change granularity, which ITIL calls out as a risk149 but does not present
a systematic framework for resolving.

This may be problematic in terms of language and culture for organizations
with a strong tradition of change control, possibly including a function named
Change Management. They will not want their process (and system) “contami-
nated” with RFCs more focused on Project initiation; a forward schedule of change
is as far as they may wish to go.

An alternate view is presented in Figure 3.6.
The controversy is primarily linguistic. The ITIL intent behind front-loading

the RFC is presumably so that it is suitably assessed by all stakeholders. This is also
the objective of the demand and portfolio management processes (as well as the
function of enterprise architecture), and there is arguably more maturity in their
conceptions of how to do this.150

Whether you subscribe to the ITIL view or this book’s framework, these issues
should be clarifi ed in any large IT organization.151

In ITIL terms, an
RFC precedes the
establishment of
a Project.

In ITIL terms, an
RFC precedes the
establishment of
a Project.

Figure 3.5 ITIL representation of RFC, Project, and Release.

Project

Configuration Item (CI)

An RFC approval results
in a Release.

The Release alters the state of the Configuration
Items, under the governance of Change.
Smaller-grained Change Control RFCs are also
required for more granular management.

The Release (potentially
implemented by a Project)
is governed by Change.

Request for
Change

Release

Change Control
RFC

BetZ-Chapter 03.indd 130BetZ-Chapter 03.indd 130 9/22/06 11:43:29 AM9/22/06 11:43:29 AM

Event

An Event is raw material. It is any operational signal emitted by any Production
CI. Only a small fraction of Events are meaningful to ITSM, and an even smaller
fraction result in Incidents. Events are one basis for Metrics, which in turn drive
Agreements and Contracts.

One important type of Event is emitted by change control and detection
 systems, and that is the identifi cation of physical change. This Event specifi cally
indicates that for a given CI a state change has occurred that is of management
interest. Change Events may be generated automatically by the CI in question or
detected by active probing (e.g., tools such as Tripwire that compare the current
state with a known baseline). The most sophisticated IT operations reconcile such
change detection Events with the RFC process.

ITIL implies that an Event is equivalent to an automatically detected Incident.152
Anyone who has experienced an autogenerated “ticket storm” will know that this
defi nition is not suitable—most Events are not Incidents; extensive and well-
 architected correlation and fi ltering are required.

Of course, in the broadest sense, an Event can apply to any entity undergoing
a state change of any kind. In this sense, a Contract might “raise” a logical Event
when it expires. However, this is so broad that it’s not a focus of this model.153

Events are the
raw material of
Metrics, which
in turn drive
Agreements and
Contracts.

Events are the
raw material of
Metrics, which
in turn drive
Agreements and
Contracts.

Figure 3.6 Alternate representation of RFC, Project, and Release.

ReleaseProject Configuration Item (CI)

Request for Change

A Project (approved through
Demand Management) results in
one or more Releases.

A Release results in a specific,
time-constrained Request for
Change to one or more
Configuration Items.

Idea

Demand Request

 3.3 IT Process Entities 131

BetZ-Chapter 03.indd 131BetZ-Chapter 03.indd 131 9/22/06 11:43:29 AM9/22/06 11:43:29 AM

132 chapter three A Supporting Data Architecture

Note that Events can be related to both discrete physical CIs, such as Servers and
Datastores, and to logical Services. This is characteristic of monitoring correlation archi-
tectures, business service management (BSM) and end-to-end transaction monitoring.
Rather than monitoring an individual, granular CI, the major Event of interest is an
aggregation or derivation of multiple internal Events within the Service (e.g., expressed
as overall transaction response time or customer-visible service failure).

Events are also indicators of capacity consumption and support measurements
for that purpose: hardware utilization, memory, transactions, and so forth. Finan-
cial chargeback may depend on event management.

Advanced IT providers and infrastructure systems are starting to work with statis-
tical analysis of Events, for example, to determine whether a certain repeated Problem
has an identifi able Event signature that may help resolve it. This gets into cutting-
edge research into pattern detection across large data sets, related to data mining.

A best practice for all operational Events is the embedding of an appropriate CI
identifi er. By defi nition, an Event must have had a CI that emitted it—it cannot
arise out of the ether. This reinforces the case for managing unique and terse CI
naming conventions, because many Event data structures will not be able to sup-
port long identifi ers. See the “Application ID and Alias” pattern in Chapter 5.

The change Event is discussed further in the “Confi guration Management”
 section in Chapter 4.

Incident

ITIL defi nes Incident as “any event which is not part of the standard operation
of a service and which causes, or may cause, an interruption to, or a reduction in,

By defi nition, an
Event must have
had a CI that
emitted it.

By defi nition, an
Event must have
had a CI that
emitted it.

Figure 3.7 Event, Incident, Problem, and Known Error context.

Production CI

Event

Problem

Incident

Metric

Known Error

BetZ-Chapter 03.indd 132BetZ-Chapter 03.indd 132 9/22/06 11:43:29 AM9/22/06 11:43:29 AM

the quality of that service.”154 ITIL also states that a Service Request is a type of
Incident, which seems perverse. (A Service Request is not an interruption unless
you are trying to build a culture of hostile customer service!) This line of thinking
is not supported here.

Service requests may be tied to Incidents through the CI against which the Inci-
dent is reported. In this interpretation, Incidents are independent of their mode of
detection; this is necessary to support Incidents that may be reported or derived
through enterprise monitoring without ever being reported through the centralized
service desk.

An Incident has to be experienced. It is an occurrence. This distinguishes it
from the Known Error concept used for knowledge management for the help/
service desk (an error being a known condition in the abstract).

A Service Request may occur in response to an Incident. Incidents (especially
when generated from monitoring tools) often require correlation and root cause
analysis, which are supported through the relationship of Incidents and Events to
each other.

Change–Incident
A Change may be in response to an Incident, without going through the more
 formal and heavyweight Release process. Alternatively, an Incident might be the
 result of a poorly executed Change. This means that the relationship between
Change and Incident should probably have a type attribute so that it is clear which
caused which (see the section on intersection entities later in this chapter).

Problem and Known Error

In ITIL, a Problem is “the unknown underlying cause of one or more Incidents,”
and a Known Error is “a Problem that is successfully diagnosed and for which a
Work-around is known.”155

However, this leaves a hole for Problems with known underlying causes that
nevertheless have no workaround, so the ITIL specifi cation won’t do as a data defi -
nition. The defi nition here is that a Problem is generally a (known or unknown)
root cause of many Incidents, although in the current model it is possible for an
Incident to be caused by several Problems.

ITIL further states, “A Problem can result in multiple Incidents, and it is possible
that the Problem will not be diagnosed until several Incidents have occurred, over a
period of time. Handling Problems is quite different from handling Incidents and
is therefore covered by the Problem Management process.”156

Incidents are
independent of
their mode of
detection.

Incidents are
independent of
their mode of
detection.

 3.3 IT Process Entities 133

BetZ-Chapter 03.indd 133BetZ-Chapter 03.indd 133 9/22/06 11:43:30 AM9/22/06 11:43:30 AM

134 chapter three A Supporting Data Architecture

A Known Error is a knowledge management hook—it is an entity that can
house the known resolution techniques for a given Problem.

Problem–Release and Problem–RFC
Problems may be addressed by Releases, which might solve multiple Problems. An
individual Problem might also be addressed by one or several RFCs. One possible
approach is to say that Problems are generally handled by Releases (using demand
management), and Incidents are handled directly by RFCs (when called for).
 Ideally, an RFC should be able to reference both Incidents (tactical) and Problems
(longer term). This will depend on the capabilities of incident management and its
degree of integration with Problem and Change.157

Service Request

A Service Request is a logged interaction between an individual and the service desk
that requires follow-up. Service requests may have various types, such as the following:

� Hardware or software request
� Incident report (i.e., the request is “resolve this incident”)
� Confi guration change request (the Service Request is the actual work request,

not the authorization request)
� Security request

Problems may
be addressed by
Releases, which
might solve mul-
tiple Problems.

Problems may
be addressed by
Releases, which
might solve mul-
tiple Problems.

Figure 3.8 Problem, Release, and RFC context.

Configuration Item (CI)

Production CI

Release

Problem

Request
for Change

Incident

BetZ-Chapter 03.indd 134BetZ-Chapter 03.indd 134 9/22/06 11:43:30 AM9/22/06 11:43:30 AM

Incoherent ITIL
The ITIL defi nition of Service Request is “every Incident not being a failure in the IT
infrastructure.”

The defi nition of Incident is “any event that is not part of the standard operation
of a service and that causes, or may cause, an interruption to, or a reduction in, the
quality of that service.”158

Translation: A Service Request is, or may be, an interruption.
This is incoherent at best and perverse at worst. Service requests are part of nor-

mal operations. They are not interruptions.
RFCs might be seen as more closely related to Incidents, because these do

pose a risk. However, changing systems is in a larger sense part of standard value
chain activities, as opposed to true Incidents, which are usually understood to be
unforeseen.

A critical distinction is that between Service Request and Project initiation. The
service management architects will need to pay close attention to the differences
among Service Offerings that may be straightforward products, Service Offerings
that are more open ended (analogous to professional services or consulting), and
work requests that should not be framed as Service Requests but should be routed to

FO
O

D
FOR THOUGH

TFO
O

D
FOR THOUGH

T

Figure 3.9 Service Request context.

Request
for Change

Service
Request

Service Offering

Service

Ordered
Service

Application

Hosting ServiceOrderable
Service

1

*

1

*

 3.3 IT Process Entities 135

BetZ-Chapter 03.indd 135BetZ-Chapter 03.indd 135 9/22/06 11:43:30 AM9/22/06 11:43:30 AM

136 chapter three A Supporting Data Architecture

demand management. Alternatively, the architects might view a Demand Request
as a type of Service Request and drive to a more generalized approach (the “single
pane of glass” philosophy).

See the “Clarify Service Entry Points” pattern in Chapter 5.
A Service Request is not a CI. It has a defi ned life cycle and typically fi gures in

only one Business Process—its own fulfi llment.

Service Request–Service Offering
A common relationship pattern is that Service Requests turn Service Offerings into
Services.

Service Request–Service
A Service Request may occur with respect to an already-delivered Service. See the
discussion later in this chapter.

Risk

When a resource becomes essential to competition but inconsequential to
strategy, the risks it creates become more important than the advantages
it provides.

—Nicholas Carr159

A Risk is a known possibility of adverse events, usually described by 1) likelihood of
happening and 2) cost of occurrence. Risks are best seen as directly applying to CIs;
a defi ciency of modern risk management software is that it is often designed in a
vacuum, with the risk management team entering their own representations of CIs,

Figure 3.10 Risk context.

Configuration Item (CI)Project

Request
for Change

Risk

Any other entity

BetZ-Chapter 03.indd 136BetZ-Chapter 03.indd 136 9/22/06 11:43:31 AM9/22/06 11:43:31 AM

such as Application and Process, and not looking to a common system of record for
this reference data. See the CMDB-based risk management pattern in Chapter 5.

Risk Relationships
Risks may theoretically be associated with virtually any entity in the model, but the
primary targets should be CIs, Projects, and Change requests.

Account and Cost

An Account is a fi nancial construct. According to Wikipedia, it is “a record of an
amount of money owned or owed by or to a particular person or entity, or allocated
to a particular purpose.”160 Other terms are “cost center” and “charge code.”

The relationships of Account were not included in the main data model because
of graphical complexity issues. Account is typically tied to a number of different enti-
ties, depending on the fi nancial management approach being used (Figure 3.11).

Account might also be tied to any arbitrary CI, but this can imply considerable
complexity.

Cost is an attribute, not an entity, and therefore does not appear in the
 conceptual model. Cost might be an attribute on any of the entities surrounding
Account in Figure 3.11 and others (e.g., lower-level entities supporting Service,
such as Application or database). A CMDB technically might allow any entity (not

Figure 3.11 IT accounting relationships.

Configuration Item (CI)

Account

Project

Asset Contract

Program

ServiceService Offering

Service Request

 3.3 IT Process Entities 137

BetZ-Chapter 03.indd 137BetZ-Chapter 03.indd 137 9/22/06 11:43:31 AM9/22/06 11:43:31 AM

138 chapter three A Supporting Data Architecture

just CIs as defi ned in this book) to have an associated cost, and determining which
CIs might appropriately have a cost would be an important implementation task.

One common issue is allocation. If a given entity instance is related to one and
only one Account, it “rolls up” and fi nancial management is simpler—the account
holders know that they bought the whole item. This is represented as a one-
to-many relationship (Figure 3.12).

However, if the costs for a given IT item are to be split across multiple accounts,
it turns the relationship into many to many, requiring resolution with a specifi c
allocation percentage (Figure 3.13).

Attributes
Percentage, the fi rst attribute, has appeared. This book does not go into much detail
about attributes.

For example, if a network Service is shared across several accounts, a percentage
allocation must be established for each Account (Figure 3.14).

Direct versus allocated (or indirect) costs are a substantial management chal-
lenge in IT. The desire for fi nancial visibility runs into the issue of “dollars chasing

AU

THOR'S NOTEAU

THOR'S NOTE

Figure 3.12 Account and wholly owned item.

Wholly owned itemAccount
1 *

Figure 3.13 Model for allocating across accounts.

Account Allocated item
* *

The total of Percentage
across the relationships
from an Allocated Item
to its Accounts must
equal 100%.

Allocation

+ Percentage: int

BetZ-Chapter 03.indd 138BetZ-Chapter 03.indd 138 9/22/06 11:43:31 AM9/22/06 11:43:31 AM

dimes”: the costs of managing the direct allocations outweigh the benefi ts in having
granular visibility. In ITIL’s words, the risk is that “the IT Accounting and Charg-
ing processes are so elaborate that the cost of the system exceeds the value of the
information produced.”161 This book takes no position on what is an appropriate
level of complexity but rather seeks to describe the general case capabilities needed
to support a variety of approaches—one thing architects can be sure of is that
requirements will change.

As Jeff Kaplan notes,

Each IT service component (development, integration, help desk, network management,
data center operations, maintenance, etc.) has a unit cost. Unit cost is the cost of providing
one unit of service at predetermined service levels. Examples include cost per call, cost per
connection, and so on. The specifi c units used are less important than is measuring each

Figure 3.14 Example of allocated service.

Allocated Item

Allocation

+ Percentage: int

Account

«instanceOf»

«instanceOf»
«instanceOf»

*

Corporate Services:
Account

Marketing and Sales:
Account

Network Service:
Allocated Item

Manufacturing:
Account

*

40%: Allocation

30%: Allocation

30%: Allocation

 3.3 IT Process Entities 139

BetZ-Chapter 03.indd 139BetZ-Chapter 03.indd 139 9/22/06 11:43:32 AM9/22/06 11:43:32 AM

140 chapter three A Supporting Data Architecture

service’s variance from the standard cost. Using cost accounting, organizations should set a
standard cost per unit for each service and project, based on the expected cost of providing
an incremental unit of service.162

This passage, although informative, requires some thought to interpret as a
requirements specifi cation. First, the distinction between orderable and nonorder-
able services becomes important. A nonorderable service by defi nition has a large
fi xed cost that can be allocated arbitrarily against a user base, but doing so might
not be advisable. For example, consider an investment in a high-capacity customer-
facing online order system. This system must be kept running regardless of work-
load, and the marginal cost for heavy use as opposed to no use may be negligible.
In naïve chargeback models, cost to the customer will vary inversely with usage, and
this does not help IT credibility. (Even worse is when a unit’s cost goes up—with
stable consumption—because another unit has decreased its consumption.)

The concept of activity-based costing is a signifi cant departure from older costing
approaches. This book’s interpretation of activity-based costing requirements applied to
IT is that a concept of the business transaction is needed (this is the true “activity”).

Role Management

The core data model has no Roles or people in it. This is deliberate. Organizational
approaches to managing the processes and their data will vary, titles will change, and
in general the human organization will be more fl uid than the core ITSM and meta-
data concepts. Therefore, the Role structure is generalized; Parties (people or groups
composed of other parties) have Roles with respect to any entity in the model.

Party, Person, and Group

A Party is either a group or a person, people are members of groups, and groups can
contain other groups. The following are all Parties:

� Oracle Incorporated
� Bill Smith
� Support group APPL-2-CNS
� IT Service Management Forum

Party is a controversial concept in data modeling, because business users do
not understand it. They understand concepts like “administrator” or “steward.”
 However, these are Roles. (These are well-understood issues in data modeling.)

The human
organization will
be more fl uid
than the core
ITSM and meta-
data concepts.

The human
organization will
be more fl uid
than the core
ITSM and meta-
data concepts.

BetZ-Chapter 03.indd 140BetZ-Chapter 03.indd 140 9/22/06 11:43:32 AM9/22/06 11:43:32 AM

Roles
Here are some example Role types and the entities they might interact with. Note
that ITIL and other industry sources, such as the Enterprise Computing Institute,
go into some depth about this, so this section doesn’t include an exhaustive survey.

Role Entity Notes

Requester Service request
(as related to
Service Offering
or Service)

A requester can request a new instance of a Service
Offering (which becomes a new service) or can request
a Change to an existing Service.

Support group Usually
 Application

A support group would usually be a group associated
with one or more Applications. Sometimes, a support
group might be associated with a Technology Product
(e.g., a Windows Engineering group).

Developer Project (prefer-
ably related to
Release and
Application)

A developer carries known expertise on a given
system. For any Application, a complete record of all
developers (especially at the senior level) who worked
on it is recommended. To provide value, this list
might be sorted by hours worked on the system; those
who spent the most time on the system would be of
highest interest. Other software development roles
(e.g., architect, tester, and analysis) could be handled
analogously.

(continued)

Figure 3.15 Role model.

Party

Group Individual

Any other entityRole

 3.3 IT Process Entities 141

BetZ-Chapter 03.indd 141BetZ-Chapter 03.indd 141 9/22/06 11:43:32 AM9/22/06 11:43:32 AM

142 chapter three A Supporting Data Architecture

Role Entity Notes

Release man-
ager

Project, Release,
Change

A release manager is responsible for coordinating the
output of a project into releases to be accepted into
production.

Change
coordinator

Change A change coordinator is responsible for the successful
execution of one or more Changes. They may be part of
a specifi c capability team or part of an enterprise change
team.

Operational
change
approval group

Operational CIs An operational change approval group is often seen as
a dynamic entity, composed of representatives from the
support groups associated with the CIs in question, as well
as overall change coordination from a central enterprise
group. Often, the change approval group may have stand-
ing representation from major technology product areas
(e.g., Unix engineering or network engineering) or other
operational capabilities (e.g., security).

Here is a common Role type that may be problematic:

Change
 Advisory Board

Any CI ITIL calls for a unitary Change Advisory Board, admit-
ting that the composition of that group may vary even
within a single meeting.163 However, different CIs may
have radically different stakeholders. For example, if a
Contract is a CI, it should be under change control, but
the change approvers would be the senior IT executives,
the contract offi ce, and legal—your engineers would not
be involved. The concept of a Change Advisory Board
becomes so general that its usefulness is questionable.
The better understood use of change approver is with
respect to Production CIs. See the “Clarify Service Entry
Points” pattern in Chapter 5 and related discussions
throughout.

Support roles for a Service (e.g., an Application) may be ordered, which requires
an escalation path (Figure 3.16).

Escalation paths may be of several types, typically functional and hierarchical; a
functional escalation path is, for example, from level 1 to level 2 to level 3 support,
and a hierarchical escalation path might walk the organization chart from applica-
tion manager to director to vice president. Specialized escalation paths to technical
subject matter experts (e.g., database administrators and senior software engineers)
may also exist; alternately, the escalation path may become a tree with decision
points and not just a linear progression.

BetZ-Chapter 03.indd 142BetZ-Chapter 03.indd 142 9/22/06 11:43:32 AM9/22/06 11:43:32 AM

Classifi cation

Taxonomies are used extensively in IT information management, for the same
 reasons they are used in science and other fi elds requiring knowledge management.
A hierarchical tree structure is an intuitive and effective way to manage complexity.
Typical taxonomies encountered in internal IT systems are functional decomposi-
tions, data subject hierarchies, application and technology categorizations, and so
forth. There are commercial providers of taxonomies.

There is overlap between this entity and other treelike structures. The differenti-
ation is that a classifi cation taxonomy is merely a lightweight conceptual structure.
Each node is of the same basic type. One does not typically establish dependencies
between the taxonomy nodes or assign extensive attributes to them.

