
297

C H A P T E R

Converting XML to
Relational Data

his chapter describes methods to convert XML documents to rows in relational tables. This
conversion is commonly known as shredding or decomposing of XML documents. Given

the rich support for XML columns in DB2 you might wonder in which cases it can still be useful
or necessary to convert XML data to relational format. One common reason for shredding is that
existing SQL applications might still require access to the data in relational format. For example,
legacy applications, packaged business applications, or reporting software do not always under-
stand XML and have fixed relational interfaces. Therefore you might sometimes find it useful to
shred all or some of the data values of an incoming XML document into rows and columns of
relational tables.

In this chapter you learn:

• The advantages and disadvantages of shredding and of different shredding methods
(section 11.1)

• How to shred XML data to relational tables using INSERT statements that contain the
XMLTABLE function (section 11.2)

• How to use XML Schema annotations that map and shred XML documents to relational
tables (section 11.3)

11.1 ADVANTAGES AND DISADVANTAGES OF SHREDDING

The concept of XML shredding is illustrated in Figure 11.1. In this example, XML documents
with customer name, address, and phone information are mapped to two relational tables. The
documents can contain multiple phone elements because there is a one-to-many relationship

11

T

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 297

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

between customers and phones. Hence, phone numbers are shredded into a separate table. Each
repeating element, such as phone, leads to an additional table in the relational target schema.
Suppose the customer information can also contain multiple email addresses, multiple accounts,
a list of most recent orders, multiple products per order, and other repeating items. The number of
tables required in the relational target schema can increase very quickly. Shredding XML into a
large number of tables can lead to a complex and unnatural fragmentation of your logical busi-
ness objects that makes application development difficult and error-prone. Querying the shredded
data or reassembling the original documents may require complex multiway joins.

298 Chapter 11 Converting XML to Relational Data

845 Kean Street
STREET

1003
CID

Robert Shoemaker
NAME

Aurora
CITY

cell
home
work
PHONETYPE

1003
1003
1003
CID

905-555-8743
416-555-2937
905-555-7258
PHONENUM

<customerinfo Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>845 Kean Street</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X 7F8</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
</customerinfo>

CREATE TABLE address(
 cid INTEGER,
 name VARCHAR(30),
 street VARCHAR(40),
 city VARCHAR(30))

CREATE TABLE phones(
 cid INTEGER,
 phonetype VARCHAR(10),
 phonenum VARCHAR(20))

Figure 11.1 Shredding of an XML document

Depending on the complexity, variability, and purpose of your XML documents, shredding may
or may not be a good option. Table 11.1 summarizes the pros and cons of shredding XML data to
relational tables.

Table 11.1 When Shredding Is and Isn’t a Good Option

Shredding Can Be Useful When… Shredding Is Not A Good Option When…

• Incoming XML data is just feeding an existing • Your XML data is complex and nested, and
relational database. difficult to map to a relational schema.

• The XML documents do not represent logical • Mapping your XML format to a relational
business objects that should be preserved. schema leads to a large number of tables.

• Your primary goal is to enable existing • Your XML Schema is highly variable or
relational applications to access XML data. tends to change over time.

• You are happy with your relational schema and • Your primary goal is to manage XML
would like to use it as much as possible. documents as intact business objects.

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 298

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

Table 11.1 When Shredding Is and Isn’t a Good Option (Continued)

Shredding Can Be Useful When… Shredding Is Not A Good Option When…

• The structure of your XML data is such that it • You frequently need to reconstruct the
can easily be mapped to relational tables. shredded documents or parts of them.

• Your XML format is relatively stable and • Ingesting XML data into the database at a
changes to it are rare. high rate is important for your application.

• You rarely need to reconstruct the shredded
documents.

• Querying or updating the data with SQL is
more important than insert performance.

In many XML application scenarios the structure and usage of the XML data does not lend itself
to easy and efficient shredding. This is the reason why DB2 supports XML columns that allow
you to index and query XML data without conversion. Sometimes you will find that your applica-
tion requirements can be best met with partial shredding or hybrid XML storage.

• Partial shredding means that only a subset of the elements or attributes from each
incoming XML document are shredded into relational tables. This is useful if a rela-
tional application does not require all data values from each XML document. In cases
where shredding each document entirely is difficult and requires a complex relational
target schema, partial shredding can simplify the mapping to the relational schema
significantly.

• Hybrid XML storage means that upon insert of an XML document into an XML column,
selected element or attribute values are extracted and redundantly stored in relational
columns.

If you choose to shred XML documents, entirely or partially, DB2 provides you with a rich set of
capabilities to do some or all of the following:

• Perform custom transformations of the data values before insertion into relational
columns.

• Shred the same element or attribute value into multiple columns of the same table or dif-
ferent tables.

• Shred multiple different elements or attributes into the same column of a table.

• Specify conditions that govern when certain elements are or are not shredded. For exam-
ple, shred the address of a customer document only if the country is Canada.

• Validate XML documents with an XML Schema during shredding.

• Store the full XML document along with the shredded data.

11.1 Advantages and Disadvantages of Shredding 299

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 299

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

DB2 9 for z/OS and DB2 9.x for Linux, UNIX, and Windows support two shredding methods:

• SQL INSERT statements that use the XMLTABLE function. This function navigates into
an input document and produces one or multiple relational rows for insert into a rela-
tional table.

• Decomposition with an annotated XML Schema. Since an XML Schema defines the
structure of XML documents, annotations can be added to the schema to define how ele-
ments and attributes are mapped to relational tables.

Table 11.2 and Table 11.3 discuss the advantages and disadvantages of the XMLTABLE method
and the annotated schema method.

Table 11.2 Considerations for the XMLTABLE Method

Advantages of the XMLTABLE Method Disadvantages of the XMLTABLE Method

• It allows you to shred data even if you do • For each target table that you want to shred
not have an XML Schema. into you need one INSERT statement.

• It does not require you to understand the XML • You might have to combine multiple
Schema language or to understand schema INSERT statements in a stored procedure.
annotations for decomposition.

• It is generally easier to use than annotated • There is no GUI support for implementing the
schemas because it is based on SQL and XPath. INSERT statements and the required

XMLTABLE functions. You need to be familiar• You can use familiar XPath, XQuery, or SQL
with XPath and SQL/XML.functions and expressions to extract and

optionally modify the data values.

• It often requires no or little work during
XML Schema evolution.

• The shredding process can consume data
from multiple XML and relational sources,
if needed, such as values from DB2 sequences
or look-up data from other relational tables.

• It can often provide better performance than
annotated schema decompositions.

300 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 300

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

Table 11.3 Considerations for Annotated Schema Decomposition

Advantages of the Annotated Disadvantages of the Annotated
Schema Method Schema Method

• The mapping from XML to relational tables • It does not allow shredding without an XML
can be defined using a GUI in IBM Data Schema.
Studio Developer.

• If you shred complex XML data into a large • You might have to manually copy annotations
number of tables, the coding effort can be when you start using a new version of your
lower than with the XMLTABLE approach. XML Schema.

• It offers a bulk mode with detailed diagnostics • Despite the GUI support, you need to be
if some documents fail to shred. familiar with the XML Schema language for

all but simple shredding scenarios.

• Annotating an XML Schema can be complex, if
the schema itself is complex.

11.2 SHREDDING WITH THE XMLTABLE FUNCTION

The XMLTABLE function is an SQL table function that uses XQuery expressions to create rela-
tional rows from an XML input document. For details on the XMLTABLE function, see Chapter 7,
Querying XML Data with SQL/XML. In this section we describe how to use the XMLTABLE func-
tion in an SQL INSERT statement to perform shredding. We use the shredding scenario in Figure
11.1 as an example.

The first step is to create the relational target tables, if they don’t already exist. For the scenario in
Figure 11.1 the target tables are defined as follows:

CREATE TABLE address(cid INTEGER, name VARCHAR(30),
street VARCHAR(40), city VARCHAR(30))

CREATE TABLE phones(cid INTEGER, phonetype VARCHAR(10),
phonenum VARCHAR(20))

Based on the definition of the target tables you construct the INSERT statements that shred
incoming XML documents. The INSERT statements have to be of the form INSERT INTO …
SELECT … FROM … XMLTABLE, as shown in Figure 11.2. Each XMLTABLE function contains a
parameter marker (“?”) through which an application can pass the XML document that is to be
shredded. SQL typing rules require the parameter marker to be cast to the appropriate data type.
The SELECT clause selects columns produced by the XMLTABLE function for insert into the
address and phones tables, respectively.

11.2 Shredding with the XMLTABLE Function 301

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 301

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

INSERT INTO address(cid, name, street, city)
SELECT x.custid, x.custname, x.str, x.place
FROM XMLTABLE('$i/customerinfo' PASSING CAST(? AS XML) AS "i"

COLUMNS
custid INTEGER PATH '@Cid',
custname VARCHAR(30) PATH 'name',
str VARCHAR(40) PATH 'addr/street',
place VARCHAR(30) PATH 'addr/city') AS x ;

INSERT INTO phones(cid, phonetype, phonenum)
SELECT x.custid, x.ptype, x.number
FROM XMLTABLE('$i/customerinfo/phone'

PASSING CAST(? AS XML) AS "i"
COLUMNS
custid INTEGER PATH '../@Cid',
number VARCHAR(15) PATH '.',
ptype VARCHAR(10) PATH './@type') AS x ;

Figure 11.2 Inserting XML element and attribute values into relational columns

To populate the two target tables as illustrated in Figure 11.1, both INSERT statements have to be
executed with the same XML document as input. One approach is that the application issues both
INSERT statements in one transaction and binds the same XML document to the parameter mark-
ers for both statements. This approach works well but can be optimized, because the same XML
document is sent from the client to the server and parsed at the DB2 server twice, once for each
INSERT statement. This overhead can be avoided by combining both INSERT statements in a sin-
gle stored procedure. The application then only makes a single stored procedure call and passes
the input document once, regardless of the number of INSERT statements in the stored procedure.
Chapter 18, Using XML in Stored Procedures, UDFs, and Triggers, demonstrates such a stored
procedure as well as other examples of manipulating XML data in stored procedures and user-
defined functions.