A valuable use of the taxonomy concept is to identify overlap or redundancy, for
example, in an application portfolio. See the “Taxonomy-Based Rationalization”
pattern in Chapter 5.

Figure 3.17 Classifi cation taxonomy.

Classification Any other entity

*1

 3.3 IT Process Entities 143

Figure 3.16 Escalation.

Party

RoleEscalation Path

Escalation
order

Service

BetZ-Chapter 03.indd 143BetZ-Chapter 03.indd 143 9/22/06 11:43:33 AM9/22/06 11:43:33 AM

144 chapter three A Supporting Data Architecture

 3.4 The Confi guration Item and Its Subtypes

The Base Technology Stack

Before discussing the particulars of the CI and its subtypes, some discussion of the
general IT stack is called for.

The concept of a “stack” has a long history in information technology, perhaps
originating with the OSI networking model. In ITSM, an extended stack is often
depicted something like the one shown in Figure 3.18.

Figure 3.18 shows a stylized representation of concepts present in much ITSM
literature, advertising, and so on. One thing that all of these concepts have in com-
mon is that they may be seen as CIs.

CI is one of the most necessary yet problematic concepts in IT governance. It
is highly abstract: any managed “thing” in the environment, from an individual
computer chip to an entire mainframe, can be a CI. This high level of generality
makes the concept diffi cult to manage from the perspectives of process, data, and
Application.

The ITIL defi nition of CI is as follows:

[A CI is a] Component of an infrastructure—or an item, such as a Request for Change,
associated with an infrastructure—that is (or is to be) under the control of confi guration
management. CIs may vary widely in complexity, size, and type, from an entire system
(including all hardware, software, and documentation) to a single module or a minor hard-
ware component.164

A CI is a man-
aged, specifi c
object or ele-
ment in the IT
 environment. It is
one of the most
 problematic
concepts in IT
governance.

A CI is a man-
aged, specifi c
object or ele-
ment in the IT
 environment. It is
one of the most
 problematic
concepts in IT
governance.

Figure 3.18 The generic IT stack.

Business Process

IT Service

Software System

Database

Server

Network

BetZ-Chapter 03.indd 144BetZ-Chapter 03.indd 144 9/22/06 11:43:33 AM9/22/06 11:43:33 AM

The preceding sentences are imprecise from a data management point of view.
Essentially, a CI as it is viewed by ITIL could be construed as any piece of data
representing any IT concept. The phrase “item, such as a Request for Change, asso-
ciated with…” extends the CI concept unmanageably—every data element in the
IT problem domain becomes a CI. There is then a paradox: if an RFC is a CI, and
a CI by defi nition is under change management, that means the RFC requires an
RFC requires an RFC, and so forth.

Here is the ITIL specifi cation as it describes the interrelationships of CIs:

Confi guration structures should describe the relationship and position of CIs in each
structure…. CIs should be selected by applying a decomposition process to the top-level
item using guidance criteria for the selection of CIs. A CI can exist as part of any num-
ber of different CIs or CI sets at the same time…. The CI level chosen depends on the
business and service requirements.

Although a “child” CI should be “owned” by one “parent” CI, it can be “used by”
any number of other CIs….

Components should be classifi ed into CI types…. Typical CI types are: software
products, business systems, system software…. The life-cycle states for each CI type should
also be defi ned; e.g., an application Release may be registered, accepted, installed, or
 withdrawn….

The relationships between CIs should be stored so as to provide dependency infor-
mation. For example,…a CI is a part of another CI…a CI is connected to another CI…a
CI uses another CI….165

This is again highly general. One issue in the industry is that some vendors
have interpreted this specifi cation to allow their customers too much freedom in
defi ning CIs and their relationships. In some tools, a Server might be “a part of” a
random access memory (RAM) chip; a printer might be “connected to” an exten-
sible markup language (XML) schema—connections that obviously do not make
logical sense.

More rigor is necessary. This analysis refi nes the ITIL representation and
makes it more specifi c by applying data modeling (metamodeling) principles.

� For this book, a CI is a managed, specifi c object or element in the IT
environment.

� A CI by defi nition is under change control of some form.
� Typically, a CI also has an indeterminate life cycle, unlike a Project, Service

Request, or Incident; these are events and defi ned and tracked partly in terms of
their closure.

Every data ele-
ment in the IT
problem domain
becomes a CI.

Every data ele-
ment in the IT
problem domain
becomes a CI.

A CI typically
has an indeter-
minate life cycle,
unlike a Project,
Service Request
or Incident; these
are defi ned and
tracked partly
in terms of their
closure.

A CI typically
has an indeter-
minate life cycle,
unlike a Project,
Service Request
or Incident; these
are defi ned and
tracked partly
in terms of their
closure.

 3.4 The Confi guration Item and Its Subtypes 145

BetZ-Chapter 03.indd 145BetZ-Chapter 03.indd 145 9/22/06 11:43:33 AM9/22/06 11:43:33 AM

146 chapter three A Supporting Data Architecture

� CIs are not instances of activities, although an activity defi nition may be a CI.
They are real, not abstract.

� CIs typically also participate in multiple IT processes. If something is relevant
only to one IT process, it is probably not a CI.

Applying the preceding principles means that certain things are not CIs, such
as the following:

� Strategies, Programs, Ideas, Demand Requests, and Projects (Projects may have
multiple CIs within them, but they themselves are not CIs)

� Events
� Incidents and Problems
� Requests for Change
� Service Requests (but a Service Offering is a CI)
� Data records in databases and fi les generally; they are under the “change control”

of the accessing Application
� CI records (the representation is not the object); however, see the discussion of

the Metadata CI type

CIs should always be specifi c. “Oracle Financials,” if present in the environ-
ment, would be a logical CI, containing and using many physical CIs (e.g., software
Components and Datastores). A Generic “Human Resource Management Applica-
tion” as a reference category would not be a CI.

CIs have subtypes, and those subtypes in turn can have subtypes. Figure 3.19
shows one representation.

The major types of CIs are as follows:

� (Base) CI
� Operational CI
� Production CI

They are “nested” (Figure 3.20).
This means that an Operational CI is also a base CI and a Production CI is also

an Operational CI and a base CI.
Subtyping is often overapplied. An important reason to subtype (in concep-

tual modeling) is if a subtype can have a relationship that the parent does not
 participate in. Figure 3.21 shows this clearly: a Change can apply to any CI or
subtype, a measurement can apply to an Operational CI or a Production CI, and
an Event can only be associated with a Production CI.

Again, can a Contract have an Incident?

This architecture
proposes three
major categories
of CIs: base,
Operational, and
Production.

This architecture
proposes three
major categories
of CIs: base,
Operational, and
Production.

Servers and
 Applications can
have Incidents
and Known
 Errors—but can
a Contract?

Servers and
 Applications can
have Incidents
and Known
 Errors—but can
a Contract?

BetZ-Chapter 03.indd 146BetZ-Chapter 03.indd 146 9/22/06 11:43:34 AM9/22/06 11:43:34 AM

Fi
gu

re
 3

.1
9

D
et

ai
le

d
C

I t
ax

on
om

y.

C
on

fig
ur

at
io

n
Ite

m
 (

C
I)

A
ss

em
bl

y
C

I
D

oc
um

en
t

O
pe

ra
tio

na
l C

I

M
et

ad
at

a
C

on
tr

ac
t

S
er

vi
ce

 O
ffe

rin
g

Te
ch

no
lo

gy
 P

ro
du

ct
A

ss
et

P
ro

du
ct

io
n

C
I

S
er

vi
ce

B
us

in
es

s
P

ro
ce

ss
D

ep
lo

ye
d

O
bj

ec
t

D
ep

lo
ye

d
S

of
tw

ar
e

S
ys

te
m

D
ep

lo
ye

d
C

om
po

ne
nt

D
at

as
to

reD
ep

lo
y

P
oi

nt

O
S

 In
st

an
ce

 (
S

er
ve

r)

M
ac

hi
ne

A
pp

lic
at

io
n

O
rd

er
ed

 S
er

vi
ce

H
os

tin
g

S
er

vi
ce

O
rd

er
ab

le
S

er
vi

ce

M
et

ric

 3.4 The Confi guration Item and Its Subtypes 147

BetZ-Chapter 03.indd 147BetZ-Chapter 03.indd 147 9/22/06 11:43:34 AM9/22/06 11:43:34 AM

148 chapter three A Supporting Data Architecture

Figure 3.20 CI subtypes.

Configuration Item (CI)

Operational CI

Production CI

Figure 3.21 CI subtypes and key relationships.

Configuration
Item (CI)

Metric

Event

Request for
Change

Production CI

Operational
CI

BetZ-Chapter 03.indd 148BetZ-Chapter 03.indd 148 9/22/06 11:43:34 AM9/22/06 11:43:34 AM

Logical and Physical Confi guration Items

CIs can be logical or physical. From the top down versus from the bottom up is
another way to think of this distinction: logical are from the top down, physical are
from the bottom up.

Physical in this case means no ambiguity about the boundaries of the CI (even
if it is only transient bits on volatile storage). Logical means that some consensus is
required to set the bounds of the CI.

Applications (especially those built in-house), Processes, and Services in the ser-
vice catalog sense are the best examples of logical CIs. Machines, Components,
fi les, and network-addressable Web services are physical CIs. Managing logical CIs
is challenging and requires a clearly defi ned process to establish the bounds of this
potentially blurry “thing.”

Discussion of Logical Applications
Chris: What’s the big deal with applications and how they’re “logical”? You’ve

been harping on that all day.
Kelly: I found a diagram in some of your system literature.

Applications,
Processes, and
Services in the
service catalog–
sense are logical
CIs. Machines,
Components,
fi les, and net-
work-addressable
Web services are
physical CIs.

Applications,
Processes, and
Services in the
service catalog–
sense are logical
CIs. Machines,
Components,
fi les, and net-
work-addressable
Web services are
physical CIs.

DIALOGDIALOG

Figure 3.22 Application and boundaries.

qdx.exe qd2.dll

qwe.c

qd1.dll

af5.bat umt.shfgr.pl

xfr.sh trf.exe

Quadrex

qdi.exe

 3.4 The Confi guration Item and Its Subtypes 149

Table 3.1 Logical versus Physical CIs

Logical CI Physical CI

Application Component

Process Datastore

Service Deploy point

Technology Document

BetZ-Chapter 03.indd 149BetZ-Chapter 03.indd 149 9/22/06 11:43:35 AM9/22/06 11:43:35 AM

150 chapter three A Supporting Data Architecture

It’s the perfect example. Those little boxes with “dog ears” are a standard represen-
tation (from UML) of software Components. Notice how they are named—that’s
what you would see on the Servers supporting the application. The functionality
as a whole is named Quadrex; that’s how you refer to it in meetings and in the
halls—but there is no such thing as far as your computers are concerned.

One question: Is “xfr.sh” part of the application? The Quadrex team told me
that it’s an extract job for data going to the TSI system. The TSI team told me they
don’t think they support it. Who does? Most organizations have such “gray area”
questions, and clarifying the application portfolio’s ownership can help reduce the
risk of fi nger-pointing and ineffective response to service outages.

The Base Confi guration Item

The next set of defi nitions focuses on the base CIs, as shown in Figure 3.23.
The base CI is the master category that all CIs belong to. It is any “thing” in the

IT environment that requires management (usually defi ned as being under change
control of some sort).

CIs have differing levels of involvement in day-to-day service management and
production processes. The base CI includes documentation and the defi nitions of

Figure 3.23 Base CIs and relationships.

Configuration Item (CI)

Assembly CI

Document

Metadata

ContractMetric Agreement

Operational CI

Production CI

Any process entity

BetZ-Chapter 03.indd 150BetZ-Chapter 03.indd 150 9/22/06 11:43:35 AM9/22/06 11:43:35 AM

service-level measurements, objectives, and agreements. Any type of CI may be
involved in an RFC.

Change control for items that are not Production CIs (not operational or pro-
duction) may or may not be formalized. For example, the service management
group may defi ne Service Offerings, or the asset m anagement group may add
new Assets, without going through the highest-formality change control processes
reserved for Production CIs.

An Operational CI is distinguished from the other base CI types as something
that is involved in day-to-day Business Processes, that can be measured, and that is
a primary entity in the service management workfl ow.

A Production CI refi nes the concept of Operational CI to include the core CIs
that may be involved in Incidents and have Known Errors. (Think data center, or
production workstation.) Change control for Production CIs is usually a formal,
high-visibility process that is what many enterprise IT people think of when refer-
ring to “the change process.”

Why Several Categories of CI?
Chris: So, I’m seeing that a Document is a CI—OK. And an Operational CI is a

CI? What do the italics in the diagram mean?
Kelly: The italics mean that something can’t only be an Operational CI or a CI itself.

It has to be something under the box with italics: in this case, a Service Offer-
ing, Technology Product, Asset, or something under Production CI.

Chris: Why do we bother with these detailed types anyway?
Kelly: It’s all about being precise. Suppose that we just had one category of

CI that included Documents, Service Offerings, and Contracts, as well as
Servers and Applications. Servers and Applications can have Incidents and
Known Errors—but can a Contract? Not really. This is fundamental infor-
mation modeling; people can spend their whole careers specializing in
describing data structures precisely. Without this precision, your CMDB is
at risk.

Assembly CI

CIs require grouping for various reasons, such as supporting a Release, a Service
map, or a Service Request. The assembly CI leverages the “owns” and “participates”
relationships to support this.

An Operational
CI is something
that is involved
in day-to-
day business
 processes,
that can be
 measured, and
that is a primary
 entity in the
 service manage-
ment workfl ow.

An Operational
CI is something
that is involved
in day-to-
day business
 processes,
that can be
 measured, and
that is a primary
 entity in the
 service manage-
ment workfl ow.

DIALOGDIALOG

 3.4 The Confi guration Item and Its Subtypes 151

BetZ-Chapter 03.indd 151BetZ-Chapter 03.indd 151 9/22/06 11:43:35 AM9/22/06 11:43:35 AM

152 chapter three A Supporting Data Architecture

Document

SLAs, underpinning contracts and OLAs…should be brought under
Change Management control….

—ITIL166

A Document may be a CI if its existence and content are signifi cant enough to IT
service delivery to warrant formal change control. It may apply to any CI or CIs,
and any CI may have multiple Documents. There are of course many other types
of Documents, and not all are under change control (which means they are not
CIs). Another class of Documents that are usually under change control is the class
of project Documents. However, this change control is usually at the project level,
and ITIL specifi cally avoids discussing it.

Important types of Documents (not modeled) are Requests for Information
(RFIs) and Requests for Proposal (RFPs).

Metadata

In this model, Metadata is nonruntime structured information related to the IT
environment. This is a refl exive (self-referential) concept in the CMDB. A clear
example would be the relationship between a data model (metadata) and the physi-
cal production data structure it represents (Datastore). The contents of the CMDB
are all Metadata.

Metadata has a more general computing sense in which it is “data about data.”
However, because data about data exists throughout IT elements such as fi le sys-
tems and confi guration fi les, this is not a useful defi nition for this model. There is
the conceptual issue of how to distinguish Metadata from general aspects of stored-
program computing architecture (taken to the extreme, all processing instructions
are data about data).

Metadata can be deployed to an operational context (sometimes by transforma-
tion), which makes it runtime. In such cases, the Metadata becomes a Component
or a Datastore: for example, a logical data model from which an actual database
schema on a running Server is generated. In this case, the database schema as a
Datastore CI might be related to the logical data model, as a Metadata CI. Another
example would be a BPEL process defi nition generated from a visual fl owchart.
When such a transformation happens, the transformed runtime artifact by defi ni-
tion is no longer Metadata. It is computing architecture and impossible to distin-
guish from general aspects of stored program computing.

The contents
of the CMDB are
all metadata.

The contents
of the CMDB are
all metadata.

BetZ-Chapter 03.indd 152BetZ-Chapter 03.indd 152 9/22/06 11:43:36 AM9/22/06 11:43:36 AM

Because it is by defi nition nonruntime, keeping Metadata in synch with the real
processing architecture is a continual problem, addressed by tools such as scanners
and techniques such as model–database comparison.

Some have called for “real time” or “embedded” Metadata, which would imply
continuous introspection into live production infrastructure. The performance and
security implications of this are nontrivial, and there are value-adding aspects to
offl ine Metadata (e.g., verbose text defi nitions and logical dependencies) that will
never be directly represented or identifi able in a production infrastructure.

Metadata as a CI is a riddle;167 it suffers from the same problem noted pre-
viously if Change records were considered CIs—the Metadata has Metadata has
Metadata, and if all is under change control, the infi nite loop can’t be resolved and
no changes can take place. However, because there is precedent for Documents as
CIs, it is conceivable that some Metadata (e.g., as a fi xed form or structured project
document) may be under change control.

This is one of the more diffi cult conceptual areas in this book, dealing as it does
with “thing” and re-presentation of “thing.” Metadata is re-presentation. It is not
the thing.168

Contract

A Contract is an Agreement between (usually) two parties with authority in the overall
IT service context. A Contract may enumerate several formal agreements, based on
objectives for measurements of CIs. Contracts are often the subject of intense scrutiny,
and their signing is (or should be) a visible event. However, usually a contract manage-
ment offi ce performs this particular type of change control, and it is not part of the
mainstream “change process” as generally understood in most IT organizations.

Contract–Agreement
A Contract may document many Agreements (e.g., SLAs), in turn based on Metrics.

Contract–Asset
A Contract may be the source documentation for the acquisition of certain Assets,
especially if the defi nition is broadened to include invoices.

Metric

A Metric is a defi ned, specifi c characteristic of a CI or a process entity, amenable to
capture and verifi cation. Metrics are the basis for process control.

Keeping
 Metadata in
synch with the
real processing
architecture
is a continual
problem.

Keeping
 Metadata in
synch with the
real processing
architecture
is a continual
problem.

A Contract is
an agreement
 between two
parties with
authority in the
overall IT service
context.

A Contract is
an agreement
 between two
parties with
authority in the
overall IT service
context.

A measurement
defi nition is a CI
because it repre-
sents the criteria
on which IT ser-
vice performance
is measured.

A measurement
defi nition is a CI
because it repre-
sents the criteria
on which IT ser-
vice performance
is measured.

 3.4 The Confi guration Item and Its Subtypes 153

BetZ-Chapter 03.indd 153BetZ-Chapter 03.indd 153 9/22/06 11:43:36 AM9/22/06 11:43:36 AM

154 chapter three A Supporting Data Architecture

(Process entities include all the non-CI entities, e.g., Incident, Problem, and
Change.)

Metrics typically vary over time. Specifi c means that it is one of the basic levels
of measurement: nominal, ordinal, interval, or ratio. This conceptual entity encom-
passes both the defi nition of the Metric and the implication of its specifi c instances.
Metrics typically nest in a hierarchy, moving from the more technical and specifi c
to the more general and strategic.

A Metric is meaningless without the context of a CI (often a Process, but per-
haps a Service). Metrics have objectives as an associated concept (not shown in the
model). An objective is, with respect to a Metric, what the Metric ought to be. This
specifi cally supports the concepts of service-level objective and operational-level
objective, where a service provider may have informal service targets that are not
the subject of an Agreement.

A measurement defi nition is a CI because it represents the criteria on which IT
service performance is measured.

Metrics may be called for concerning the following, among other IT processes,
functions, and characteristics:

� IT fi nancial management
� Availability
� Capacity
� Integrity
� Security
� Disaster recovery
� Performance
� Training
� User support
� Change management

Specifi c measurement approaches will be discussed in the design patterns
section.

Note that the Metric entity is the defi nition of a Metric, such as “unsched-
uled Changes,” “transactions per second,” “average response time,” or “downtime.”
Such defi nitions are not themselves measurable—think about it. But they might be
under change control as a basis for contractual agreements.

The ITIL section on IT fi nancial management calls for a resource cost unit; this
is a type of Metric applicable to various CIs.169

BetZ-Chapter 03.indd 154BetZ-Chapter 03.indd 154 9/22/06 11:43:37 AM9/22/06 11:43:37 AM

Metrics may use or contain other Metrics; taking this functionality to an extreme
will result in the need for mathematical expression management (metric A = metric
B × metric C, etc.).

Metrics are described by Metadata. See the Common Warehouse Metamodel’s
Expressions, Transformation, Information Visualization, and Information Report-
ing packages for detailed discussion.170

The focus in this discussion is Metric as applied to ITSM; Metric also applies
more generally to business decision support. A Service may consist of delivering
Metrics to an executive dashboard by a certain time every day.

Metrics are directly linked to Strategies; this linkage is essential for applying
business performance management principles to IT governance and, for example,
building effective digital dashboards.

Agreement

An Agreement is between two parties with respect to a measurement, for example,
a service level, operational level, or some other aspect of a CI. A Contract may have
many Agreements.

Agreements and Related
Chris: OK, how does this all fi t together? Document, Contract, Agreement, Mea-

surement? Seems a little elaborate.
Kelly: Let’s walk through a couple cases.

� An email Service where you are guaranteeing 2-day turnaround on 95%
of email requests on average, as an SLA to the client

� A consolidated database farm where you are guaranteeing 99.995%
uptime as an OLA to your application teams
The email account provisioning is a Service Offering, and each account

request is a Service. Both are CIs; therefore, they can both have measure-
ments. The measurement for the Service Offering might be “Aggregate %
Turnaround in Days.” Each individual Service has associated workfl ow that
tells you the request date/time and the completion date/time. Those mea-
surements are aggregated into the overall Service Offering measurement.

The objective for that measurement might be “< = 2 Days for 95%.” (There
are precise ways to represent this so that a service management application

An agreement is
between two par-
ties with respect
to a service level,
operational level,
or some other
aspect of a CI.

An agreement is
between two par-
ties with respect
to a service level,
operational level,
or some other
aspect of a CI.

DIALOGDIALOG

 3.4 The Confi guration Item and Its Subtypes 155

(continued)

BetZ-Chapter 03.indd 155BetZ-Chapter 03.indd 155 9/22/06 11:43:37 AM9/22/06 11:43:37 AM

156 chapter three A Supporting Data Architecture

can accurately calculate it.) However, that objective is just an informal stake
in the ground until it is the subject of an Agreement between two parties. And
as we all know, if those two parties are within the service provider it is an
operational-level agreement (OLA); if one is the client and one is the service
provider it is an SLA. That particular SLA might be part of a broader Contract
specifying all aspects of the relationship between client and provider. That
Contract in turn is a Document and therefore a CI—and hopefully a Contract
is under change control. But again, is it managed by exactly the same pro-
cesses and systems that handle the deployment of software in a data center?
Perhaps, but probably not.

Chris: What about the database farm?
Kelly: That’s simpler. Let’s assume it’s a nonorderable Service (it was purpose

built for a suite of applications and no more databases will be hosted
there). The only thing different from the email case is that it’s not a Ser-
vice Offering; the measurement (e.g., availability with an objective of
99.99%) is on the Service. Aggregation is still necessary at a technical
level, however, and that’s where you get into the relationship between
the Service-level management capability and the lower-level monitoring
architecture.

As noted in the ITIL Service Delivery volume, agreements may be effectively
managed at the corporate, customer, and service levels. See the discussion on role
management, which is applicable here (any Party—organization or person—may
have an interest in an Agreement).

Note that many components of an SLA would not be discrete measurements:
narrative discussions on overall service scope, discussions of continuity man-
agement, chargeback formulae, and other aspects. The general problem is that
of structured versus unstructured data; unstructured is easier to capture but more
diffi cult to objectively manage, and the converse for structured data.

Confi guration Item Dependencies

The arbitrary dependencies available on the CI concept are risky. They can enable
a nonsensical connection, such as a (software) Component containing a (hardware)
Machine. Arbitrary dependencies (contains and uses) are useful for CIs of the same
type or for grouping CIs into manageable packages. But allowing them generally to
be used by CMDB users may result in poor data quality and misalignment among
different people’s concepts of IT service modeling.

Allowing CMDB
users the use
of uncontrolled
 generic depen-
dencies may
result in poor
data quality.

Allowing CMDB
users the use
of uncontrolled
 generic depen-
dencies may
result in poor
data quality.

BetZ-Chapter 03.indd 156BetZ-Chapter 03.indd 156 9/22/06 11:43:37 AM9/22/06 11:43:37 AM

For further information, see the section on networks and trees (recursive
 relationships).

We Shouldn’t Need Confi guration Management Black Belts
From www.erp4it.com

More evidence that the theoretical critique of current CMDBs is refl ected in peo-
ple’s practical diffi culties.

It’s been reported to me that a large fi rm in my area that uses a prominent
CMDB tool has determined that its conceptual fl exibility is hard to manage. They’ve
had to lock data entry down to a small group of confi guration management “black
belts.”

This is a natural consequence of an overly generic data structure; what these peo-
ple are essentially doing is building a more precise, de facto consensus information
model (metamodel, if you will), which they are enforcing through their group process
and joint understanding. This is an unsustainable approach. They are forced into this
because the tool does not allow this to be done automatically through declarative
constraints, which is how we ought to manage complex data, according to well-
established data management principles.

This is why a black belt team emerges when such tools are purchased: a consen-
sus starts to build that, “yes, this service (as in SLA) is a CI, and yes, this hard drive
is a CI, but we are not going to directly link the two—instead, we will put the drive
in a SAN cabinet, allocate it to a mount point, deploy a database to it, assign the
database to an application system, and fi nally create a dependency between the SLA
service and that application.” But no automatic constraints enforce such relationships;
they are simply embedded in the group consensus that this is the way to do things.
Automating such a group consensus is exactly what data architecture (or object-
 oriented class design) is all about.

FO
O

D
FOR THOUGH

TFO
O

D
FOR THOUGH

T

Figure 3.24 CI dependencies.

(continued)

*

Uses

*1

Contains

*

Configuration Item (CI)

 3.4 The Confi guration Item and Its Subtypes 157

BetZ-Chapter 03.indd 157BetZ-Chapter 03.indd 157 9/22/06 11:43:37 AM9/22/06 11:43:37 AM

158 chapter three A Supporting Data Architecture

The scale of the confi guration management problem is huge, and to capture and
maintain such a mesh of data in a cost-effective way, we need a tool that will enforce
sensible data relationships when being used by a variety of staff (e.g., offshore
resources).

Again, the fundamental issue here is that CMDB tools vendors have taken the
ITIL requirements literally as data schema requirements and are basically deliver-
ing simplistic graph metamodels. From discussing the situation with longtime ITIL
thought leaders, it’s clear to me that this was never intended by those who built the
standard.

Usual rant: I don’t think that confi guration management will ever meet its goals
without adopting more explicitly defi ned metamodel semantics, such as those the
OMG (Object Management Group) has been painstakingly building.

Operational Confi guration Item

An operational CI refi nes the base CI concept by including things that are mea-
surable, which includes Service Offerings, Technology Products, and Assets. Opera-
tional CIs also are directly involved in the day-to-day provision of Services, but the
documentation-oriented base CIs are not.

Some Operational CIs are also Production CIs and will be described below.
The Operational CIs that are not Production CIs are Service Offering, Technology
 Product, and Asset.

Figure 3.25 Operational CI in context.

Configuration Item (CI)

Operational CI

Service Offering

Technology
Product

Production CI

Hosting
Service

Orderable
Service

*1

Metric

Asset

BetZ-Chapter 03.indd 158BetZ-Chapter 03.indd 158 9/22/06 11:43:38 AM9/22/06 11:43:38 AM

Operational CIs are under change control, but it is a different kind of change
management dependent on their specifi c life cycles. A Service Offering goes through
a different process than a change to a production application Server. Although
ITIL implies that CIs all participate in a generalized conceptual RFC process, some
might not leverage the high visibility change control process with its bias toward
production concerns.

For example, a new Technology Product will probably go through some sort of
adoption and certifi cation process, perhaps an architectural review led by the IT
organization’s designated stakeholders for that type of technology. But it probably
will not be a subject of change advisory board discussion, unless that Change Advi-
sory Board has the broad ITIL scope.

Asset

An Asset is a fi nancial concept. It shows up on the company’s balance sheet and
may be depreciable. The Asset concept is often one to one with Machines and
 Applications in terms of software licenses. However, a Machine may or may not
also be an Asset. Another option may be for turnkey systems including several
 Machines and Deployed Software Systems to be tracked as one Asset.

Some CIs might
not leverage the
high visibility
change control
process that is
usually focused
on the produc-
tion data center.

Some CIs might
not leverage the
high visibility
change control
process that is
usually focused
on the produc-
tion data center.

Figure 3.26 Asset context.

Deployed Software System

Machine

Technology Product Asset

Contract

*1

 3.4 The Confi guration Item and Its Subtypes 159

BetZ-Chapter 03.indd 159BetZ-Chapter 03.indd 159 9/22/06 11:43:38 AM9/22/06 11:43:38 AM

160 chapter three A Supporting Data Architecture

Assets and Confi guration Items
Chris: All right, you got me. When is a Machine not an Asset? It can be on the

loading dock and it should still show up on our books.
Kelly: Remember when we signed the deal with NexQ? Part of the arrangement was

that they would locate two of their management servers in our data center. Stuff
like that happens all the time nowadays. We track those servers as CIs; they
are attached to our network, they are mission critical, and we even pull data
off of them. But they aren’t ours and don’t show up on our balance sheet.

For software, the Asset is more or less equal to the software license. There is little
or no industry consensus as to whether to call systems built in-house Assets—they
may be built with capital budgets and depreciated, but often the expenditure is
simply considered as a Project.

There’s increasing awareness that systems developed in-house need to be man-
aged as a portfolio—what relationship this portfolio management concept has to
formal asset management is to be determined. Certainly, some of the background
and orientation of experienced asset management staff would be valuable to the IT
portfolio management objectives. Will asset management ultimately be seen as a
subset of IT portfolio management?

Assets should have asset tags and formal identifi ers, which should not be equated
with serial numbers. Some Assets simply don’t have them, and cases have arisen
in which serial numbers change but the Asset remains the same, for example, if
the serial number is tied to an assembly that is replaceable in the fi eld, such as a
machine motherboard.

When Assets are procured, their invoices should be provided in digital form
and should enumerate all purchased products by type, model, and serial number.
In this way, the incoming invoice can populate a database (asset management or
integrated asset/CMDB) directly or with a little translation. One poor practice is
when, for example, fi ve Servers are purchased and appear as a single line item—this
then requires further analysis and perhaps even physical inspection to determine
the actual Servers and their serial numbers (which are often miscaptured when
manually examined, rekeyed, or both).

Technology Product

The [IT] organization might hold the maintenance budget flat and
force a 5% to 10% productivity improvement. This requirement

DIALOGDIALOG

BetZ-Chapter 03.indd 160BetZ-Chapter 03.indd 160 9/22/06 11:43:39 AM9/22/06 11:43:39 AM

would drive IT implementers to design efficiencies into their
 applications and processes to achieve this goal [which] might
 motivate IT managers to consider additional criteria when evalu-
ating application concepts, such as asset utilization and projected
annual maintenance cost, putting pressure on the organization to
simplify the application architecture and minimize the number of
new platforms.

—Jeffrey Kaplan171

The concept of Technology Product is crucial for enterprise architecture and
 vendor management. A well-defi ned Technology Product database, with map-
pings to the specifi c Applications and Machines that depend on those products,
enables tracking the enterprise’s status with respect to product obsolescence,
portfolio simplifi cation, security issues, vendor support, and overall technical
road map. It also helps in Program estimation and is an input into infrastructural
drivers of IT cost.

The context diagram shown in Figure 3.27 elaborates on the conceptual
data model; there are a number of dependent entities not shown on the main
 diagram.

The Technology Product concept is a combination of the ITIL concept of
Definitive Software Library plus the various types of hardware devices approved
for the environment (note that this is not the same as the ITIL Definitive

A well-defi ned
Technology
Product data-
base, showing
dependencies on
technologies, is
critical for the
enterprise’s ven-
dor management
and technical
road map.

A well-defi ned
Technology
Product data-
base, showing
dependencies on
technologies, is
critical for the
enterprise’s ven-
dor management
and technical
road map.

Figure 3.27 Technology Product context.

Deployed
Software System

Service Offering Technology Product

Asset
Hosting
Service

Deployed
Component

Component

Software
 Product

Hardware
Product

Machine

*1

1 *

1 *

 3.4 The Confi guration Item and Its Subtypes 161

BetZ-Chapter 03.indd 161BetZ-Chapter 03.indd 161 9/22/06 11:43:39 AM9/22/06 11:43:39 AM

162 chapter three A Supporting Data Architecture

 Hardware Store, a supply of spares). Because of tightly coupled hardware–
 software solutions (e.g., routers with embedded firmware), it is not feasible to
separate Technology Products along strict hardware–software lines, although
some kind of categorization taxonomy is required for enterprise architecture
purposes.

New Technology Products require acceptance into the environment through
some sort of defi ned process. Often, this may be owned by an enterprise architec-
ture capability.

Technology products have versions; this is a complex problem relevant to many
other CI classes. See the versioning discussion in the “General IT Data Architecture
Issues” section later in this chapter.

One possible attribute for a Technology Product is a class of use, which might
represent various levels of availability or processing power: a class 1 designation
might include high availability, for example.

The concept of Technology Product would also be an appropriate place to link
the skills sets of IT staff. When a Technology Product is no longer supported, this
has an implication for human capital management—are those staff members with
strong expertise in the product being retrained?

Technology Product–Hardware and Software Product
Note that Technology Products may aggregate both hardware products and
 software products; many purchasable solutions include both, with some level of
independence—think of a Cisco router with its upgradeable fi rmware or a turnkey
 materials management system based on IBM iSeries (AS/400) computers.

Software products in turn contain Components; software products are logical,
and Components are physical. Software products are by defi nition not deployed.
Their deployments are represented by the concepts of Deployed Software System
and Deployed Component. This representation in particular draws on the con-
cise, elegant Software Deployment model from the OMG’s Common Warehouse
Metamodel.172

Technology Product–Asset
Technology products type Assets, which in turn are related (often, but not always, in
a one-to-one association) with Deployed Software Systems and Machines. Turnkey
systems combining both software and hardware will need to be carefully considered
here as to data capture approach.

It is diffi cult
to make a
 distinction
 between
hardware and
software for
 purchased Tech-
nology Products.

It is diffi cult
to make a
 distinction
 between
hardware and
software for
 purchased Tech-
nology Products.

When a Technol-
ogy Product is no
longer supported,
are those staff
members with
strong expertise
in the product
being retrained?

When a Technol-
ogy Product is no
longer supported,
are those staff
members with
strong expertise
in the product
being retrained?

BetZ-Chapter 03.indd 162BetZ-Chapter 03.indd 162 9/22/06 11:43:39 AM9/22/06 11:43:39 AM

Infrastructural IT Demand Drivers
Chris: Infrastructural drivers of IT cost? You lost me there…
Kelly: We understand when the business comes and asks us to build something.

Where we fall down is when Oracle decides to stop supporting Oracle
8, for example. Our business clients typically don’t have any awareness of
such shifts in the product landscape, but it’s a really big deal for us—we
have to go without support, pay an expensive (and less-qualifi ed) third
party for aftermarket support, or retest all our software on Oracle 9. Our
business clients wish that these kinds of costs would just go away, but it’s
not that easy.

The thing is, we knew 18 months or more in advance that Oracle 8
was going off support. We were kind of in denial about it, partly because
we didn’t have a good handle on our exposure. Now, with a complete
understanding of the technology stacks underlying our apps, we know
exactly what our exposure is when Oracle 9 goes off support—we’ve got
3 big packages and 40 smaller applications, and we’ve already got the
funding for this migration identifi ed in our long-range plan.

Note that these are no different from other business infrastructure issues.
Compare to “we have to move, our lease is up” or “our business card sup-
plier is out of business and we must switch suppliers”—the same business
drivers drive the same response.

Service Offering

A Service Offering is a defi ned entry in the enterprise service catalog. It is a
measurable and specifi c offering of the IT organization to external clients. It
should be seen as a “logical API,” or application programming interface, of the
service provider; everything behind it (in theory) may be opaque to the ser-
vice consumer. Service Offerings are of two major types: Orderable Service and
Hosting Service. (In this model, the Project orders the Hosting Service using a
Service Request.)

Service Offerings and Services themselves may be created by Projects. In effect,
the Project can be seen as the Service Offering of “create new Service.”

In ITIL terms, an Orderable Service might be seen as (by defi nition) a preap-
proved RFC. Access to an existing Application (sometimes termed a subscription)
would be one type of Service Offering.

DIALOGDIALOG

The Project can
be seen as the
Service Offering
of “create new
service.”

The Project can
be seen as the
Service Offering
of “create new
service.”

 3.4 The Confi guration Item and Its Subtypes 163

BetZ-Chapter 03.indd 163BetZ-Chapter 03.indd 163 9/22/06 11:43:40 AM9/22/06 11:43:40 AM

164 chapter three A Supporting Data Architecture

The Hosting Service is the infrastructure and support services necessary as a plat-
form for an Application. Instances of a Hosting Service are Applications; the Host-
ing Service is a sort of approved template for how standard Applications are built.

Hosting Services are not preapproved RFCs; they require extensive validation.
Ordering a Hosting Service usually implies starting an implementation Project.
Hosting Services are based in turn on standard Technology Product stacks.

Projects may involve both Orderable and Hosting Services and their actual Service
instances.

Notice that the service defi nitions (Orderable Service and Hosting Service)
are Operational CIs. This means that although they can be measured, they do
not emit Events and are thus not production concerns. However, their instances
are—both the Ordered Service instance and the Application service are produc-
tion concepts.

Notice the symmetry: A Service Request turns an Orderable Service into an
Ordered Service. A Project turns a Hosting Service into an Application.

The Hosting
Service is the
 infrastructure
and support ser-
vices necessary
as a platform for
an Application.

The Hosting
Service is the
 infrastructure
and support ser-
vices necessary
as a platform for
an Application.

Figure 3.28 Service Offering context.

Configuration Item (CI)

Operational CI

Production CI

Service
Request

Service Offering

Service

Technology
Product

Ordered
Service

Application

Hosting
Service

Orderable
Service Project

Business
Process

1

*

1

*

BetZ-Chapter 03.indd 164BetZ-Chapter 03.indd 164 9/22/06 11:43:40 AM9/22/06 11:43:40 AM

Service Catalog Confusion
Pat: We’re doing a service catalog.
Kelly: So are we. How many services are you going to have in yours, do you

think?
Pat: About 20.
Kelly: We’re past 500 and counting!
Pat: Seems high.
Kelly: I know you have more than 20; just the other day you said you were manag-

ing 45 different SLAs.
Pat: Oh, those are mostly our applications.
Kelly: Aren’t those in your service catalog?
Pat: No, of course not. Are they in yours?
Kelly: Yes, of course. They are the major things we’re managing for the business.

How can they not be in your service catalog? Service-level agreement,
 service catalog—same thing, right?

Pat: We have something called a hosting service that covers all our applications.
Each application is an instance of that hosting service. We manage the hosting
services as a different portfolio, but we don’t call that our service catalog.

Kelly: I don’t see how that can work. We “host” two enormous mainframe appli-
cations that are worlds unto themselves, a bunch of midrange stuff, and
then dozens and dozens of smaller scale Web apps. I could see the Web
apps being instances of a generic hosting service, but what about the big-
ger stuff?

Pat: Well, as you know we don’t have anything quite as huge as yours—lots
of medium-sized stuff. We did defi ne several tiers of hosting, based on
capacity and availability requirements. What if you took your two biggest
applications, kept them as separate service catalog entries, and saw the
rest as simply hosting instances? Are the rest of the applications generally
comparable?

Kelly: Maybe… I’ll have to think about that.

A Service Offering is not a service. The Service Offering is a template, an item
type—but it is not the item. One Service Offering may result in many actual Ser-
vices; in other cases, a Service may not even have an Offering (it is a nonorderable
service). However, an Offering with no Ordered Services is like a poorly selling
retail product; its reason for being is clearly in question. (This is where portfolio
management comes in.)

DIALOGDIALOG

A Service Offering
is not a service.
A Service Offering
is not a service.