Alternatively, the INSERT statements in Figure 11.2 can read a set of input documents from an
XML column. Suppose the documents have been loaded into the XML column info of the
customer table. Then you need to modify one line in each of the INSERT statements in Figure
11.2 to read the input document from the customer table:

FROM customer, XMLTABLE('$i/customerinfo' PASSING info AS "i"

Loading the input documents into a staging table can be advantageous if you have to shred many
documents. The LOAD utility parallelizes the parsing of XML documents, which reduces the time
to move the documents into the database. When the documents are stored in an XML column in
parsed format, the XMLTABLE function can shred the documents without XML parsing.

The INSERT statements can be enriched with XQuery or SQL functions or joins to tailor the
shredding process to specific requirements. Figure 11.3 provides an example. The SELECT clause

302 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 302

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

contains the function RTRIM to remove trailing blanks from the column x.ptype. The row-gen-
erating expression of the XMLTABLE function contains a predicate that excludes home phone
numbers from being shredded into the target table. The column-generating expression for the
phone numbers uses the XQuery function normalize-space, which strips leading and trailing
whitespace and replaces each internal sequence of whitespace characters with a single blank
character. The statement also performs a join to the lookup table areacodes so that a phone
number is inserted into the phones table only if its area code is listed in the areacodes table.

INSERT INTO phones(cid, phonetype, phonenum)
SELECT x.custid, RTRIM(x.ptype), x.number
FROM areacodes a,

XMLTABLE('$i/customerinfo/phone[@type != "home"]'
PASSING CAST(? AS XML) AS "i"

COLUMNS
custid INTEGER PATH '../@Cid',
number VARCHAR(15) PATH 'normalize-space(.)',
ptype VARCHAR(10) PATH './@type') AS x

WHERE SUBSTR(x.number,1,3) = a.code;

Figure 11.3 Using functions and joins to customize the shredding

11.2.1 Hybrid XML Storage

In many situations the complexity of the XML document structures makes shredding difficult,
inefficient, and undesirable. Besides the performance penalty of shredding, scattering the values
of an XML document across a large number of tables can make it difficult for an application
developer to understand and query the data. To improve XML insert performance and to reduce
the number of tables in your database, you may want to store XML documents in a hybrid man-
ner. This approach extracts the values of selected XML elements or attributes and stores them in
relational columns alongside the full XML document.

The example in the previous section used two tables, address and phones, as the target tables
for shredding the customer documents. You might prefer to use just a single table that contains
the customer cid, name, and city values in relational columns and the full XML document with
the repeating phone elements and other information in an XML column. You can define the fol-
lowing table:

CREATE TABLE hybrid(cid INTEGER NOT NULL PRIMARY KEY,
name VARCHAR(30), city VARCHAR(25), info XML)

Figure 11.4 shows the INSERT statement to populate this table. The XMLTABLE function takes an
XML document as input via a parameter marker. The column definitions in the XMLTABLE func-
tion produce four columns that match the definition of the target table hybrid. The row-
generating expression in the XMLTABLE function is just $i, which produces the full input
document. This expression is the input for the column-generating expressions in the COLUMNS
clause of the XMLTABLE function. In particular, the column expression '.' returns the full input

11.2 Shredding with the XMLTABLE Function 303

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 303

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

document as-is and produces the XML column doc for insert into the info column of the target
table.

INSERT INTO hybrid(cid, name, city, info)
SELECT x.custid, x.custname, x.city, x.doc
FROM XMLTABLE('$i' PASSING CAST(? AS XML) AS "i"

COLUMNS
custid INTEGER PATH 'customerinfo/@Cid',
custname VARCHAR(30) PATH 'customerinfo/name',
city VARCHAR(25) PATH 'customerinfo/addr/city',
doc XML PATH '.') AS x;

Figure 11.4 Storing an XML document in a hybrid fashion

It is currently not possible to define check constraints in DB2 to enforce the integrity between
relational columns and values in an XML document in the same row. You can, however, define
INSERT and UPDATE triggers on the table to populate the relational columns automatically when-
ever a document is inserted or updated. Triggers are discussed in Chapter 18, Using XML in
Stored Procedures, UDFs, and Triggers.

It can be useful to test such INSERT statements in the DB2 Command Line Processor (CLP). For
this purpose you can replace the parameter marker with a literal XML document as shown in Fig-
ure 11.5. The literal document is a string that must be enclosed in single quotes and converted to
the data type XML with the XMLPARSE function. Alternatively, you can read the input document
from the file system with one of the UDFs that were introduced in Chapter 4, Inserting and
Retrieving XML Data. The use of a UDF is demonstrated in Figure 11.6.