 3.4 The Confi guration Item and Its Subtypes 165

BetZ-Chapter 03.indd 165BetZ-Chapter 03.indd 165 9/22/06 11:43:40 AM9/22/06 11:43:40 AM

166 chapter three A Supporting Data Architecture

Examples of Service Offerings might be the following:

� Provision new user with a workstation
� Set up new email account
� Set up new user in human resource management system
� The three preceding bulleted examples, all as a package
� Provision new remote store with wide area networking
� Provision Project with new technology stack (e.g., Java 2 platform, enterprise

edition) standard container and Oracle database)—notice that this is an internal,
IT-to-IT Service

Service Offerings in some cases will reference single or multiple Technology
Products that may be composed of other Technology Products (the term “stack”
may be used here).

For example, one Service Offering may be “provision HA (high availability)
Enterprise Java with RDBMS.” This Service might be the confi guration and deliv-
ery of an enterprise Java application server using WebLogic 8.0 and Oracle 9i, load
balanced across enterprise standard servers and managed for failover.

The overall stack record would have dependencies, in turn, on WebLogic 8.0
and Oracle 9i and the necessary server infrastructure to enable HA.

There is risk of making Service Offerings and Services too granular. A distin-
guishing feature of any Service Offering is that it must have a quantifi able price.
(Not all Services must have a price. They ideally have a quantifi able cost, however.)

A Service in this sense is not a specifi c technical offering like a Web service; a specifi c
Web service would be a Component and would be linked using the Application entity.

Service–Service Offering
A Service Offering may have many Service instances. See the Service discussion
later in this chapter. Also see the “On the Relationship between Service and Appli-
cation” section.

Service Offering–Business Process
A Service Offering may both support a Business Process and depend on one.
 Service Offerings in some discussions of ITIL break down into technical versus
professional services; orderable professional services can be seen as Business Pro-
cesses. This reference model assumes that professional services are always based on
a process and not functional.173

Generally, any Service Offering may require a Business Process to realize it as
Service.

BetZ-Chapter 03.indd 166BetZ-Chapter 03.indd 166 9/22/06 11:43:41 AM9/22/06 11:43:41 AM

Production Confi guration Item

A Production CI is where the rubber meets the road. It’s something that’s directly
involved in the day-to-day delivery of IT Services and whose failure or compro-
mise would have an identifi able effect on the customer’s value chain. Production
CIs are best thought of as the data center and all its components, the networks,
and the production workstations attached to those networks. A Service is itself
a Production CI, a high-level logical one that serves as a sort of interface by
which the consumer interacts with or gains value from the complex underlying
IT infrastructure.

Production CIs
Production CIs do not have to be in production; just intended for. A quality assurance
instance of an enterprise application is still a Production CI. It is the fact of being a
deployable candidate for operational monitoring that makes it a Production CI.

Production CIs are often logical (Service, Process, and Application). This makes
them no less important. Managing the logical CI is one of the most challenging
aspects of confi guration management; a clear approval and publication process is
required.

The concept of “production” can be paradoxical. As the development life cycle
becomes increasingly mature, a developer’s workstations and lab servers are seen
as “production” assets supporting the Business Process of software development.

A Production
CI is something
that’s directly
involved in the
day-to-day deliv-
ery of IT services
and whose failure
or compromise
would have an
identifi able effect.

A Production
CI is something
that’s directly
involved in the
day-to-day deliv-
ery of IT services
and whose failure
or compromise
would have an
identifi able effect.

KEY POINTKEY POINT

The concept of
“production”
can be a little
paradoxical.

The concept of
“production”
can be a little
paradoxical.

Figure 3.29 Production CI context.

 3.4 The Confi guration Item and Its Subtypes 167

Production CI

Deployed Object
Event

Problem

Incident

Service

Machine

Known Error

Business
Process

Deploy Point

ApplicationOrdered
Service

BetZ-Chapter 03.indd 167BetZ-Chapter 03.indd 167 9/22/06 11:43:41 AM9/22/06 11:43:41 AM

168 chapter three A Supporting Data Architecture

A true nonproduction status increasingly must be reserved for pure “sandbox”
research and development machines being used to evaluate products and tech-
nologies. A workstation being used to develop software upon a standard, proven
Java or Oracle technology stack, to tight time frames and deliverables, is a different
thing from a prototype workstation brought in to demonstrate the viability of a
new 64-bit architecture or experiment with a new encryption product. In short,
“development” is “production” to the IT value chain—but not to the business
value chain.

Production CI–Event
One distinguishing feature of a Production CI is that it is the only CI type that may
raise a monitored Event. Almost without exception, only physical Components,
Servers, Machines, automated Processes, or Datastores174 can raise Events.

Production CI–Incident
Another distinguishing feature of a Production CI is that that is the only CI type
against which an Incident can be registered. Incidents can be against logical CIs
(e.g., Application), either through a Service Request or through event correlation.

Production CI–Known Error
Another distinguishing feature of a Production CI is that that is the only CI type
that may have a Known Error.

Business Process

A Business Process is a defi ned set of activities, usually executed in sequence,
that results in one or more specifi c business objectives (according to process guru
 Michael Hammer, it must “provide value for the customer”175). A Process is gener-
ally the intersection point of IT and the business.

Business Processes should be managed as distinct CIs with clear names, identi-
ties, and life cycles (e.g., pilot, production, and retired); formalizing their man-
agement is a challenge today, and most organizations have an informal process
portfolio based on undocumented group consensus. ITIL states that for IT pro-
cesses “…the process defi nition itself…should be treated as a CI…”;176 why limit
just to IT processes?

It is a hierarchical concept with much ambiguity around granularity; there are
various decompositions such as workfl ow–task–step. At the highest level, a Process
is a value chain, and relatively few exist in a given enterprise.

A Business
 Process is a
 defi ned set of
tasks, usually
executed in
sequence, that
results in a
specifi c business
objective.

A Business
 Process is a
 defi ned set of
tasks, usually
executed in
sequence, that
results in a
specifi c business
objective.

BetZ-Chapter 03.indd 168BetZ-Chapter 03.indd 168 9/22/06 11:43:41 AM9/22/06 11:43:41 AM

Business Processes may be automated, manual, or (often) both. Many IT pro-
cesses have critical manual steps, and in an IT organizational culture the impor-
tance of these manual steps and the need to make them repeatable may not be
appreciated.

Computing Processes
Computing processes (such as those you can see by hitting Ctrl–Alt–Del in Windows
NT/2000/XP) are different from Business Processes; they have a specifi c defi nition
in operating system architectures.

This framework does not distinguish between “business” and “IT” processes;
IT processes are Business Processes as well—just supporting processes, not primary
value chain. They are no more special than human resources, property manage-
ment, or fi nancial processes.

Formally managing a process portfolio results in the interesting metaquestion
guaranteed to glaze the eyes of executives: “What is the process to manage the pro-
cesses?” (Something like, “What is the data about the data?”)

For further information, see the literature on BPM cited in “Further Read-
ing.” (Note that there is ambiguity in the process management terminology; BPM
is sometimes restricted to runtime process management engines. The usage here

KEY POINTKEY POINT

IT processes are
Business Pro-
cesses as well.

IT processes are
Business Pro-
cesses as well.

Figure 3.30 Business Process context.

ServiceService Offering

Business Process

Application

Strategy

Orderable
Service

Ordered
Service

1 *

*1

Hosting
Service

 3.4 The Confi guration Item and Its Subtypes 169

BetZ-Chapter 03.indd 169BetZ-Chapter 03.indd 169 9/22/06 11:43:42 AM9/22/06 11:43:42 AM

170 chapter three A Supporting Data Architecture

is more general, referring to the work of authors such as Paul Harmon, Geary
 Rummler, and Alan Brache.)

If you are enabling a capacity planning capability in your IT organization, you
may have a need for transaction in your data model, for example, to map end-to-end
transaction paths. This would be a decomposition or subtype of process.177

Strategy–Business Process
Business strategies depend on processes in many or even most cases. Business Pro-
cesses are a primary vehicle for implementing strategies.

Business Process–Service Offering
Business Processes may depend on routine Service Request fulfi llment; this can be
seen in part as a decomposition of the process into more specifi c workfl ows. Service
Offerings in turn may depend on, or be described in terms of, Business Processes
(e.g., “Provision new email user”).

Business Process–Service
Business Processes depend on IT Services to enable them, typically Applications.
IT Services may also require Business Processes.

Service

Service is a general concept with two major subtypes: Ordered Service and Applica-
tion. Where the Orderable Service may be “provide email to new user,” the Ordered
Service is “provide email to Peter Baskerville,” accompanied by the various work-
fl ow steps documenting the provision of that Service from start to fi nish. (In this
case, the Service Offering is a Subscription.)

Services may not depend on automation. The IT organization may provide a
purely human-based Process with no Application involved; it may provide a Ser-
vice based strictly on the availability and performance of an Application, or it may
provide both—a Service based on the human execution of a Process backed by
automated Applications.

The Service aspect of Applications is distinct from Services focused on provi-
sioning consumers. Provisioning consumers results in many Services for one Service
Offering (Figure 3.32).

Service Offerings often require average turnaround times as part of their SLA
(e.g., provision email within 48 hours).

A service is an
instance of a
 Service Offering.

A service is an
instance of a
 Service Offering.

BetZ-Chapter 03.indd 170BetZ-Chapter 03.indd 170 9/22/06 11:43:42 AM9/22/06 11:43:42 AM

A Service Offering of access to a given Application may be termed a subscription.
However, the following are Application Services:

� Maintain the Quadrex system up with 99.99% availability over 12 months and
99.995% availability during the peak season.

� Complete the X-time batch by 8:00 am every weekday 99% of the business days.

Another term for Application Services are “nonorderable Services.” This means
that although they are measured, they are not requested, or to be precise, they
are “ordered” through the Demand–Program–Project life cycle—a different service
entry point from standard Service Requests. A current consideration in ITSM is
the blurry boundary between discrete atomic services such as “order new work-
station” and project-based “time and materials” requests such as “Build a new
application”—see the discussion on service entry points in Chapter 2 and the
“Clarify Service Entry Points” pattern in Chapter 5.

Another emerging
term for Applica-
tion services are
nonorderable
services. They
are the subject
of SLAs based
on measured
behavior of the
Application (e.g.,
performance and
availability).

Another emerging
term for Applica-
tion services are
nonorderable
services. They
are the subject
of SLAs based
on measured
behavior of the
Application (e.g.,
performance and
availability).

Figure 3.31 Service context.

Configuration Item (CI)

Operational CI

Production CI

Service
Request

Service Offering

Service

Ordered
Service

Application

Hosting
Service

Orderable
Service

Project

Deployed Software System

Business
Process

1

*

1

*

 3.4 The Confi guration Item and Its Subtypes 171

BetZ-Chapter 03.indd 171BetZ-Chapter 03.indd 171 9/22/06 11:43:42 AM9/22/06 11:43:42 AM

172 chapter three A Supporting Data Architecture

Figure 3.32 Orderable Service Offering and instances.

Service Offering Ordered Service

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

Email Service:
Service Offering

Joe's Email:
Ordered Service

Kim's Email:
Ordered Service

Manuel's Email:
Ordered Service

Aparna's Email:
Ordered Service

Their ongoing maintenance is assumed and may be the subject of SLAs, but
those SLAs are not based on workfl ow (e.g., speed of request fulfi llment): they
are based on measured behavior of the nonorderable Service (e.g., availability).
Nonorderable Services do not have a Service Offering entry. Note that for com-
prehensive service-level management, both Service Offerings and Services need
to be tracked. However, Applications may offer subscriptions that are Orderable
Services.

An Application may play a part in supporting Service Offerings, especially with
respect to provisioning (Figure 3.33).

The existence of both Orderable and nonorderable Services has implications
for the Service catalog structure. Although a unifi ed report may be desirable
from a management visibility perspective, these are nevertheless two very dif-
ferent types of entities and will need to be distinguished in any Service catalog
presentation.

Both Orderable and Application services can face inward or outward (see Table 3.2).
Is a Project an Orderable Service? This is a question the IT organization will

have to answer. This model treats Projects as distinct from Service Offerings because
they are neither preapproved nor fi xed in cost.

Orderable and
nonorderable
 services are two
very different
types of entities.

Orderable and
nonorderable
 services are two
very different
types of entities.

BetZ-Chapter 03.indd 172BetZ-Chapter 03.indd 172 9/22/06 11:43:43 AM9/22/06 11:43:43 AM

Services as CIs can contain other Services. This may be useful if several Application
services underpin a larger, customer-facing Service concept; however, the Applications
themselves should be large grained enough to be recognizable to the business. Smaller-
grained, more technical groupings of software are Deployed Software Systems.

As you can see in Figure 3.34, the email Service is underpinned by mainframe
and internet email logical Applications, themselves Services. Notice that although

Figure 3.33 Orderable application-based Service and instances.

Service Offering Ordered ServiceApplication

Quadrex:
Application

Quadrex for Kim:
Ordered Service

Access to Quadrex:
Service Offering

Quadrex for
Manuel: Ordered

Service

«instanceOf» «instanceOf»«instanceOf»

«instanceOf»

 3.4 The Confi guration Item and Its Subtypes 173

Table 3.2 Service-Type Matrix

Type of Service Consumer Internal

Orderable: Fixed cost New PC (standard
 confi guration)

New email account
(e.g., application subscription)

Priced application enhancements
(e.g., standard report requests)

New server (standardized tech-
nology stack)

New database (existing shared
database farm with clear pric-
ing model)

Orderable: Time and materi-
als

New PC (custom
confi guration)

New server (nonstandard
confi guration)

New application project

Application enhancements,
nonpriced

Nonorderable (application) Existing business-facing Service
with SLA

Existing infrastructure Service
with OLA

BetZ-Chapter 03.indd 173BetZ-Chapter 03.indd 173 9/22/06 11:43:43 AM9/22/06 11:43:43 AM

174 chapter three A Supporting Data Architecture

the email Service as a whole is the customer value proposition, the underpinning
mainframe email and internet email Applications are large grained enough to be
recognizable points of investment and support and are themselves managed as
 Services—not mere technology.

There are many variations on these concepts. In some cases, the Application
is the Service—no need for an intervening layer. The critical point is that the
enterprise needs to develop a coherent and universal view on these dependen-
cies. It is not acceptable for the architects to have one representation and opera-
tions to have a completely different view—although one may be a subset of the
other. Naming in particular must be based on common reference data, which in
data management circles is known as a master data management problem.

Service

Business
Process

Application

Deployed Software
System

Provision New Employee: Business Process

Email: Service

Internet Email: Application

TAO Email: Deployed Software System

Microsoft Exchange:
Deployed SoftwareSystem

SendMail: Deployed
Software System

Vontu: Deployed
Software System

Mainframe Email: Application

Figure 3.34 Service layering.

BetZ-Chapter 03.indd 174BetZ-Chapter 03.indd 174 9/22/06 11:43:44 AM9/22/06 11:43:44 AM

Software Component

The Application
Programming Interface
is how others interact
with the component.

The internals are
“encapsulated” or
hidden from view.

As long as the interface
has the same behavior, the
internals can change.

Consuming
Component

 3.4 The Confi guration Item and Its Subtypes 175

One heuristic for the highest-level business-facing Service concept is that it be
traceable directly to a quantifi able business value chain. Understanding the revenue
dependencies of a Service is essential for correctly prioritizing the IT organization’s
activities, but too often this information is locked only in the heads of the most
senior executives. It should be broadly available and transparent (within judicious
security boundaries).

The highest-level business-facing IT Services are privileged and should be
 easily separable from lower-level internal Services. But both are distinct from mere
Deployed Software Systems, which are purely technical in nature and do not, for
example, ever have SLAs or OLAs.

API as Metaphor for ITSM
The API is a key concept to object- and component-oriented development; the imple-
mentation details of a software component are encapsulated behind a defi ned set of
gateway operations (Figure 3.35).

The idea is that 1) the only way to access the program’s functionality is
through the interface and 2) it is no concern of the user how the program does
its job; it can be radically revised as long as the interface still exhibits the same
behavior.

FO
O

D
FOR THOUGH

TFO
O

D
FOR THOUGH

T

Figure 3.35 Components and interfaces.
(continued)

BetZ-Chapter 03.indd 175BetZ-Chapter 03.indd 175 9/22/06 11:43:44 AM9/22/06 11:43:44 AM

176 chapter three A Supporting Data Architecture

This is a perfect analogy for Service Offerings and Services. To carry it further,
the Service Offering is the API defi nition, and a Service is a particular invocation of
the API.

Application

This is also known as product, software, software service, or middleware.
An Application is a logical grouping of software Components managed as a

 Service in the ITSM sense. Technologists may liken it to a “namespace.” It is a
 consensus concept and must be carefully crafted so that it is neither too abstract nor
too granular. Some rules of thumb that may be useful:

� An Application should be recognizable to a senior business manager. It is fi rst
and foremost a portfolio concept.

� Applications should be assigned to fi nancial management structures. They
should have clear executive ownership.

� Applications may be instances of a Hosting Service if the Organization has for-
malized these as Service Offerings.

� An Application usually will have been the sole product of a Project, but sub-
sequent Projects may be managed to enhance it. (Not all projects result in the
creation of an application.)

� An Application may be externally hosted (i.e., Software as a Service).
� Databases are not necessarily owned by any one application.
� Applications should have a unique human memorable identifi er, ideally a three-

or four-letter acronym. All CIs owned by the Application should be named using
that identifi er as a basis for a naming standard. (Vendor-delivered software is not
renamed but should still have an identifi er assigned for security identifi cation.)

An Application is
a logical group-
ing of software
Components. It
is a consensus
concept and
must be carefully
crafted so that
it is neither too
abstract nor too
granular.

An Application is
a logical group-
ing of software
Components. It
is a consensus
concept and
must be carefully
crafted so that
it is neither too
abstract nor too
granular.

All CIs owned by
the Application
should be named
using its identifi er.

All CIs owned by
the Application
should be named
using its identifi er.

Figure 3.36 Service as API.

Complex IT organization!

The concept of “IT Service” is analogous to a
component API. It masks the complexity of the IT
organization and defines its behavior for external
stakeholders, regardless of internal changes.

IT Customer

BetZ-Chapter 03.indd 176BetZ-Chapter 03.indd 176 9/22/06 11:43:44 AM9/22/06 11:43:44 AM

Events emitted by the Application’s Components should have this identifi er, if
possible.

� The same Application may have different informal names in the Organization;
therefore, an aliasing capability is essential to manage the portfolio and elimi-
nate redundancy while supporting legacy terminology.

� Applications in this model are specifi c instances. If an organization has two
instances of Oracle Financials (e.g., for two different operating companies) sup-
ported by two different support teams, that should be two entries in the port-
folio. Oracle Financials would also have one record as a Technology Product for
each major version.

If no one wears a pager for it, it may not be an Application, as Applications
are subtypes of Service. If an Application is not part of an identifi able Service,
it might be a Technology Product. For example, if an IT organization uses
WebSphere Application Server for multiple different applications, WebSphere
might not be in the Application portfolio—it would be a Technology Product
(possibly part of a stack) and Deployed Software System on which Applications
depend. However, if a shared WebSphere server farm is managed as an entity with
 perhaps an OLA by an infrastructure team, then that should be in the Application
portfolio.

If no one wears
a pager for it, it
may not be an
application.

If no one wears
a pager for it, it
may not be an
application.

Figure 3.37 Application context.

Deployed Software System

Service Offering

Business
Process

Service

Ordered
Service

Application

Hosting Service

1

*

 3.4 The Confi guration Item and Its Subtypes 177

BetZ-Chapter 03.indd 177BetZ-Chapter 03.indd 177 9/22/06 11:43:45 AM9/22/06 11:43:45 AM

178 chapter three A Supporting Data Architecture

Applications may have various types, with a common distinction being between
“business” and “infrastructure.” “Customer facing” versus “back offi ce” is another
sustainable distinction. Figure 3.38 shows a simple Application classifi cation; more
elaborate taxonomies are possible, but complexity may be hard to maintain, espe-
cially in terms of sustaining mindshare and driving effective use. There are vendors
of in-depth classifi cation taxonomies that may be useful in some cases. One prob-
lem with a strict application taxonomy is that actual applications often fall into
more than one category.

Note in Figure 3.38 the question as to whether an ITSM Application is a busi-
ness-facing or infrastructure Application. This is more than an academic distinc-
tion, as it may affect which major organization supports the application. Classifying
such applications as “back offi ce” is more in alignment with the IT Enablement

One problem
with a strict
application
taxonomy is that
actual applica-
tions often fall
into more than
one category.

One problem
with a strict
application
taxonomy is that
actual applica-
tions often fall
into more than
one category.