INSERT INTO hybrid(cid, name, city, info)
SELECT x.custid, x.custname, x.city, x.doc
FROM XMLTABLE('$i' PASSING
XMLPARSE(document
'<customerinfo Cid=”1001”>

<name>Kathy Smith</name>
<addr country=”Canada”>
<street>25 EastCreek</street>
<city>Markham</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9C 3T6</pcode-zip>

</addr>
<phone type=”work”>905-555-7258</phone>

</customerinfo>') AS "i"
COLUMNS
custid INTEGER PATH 'customerinfo/@Cid',
custname VARCHAR(30) PATH 'customerinfo/name',
city VARCHAR(25) PATH 'customerinfo/addr/city',
doc XML PATH '.') AS x;

Figure 11.5 Hybrid insert statement with a literal XML document

304 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 304

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

INSERT INTO hybrid(cid, name, city, info)
SELECT x.custid, x.custname, x.city, x.doc
FROM XMLTABLE('$i' PASSING
XMLPARSE(document
blobFromFile('/xml/mydata/cust0037.xml')) AS "i"
COLUMNS
custid INTEGER PATH 'customerinfo/@Cid',
custname VARCHAR(30) PATH 'customerinfo/name',
city VARCHAR(25) PATH 'customerinfo/addr/city',
doc XML PATH '.') AS x;

Figure 11.6 Hybrid insert statement with a “FromFile” UDF

The insert logic in Figure 11.4, Figure 11.5, and Figure 11.6 is identical. The only difference is
how the input document is provided: via a parameter marker, as a literal string that is enclosed in
single quotes, or via a UDF that reads a document from the file system.

11.2.2 Relational Views over XML Data

You can create relational views over XML data using XMLTABLE expressions. This allows you to
provide applications with a relational or hybrid view of the XML data without actually storing the
data in a relational or hybrid format. This can be useful if you want to avoid the overhead of con-
verting large amounts of XML data to relational format. The basic SELECT … FROM …
XMLTABLE constructs that were used in the INSERT statements in the previous section can also be
used in CREATE VIEW statements.

As an example, suppose you want to create a relational view over the elements of the XML docu-
ments in the customer table to expose the customer identifier, name, street, and city values. Fig-
ure 11.7 shows the corresponding view definition plus an SQL query against the view.

CREATE VIEW custview(id, name, street, city)
AS
SELECT x.custid, x.custname, x.str, x.place
FROM customer,

XMLTABLE('$i/customerinfo' PASSING info AS "i"
COLUMNS
custid INTEGER PATH '@Cid',
custname VARCHAR(30) PATH 'name',
str VARCHAR(40) PATH 'addr/street',
place VARCHAR(30) PATH 'addr/city') AS x;

SELECT id, name FROM custview WHERE city = 'Aurora';

ID NAME
----------- ------------------------------

1003 Robert Shoemaker

1 record(s) selected.

Figure 11.7 Creating a view over XML data

11.2 Shredding with the XMLTABLE Function 305

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 305

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

The query over the view in Figure 11.7 contains an SQL predicate for the city column in the
view. The values in the city column come from an XML element in the underlying XML col-
umn. You can speed up this query by creating an XML index on /customerinfo/addr/city
for the info column of the customer table. DB2 9 for z/OS and DB2 9.7 for Linux, UNIX, and
Windows are able to convert the relational predicate city = 'Aurora' into an XML predicate
on the underlying XML column so that the XML index can be used. This is not possible in DB2
9.1 and DB2 9.5 for Linux, UNIX, and Windows. In these previous versions of DB2, include the
XML column in the view definition and write the search condition as an XML predicate, as in the
following query. Otherwise an XML index cannot be used.

SELECT id, name
FROM custview
WHERE XMLEXISTS('$INFO/customerinfo/addr[city = "Aurora"]')

11.3 SHREDDING WITH ANNOTATED XML SCHEMAS

This section describes another approach to shredding XML documents into relational tables. The
approach is called annotated schema shredding or annotated schema decomposition because it is
based on annotations in an XML Schema. These annotations define how XML elements and
attributes in your XML data map to columns in your relational tables.

To perform annotated schema shredding, take the following steps:

• Identify or create the relational target tables that will hold the shredded data.

• Annotate your XML Schema to define the mapping from XML to the relational tables.

• Register the XML Schema in the DB2 XML Schema Repository.

• Shred XML documents with Command Line Processor commands or built-in stored
procedures.

Assuming you have defined the relational tables that you want to shred into, let’s look at annotat-
ing an XML Schema.

11.3.1 Annotating an XML Schema

Schema annotations are additional elements and attributes in an XML Schema to provide map-
ping information. DB2 can use this information to shred XML documents to relational tables.
The annotations do not change the semantics of the original XML Schema. If a document is valid
for the annotated schema then it is also valid for the original schema, and vice versa. You can use
an annotated schema to validate XML documents just like the original XML Schema. For an
introduction to XML Schemas, see Chapter 16, Managing XML Schemas.

The following is one line from an XML Schema:

<xs:element name="street" type="xs:string" minOccurs="1"/>

306 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 306

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

This line defines an XML element called street and declares that its data type is xs:string
and that this element has to occur at least once. You can add a simple annotation to this element
definition to indicate that the element should be shredded into the column STREET of the table
ADDRESS. The annotation consists of two additional attributes in the element definition, as
follows:

<xs:element name="street" type="xs:string" minOccurs="1"
db2-xdb:rowSet="ADDRESS" db2-xdb:column="STREET"/>

The same annotation can also be provided as schema elements instead of attributes, as shown
next. You will see later in Figure 11.8 why this can be useful.

<xs:element name="street" type="xs:string" minOccurs="1">
<xs:annotation>
<xs:appinfo>
<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>ADDRESS</db2-xdb:rowSet>
<db2-xdb:column>STREET</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
<xs:element/>

The prefix xs is used for all constructs that belong to the XML Schema language, and the prefix
db2-xdb is used for all DB2-specific schema annotations. This provides a clear distinction and
ensures that the annotated schema validates the same XML documents as the original schema.