Figure 3.38 Sample application taxonomy and a key question.

Business
Application

Infrastructure Application
(Element Manager)

Back Office App Network
Support App

Application

Computing
Support App

Customer-
Facing App

Are Service management
support Applications back
office apps or
computing support apps?

“business”

BetZ-Chapter 03.indd 178BetZ-Chapter 03.indd 178 9/22/06 11:43:45 AM9/22/06 11:43:45 AM

Capability pattern. With this approach, all infrastructure Applications are focused
on element management and may be managed by their own team. (See the “IT
Enablement Capability” pattern in Chapter 5 and the discussions of element
 management.)

Applications as Portfolio
The Application portfolio is a key set of CIs to baseline for an ITSM initiative
concerned with the data center. Physical devices will be seen as highest priority, but
these usually have some attempts at management; the master list of applications, on
the other hand, often does not receive explicit management.

Some CMDB efforts fail because they attempt to start with the concept of physical
binary Component, which (while straightforward to harvest) is too granular and
hard to manage for most organizations. The logical concept of Application provides
a bridge between the overwhelming details of the technology and the business it
supports.

A defi ned process must be implemented for identifying that something is to
be tracked as a formal Application, for example, requiring the agreement of an
architect and an IT line manager. Proliferation of Application identifi ers (which
can happen if a nonarchitectural, technical team is allowed to assign them) is a bad
practice because it prevents the accurate rollup of IT operational data into larger,
business-aligned hierarchies for IT performance reporting.

This model does not distinguish between Application and middleware. It’s
assumed that the Application entity if implemented would have a “type” attribute
and this distinction could be handled at that level. Both Applications and middle-
ware behave similarly in terms of the relationships to other entities, and the bound-
ary between them can be blurry.

Middleware can be both a Service and a Technology Product. A middleware
“hub” operated as a shared enterprise service is an Application, probably infrastruc-
ture, as well as a Technology Product and instance of a Deployed Software System.
A middleware product used as a building block by many different service providers
(e.g., application teams) is only a Technology Product.

Middleware as a Service, however, generally would not be business facing.
Application identifi ers should be visible on all CIs where appropriate, in

parti cular on Web pages and other graphical user interfaces. There is cur-
rently a problem in the industry with inaccurate CI identifi cation: users do
not necessarily know what Application they are even interacting with. Firm
labeling standards for all Application interfaces would be a big help. This is

The Application
portfolio is prob-
ably the most
important set of
CIs to baseline
for a data
center–focused
ITSM initiative.

The Application
portfolio is prob-
ably the most
important set of
CIs to baseline
for a data
center–focused
ITSM initiative.

A defi ned
process must be
implemented for
formally identify-
ing Applications.

A defi ned
process must be
implemented for
formally identify-
ing Applications.

 3.4 The Confi guration Item and Its Subtypes 179

BetZ-Chapter 03.indd 179BetZ-Chapter 03.indd 179 9/22/06 11:43:45 AM9/22/06 11:43:45 AM

180 chapter three A Supporting Data Architecture

nothing new; on older mainframe green screen systems, the system and screen
identifi ers would typically appear in a corner. New distributed systems with less
rigorous graphical user interfaces development standards were a step backward
in this concern; off-the-shelf packages could easily add this as a confi gurable
functionality.

Disparate Application Portfolios
A Fortune 100 corporation established an Integration Competency Center, which
began to track the diffi cult subject of application interdependencies. The group tasked
with this goal realized the fi rst priority was to establish a defi nitive list of applications.
(How can you defi ne relationships between “things” when you are not sure what the
“things” are?)

The application support and maintenance team had a list, but it only included
applications that had been formally “turned over” and some key applications had
never gone through this process. It also had poor data quality, with applications listed
for which no physical evidence or owner could be found and other applications listed
twice (by different names).

The production control group was responsible for assigning “system codes,” three-
character identifi ers associated with the logical application concept. However, they
never had strong criteria for doing so, and as a result the codes tended to proliferate,
with one logical application sometimes having many codes. In other cases, one code
would be used by a large application area for all applications.

The distributed server engineering group had a list of distributed applications and
their dependencies on servers, but it did not include mainframe applications and had
no defi ned process for maintenance.

A consulting group was brought in to reinventory all the applications, and this
resulted in one more list. Lists were also compiled for compliance and disaster-
planning activities. It became clear that there was signifi cant waste and redundancy
occurring.

The Integration Competency Center declared itself system of record for the appli-
cation portfolio and defi ned a process for maintaining applications and their stake-
holders and dependencies. The enterprise architecture, compliance, and security
teams began to partner on these processes, which helped enable tighter controls.
The application identifi er assignment was seen as a key component and added to
the mix, with tighter policies aimed at ensuring “one application, one code.” This list
then served as the basis for fi rst-generation confi guration management; databases
and servers were linked to the applications and the capability took off from there,
becoming recognized as a valuable IT asset.

CASE STUDYCASE STUDY

BetZ-Chapter 03.indd 180BetZ-Chapter 03.indd 180 9/22/06 11:43:46 AM9/22/06 11:43:46 AM

Application–Application
Applications have many interrelationships between each other, which should be
documented in the repository or CMDB. Approach issues to be sorted out here
 include the distinction between Application-to-Application dependencies (i.e., at
the API layer) and Datastore-to-Datastore dependencies (i.e., the extract, trans-
form, and load domain). Another issue is the danger of capturing trivial dependen-
cies, for example, the near-universal dependency of all distributed computing on
the TCP/IP system infrastructure (which should be captured as an infrastructure
 Application or Service in the repository).

Application–Component
Applications contain Components. For accountability, all Deployed Components
should be owned by one and only one Application (although they may be used by
many).

Application–Datastore
Applications are collections of processes and algorithms at their core. They depend,
in turn, on Datastores such as relational databases or fl at fi les. Application-
to-data dependency is one of the most important dependencies to maintain for CIs
in the data center; many organizations spend considerable resources continually
 reanalyzing this dependency. One immature approach is to simply document the
dependency of an Application on a database Server (without specifying catalog or
database); however, database Servers are often large, shared assets and the database
administrators need to know exactly which database, or schema, is serving an Appli-
cation. (This is also needed for regulatory compliance.)

Application–Deployed Software System
Applications depend on Deployed Software Systems. The distinction between
the two is subtle but crucial. Deployed software systems are all software Compo-
nents that support the Application. They include the actual software Components
embodying the logical Application, as well as application servers, DBMS engines,
operating system services, middleware, and so forth. They should not be business
visible.

On the Relationship between Project and Application
A sign of an immature IT enablement environment is when Projects are confused
with Applications. Projects have a defi ned life cycle, typically measured in months.

Application-to-
data dependency
is one of the
most important
production
dependencies to
understand.

Application-to-
data dependency
is one of the
most important
production
dependencies to
understand.

A sign of an
 immature envi-
ronment is when
Projects are
confused with
Applications.

A sign of an
 immature envi-
ronment is when
Projects are
confused with
Applications.

 3.4 The Confi guration Item and Its Subtypes 181

BetZ-Chapter 03.indd 181BetZ-Chapter 03.indd 181 9/22/06 11:43:46 AM9/22/06 11:43:46 AM

182 chapter three A Supporting Data Architecture

Applications have an indeterminate life cycle, typically measured in years. One
Application is usually the subject of multiple Projects; the fi rst Project creates and
 deploys it, and subsequent Projects enhance it. It remains the same Application
throughout, unless a conscious decision is taken to manage a major new version as
a distinct new Application. There are various approaches here; the important point
is that they be managed and agreed to.

The relationship between Project and Application in the model is mediated
through Release and Change (Figure 3.39).

This is a purist approach, and it may be desirable for your IT enablement tooling
to simply relate Project and Application—there’s quite a bit of value there, even if
you haven’t sorted out Release yet (Figure 3.40).

For example, if an Application has a known Risk having to do with regula-
tory compliance, the Project making changes should be held to high standards for
 process adherence and software quality. That kind of focused emphasis is diffi cult
to achieve consistently without a rich and well-managed IT enablement system
that clearly distinguishes between Application and Project. It also speaks for the
 integration of demand management with ITSM tools to more objectively assess
risk and impact (cf. the generalized ITIL Change concept).

Application–Process
The alignment between the IS [information system] view and the
customer view gains value when IS is able to identify the relationship
 between the technologies and the business processes they support.

—ITIL178

Figure 3.39 Project, Release, and Application.

Project Release
Request for

Change

Configuration Item (CI)

Application1 *

Figure 3.40 Project–Application direct relationship.

Project Application

BetZ-Chapter 03.indd 182BetZ-Chapter 03.indd 182 9/22/06 11:43:46 AM9/22/06 11:43:46 AM

Processes are supported by Applications (as Services) in a many-to-many relationship.
For example, the pricing process at a large retailer may involve a merchandising
 system and a point of sale system, provided by different vendors. The merchants set
the prices, which are then replicated down to the point of sale terminals. Value is
not derived from the process until it runs from end to end, so one process depends
on two Applications.

Similarly, it is common for one Application to support two distinct processes,
such as a customer relationship management system that supports both operational
customer interactions and analytic planning purposes.

Processes can be decomposed into constituent steps, depending on the granularity
of the analysis required. One constituent of a process would be a transaction,
and understanding the major transactions supported by an Application and/or
an underpinning Deployed Software System is useful for portfolio management,
 capacity planning, fi nancial chargeback, and other purposes.

Deployed software systems increasingly may directly support processes as
well, especially in the emerging world of SOA. There may be no concept of an
 Application—just process choreographies interacting directly with technical
 services. This is an emerging area and this representation is preliminary.

See also Figures 3.32–3.34 and 3.37 and related discussions.

On the Relationship between Service and Application
Although the IT industry has traditionally made a distinction between
Application Development (creating a service) and Service Management
(delivering the service), that has not always worked well.

—ITIL179

Figure 3.41 Service, process, and Application: complex and subjective.

Service

Business Process
Application

Deployed Software System

 3.4 The Confi guration Item and Its Subtypes 183

BetZ-Chapter 03.indd 183BetZ-Chapter 03.indd 183 9/22/06 11:43:47 AM9/22/06 11:43:47 AM

184 chapter three A Supporting Data Architecture

The relationship between Service and Application is subtle, so subtle that many
Organizations may wish to not distinguish the two. ITIL is strong on distinguishing
the two because its view of Application is technical—it’s simply the binary software
executed for the customer. However, in many large IT organizations, an Applica-
tion team is concerned with customer service issues and effectively is supporting
a Service or system—not just technology but people and process as well. Such
customer-oriented application management teams would be surprised to learn that
they are “invisible to the Customer,” as ITIL states.180

There is great variability in the industry: in some organizations the application
teams are indeed merely technical, and in yet other organizations there is no
 consistency. Some application teams are truly service managers, and others are
merely technicians. The inconsistencies erode IT credibility.

However, at least for a fi rst cut inventory, the enterprise Application can serve as a
reasonable surrogate for a Service. This starts to break down in enterprise applications
that are so large they support multiple distinct Business Processes and have
multiple stakeholders (perhaps expecting different SLAs). An example might be
an ERP system for which the operational customer negotiates 99.99% uptime and
a planning group negotiates decision support batch completion by 8:00 am every
day. (Of course, an overall contractual SLA may have multiple specifi c agreement
points in any case—the distinction here is that there are two different customers
expecting notifi cation for different types of service breach.)

Conversely, if a set of smaller Applications has been developed with all managed
by the same team, these distinct pieces of functionality may be managed increas-
ingly as a unitary Service.

For example, an organization may have a legacy email system on its mainframe
and a distributed email system such as Microsoft Exchange. Both may be supported
by the same team, and a request for “email access” may result in the customer
 receiving accounts in both environments. Nevertheless, they should remain two
 distinct entries in the application portfolio so that there is visibility into the
 portfolio’s complexity and enterprise progress toward simplifi cation (e.g., stopping
support for the mainframe email system).

Service versus Application
One way of managing the distinction is linguistic. Where the Application is “Oracle
HRMS,” the Service might be “human resources application management.”

In many large IT
organizations,
the “applica-
tion” team is
concerned with
service issues
and supports
people and
process, as well
as technology.

In many large IT
organizations,
the “applica-
tion” team is
concerned with
service issues
and supports
people and
process, as well
as technology.

KEY POINTKEY POINT

BetZ-Chapter 03.indd 184BetZ-Chapter 03.indd 184 9/22/06 11:43:47 AM9/22/06 11:43:47 AM

This has an advantage of conceptually decoupling the Service to some degree
from the Application; however, the added value of this linguistic distinction may be
suspect, if all involved (wink, wink, nudge, nudge) know that it simply translates into
the same set of services the Oracle HRMS team has provided all along.

The introduction of a layer of abstraction also poses maintenance issues: now two
logical CIs that are hard to manage must be maintained, with a mapping between
them.

See further discussion under the Service Request description (e.g., Figure 3.44)
and in the ITIL Service Delivery volume under “Service Level Management: What
Is a Service?”

What’s an Application Manager to Think?
Natalie is an application manager for a large midwestern manufacturer. Her respon-
sibilities include both the development of new functionality for her system (the enter-
prise customer relationship management system) and its ongoing operations. One
day she is called into a meeting at which a senior ITIL consultant is discussing service
management.
Gary: The thing you folks need to do is get out of a technology-centered approach

to interacting with the business. The business doesn’t care about things like
“applications”!

Natalie: Excuse me, why do you say that?
Gary: Well, it’s clear. The business doesn’t know what an application is. You

shouldn’t even talk about it with them. What they need is a service!
Natalie: I’m not providing a service?
Gary: Not if you are calling yourself an application manager. All that application

managers do is build technical stuff.
Natalie: Hmm. I just got out of a meeting with the senior VP for marketing. We were

talking about my application’s availability level. We even used the term
SLA. But this term “service” you’re throwing around, we don’t talk in quite
the same way.

Gary: That’s because you are too technical in your approach. See, you need to
get out of the bits and bytes and talk in business terms!

Natalie: Like discussing the business objectives of the next major release with the
SVP? How the application—excuse me, service—is going to help improve
customer retention and sales force productivity?

Where the Appli-
cation is “Oracle
 HRMS,” the
Service might be
 “human resources
application man-
agement.”

Where the Appli-
cation is “Oracle
 HRMS,” the
Service might be
 “human resources
application man-
agement.”

DIALOGDIALOG

 3.4 The Confi guration Item and Its Subtypes 185

(continued)

BetZ-Chapter 03.indd 185BetZ-Chapter 03.indd 185 9/22/06 11:43:47 AM9/22/06 11:43:47 AM

186 chapter three A Supporting Data Architecture

Gary: Right… Say, I thought you said you were just an application manager.
Natalie: I did… Oh, never mind….

Relationship among Service Offering, Service Request, and Service

Now that I have introduced all of these concepts, I will examine how they work
together and hopefully clarify why we need them.

The concept of service is tricky; it is used quite freely in the ITSM
literature. It’s therefore not surprising from a data perspective to fi nd that the
term is badly overloaded and requires considerable clarifi cation, including fi ve
distinct entities in this discussion. This is not even including “service” as used in
SOA (Figure 3.42).

Figure 3.43 shows the interrelationships of the service-related entities for a
 simple scenario of email provisioning. Note that email provisioning in this enterprise
consists of confi guring the user’s accounts on two different email systems, a good
example of one Service being supported by two Applications.

Figure 3.42 Service context: expanded.

Agreement

Service

ApplicationOrdered
Service

 A Service-Oriented
Architecture service would be
a subtype of component.

Deployed
Component

Deployed
Software
System

Service
Offering

Service Request

Metric

BetZ-Chapter 03.indd 186BetZ-Chapter 03.indd 186 9/22/06 11:43:48 AM9/22/06 11:43:48 AM

Figure 3.43 Service instance example.

Service Request

Service
Offering

Service

Deployed Software
System

Provision user with
email access:

Service Offering

Kelly wants
email access:

Service Request

Application

Ordered
Service

TAO Mainframe
Email: Deployed

Software System

«instanceOf» «instanceOf»

«instanceOf»

«instanceOf» «instanceOf»

«instanceOf»

Microsoft
Exchange:
Deployed
Software
System

Email for Kelly:
Ordered Service

Enterprise Email
Service:

Application

 3.4 The Confi guration Item and Its Subtypes 187

Again, an individual provisioning of the email service to a customer might be
called a subscription.

Why Is This So Complicated?
Well, it’s really not. It’s just unfamiliar. Think about ordering a book from your favorite
online retailer.

Say that I log into my favorite online bookseller. It offers in general a Service
of selling books, but that is not what I am ordering. I am ordering one book in the
bookseller’s equivalent of a service catalog. However, the ongoing performance of
that bookstore is a Service as well—a nonorderable Service. (It’s as simple as a
store keeping its doors open—you don’t purchase that, but it’s necessary if you are
to enter the store and see what’s on the shelves.) The bookstore Service itself is sup-
ported by underlying Applications; for example, its own order management system
and a delivery logistics system that might be outsourced (e.g., to UPS). I need all of
these things to get my book.

FO
O

D
FOR THOUGH

T

(continued)

BetZ-Chapter 03.indd 187BetZ-Chapter 03.indd 187 9/22/06 11:43:48 AM9/22/06 11:43:48 AM

188 chapter three A Supporting Data Architecture

The one thing that seems a little elaborate is the distinction between Service
Request and Ordered Service. However, this is necessary because of the ongo-
ing production nature of ordered IT Services; the bookstore delivers my book and
doesn’t care about supporting it once I have it, but an IT organization delivers
a computer (or email account or disk storage) and then has to provide ongoing
support for it.

Deployed Object

A Deployed Object is a Deployed Software System, a Component, or a Data store.
Figure 3.45 attempts to represent an extremely complex space concisely. More
 elaborate representations are possible,181 but these core concepts can serve as a
 basis.

Deploy Point

A deployable object is tied in turn to a Deploy Point, which is usually a fi le system
directory.

Figure 3.44 Book order as Service example.

Service
Offering

Service

Deployed Software
SystemApplicationOrdered

Service

Bookstore's
fulfillment of order:
Ordered Service

Online book-
selling service:

Application

Charlie's order for
that book: Service

Request

Service Request

Judas Unchained
(new Peter

Hamilton book):
Service Offering

Order
management
application:
Deployed

Software System

Delivery logistics
tracking

application:
Deployed

Software System

BetZ-Chapter 03.indd 188BetZ-Chapter 03.indd 188 9/22/06 11:43:48 AM9/22/06 11:43:48 AM

The concept of Deploy Point as a type of CI is an innovation proposed in
this analysis and comes from my experience with confi guration management and
supporting an integration competency center. There are several reasons for this:

� The need to identify “root” directories to facilitate interaction between infra-
structure and applications teams (root in this sense not being the base fi le system
object but the top directory allocated to the application team)

� The sensitivity of certain directories when used as exchange points for moving
data

� For confi guration management approaches that do not enumerate distinct
 Components but rather perform broad integrity checks across large blocks of
storage

� Capacity management of centralized storage and its traceability to application
services

The Application Root Directory
A large, complex application may have dozens or hundreds of directories, in some
cases appearing and disappearing dynamically. However, with few exceptions the
application’s scope of activity is constrained to one or a few master directories that

A Deploy Point
is a major type
of CI.

The application
root directory is
a key interaction
point for the
infrastructure
team managing
the server and the
application team.

Figure 3.45 Deployed Object context (applies through the end of this section).

Deployed Object

Deployed Software System

OS Instance (Server)

Deploy Point Machine

DatastoreDeployed
Component

 3.4 The Confi guration Item and Its Subtypes 189

BetZ-Chapter 03.indd 189BetZ-Chapter 03.indd 189 9/22/06 11:43:49 AM9/22/06 11:43:49 AM

190 chapter three A Supporting Data Architecture

contain myriad subdirectories used by the application. These master directories
are a key interaction point for the infrastructure team managing the server and the
application team (assuming that the IT organization has moved toward the best
practice of segregating these teams and moving the application teams out of the
business of server management).

Shared libraries complicate this arrangement, but multiple applications updating
shared libraries have been proved to be poor practice in Microsoft Windows. This
touches on core computing issues around component reuse and operating system
services and architectures, and it will never be a simple matter. Arguably, the move
toward server virtualization is in part a response to the complexity of managing
shared libraries in a single operating system instance.

The Shared Exchange Directory
A problematic design pattern in integration architectures is the shared directory.
This is typically a directory in which one application deposits fi les and another
picks them up for further processing or to consume their information.

The trouble with shared directories is that sometimes the consuming applica-
tion will be built with logic that states, “Do X for all fi les in the directory.” Thus, if
an incorrect fi le is placed in the directory, unexpected results may occur. (An archi-
tecture of this nature resulted in the complete failure of the replication feed for all
pricing data at a major retailer, costing many hundreds of thousands of dollars and
spurring an interest in confi guration management.)

Shared directories that facilitate application interaction are therefore important
points of control and need to be treated as CIs.

This whole concept may seem obvious; the key point being made here is that
these directories should be explicitly tracked as CIs in the CMDB, and the stuff they
contain is not necessarily individually tracked.

Deployed Software System

A Deployed Software System182 is a more technical concept than an Application. It
is a specifi c set of computing Components that can be managed as a unit. Applica-
tions (which in this model are seen as subtypes of Service) depend on Deployed
Software Systems.

Deployed software systems are often the instantiations of Technology Products.
They are the real, running instances. They support Applications, which in turn
 fi gure in SLAs, may have Incidents, and so forth. Technology Products in contrast

Shared directo-
ries that facili-
tate Application
interaction
are important
points of control
and need to be
treated as CIs.

BetZ-Chapter 03.indd 190BetZ-Chapter 03.indd 190 9/22/06 11:43:49 AM9/22/06 11:43:49 AM

show up on invoices and Contracts, and the complete list of software Technology
Products is the Defi nitive Software Library.

As you can see in Figure 3.46, Applications as Services depend on a great deal
of technology they do not own. Maintaining these relationships is essential for
understanding the effect of external forces on the IT organization.

One result of the model’s distinction between Technology Product and Applica-
tion is the apparent duplication in some cases of information across the Technol-
ogy Product, Deployed Software System, and Application entities, which in simple
cases may all have the same informal name.

Technology Product includes “undeployed software” generally, and this is useful
in the case of both externally and internally developed products, especially those
that have multiple production versions. Again, if a piece of software is to be consid-
ered part of the Defi nitive Software Library, it must be registered as a Technology
Product.183

A question to consider is whether the custom module entity in Figure 3.46
should also be a Technology Product.

Figure 3.46 Application Service, Deployed Software Systems, Technology Products, and Assets.

Technology
Product

Human Resource Management System:
Application

Custom Module:
Deployed

Software System

Application Server
Instance: Deployed

Software System

Oracle HRMS
Deployment: Deployed

Software System

Oracle HRMS
Package:

Technology
Product

Oracle HR
License: Asset

 Application Server
License: Asset

Commercial
application server:
Technology Product

Open Source
Library:

Technology
Product

Development
Toolset License:

Asset

Development
Toolset:

Technology
Product

The Application Service is dependent on the downloaded open source library and
the commercial development environment as technologies. They are not “owned”
by the application service. As software technology product they are part of the
Definitive Software Library.

Asset

Application

Deployed
Software
System

The purchased component of this applicaton
service is a Technology Product installed as a
Deployed Software System. It has a license
and is therefore an Asset as well.

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

 3.4 The Confi guration Item and Its Subtypes 191

BetZ-Chapter 03.indd 191BetZ-Chapter 03.indd 191 9/22/06 11:43:49 AM9/22/06 11:43:49 AM

192 chapter three A Supporting Data Architecture

Deployed Software Systems do not have SLAs or OLAs. Those concepts are
reserved for the Application entity as a subtype of Service.

Operating System Instance (Server) and Machine

A precise defi nition of Server versus Machine is increasingly critical. Server is
 becoming an ambiguous term because of virtualization, but as one of the most
 commonly heard words in IT, it must be addressed in this model, which sees Server

Servers and
 Machines are
not the same
thing.

Figure 3.47 Machines and Servers.

Compaq
Serial #5000MNO

Server
192.168.0.1
“Bill”

Dell
Serial #1000ABC

IBM 1
Serial #9000XYZ

Server
192.168.0.2
“Mary”

Server
192.168.0.3
“John”

Server
192.168.0.4
“Karen”

IBM 2
Serial #9001XYZ

One Server,
One Machine

Several Servers,
One Machine

One Server,
Several Machines

Servers are networked operating
system instances
that can run middleware or
applicaton software.

Machines are physical hardware
that sit in a rack and consume
power to run processing circuitry.

BetZ-Chapter 03.indd 192BetZ-Chapter 03.indd 192 9/22/06 11:43:49 AM9/22/06 11:43:49 AM

(and workstation) as an operating system instance, almost always networked. An
 operating system instance is a special case of a Deployed Software System.

A Machine is a physical computing device that can be equated to an Asset.
One Machine may host multiple Servers (virtualization and partitioning), and one
Server may be hosted by multiple Machines (failover and load balancing). Server is
the bits and the process (often linked to a software license as an Asset); Machine is
the atoms and the serial number, linked in turn to a physical Asset tag.

Machines may have subassemblies, including well-recognized components
such as disk drives and memory chips but also including full computing devices
(blade systems).

Common asset management solutions are just beginning to support these
requirements, and in many companies the reality of the computing infrastructure
has already outstripped their asset management solutions’ capabilities.

Component

A Component is a physical piece of executable code. Even though it is only magnetic
bits and bytes, it is common practice to call a Component “physical.” Calling it
“physical” in this context means that there is no disagreement about what and
where it is; Components are unambiguous assets that can generally be objectively
inventoried without debate about their boundaries.

UML “Component”
During the writing of this book I became aware that the UML defi nition of Component
had changed considerably between UML 1 and 2. This book retains the UML 1 sense
of the word; the new UML term is “artifact,” which I fi nd too general and nonintui-
tive—it is not a commonly heard industry term in IT operations.

Again, the purpose of this conceptual model is to rationalize commonly heard industry
terminology, not to develop a completely precise model, which would require the use of
less familiar terms (such as artifact) in support of more rigorous normalization.

The use of Component here is not in a pure object-oriented sense. In the object-
oriented world, a Component also has a well-defi ned interface that encapsulates
its behavior and provides an effective contract for anyone who chooses to use it.
However, Component as defi ned here applies to any piece of executable code,
regardless of whether it has a well-defi ned interface.184

A Component is
a physical piece
of executable
code that can
be objectively
inventoried.

AU

THOR'S NOTE

 3.4 The Confi guration Item and Its Subtypes 193

BetZ-Chapter 03.indd 193BetZ-Chapter 03.indd 193 9/22/06 11:43:50 AM9/22/06 11:43:50 AM

194 chapter three A Supporting Data Architecture

A Web service, shared object, or other similar addressable, distinct piece of
 functionality in this model is a Component—not a Service. This is quite a point of
confusion because of the overloading of the term Service.

Modern discovery tools discover Components in many cases through
their associated computing process evident in the operating system. (The
concept of computing process is not represented in the model—this is not a
 Business Process.) Computing processes have interesting technical metadata,
 including the specific command line used to invoke the process by launching
an executable. This area moves into more technical concerns out of scope for
this conceptual model.

Component Relationships
Components, like Applications, can be related to Datastores and Deploy Points.
However, doing dependencies at this level for the general case of a large enterprise
IT organization is usually not practical or useful given current industry capa-
bilities—the objects and their dependencies would quickly amount to millions,
and the information might not even be available in many cases (e.g., packaged
software). Instead of inventorying all the detail of Components, some confi gu-
ration management approaches focus on overall integrity checks across large
blocks of storage. In such cases the deploy point becomes a fundamental CI to
manage.

Capturing Component-level dependencies is a recommended best practice for
all aspects of EAI.

Datastore

A Datastore is a distinct, addressable source of data, usually structured. The most
common examples would be database catalog (sometimes imprecisely called an
 “instance”; this model uses it in the DB2 sense of a query space containing sche-
mas) and fl at fi le; message queues may also be represented here (Figure 3.48).

A Datastore should have one and only one data defi nition. As a Deployed Object
it depends directly on Servers and their underlying Machines. Note that as a CI it
can depend on and contain other Datastores. Again, generalized CI containment is
frowned on in the model—you don’t want Datastores containing Machines!

A database would further decompose into the well-known stack of schema, table,
and column (Figure 3.49). Metadata attributes specify the data types, lengths, and
so forth of the columns.

Capturing
Component-level
dependencies is
a recommended
best practice for
all aspects of EAI.

The most well-
known example
of a Datastore
would be a
 relational data-
base catalog.

BetZ-Chapter 03.indd 194BetZ-Chapter 03.indd 194 9/22/06 11:43:50 AM9/22/06 11:43:50 AM

Datastores should have data defi nitions, which are by strict defi nition Metadata—
data about the data.

The data defi nition tells you whether a given Datastore contains customer or
 supply chain information. More elaborate representations exist: distinctions between
entities, attributes, tables, and columns; the structure of keys and indices; inheri-
tance; and other fundamental information modeling concepts. Making sense of
these elaborations requires attention to the issue of what is a Datastore (physical CI)
and what is Metadata (its offl ine representation in a structured format). As noted in
the Metadata section, this is one of the more diffi cult conceptual areas in the book.

See the OMG’s Common Warehouse Metamodel and other metamodels and
the work of David Marco, David Jennings, and Dave Hay (among others). Refer-
ences are noted in “Further Reading.”

Datastores are often equated with their relational database management system
(RDBMS) instances in casual architectural sketches. Precisely, an RDBMS is an
instance of a Technology Product installed as a Deployed Software System, and
the Datastore is merely a passive container managed by the RDBMS. However,

Figure 3.48 Subtypes of Datastore.

QueueDatabaseFlat File

XML FileTabular

MetadataDatastore

 3.4 The Confi guration Item and Its Subtypes 195

Figure 3.49 Simple data dictionary.

Database Schema Table Column

BetZ-Chapter 03.indd 195BetZ-Chapter 03.indd 195 9/22/06 11:43:50 AM9/22/06 11:43:50 AM

196 chapter three A Supporting Data Architecture

this level of precision is sometimes not necessary in earlier phases of confi guration
 management.

Process and Data
The separation of process and data has both a conceptual and a physical driver.
Conceptually, it is convenient to think of data as orthogonal to process, a distinction
carrying through into fundamental computer science. Practically, the distinction of data
and process has been reinforced by the “access time gap”: the difference between
real-time, processor-driven access to solid-state memory (the province of programming
languages) and slower media such as hard disk and tape (the focus of data manage-
ment as it’s evolved over the past 50 years).185 This distinction is eroding because
of advances in hardware capabilities and economics (solid-state memory continues
to decline in price, making “in-memory databases” increasingly common). It is also
eroding because of ongoing efforts to incorporate persistence semantics directly into
higher-level computing languages and eliminate the “object–relational impedance
mismatch.” The continuing amalgamation of data into the processing realm will have
implications for confi guration management practice.

However, data reuse, capacity, and regulatory drivers will push the continued
distinction of data as a separate asset from (or at least a manageable and distinct
subcategory of) purely processing elements. How this plays out for the CMDB of the
future will be an interesting question.

See also Figure 5.8, “Metadata-based risk management.”

Location

A Location is the physical site at which a Machine may be located. The Location–
Machine relationship can be elaborated for the purposes of facilities management,
including concepts such as rack and grid. Power and HVAC systems present signifi -
cant information modeling challenges that will not be directly addressed here.

An Iterative and Incremental Approach to Confi guration
Data Maturation

An Iterative Approach
“Love the reference data model. We’re not going to get it done for years. What to
do in the meantime?”

“Well, let’s look at how to build it up over time.”

FO
O

D
FOR THOUGH

T

KEY POINT

BetZ-Chapter 03.indd 196BetZ-Chapter 03.indd 196 9/22/06 11:43:50 AM9/22/06 11:43:50 AM

Depending on the business objectives the confi guration management capability is to
meet, it’s strongly recommended that the architects consider its evolution incremen-
tally and iteratively.

The confi guration management problem is a large and varied challenge, and
different patterns and approaches will be discussed in subsequent sections. From a
data perspective, I describe a maturation process.

Stage 1
First, the association of Applications to Servers is often the top priority when assess-
ing the business value of confi guration management. This is a relatively simple data
structure (Figure 3.50).

Note that in this data structure there is no distinction between Applications and
Deployed Software Systems or between Servers and Machines. The Application
dependency on the Server may be due to a database, but that is not called out as
a separate entity, so certain data privacy requirements will be poorly handled. The
challenges of tracking Technology Products as distinct from IT services will not be
met, nor will the issue of Server virtualization be covered.

However, as an incremental step, it is a solid achievement and may present
 signifi cant challenges in itself.

Stage 2
This adds the concept of Datastore to the model. Databases are now called out
 specifi cally but are simplistically related to Servers (Figure 3.51).

A Datastore requires an intervening DBMS deployed to the Server, but this can
be disregarded at early stages of confi guration management. There is now potential
to tie in Metadata, for example, as relevant to data privacy issues.

Immediately
attempting the
full scope of the
reference models
outlined in this
book would be
sure to fail.

Figure 3.50 Confi guration iteration 1.

Application Server

Figure 3.51 Confi guration iteration 2.

Datastore

Application Server

 3.4 The Confi guration Item and Its Subtypes 197

BetZ-Chapter 03.indd 197BetZ-Chapter 03.indd 197 9/22/06 11:43:51 AM9/22/06 11:43:51 AM

198 chapter three A Supporting Data Architecture

Figure 3.52 Confi guration iteration 3.

Machine
OS Instance

 (Server)

Datastore

Application

Stage 3
This stage distinguishes between the Server as a logical instance of an operating
system, as distinct from a physical Machine (Figure 3.52). Being fully mature in
this area may require further elaboration, as there may be host and guest operating
systems and machines containing machines. (Technically, you may have to institute
a recursive relationship on the operating system instance and Machine entities.
This is tricky to manage consistently, especially if multiple engineers are inputting
data manually. Fortunately, this level of the stack is amenable to discovery tools, not
that they are all that mature as of this writing.)

Stage 4
This distinguishes between Application and Deployed Software System (Figure 3.53).

This is a big job, probably one that requires discovery tools to get it right. It also
can become annoying, as now you have to navigate through the Deployed Software
System concept to reach the Server. (It’s possible to still relate Application directly
to Server, but the potential for ambiguity arises and it’s not recommended. See your
local data architect if you want an in-depth discussion.)

Note that each of these iterations will require data refactoring; see the refactor-
ing literature for assistance here.186

Further Stages
Deploy point and Component might be considered next, and generally there are
many options once this basic framework has been built. Depending on the organi-
zation’s priorities, they may include more focus on networking, storage, metadata,
messaging, or many other concerns.

Figure 3.53 Confi guration iteration 4.

Application

Datastore

OS Instance
(Server)Deployed Software System Machine

BetZ-Chapter 03.indd 198BetZ-Chapter 03.indd 198 9/22/06 11:43:51 AM9/22/06 11:43:51 AM

This discussion only scratches the surface of the iterative approach to the ITRP
problem domain. However, it’s highly recommended that you approach your project
in this way, because immediately attempting the full scope of the reference models
outlined in this book would be sure to fail. Implementing an iterative approach
within the constraints of vendor products will be particularly challenging but still
more likely to succeed than a “boil the ocean” approach.

 3.5 Process and Workfl ow: A Data Perspective

In this data-centric section, I haven’t talked a lot about workfl ow and process. Let’s
turn to these from the data perspective.

The CRUD Matrix: An Old Standby

A well-known technique for understanding data’s relationship to process is the
 unfortunately named CRUD matrix. CRUD stands for the following:

� Create
� Read
� Update
� Delete

I’m going to modify the old CRUD standby to the following matrix:

� Create
� Use
� Aggregate

Note the following about this modifi cation:

� Use includes both read and update.
� Delete isn’t really of interest for high-level architecture.
� Aggregate means that a given process depends not on single instances of a given

data entity but rather on summarizations such as counts and averages. An aggre-
gate usage always means a Metric is being derived and often implies some sort
of underlying data mart or warehouse capability, which is important to know
when considering systems architectures.

Creating such a matrix is a key reason for doing a conceptual data model. With
the data on one axis and the processes on the other axis, the intersections are used
for understanding how the data and process relate; it’s an important alternative to
spaghetti process models. Table 3.2 shows a high-level create–use–aggregate matrix
for the book.

The CRUD,
or create–use
matrix, tells us
the relationship
between data
and process.

An aggregate
 usage always
means a Metric
is being derived.

 3.5 Process and Workfl ow: A Data Perspective 199

BetZ-Chapter 03.indd 199BetZ-Chapter 03.indd 199 9/22/06 11:43:52 AM9/22/06 11:43:52 AM

Ta
bl

e
3.

3
D

at
a

an
d

Pr
oc

es
s

C
ro

ss
-R

ef
er

en
ce

seititnE

Strategy

Idea

Demand Request

Program and Project

Release

Request for Change

Service Request

Event

Risk

Incident

Problem

Known Error

Orderable Service

Hosting Service

Service

Ordered Service

Application

Technology Product

Business Process

Deployed Software System

Component

Deploy Point

OS Instance (Server)

Location

Machine

Datastore

Asset

Assembly CI

Measurement Definition

Agreement

Contract

Account

Processes

Primary Value Chain

egana
M

dna
me

D

pihsnoit al e
R re

motsu
C eg ana

M
C

C
C

U
A

U
A

U
U

U
U

U
U

U
A

C
C

U

stseuqe
R dna

me
D llfiluF

U
C

C
C

U
U

U
C

C
U

U
C

C
U

 depoleve
D

snoitulo S

tcejorP egana
M

U
U

U
C

C
U

U
U

U
U

U
U

U
U

U
U

stne
mer iuqe

R eg ana
M

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U

noituloS dliu
B dn a ngise

D
U

U
U

U
U

U
U

U
U

U
U

C
C

C
C

C
C

U

yti lau
Q noitu loS erusn

E
U

U
U

U
U

U
U

U
U

U
U

U
U

U

 troppu S
secivre S

sesae le
R egan a

M
U

C
C

C
U

U
U

U
U

U
U

U
U

U
U

U
C

egnah
C noitcudor P egana

M
U

U
U

C
U

U
U

U
U

U
U

U
U

U
C

C
U

C
C

C
C

U
U

U

noitarugfino
C noitcudor P egana

M
U

U
U

U
U

U
U

C
U

U
U

U
U

U
U

tsseuqe
R ecivreS llfiluF

C
C

U
U

U
U

C
U

U
U

U
U

U

secivreS niatsuS
U

U
U

C
U

U
U

U
U

U
U

U
U

U
U

U

s
melbor P dna stned icnI evlose

R
U

U
U

U
C

C
C

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U

Supporting Activities

egana
M A
rc

hi
te

ct
ur

e

ygeta rtS
TI poleve

D
C

C
C

A
A

A
A

U
A

A
A

A
A

A
A

A
A

U
A

A
A

A
A

A
A

A
U

U
A

`oiloftroP
TI egana

M
U

U
U

C
A

A
A

U
A

A
A

C
C

U
A

C
C

U
A

A
A

A
A

A
C

A
U

U
U

yticapa
C egana

M
U

U
U

U
U

A
A

A
U

U
U

U
U

U
U

A
A

U
A

U
A

U
A

U
U

ytil ibaliav
A egana

M
U

U
U

U
U

U
A

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U
A

U

 slev e
L ecivre S egana

M
U

U
A

A
A

A
A

A
U

U
U

U
U

U
U

A
U

C
C

C
U

ssecor P egana
M

U
U

U
A

U
U

U
U

C
U

ata
D egana

M
U

U
U

U
U

U
U

secnaniF
TI egana

M
U

U
U

U
U

C
U

U
U

U
U

U
U

U
A

U
A

C
U

U
C

srodn e
V dna ,ffatS ,gnicruo S egana

M
U

U
U

A
U

U
U

U
U

U
C

U
C

U

ecnailp
mo

C dna ,y tiruceS ,ksi
R egana

M
U

U
U

U
U

U
C

A
U

U
U

U
U

U
U

U
U

U
U

U
U

U
U

U

snoita rep
O dna sei tilica F egana

M
U

U
U

U
U

U
U

U
U

U
U

U
U

A
C

U
U

U
U

BetZ-Chapter 03.indd 200BetZ-Chapter 03.indd 200 9/22/06 11:43:52 AM9/22/06 11:43:52 AM

The Matrix
This is a “reference matrix” based on my industry experience and research. It’s pre-
sented as a method example more than a normative reference (although I did devote
considerable thought to it).