There are 14 different types of annotations. They allow you to specify what to shred, where to
shred to, how to filter or transform the shredded data, and in which order to execute inserts into
the target tables. Table 11.4 provides an overview of the available annotations, broken down into
logical groupings by user task. The individual annotations are further described in Table 11.5.

Table 11.4 Overview and Grouping of Schema Annotations

If You Want to Use This Annotation

Specify the target tables to shred into db2-xdb:rowSet
db2-xdb:column
db2-xdb:SQLSchema
db2-xdb:defaultSQLSchema

Specify what to shred db2-xdb:contentHandling

Transform data values while shredding db2-xdb:expression
db2-xdb:normalization
db2-xdb:truncate

Filter data db2-xdb:condition
db2-xdb:locationPath

11.3 Shredding with Annotated XML Schemas 307

(continues)

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 307

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

Table 11.4 Overview and Grouping of Schema Annotations (Continued)

If You Want to Use This Annotation

Map an element or attribute to multiple columns db2-xdb:rowSetMapping

Map several elements or attributes to the db2-xdb:table
same column

Define the order in which rows are inserted db2-xdb:rowSetOperationOrder
into the target table, to avoid referential db2-xdb:order
integrity violations

Table 11.5 XML Schema Annotations

Annotation Description

db2-xdb:defaultSQLSchema The default relational schema for the target tables.

db2-xdb:SQLSchema Overrides the default schema for individual tables.

db2-xdb:rowSet The table name that the element or attribute is
mapped to

db2-xdb:column The column name that the element or attribute is
mapped to.

db2-xdb:contentHandling For an XML element, this annotation defines how
to derive the value that will be inserted into the tar-
get column. You can chose the text value of just this
element (text), the concatenation of this element’s
text and the text of all its descendant nodes
(stringValue), or the serialized XML (including
all tages) of this element and all descendants
(serializeSubtree). If you omit this annotation,
DB2 chooses an appropriate default based on the
nature of the respective element.

db2-xdb:truncate Specifies whether a value should be truncated if
its length is greater than the length of the target
column.

db2-xdb:normalization Specifies how to treat whitespace—valid values are
whitespaceStrip, canonical, and
original

db2-xdb:expression Specifies an expression that is to be applied to the
data before insertion into the target table.

308 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 308

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

Table 11.5 XML Schema Annotations (Continued)

Annotation Description

db2-xdb:locationPath Filters based on the XML context. For example, if it is a
customer address then shred to the cust table; if it is an
employee address then shred to the employee table.

db2-xdb:condition Specifies value conditions so that data is inserted into a
target table only if all conditions are true.

db2-xdb:rowSetMapping Enables users to specify multiple mappings, to the same or
different tables, for an element or attribute.

db2-xdb:table Maps multiple elements or attributes to a single column.

db2-xdb:order Specifies the insertion order of rows among multiple
tables.

db2-xdb:rowSetOperationOrder Groups together multiple db2-xdb:order annotations.

To demonstrate annotated schema decomposition we use the shredding scenario in Figure 11.1 as
an example. Assume that the target tables have been defined as shown in Figure 11.1. An anno-
tated schema that defines the desired mapping is provided in Figure 11.8. Let’s look at the lines
that are highlighted in bold font. The first bold line declares the namespace prefix db2-xdb,
which is used throughout the schema to distinguish DB2-specific annotations from regular XML
Schema tags. The first use of this prefix is in the annotation db2-xdb:defaultSQLSchema,
which defines the relational schema of the target tables. The next annotation occurs in the defini-
tion of the element name. The two annotation attributes db2-xdb:rowSet="ADDRESS" and
db2-xdb:column="NAME" define the target table and column for the name element. Similarly,
the street and city elements are also mapped to respective columns of the ADDRESS table. The
next two annotations map the phone number and the type attribute to columns in the PHONES
table. The last block of annotations belongs to the XML Schema definition of the Cid attribute.
Since the Cid attribute value becomes the join key between the ADDRESS and the PHONE table, it
has to be mapped to both tables. Two row set mappings are necessary, which requires the use of
annotation elements instead of annotation attributes. The first db2-xdb:rowSetMapping maps
the Cid attribute to the CID column in the ADDRESS table. The second db2-xdb:rowSet
Mapping assigns the Cid attribute to the CID column in the PHONES table.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1" >
<xs:annotation>
<xs:appinfo>
<db2-xdb:defaultSQLSchema>db2admin</db2-xdb:defaultSQLSchema>
</xs:appinfo>

</xs:annotation>

11.3 Shredding with Annotated XML Schemas 309

Figure 11.8 Annotated schema to implement the shredding in Figure 11.1 (continues)

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 309

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

<xs:element name="customerinfo">
<xs:complexType>
<xs:sequence>
<xs:element name="name" type="xs:string" minOccurs="1"
db2-xdb:rowSet="ADDRESS" db2-xdb:column="NAME"/>
<xs:element name="addr" minOccurs="1"
maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="street" type="xs:string"
minOccurs="1" db2-xdb:rowSet="ADDRESS"
db2-xdb:column="STREET"/>
<xs:element name="city" type="xs:string"
minOccurs="1" db2-xdb:rowSet="ADDRESS"
db2-xdb:column="CITY"/>
<xs:element name="prov-state" type="xs:string"
minOccurs="1" />
<xs:element name="pcode-zip" type="xs:string"
minOccurs="1" />

</xs:sequence>
<xs:attribute name="country" type="xs:string" />

</xs:complexType>
</xs:element>
<xs:element name="phone" minOccurs="0"
maxOccurs="unbounded" db2-xdb:rowSet="PHONES"
db2-xdb:column="PHONENUM">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="type" form="unqualified"
type="xs:string" db2-xdb:rowSet="PHONES"
db2-xdb:column="PHONETYPE"/>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
<xs:attribute name="Cid" type="xs:integer">
<xs:annotation>
<xs:appinfo>
<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>ADDRESS</db2-xdb:rowSet>
<db2-xdb:column>CID</db2-xdb:column>

</db2-xdb:rowSetMapping>
<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>PHONES</db2-xdb:rowSet>
<db2-xdb:column>CID</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>

</xs:complexType>
</xs:element>

</xs:schema>

Figure 11.8 Annotated schema to implement the shredding in Figure 11.1 (Continued)

310 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 310

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

11.3.2 Defining Schema Annotations Visually in IBM Data Studio

You can add annotations to an XML Schema manually, using any text editor or XML Schema
editor. Alternatively, you can use the Annotated XSD Mapping Editor in IBM Data Studio
Developer. To invoke the editor, right-click on an XML Schema name and select Open With,
Annotated XSD Mapping Editor. A screenshot of the mapping editor is shown in Figure
11.9. The left side of the editor shows the hierarchical document structure defined by the XML
Schema (Source). The right side shows the tables and columns of the relational target schema
(Target). You can add mapping relationships by connecting source items with target columns.
There is also a discover function to find probable relationships. Mapped relationships are repre-
sented in the mapping editor by lines drawn between source elements and target columns.

11.3 Shredding with Annotated XML Schemas 311

Figure 11.9 Annotated XSD Mapping Editor in Data Studio Developer

11.3.3 Registering an Annotated Schema

After you have created your annotated XML Schema you need to register it in the XML Schema
Repository of the database. DB2’s XML Schema Repository is described in detail in Chapter 16,
Managing XML Schemas. For the annotated schema in Figure 11.8 it is sufficient to issue the
REGISTER XMLSCHEMA command with its COMPLETE and ENABLE DECOMPOSITION options as
shown in Figure 11.10. In this example the XML Schema is assumed to reside in the file
/xml/myschemas/cust2.xsd. Upon registration it is assigned the SQL identifier db2admin.
cust2xsd. This identifier can be used to reference the schema later. The COMPLETE option of the
command indicates that there are no additional XML Schema documents to be added. The option
ENABLE DECOMPOSITION indicates that this XML Schema can be used not only for document
validation but also for shredding.

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 311

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

REGISTER XMLSCHEMA 'http://pureXMLcookbook.org'
FROM '/xml/myschemas/cust2.xsd'
AS db2admin.cust2xsd COMPLETE ENABLE DECOMPOSITION;

Figure 11.10 Registering an annotated XML schema

Figure 11.11 shows that you can query the DB2 catalog view syscat.xsrobjects to deter-
mine whether a registered schema is enabled for decomposition (Y) or not (N).

SELECT SUBSTR(objectname,1,10) AS objectname,
status, decomposition

FROM syscat.xsrobjects ;

OBJECTNAME STATUS DECOMPOSITION
---------- ------ -------------
CUST2XSD C Y

Figure 11.11 Checking the status of an annotated XML schema

The DECOMPOSITION status of an annotated schema is automatically changed to X (inoperative)
and shredding is disabled, if any of the target tables are dropped or a target column is altered. No
warning is issued when that happens and subsequent attempts to use the schema for shredding
fail. You can also use the following commands to disable and enable an annotated schema for
shredding:

ALTER XSROBJECT cust2xsd DISABLE DECOMPOSITION;
ALTER XSROBJECT cust2xsd ENABLE DECOMPOSITION;

11.3.4 Decomposing One XML Document at a Time

After you have registered and enabled the annotated XML Schema you can decompose XML
documents with the DECOMPOSE XML DOCUMENT command or with a built-in stored procedure.
The DECOMPOSE XML DOCUMENT command is convenient to use in the DB2 Command Line
Processor (CLP) while the stored procedure can be called from an application program or the
CLP. The CLP command takes two parameters as input: the filename of the XML document that
is to be shredded and the SQL identifier of the annotated schema, as in the following example:

DECOMPOSE XML DOCUMENT /xml/mydocuments/cust01.xml
XMLSCHEMA db2admin.cust2xsd VALIDATE;

The keyword VALIDATE is optional and indicates whether XML documents should be validated
against the schema as part of the shredding process. While shredding, DB2 traverses both the
XML document and the annotated schema and detects fundamental schema violations even if the
VALIDATE keyword is not specified. For example, the shredding process fails with an error if a

312 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 312

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

mandatory element is missing, even if this element is not being shredded and the VALIDATE key-
word is omitted. Similarly, extraneous elements or data type violations also cause the decomposi-
tion to fail. The reason is that the shredding process walks through the annotated XML Schema
and the instance document in lockstep and therefore detects many schema violations “for free”
even if the XML parser does not perform validation.