If you are rationalizing your internal IT systems, consider doing your own matrix for
both your current and your desired target states. Don’t just take this version as gospel.
Map it out yourself.

Another 100 pages could have been devoted to analyzing every cell, elaborated
out to all intersection entities. As the academics say, this will be “left as an exercise for
the reader.” It will be different for every organization. The primary goal of this section
is to demonstrate the analysis principles.187

A Document and its subtype of Metadata can be created by any of the process
areas, and the IT enablement process area, because it is a miniature of the entire
value chain, similarly can create and use anything—hence they are not shown.

A matrix like this is a distilled view of information that could also be drawn in
dozens of diagrams. For example, Incidents and Problems go through a life cycle
that may feed back into the demand process (Figure 3.54).

AU
THOR'S NOTE

Figure 3.54 Graphical representation of a process or data create–use matrix.

Incident

Manage
Production
Change

Deliver
Solution

Incident is reported
and is elevated to
Problem status

Project
management
activities to mitigate
Problem

Problem cited as
justification for
production change

Manage
Portfolio

Aggregate problems for
that Service used in
portfolio assessment for
next planning cycle

Resolve
Incident

and Problem

Manage
Demand

Use ProblemUse Problem

Aggregate Problem
Create Incident

Create Problem Use Problem

Problem

Problem feeds back
into demand cycle—
“fix this thing”

 3.5 Process and Workfl ow: A Data Perspective 201

BetZ-Chapter 03.indd 201BetZ-Chapter 03.indd 201 9/22/06 11:43:52 AM9/22/06 11:43:52 AM

202 chapter three A Supporting Data Architecture

This create–use matrix is presented as a starting reference model. There are lots
of interesting questions generated by such a matrix.

Is a Problem created in the Incident process, or is it created in the Problem process?
(Incident Management refers one or more Incidents to Problem Management for further
analysis, but Problem makes the call as to whether to create a new Problem record.)

An RFC can be created by the release manager in the system development
 process or by some team attempting to respond to an Incident. When an entity
can be created by more than one process, this deserves special attention. Ditto for
Service Offering, Process, and Contract. Contracts might be created as the result
of outsourcing service agreements, for vendor product purchases, or between the
IT organization and its clients—three different origination processes.

Notice how many processes use the Application entity. This is typically one of
the most poorly managed entities in all of IT governance.

The primary value chain activities are the most reliable data origination points.
Although data also can originate in the supporting processes, these processes may be
underfunded and not scrutinized effectively for quality. Therefore, it’s a best practice
to focus on core value chain activities and the data that they produce and consume.

For example, asking the risk management or business continuity activities to
generate a list of all Business Processes dependent on IT is bound to fail. That is
core IT value chain data, and the systems underpinning those processes should have
the process dependencies documented as part of their construction and release.

If a supporting process needs data to achieve its mission, efforts should be made
to capture that data as part of the primary value chain activities. If resistance is met,
either the matter should be escalated or the supporting activity’s need for that data
should be questioned and perhaps abandoned.

Intersection Entities and Process
Most entity relationships in the conceptual data model are many to many. As noted
later in the material on intersection entities, these relationships must be resolved
with an intermediate table. Such intersection entities require the same CRUD anal-
ysis as the major IT concepts, and some of the most challenging problems emerge
in attempting to manage them.

For example, an Application may have many Servers, and vice versa (Figure 3.55).

The primary
value chain
activities are the
most reliable
data origination
points.

Figure 3.55 Application to Server.

Application Application/Server OS Instance (Server)
**1 1

BetZ-Chapter 03.indd 202BetZ-Chapter 03.indd 202 9/22/06 11:43:53 AM9/22/06 11:43:53 AM

Table 3.4 Intersection Entity Analysis

Manage
Application
Portfolio

Provide
Infrastructure

Document
Application
 Dependencies

Application C U

Application/Server C

OS Instance (Server) C U

(See the earlier section “An Iterative and Incremental Approach.” Note that this
example is actually using the third iteration for simplicity.)

When analyzing process to data, include all three entities as in Table 3.3. Note
that in this example the processes are more granular—the process framework as
presented in this book needs to be drilled down further to enable this level of
detailed analysis.

Workfl ow

One requirement for IT enablement tooling in general is rigorous tracking of all
changes to any entity: who changed what, when. There are a surprising number of
tools that do not do this and should be ruled out as possible product choices for
any enterprise. Common terms will be “effective dating,” “timestamping,” and/or
“audit trail” (use these in vendor discussions).

Business Process meets the entity through these techniques, especially when
audit trails are collected on the changing roles and responsibilities for an entity
(see the “Role Management” section earlier in this chapter). A trail of who “owns”
an Incident and where it has been referred is a feature of most incident manage-
ment tools; this is a specifi c example of the general principles here. Timestamping
of status changes is (in part) how SLAs are monitored for workfl ows like Incident,
Service Request, and Problem resolution.

Similarly, IT enablement tooling should manage audit trails on other entities
and their Role assignments:

� Who have the application managers been for this Application?
� What Projects have built upon this Application? Who has been on these Projects?
� Who has approved this Change?

Timestamping of
status changes
is how SLAs
are monitored
for things
like Incident,
Service Request,
and Problem
 resolution.

 3.5 Process and Workfl ow: A Data Perspective 203

BetZ-Chapter 03.indd 203BetZ-Chapter 03.indd 203 9/22/06 11:43:53 AM9/22/06 11:43:53 AM

204 chapter three A Supporting Data Architecture

 3.6 General IT Data Architecture Issues

Mapping the Business to IT

The goal of mapping IT to the business is implicit throughout the data model; one
representation of often-encountered concepts can be seen in Figure 3.56.

If the preceding concepts (or equivalents) are understood and formally inven-
toried, with dependencies mapped and maintained, this can be of great service in
understanding business–IT alignment. (Business–IT alignment is also a matter of
perception, which no amount of data can address.)

Some of these concepts are highly subjective and require clarifi cation for a given
organization’s context and culture. There are various methodologies, out of scope
for this book. See Appendix A for a detailed discussion of function vis-à-vis process.
Capability is another concept sometimes encountered.

Such analysis is typically the domain of enterprise architecture. It can degen-
erate into ivory tower efforts and must remain aligned with business objectives.
Enterprise architecture efforts would be well advised in particular to analyze and
document the role of any particular IT Service, Business Process, or Function with
respect to the enterprise value chain, including quantifi ed revenue data. Mapping
architecture to the enterprise fi nancial model is not often done and would help
the enterprise architecture practice immeasurably if undertaken. Such data has

Enterprise
 architecture
 efforts should
map IT services
to the enterprise
value chain,
 including
 quantifi ed
 revenue data.

Figure 3.56 Essentials of Business–IT mapping.

Configuration Item (CI)

Service

Program

Release

Project

Business ProcessStrategy

Application

Function

Organization

Information
1 *

1 *

BetZ-Chapter 03.indd 204BetZ-Chapter 03.indd 204 9/22/06 11:43:53 AM9/22/06 11:43:53 AM

 applicability in ITSM efforts such as prioritizing Incident and Problem resolution
and continuity strategies. Unfortunately, many enterprise architects do not have
the requisite background.

Versioning

Versioning is a challenging area in IT data management, especially with respect
to application software. Technically, for a given product, any unique combination
of the base software plus patches is a version. For many complex enterprise soft-
ware products, patches are applied on an as-needed basis—they are not cumula-
tive, so the number of potential combinations can be large. This means that naïve
approaches to tracking IT components (such as a simple version fi eld on a CI) are
not robust enough.

Fully elaborated patch and version management should be considered an
 element management problem area and left to the specialized tools emerging
(e.g., provisioning systems) optimized to handle this complex domain. The
 consolidated CMDB is probably best served by keeping version and patch
 management information at a relatively high level, with traceable links to the
 provisioning or patch management systems if that level of detail is required.

CMDBs and metadata repositories also run into some conceptual issues with
versioning and life cycle state; there is a need to distinguish between the following:

 1. The life cycle state of the object in question—for example, purchased, in
service, or retired—and the relevant versions

 2. The life cycle state of the CMDB record pointing to the object—for example,
planned, discovered, or confi rmed

As noted in the discussion on the Metadata entity, this is a core problem of
“thing” versus “re-presentation of thing.” This is further discussed in the “Confi gu-
ration Management” section in the next chapter.

Related to the concept of versioning is current versus target analysis. An enter-
prise architecture is essentially a set of high-level dependencies distinguished from an
operational service model by 1) how low in the technology stack it extends and 2) the
presence of future-state data.

An ideal solution would be a robust as-is model of the IT confi guration (includ-
ing logical concepts such as Process, Service, and Application) upon which future-
state scenarios could be based, modeled in an area logically separated from the
critical current-state data. These scenarios, once elaborated, can be compared with
the current state and change initiatives derived.

For a given pro-
duct, any unique
combination of
the base software
plus patches is a
version.

 3.6 General IT Data Architecture Issues 205

BetZ-Chapter 03.indd 205BetZ-Chapter 03.indd 205 9/22/06 11:43:54 AM9/22/06 11:43:54 AM

206 chapter three A Supporting Data Architecture

Collaboration

Any entity in the model might serve as a basis for collaboration. The ability to have
a threaded discussion on any item would be highly desirable, as would be the ability
to easily exchange links (e.g., Uniform Resource Identifi ers).

Portfolio

A portfolio is a collection of objects with like attributes across which meaningful
comparisons can be made for decision-making purposes. It has a further connota-
tion of a fi nancial resource pool or account of some sort, but portfolios can also be
measured and managed on nonfi nancial bases.

As discussed in Chapter 2, there are various approaches to portfolio segmen-
tation. Portfolio is not a straightforward concept to model; there is not a single
abstract portfolio entity. It is better to conceive separate portfolios based on the
objects to be comparatively managed:

� Project portfolio
� Service portfolio
� Application portfolio
� Technology product portfolio
� Asset portfolio

These classes of objects might further be distinguished into different portfolios
based on an organization (i.e., as a Party) having a defi ned portfolio interest in
them. For example, organization A might have 15 projects in their portfolio, and
organization B has 23. These are truly separate portfolios with different assessment
metrics.

Each class of item has different metrics. For example, a Service portfolio may
have comparison metrics based on SLA adherence, perceived quality, intensity
of use, and life cycle of underpinning technology, and a Project portfolio might
have metrics based on business alignment, anticipated return on investment, and
so forth.

Granularity is a key issue in portfolio management. Some theorists call for an
ideal of “no more than 30 to 50” applications,188 for example, but the number
of applications in a large company may easily top 1000 (depending on the
 methodology by which they are counted). This is a classic rollup or aggregation
issue amenable to the same techniques used to construct dimensions for business
intelligence purposes.

There is no
 portfolio entity.

BetZ-Chapter 03.indd 206BetZ-Chapter 03.indd 206 9/22/06 11:43:54 AM9/22/06 11:43:54 AM

Should Applications Be Managed as Projects?

Every product and every activity of a business begins to obsolesce as
soon as it is started. Every product, every operation, and every activity
in a business should be put on trial for its life every two or three years.
Each should be considered the way we consider a proposal to go into
a new product, a new operation, or activity—complete with budget,
capital appropriation request, and so on. One question should be asked
of each: “If we were not in this already, would we now go into it?” And
if the answer is “no,” the next question should be: “How do we get out
and how fast?”

—Peter F. Drucker189

Having emphasized earlier that an Application and a Project are different things,
I want to contradict this. How do you track TCO for Applications? This question
gets to the heart of IT portfolio management, which in some representations has
a project-centric bias—project in the sense of having a defi ned end date. But what
if we relaxed that requirement and accepted the concept of application as a sort of
open-ended Project? (This will give anyone schooled in formal project manage-
ment pause; having a defi ned end date is typically seen as essential to the defi nition
of a Project.)

However, pragmatically, the time-tracking tool may be fi rst brought in to sup-
port project management. Implementing a separate time-tracking tool for nonpro-
ject staff hours (e.g., time spent supporting the operation of an Application) clearly
makes no sense, so the list of chargeable elements in the time-tracking tool needs to
include both Projects and other activities. The portfolio of base activities thus should
include the application portfolio as a subset. (It won’t be a complete match because
there are base activities that don’t correspond to either Projects or Applications).

The overall population of “buckets” thus should look like this:

� True, defi ned-scope Projects (typically incremental, sometimes base)
� Ongoing maintenance activities tied to defi ned Applications or Services
� Other valid activities (e.g., training)

This can present practical consequences if a project management offi ce controls
the time-tracking tool; its members may not understand the concepts of IT Service
or Application well and may implement charging structures that do not align with
the IT Service portfolio. Determining the master system of record for steady-state
elements (i.e., the Application or Service portfolio) to be used as a basis for time
tracking and where necessary building data feeds will be critical.

The portfolio
of base activities
should include
the application
portfolio as a
subset.

Without integra-
tion, visibility
into project ver-
sus maintenance
 activities will
 remain elusive,
and integrated
staff resource
planning will
remain diffi cult.

 3.6 General IT Data Architecture Issues 207

BetZ-Chapter 03.indd 207BetZ-Chapter 03.indd 207 9/22/06 11:43:54 AM9/22/06 11:43:54 AM

208 chapter three A Supporting Data Architecture

Figure 3.57 Effort tracking based on portfolio entries.

Portfolio Entry

Effort

Project

Service

ApplicationOrdered
Service

Figure 3.57 shows a conceptual fragment illustrating the commonality of service,
Application, and Project within an overall portfolio management structure. Note
that, although they are similar elements in this representation, for other purposes
they are radically different concepts, Service being a CI with an indeterminate life
cycle and Project being a defi ned-scope, fi nite effort.

Because effort can be expended on either, their data must be rationalized and
integrated to some degree; there would be several technical means of doing this.
Without this integration, visibility into Project versus maintenance activities will
remain elusive and integrated staff resource planning will remain diffi cult.

The concepts of Program and product are sometimes used in Project portfolio
management in solving these issues. An Application might be seen as a longer-lived
Program in the project management sense (not the computing sense).

See the “Justify Change” pattern in Chapter 5.

Intersection Entities

This is a high-level conceptual data model. Most of the relationships (all the
 unadorned lines) are of the many-to-many type. For example, an Application may
use many Servers and a Server may support many Applications (Figure 3.58).

The intersec-
tion entities are
where the devil
emerges from
the details.

BetZ-Chapter 03.indd 208BetZ-Chapter 03.indd 208 9/22/06 11:43:54 AM9/22/06 11:43:54 AM

Figure 3.58 Unresolved many-to-many relationship.

Application Server
**

 3.6 General IT Data Architecture Issues 209

Figure 3.59 Resolved many-to-many relationship.

Application ServerApplication/Server
*1 * 1

(This is from iteration 1, so it doesn’t track with the full reference model.)
To turn these language concepts into an operable system, an intersection entity is
required190 (Figure 3.59).

If you look at the main data model and imagine all many-to-many relation-
ships being elaborated with their intersection entities, you’ll see that it would be
far too complex to represent as one diagram. That’s the beauty of a well-scoped
conceptual data model; it should be able to represent a substantial problem
domain on one page.

The intersection entities are where the devil emerges from the details. For
example, it is likely that your database administration team has a list (or at least a
spreadsheet) of all the team’s databases. Perhaps you have an application manage-
ment group with its own spreadsheet. Therefore, you might be able to say that
you can populate the Application and Datastore entities. But who is responsible
for the relationship, as represented by the Application–Datastore entity? Ques-
tions of this nature permeate the problem of confi guration management. As with
any entity, documented processes are required for the creation, reading, updating,
and deleting of data in the Application–Datastore intersection entity. Would it
be your application team? Your database administration team? A separate team of
 confi guration analysts?

The current state of most IT organizations is much less formal. What you
often see is uncoordinated spreadsheets, which do not handle the challenge of
many-to-many data well.

Spreadsheet Silos
Chris: What’s so bad about people maintaining their own spreadsheets?
Kelly: Well, let’s look at your Organization. Here are some extracts from spread-

sheets maintained by your application support, database, and server
teams:

DIALOG

(continued)

BetZ-Chapter 03.indd 209BetZ-Chapter 03.indd 209 9/22/06 11:43:55 AM9/22/06 11:43:55 AM

210 chapter three A Supporting Data Architecture

Server team:

Server name Notes

WNAPPL01 Supports FirstTime and X-time Batch

FRED ?

UXPLV01 PLV server. See Scott Armstrong

WINWEB03 External Web server

UNXDB001 PLV databases

WINDB2 SQL Server

TXEMLA Email server

QDXAPP02 Quadrex App server

Applications team:

Servers Databases

Quadrex
QDXAPP02
UNXDB001

Oracle

X-Time WNAPL01 SQL Server

PLV
UXPLV01
UNXDB001

Oracle

Database team:

Database Server App

PDBX01 UNXDB001 Quadrex

LVDBX01 UNXDB001 PLV/X-Time

ARGDBX02 WINDB2 Argent

GDBX01 WINDB2 GuardSys

Chris: Ouch. This data makes my head hurt.
Kelly: Well, stick with me. There are some serious issues here. Let’s focus on

 Quadrex. The server team knows that Quadrex uses QDXAPP02 as an appli-
cation server but doesn’t seem to realize that Quadrex also uses UNXDB001
through its use of the PDBX01 database. They think that UNXDB001 is only
used for PLV. (Perhaps there was surplus capacity on that server and Quadrex
came later.)

BetZ-Chapter 03.indd 210BetZ-Chapter 03.indd 210 9/22/06 11:43:55 AM9/22/06 11:43:55 AM

The application team knows that Quadrex is using QDXAPP02 and
UNXDB001, but it doesn’t have the level of detail that the database
administrators do, that Quadrex is using specifi cally the PDBX01 data-
base on that server. Quadrex does not own that server—the PLV team is
also using it. This is important from a cost allocation and support impact
standpoint.

Chris: Actually, no application team “owns” their server according to our VP for
systems engineering, even if that server is currently allocated 100% to them.
It’s a “hosting” relationship. But some of them haven’t quite bought into that
point of view.

Kelly: Right… Common argument nowadays! Now, the database team knows
that Quadrex is using the PDBX01 database on UNXDB001—but isn’t
tracking Quadrex’s use of QDXAPP02, as that is an application server
that they don’t manage. Finally, notice that someone fumble fi ngered the
Quadrex name on the fi rst row of the database administration spreadsheet,
misspelling it “Qaudrex.” This means that when we go to consolidate all
this data into one database, we’re going to have to manually identify and
clean that up.

Chris: Why didn’t the database administrators pick from a list of application
names?

Kelly: Has that list been shared with them? Do they agree with how those appli-
cations are represented? Is there confi dence in the process for keeping
the list up-to-date? (For that matter, is there even a process?) Do they have
a technical approach on how they can integrate that list from another
system? Excel can pull a list from a live database, but you start to get into
advanced features—too far down that road and you’re looking at real
 system development.

The same issues need to be thought through for every many-to-many relation-
ship, such as the following:

� Event–Incident–Problem
� Application–Technology Product
� Application–Process
� Change–CI
� Change–Incident

The complexities of doing this are why vendor products are recommended, but
it’s not impossible to build your own.

 3.6 General IT Data Architecture Issues 211

BetZ-Chapter 03.indd 211BetZ-Chapter 03.indd 211 9/22/06 11:43:55 AM9/22/06 11:43:55 AM

212 chapter three A Supporting Data Architecture

This is also the most critical area to review the vendor product—a common
vendor mistake is to put in a one-to-many relationship where a many-to-many
relationship is required. For example:

� A Problem might be addressed by several Releases, but your problem manage-
ment tool only allows you to identify one Release that fi xes it.

� A Datastore may be shared by many Applications, but a confi guration manage-
ment tool only allows you to identify it with one.

� A Machine may support multiple Servers, but your asset management tool only
allows you to associate it with one.

These are the kinds of details critical to review in assessing any vendor pro-
duct—and it all starts with having good, specifi c, clear requirements for what you
need to track and how it needs to relate. Even when purchasing a vendor product,
a conceptual data model is needed. (Emphasis on conceptual. The physical data
model is irrelevant; the purpose of asking for a data model is to assess the business
rules that the application is based on—not to assess their technical architecture.)