To decompose XML documents from an application program, use the stored procedure XDBDE-
COMPXML. The parameters of this stored procedure are shown in Figure 11.12 and described in
Table 11.6.

>>-XDBDECOMPXML--(--rschema--,--xmlschemaname--,--xmldoc--,---->

>--documentid--,--validation--,--reserved--,--reserved--,------>

>--reserved--)--><

Figure 11.12 Syntax and parameters of the stored procedure XDBDECOMPXML

Table 11.6 Description of the Parameters of the Stored Procedure XDBDECOMPXML

Parameter Description

rschema The relational schema part of the two-part SQL identifier of the annotated XML
Schema. For example, if the SQL identifier of the XML Schema is
db2admin.cust2xsd, then you should pass the string 'db2admin' to this
parameter. In DB2 for z/OS this value must be either 'SYSXSR' or NULL.

xmlschemaname The second part of the two-part SQL identifier of the annotated XML Schema. If
the SQL identifier of the XML Schema is db2admin.cust2xsd, then you pass
the string 'cust2xsd' to this parameter. This value cannot be NULL.

xmldoc In DB2 for Linux, UNIX, and Windows, this parameter is of type BLOB(1M)
and takes the XML document to be decomposed. In DB2 for z/OS this parame-
ter is of type CLOB AS LOCATOR. This parameter cannot be NULL.

documentid A string that the caller can use to identify the input XML document. The value
provided will be substituted for any use of $DECOMP_DOCUMENTID specified in
the db2-xdb:expression or db2-xdb:condition annotations.

validation Possible values are: 0 (no validation) and 1 (validation is performed). This
parameter does not exist in DB2 for z/OS.

reserved Parameters reserved for future use. The values passed for these arguments must
be NULL. These parameters do not exist in DB2 for z/OS.

11.3 Shredding with Annotated XML Schemas 313

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 313

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

A Java code snippet that calls the stored procedure using parameter markers is shown in Fig-
ure 11.13

CallableStatement callStmt = con.prepareCall(
"call SYSPROC.XDBDECOMPXML(?,?,?,?,?, null, null, null)");

File xmldoc = new File("c:\mydoc.xml");
FileInputStream xmldocis = new FileInputStream(xmldoc);

callStmt.setString(1, "db2admin");
callStmt.setString(2, "cust2xsd");

// document to be shredded:
callStmt.setBinaryStream(3,xmldocis,(int)xmldoc.length());

callStmt.setString(4, "mydocument26580");

// no schema validation in this call:
callStmt.setInt(5, 0);

callStmt.execute();

Figure 11.13 Java code that invokes the stored procedure XDBDECOMPXML

While the input parameter for XML documents is of type CLOB AS LOCATOR in DB2 for z/OS, it
is of type BLOB(1M) in DB2 for Linux, UNIX, and Windows. If you expect your XML docu-
ments to be larger than 1MB, use one of the stored procedures listed in Table 11.7. These stored
procedures are all identical except for their name and the size of the input parameter xmldoc.
When you call a stored procedure, DB2 allocates memory according to the declared size of the
input parameters. For example, if all of your input documents are at most 10MB in size, the
stored procedure XDBDECOMPXML10MB is a good choice to conserve memory.

Table 11.7 Stored Procedures for Different Document Sizes (DB2 for Linux, UNIX,
and Windows)

Stored Procedure Document Size Supported since

XDBDECOMPXML ≤1MB DB2 9.1

XDBDECOMPXML10MB ≤10MB DB2 9.1

XDBDECOMPXML25MB ≤25MB DB2 9.1

XDBDECOMPXML50MB ≤50MB DB2 9.1

XDBDECOMPXML75MB ≤75MB DB2 9.1

XDBDECOMPXML100MB ≤100MB DB2 9.1

XDBDECOMPXML500MB ≤500MB DB2 9.5 FP3

314 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 314

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

Table 11.7 Stored Procedures for Different Document Sizes (DB2 for Linux, UNIX,
and Windows) (Continued)

Stored Procedure Document Size Supported since

XDBDECOMPXML1GB ≤1GB DB2 9.5 FP3

XDBDECOMPXML1_5GB ≤1.5GB DB2 9.7

XDBDECOMPXML2GB ≤2GB DB2 9.7

For platform compatibility, DB2 for z/OS supports the procedure XDBDECOMPXML100MB with the
same parameters as DB2 for Linux, UNIX, and Windows, including the parameter for validation.

11.3.5 Decomposing XML Documents in Bulk

DB2 9.7 for Linux, UNIX, and Windows introduces a new stored procedure called
XDB_DECOMP_XML_FROM_QUERY. It uses an annotated schema to decompose one or multiple
XML documents selected from a column of type XML, BLOB, or VARCHAR FOR BIT DATA. The
main difference to the procedure XDBDECOMPXML is that XDB_DECOMP_XML_FROM_QUERY
takes an SQL query as a parameter and executes it to obtain the input documents from a DB2
table. For a large number of documents, a LOAD operation followed by a “bulk decomp” can be
more efficient than shredding these documents with a separate stored procedure call for each doc-
ument. Figure 11.14 shows the parameters of this stored procedure. The parameters commit_
count and allow_access are similar to the corresponding parameters of DB2’s IMPORT utility.
The parameters total_docs, num_docs_decomposed, and result_report are output
parameters that provide information about the outcome of the bulk shredding process. All
parameters are explained in Table 11.8.