Networks and Trees

Metadata, or IT confi guration management data (this book sees them as synony-
mous), presents unique problems compared with the data that IT manages on
 behalf of its customers. Financial, logistics, and human resources data has deep
roots in paper-based history; a purchase order or hiring authorization message can
be traced directly to its origins in the forms once routed by interoffi ce mail to “IN”
baskets throughout preelectronic corporations.

One difference is the “recursive relationship,” a common occurrence when
managing IT data.

If you look at a sales journal or a stack of invoices, you will generally see
 consistency: the data model is the same for all the information. The data also has
limited interconnections: one invoice does not typically reference another in simple
models; invoices do not have dependencies on one another. An invoice references
common customer lookup tables and product tables, resulting in data models that
are relatively straightforward to understand (Figure 3.60).

The purpose
of asking for a
data model is to
assess the busi-
ness rules that
the application
is based on.

IT confi guration
management
data (or meta-
data) presents
unique problems
compared with
the data that
IT manages on
behalf of its
partners.

Figure 3.60 Basic data model.

Invoice ProductCustomer Invoice Line
Item

BetZ-Chapter 03.indd 212BetZ-Chapter 03.indd 212 9/22/06 11:43:56 AM9/22/06 11:43:56 AM

With confi guration management, everything becomes more complex. Appli-
cations depend on other applications, data fl ows from one database to another
to yet a third, and network devices are by defi nition embedded in a web of
interconnections. The data (and its required modeling) starts to take on new
characteristics. In mathematical terms, it becomes graph-based; that is, it looks
as shown in Figure 3.61.

This kind of data presents well-known problems in storage, querying, and pre-
sentation because it requires “any-to-any” data models and can rapidly become
complex to the point of incomprehensibility.

This kind of data is not typically encountered in the business-centric systems
that are successors to forms-based paper processes. It is encountered in manufac-
turing and supply chain systems in the well-known “bill of materials” problem.
It is the kind of data stored by CMDBs and metadata repositories, when they
move into managing technical metadata such as interconnections among network
devices, integration fl ows, and so forth. It is also seen in computer-assisted design
and manufacturing tools, and CASE tools.

The recursive relationship enables complex data. This is a relationship when one
type of thing can be connected to other instances of the same thing. There are two
basic types of recursive relationship:

� Tree
� Network

The tree relationship is a relationship where one thing “contains” other
things. A taxonomy is a tree; so is a hierarchy. Common examples of trees in
ITSM are CIs containing other CIs, organization hierarchies, and process steps

Graph data can
rapidly become
complex to the
point of incom-
prehensibility.

Figure 3.61 Graph-based information.

 3.6 General IT Data Architecture Issues 213

BetZ-Chapter 03.indd 213BetZ-Chapter 03.indd 213 9/22/06 11:43:56 AM9/22/06 11:43:56 AM

214 chapter three A Supporting Data Architecture

decomposing into fi ner-grained activities and tasks. A tree often looks as shown
in Figure 3.62.

Notice how it is always possible to say that one box owns and/or is owned by
others. A tree can be recognized in a data model by the notations in Figure 3.63.

While simpler than networks, trees can be troublesome to report on if they
are of indeterminate depths; that is, if one branch of the tree is fi ve levels deep
and the other is only three, it’s hard to create a consistent, sensible report. A com-
mon strategy of data architects when dealing with treelike structures is to fi x the

A common
strategy of data
architects when
dealing with tree-
like structures is
to fi x the number
of levels.

Figure 3.62 Indefi nite-depth tree.

Figure 3.63 Tree data model.

0..1

0..*

Tree Element

BetZ-Chapter 03.indd 214BetZ-Chapter 03.indd 214 9/22/06 11:43:56 AM9/22/06 11:43:56 AM

levels and establish that all branches of the tree have the same number of levels
(Figure 3.64).

But this may have problems in dealing with the real world—what if the organi-
zation (or whatever) is just not structured that way? Organizations may decide to
structure themselves, and adapt their business processes, to fi xed-level hierarchies, as
you see in retail Organizations with their typical store–district–region hierarchies.

A network is characterized by things related to other things, not necessarily con-
taining other things. A diagram of a redundant wide area network, an Organization
chart with “dotted-line” relationships, or a mapping of how systems interrelate
would probably be a network. A network often looks as shown in Figure 3.65.

Although there are treelike structures in it, the difference is that it is no longer
possible to say that one box owns or is owned by others. A network can be recog-
nized in a data model by the notations in Figure 3.66.

This is also often called the “any-to-any” relationship.

A network is
characterized by
things related to
other things.

Figure 3.64 Fixed-depth (level) tree.

Figure 3.65 Network (no longer a tree).

 3.6 General IT Data Architecture Issues 215

BetZ-Chapter 03.indd 215BetZ-Chapter 03.indd 215 9/22/06 11:43:57 AM9/22/06 11:43:57 AM

216 chapter three A Supporting Data Architecture

One issue in service dependency mapping is that a service map is often presented
as a tree but in reality is a network because infrastructure elements often support
more than one Service.

Trees and networks make ITSM data much harder to deal with compared to
sales or fi nancial data. Why is this? Start with a (now somewhat dated) picture of
my son (Figure 3.67).

[n.b.: Thanks, yes he’s cute. He’s a happy boy :-).] What I want to draw your
attention to is the Skwish toy he’s holding (Figure 3.68).

Now, a regular business data is like a deck of cards (Figure 3.69).
You can say,

“Show me all the red cards between 3 and 8.”
“Show me all the jacks.”
“Show me all the hearts and spades.”

It’s a pretty simple problem. The hearts don’t have much to do with the spades,
and there’s not a lot of ambiguity.

The Skwish toy represents interconnected, indefi nite-depth, recursive data. It’s
troublesome. You can say, “show me a small red sphere,” but what if you say “show
me everything connected to the small red sphere”? What do you mean by that? The
whole toy? Or just things immediately connected to the red sphere? By elastic? By
wood? Where do you draw the line?

What does this have to do with reporting for ITRP (and ITSM)? Much main-
stream business reporting is of the deck-of-cards variety. You can handle this with
the same tools your business users use: relational databases and reporting or busi-
ness intelligence tools such as Crystal, Brio, Microstrategy, and Actuate.

What if you say
“show me every-
thing connected
to the small red
sphere”? What
do you mean by
that?

Figure 3.66 Network data model.

Network
Element

0..*

0..*

BetZ-Chapter 03.indd 216BetZ-Chapter 03.indd 216 9/22/06 11:43:57 AM9/22/06 11:43:57 AM

Figure 3.67 Keane Betz and Skwish toy.

 3.6 General IT Data Architecture Issues 217

Using these well-established techniques, one can answer all of the following
 questions (assuming the data is consolidated into a data mart):

� What Services do I have?
� Have I met my service levels for a Service?
� What is the history of changes associated with a CI?
� How many Projects do I have running right now?
� Which Projects contributed to building this system, and what did they cost?
� What does this system cost to run?

BetZ-Chapter 03.indd 217BetZ-Chapter 03.indd 217 9/22/06 11:43:57 AM9/22/06 11:43:57 AM

218 chapter three A Supporting Data Architecture

Figure 3.68 Skwish toy: network example.

But those tools don’t handle reporting on recursive data. Although a relational
database will store recursive data just fi ne, with relational databases and query tools,
it’s hard to answer the following questions:

� What is this Service dependent on (other Services, Applications, hardware,
 network)?

� What depends on this infrastructure piece, directly or indirectly?
� Is the Project on schedule? On budget? (This requires traversing an unknown

depth of project tasks and subtasks—obviously, project management tools do it,
but a customer is hard pressed to deal with this data in raw form. A project man-
agement offi ce, in confi guring the project management tool, may “fi x the levels,”
only allowing, for example, four levels of project, phase, task, and subtask.)

� For a Project, which tasks are on the critical path? (Ditto.)
� What is the complete lineage of this data item in this report? Where did it

come from? What systems did it fl ow through? (An important compliance
issue.)

Relational
databases and
query tools don’t
handle recursive
data well.

BetZ-Chapter 03.indd 218BetZ-Chapter 03.indd 218 9/22/06 11:43:58 AM9/22/06 11:43:58 AM

� What are all the downstream destinations for this data element? What middle-
ware infrastructure does it fl ow across? (Important security questions.)

Basically, if you have language like “direct or indirect dependency” in a
requirements specifi cation, you probably are into the Skwish type (tree or net-
work) problem. The problem is that although the theorists have been kicking this
around for a while, no standard approaching SQL has been implemented across
multiple platforms.191

Recursion in internal IT data is an immediate challenge to the application of
business intelligence–based performance management principles.

Practical Use of Recursion

The recursive relationship can easily be abused and can enable nonsensical con-
nections. One of the problems with the CI concept as framed by ITIL is that
it calls for any-to-any relationships between CIs generally. (Actually, it calls for
both the “contains” and “uses” relationships for any CIs.) However, some con-
nections don’t make sense. For example, a Datastore should not “use” a wide
area network circuit, and a RAM chip would have nothing to do with an XML
schema—yet some confi guration management tools allow the customer to put in
such relationships. Being more precise is why we go to the trouble of building a
data model.

The recursive
relationship can
easily be abused
and can enable
nonsensical con-
nections.

 3.6 General IT Data Architecture Issues 219

Figure 3.69 Deck of cards.

BetZ-Chapter 03.indd 219BetZ-Chapter 03.indd 219 9/22/06 11:43:59 AM9/22/06 11:43:59 AM

220 chapter three A Supporting Data Architecture

It is usually the case, however, that any CI of a given type can both use and
 contain other objects of the same type, especially in a high-level conceptual data
model such as this.

For example, a Server might contain hard drives; both would be types of
machine. A Machine might be connected to other Machines using a network.
A Process can both contain and depend on other Processes. Datastores contain
other Datastores, and with mechanisms like linked databases they may depend
without owning. A Deploy Point (i.e., a fi le system directory) can certainly contain
other Deploy Points and through mechanisms like directory linking (common in
Unix) can depend on them without owning.

Finally, it’s also the case that the IT world is not well understood and new
dependencies present themselves. Therefore, it’s OK if the confi guration manage-
ment tool allows the any-to-any relationship as a managed, controlled adminis-
trative option. It’s important to be clear about how this differs from bad practice
CMDB tools: in the recommended approach, an administrator can decide that
“well, we do need to track a dependency between XML Schemas and RAM chips.”
They specifi cally allow just this additional dependency to be permitted by the tool
and created by customers. In a poorly engineered tool, the user gets to decide what
is related to what. That is a recipe for chaos.

Partitioning the Data Model

There are no vendor products on the market that cover the entire scope of this
conceptual data model. The IT organization will therefore need to integrate two
or more products. These integration points can be understood by simply drawing
boxes around the entities, representing systems of record, and then observing
where those boxes are crossed by relationship lines—that is where interfaces must
be built.

For example, if service request management is handled by a different system
than service management (a common industry pattern), some Service Requests
may result in true, formal RFCs (Figure 3.70). This in turn requires some sort
of interface between the two systems to handle the relationship between Service
Request and Change. The interface may be one of several types:

� Service requests requiring RFCs are moved from the Service Request manage-
ment system and automatically moved to the service management system.

� The Service Request is assigned an unambiguous identifi er, and this is manually
entered into the RFC system (potential for human error).

It’s OK if the
confi guration
management
tool allows
the any-to-any
relationship as
a controlled
 administrative
option.

BetZ-Chapter 03.indd 220BetZ-Chapter 03.indd 220 9/22/06 11:43:59 AM9/22/06 11:43:59 AM

� The Change is created and its identifi er is manually entered into the Service
Request (again potential for human error).

If no cross-reference is created, the Service Request is at risk if RFC approval is
needed to complete it.

The creation of data silos that do not interoperate is one of the most pervasive
architectural failures in modern IT systems, and it is recommended you don’t do
it to yourself. But interfaces are expensive to build and run, so don’t underestimate
the cost of integrating several best-in-class systems.

Data Implications of Operational versus Portfolio
Confi guration Management

As noted previously, there are two types of confi guration management: operational
and portfolio. (Drift control is a type of operational confi guration management.)

Don’t underes-
timate the costs
of integrating
several best-
in-class systems.

Figure 3.70 Partitioning data across systems.

Service Management System

Service Request Management System

Problem

Request for
Change

Incident

Service
Request

Service Offering

Ordered Service

may cause the
initation of

 3.6 General IT Data Architecture Issues 221

BetZ-Chapter 03.indd 221BetZ-Chapter 03.indd 221 9/22/06 11:44:00 AM9/22/06 11:44:00 AM

222 chapter three A Supporting Data Architecture

Portfolio confi guration management is where data models are applicable. Opera-
tional confi guration management, with its bit-level concern for change, can’t be
easily translated into a metamodel—there are too many variations. Data models
would be necessary for all fi le formats for starters, which is impossible.

Operational confi guration management therefore becomes concerned with the
Deploy Point concept, which is a defi ned block of storage across which integrity
can be ensured and changes detected. It also might be applied individually to the
Document, Component, and/or Datastore concepts, but this may be ineffi cient in
the case of large-scale Applications with dozens or hundreds of Components and
Datastores.

For example, an Application may be deployed to a given Server, situated in a
Deploy Point. Portfolio confi guration management tracks the fact of deployment
and the Application’s other dependencies on databases, other Applications, and so
forth.

The operational confi guration management tool runs a nightly scan on the
Deploy Point (fi ltering out data processing directories) and through analyzing
checksums identifi es if anything has changed. (A simple listing of fi les will not
do; their size and internal characteristics need to be examined and compared.)
Although this could conceivably be integrated with a portfolio CMDB, there are
also tools that decouple the change detection management from the portfolio and
dependency management problems.

 3.7 The Business Case

Making the business case for data architecture and analysis is notoriously dif-
fi cult. It is often seen as overhead on projects, busy work to be gotten out of the
way so that the real work of system construction can commence. The problem
with this attitude is that the data model is a fundamental consensus point for
many (if not most) complex IT undertakings. Hammering out the shared defi ni-
tions of the major “things” in the problem domain is essential for project effi -
ciency and effectiveness. Without consensus on the data model, the project runs
the risk of integration problems, unfulfi lled expectations, confl icting reports,
and so forth.

Building a data “view” on the IT enablement problem domain can assist
with identifying and aligning confl icting or redundant processes, identifying
 opportunities to reuse shared data, and minimizing the capacity consumption of
internal IT enablement systems.

BetZ-Chapter 03.indd 222BetZ-Chapter 03.indd 222 9/22/06 11:44:00 AM9/22/06 11:44:00 AM

 3.8 Making It Real

� Do you have an inventory of all the datastores containing internal IT data?
What major subjects and entities are contained in each?

� Does every data element in your production IT enablement infrastructure have a
defi ned maintenance process? Are data quality metrics defi ned and measured?

� Do any represent “multiple master” situations in which the same data is being
maintained in two different places by two different processes or owners? (The
core list of Applications is a common problem. Application to Server depen-
dency is another example.)

Figure 3.71 Distinction between Operational and Portfolio Confi guration Management.

Server B

Server A

Deploy Point C:

Deploy Point D:

Database E Database F

Application 1 Application 2
 Operational config

ensures nothing
changed within the
“Application 2”
directory (Deploy
Point in the
metamodel).

Portfolio config provides a system of
record for servers, applications,
databases, deploy points, and their
dependencies.

Associated Associated

 3.8 Making It Real 223

BetZ-Chapter 03.indd 223BetZ-Chapter 03.indd 223 9/22/06 11:44:00 AM9/22/06 11:44:00 AM

224 chapter three A Supporting Data Architecture

� Do you have the ability to formulate dependency queries? That is, can you
report on an Application dependency chain such as Application A is dependent
on B is dependent on, and so on, to any number of links in the chain? Can you
constrain and fi lter this query to make it usable (limit the number of links, limit
it to only certain data topics, etc.)?

� For a given element of infrastructure, can you identify instantly what business
Service or Process it supports?

 3.9 Chapter Conclusion

One of the unfortunate extremes encountered with today’s process-centric thinking
is the idea that data is some mere technicality whose consideration can be deferred
to vendors or developers. The defi nition and normalization of conceptual entity
models is an essential part of any full process analysis and is a key bridge between
the process framework and the technical systems supporting it.

This discussion of the essential, process-independent data concepts has clarifi ed
the core concept of CI, essential to the maturation of IT enablement. This concept
will reappear often in the system and pattern discussions. The management and
interactions of these data structures are concerns to be further elucidated in the
following material.

Again, the objectives of this chapter were to create a controlled vocabulary
refl ecting current IT management discourse and to start to explore some of
its implications. The objective was not technical design, although the degree
of precision required in the vocabulary analysis required the use of modeling
notations and matrices.

 3.10 Further Reading

This discussion is by no means the fi rst coverage of internal IT data analysis. The
most sophisticated efforts are generally found under the heading “metadata” and
“metamodeling.” Signifi cant work has been done by the OMG, the Distributed
Management Task Force, the Tele-Management Forum, and authors such as
 Adrienne Tannenbaum, David Marco, Michael Jennings, and David Hay. This
chapter, as with the process framework, sought to distill much of this effort down
into a digestible chapter focused on essentials and terminology in common use.

The defi nition
and normaliza-
tion of con-
ceptual entity
models is an
essential part of
any full process
analysis.

The objective
of this chapter
was to create
a controlled
vocabulary.

BetZ-Chapter 03.indd 224BetZ-Chapter 03.indd 224 9/22/06 11:44:00 AM9/22/06 11:44:00 AM

An early systematic matrix of IT data to process is seen in A Management System
for the Information Business (IBM 1980). However, the data representation was not
as a normalized conceptual data model but rather as data “classes” corresponding
to what would be called subject areas today. Although this work was reportedly an
input into ITIL, the rigorous data-based approach was lost to the overly general
CMDB and CI discussion.

For data modeling generally, see Reingruber and Gregory (1994), Teorey
(1994), Hay (1996), Carlis and Maguire (2001), Halpin (2001), and Simsion and
Witt (2005). For the OMG specifi cations on metadata and metamodels, see OMG
(2002a and 2002b) and www.uml.org.

For the DMTF work, see the Distributed Management Task Force (2000, 2002a,
2002b, and 2003) and Bumpus (2000). Other views of IT domain (meta)data
models can be seen in Marco and Jennings (2004) and Hay (2006).

Data Center Markup Language is another standards effort, notable for its
 advocacy of Semantic Web technology to solve the CMDB data Problem. Although
the Semantic Web approach will present signifi cant skills challenges, the promise of
that standard seems to fi t well with CMDB data requirements: partial knowledge,
multiple representations, discovery based, and so forth. I encourage you to inves-
tigate this avenue—but the learning curve for any hands-on implementation will
be signifi cant.192

For IT metrics and measurements with respect to SLAs, see Ruijs and Schotanus
(2002), Brooks (2006), and Aitken (2003), Chapter 5. For the classic discussion of
dimension management and modeling, see Kimball (1998) and Kimball and Ross
(2002). Dennis Gaughan of AMR Research (paid subscription required) is actively
developing a comprehensive metrics hierarchy for IT.

For an overview of the history of transaction-based processing in the context
of end-to-end response management, see Tsykin (2002). For further information
on the Integration Competency Center concept, see Schmidt and Lyle (2005).
For discussion of the Application–Service relationship, see the ITIL Application
Management volume (Offi ce of Government Commerce 2002a). For further infor-
mation on events and application management, see Sturm and Bumpus (1999) and
Bumpus (2000).

 3.10 Further Reading 225

BetZ-Chapter 03.indd 225BetZ-Chapter 03.indd 225 9/22/06 11:44:01 AM9/22/06 11:44:01 AM

BetZ-Chapter 03.indd 226BetZ-Chapter 03.indd 226 9/22/06 11:44:01 AM9/22/06 11:44:01 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BenguiatITCbyBT-Bold
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BremenBT-Bold
 /Candid
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chick
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothicBT-Bold
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Croobie
 /English111VivaceBT-Regular
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /Fat
 /Fences
 /FencesPlain
 /FranklinGothic-Book
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Freshbot
 /Frosty
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Book
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /Jenkinsv20
 /Jenkinsv20Thik
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokewood
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /Latha
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaConsole
 /LucidaSansUnicode
 /Mangal-Regular
 /Marigold
 /MathExt
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /Minion-Italic
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /OzHandicraftBT-Roman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Poornut
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Shruti
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TypoUprightBT-Regular
 /Univers
 /Univers-Black
 /Univers-BlackOblique
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [504.000 720.000]
>> setpagedevice