>>--XDB_DECOMP_XML_FROM_QUERY--(--rschema--,--xmlschema--,-->

>--query--,--validation--,--commit_count--,--allow_access--,---->

>--reserved--,--reserved2--,--continue_on_error--,-------------->

>--total_docs--,--num_docs_decomposed--,--result_report--)--><

Figure 11.14 The stored procedure XDB_DECOMP_XML_FROM_QUERY

11.3 Shredding with Annotated XML Schemas 315

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 315

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

Table 11.8 Parameters for XDB_DECOMP_XML_FROM_QUERY

Parameter Description

rschema Same as for XDBDECOMPXML.

xmlschema Same as xmlschemaname for XDBDECOMPXML.

query A query string of type CLOB(1GB), which cannot be NULL. The query must be
an SQL or SQL/XML SELECT statement and must return two columns. The first
column must contain a unique document identifier for each XML document in
the second column of the result set. The second column contains the XML
documents to be shredded and must be of type XML, BLOB, VARCHAR FOR BIT
DATA, or LONG VARCHAR FOR BIT DATA.

validation Possible values are: 0 (no validation) and 1 (validation is performed).

commit_count An integer value equal to or greater than 0. A value of 0 means the stored proce-
dure does not perform any commits. A value of n means that a commit is per-
formed after every n successful document decompositions.

allow_access A value of 1 or 0. If the value is 0, then the stored procedure acquires an exclu-
sive lock on all tables that are referenced in the annotated XML Schema. If the
value is 1, then the stored procedure acquires a shared lock.

reserved, These parameters are reserved for future use and must be NULL.
reserved2

continue_on Can be 1 or 0. A value of 0 means the procedure stops upon the first document
_error that cannot be decomposed; for example, if the document does not match the

XML Schema.

total_docs An output parameter that indicates the total number of documents that the pro-
cedure tried to decompose.

num_docs_ An output parameter that indicates the number of documents that were
decomposed successfully decomposed.

result_report An output parameter of type BLOB(2GB). It contains an XML document that
provides diagnostic information for each document that was not successfully
decomposed. This report is not generated if all documents shredded success-
fully. The reason this is a BLOB field (rather than CLOB) is to avoid codepage
conversion and potential truncation/data loss if the application code page is
materially different from the database codepage.

Figure 11.15 shows an invocation of the XDB_DECOMP_XML_FROM_QUERY stored procedure in
the CLP. This stored procedure call reads all XML documents from the info column of the
customer table and shreds them with the annotated XML Schema db2admin.cust2xsd. The
procedure commits every 25 documents and does not stop if a document cannot be shredded.

316 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 316

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

call SYSPROC.XDB_DECOMP_XML_FROM_QUERY
('DB2ADMIN', 'CUST2XSD', 'SELECT cid, info FROM customer',
0, 25, 1, NULL, NULL, '1',?,?,?) ;

Value of output parameters

Parameter Name : TOTALDOCS
Parameter Value : 100

Parameter Name : NUMDOCSDECOMPOSED
Parameter Value : 100

Parameter Name : RESULTREPORT
Parameter Value : x''

Return Status = 0

Figure 11.15 Calling the procedure SYSPROC.XDB_DECOMP_XML_FROM_QUERY

If you frequently perform bulk shredding in the CLP, use the command DECOMPOSE XML DOCU-
MENTS instead of the stored procedure. It is more convenient for command-line use and performs
the same job as the stored procedure XDB_DECOMP_XML_FROM_QUERY. Figure 11.16 shows the
syntax of the command. The various clauses and keywords of the command have the same mean-
ing as the corresponding stored procedure parameters. For example, query is the SELECT state-
ment that provides the input documents, and xml-schema-name is the two-part SQL identifier
of the annotated XML Schema.

>>-DECOMPOSE XML DOCUMENTS IN----'query'----XMLSCHEMA------->

.-ALLOW NO ACCESS-.
>--xml-schema-name--+----------+--+-----------------+----------->

'-VALIDATE-' '-ALLOW ACCESS----'

>--+----------------------+--+-------------------+-------------->
'-COMMITCOUNT--integer-' '-CONTINUE_ON_ERROR-'

>--+--------------------------+--------------------------------><
'-MESSAGES--message-file-'

Figure 11.16 Syntax for the DECOMPOSE XML DOCUMENTS command

Figure 11.17 illustrates the execution of the DECOMPOSE XML DOCUMENTS command in the DB2
Command Line Processor.

DECOMPOSE XML DOCUMENTS IN 'SELECT cid, info FROM customer'
XMLSCHEMA db2admin.cust2xsd MESSAGES decomp_errors.xml ;

DB216001I The DECOMPOSE XML DOCUMENTS command successfully
decomposed all "100" documents.

Figure 11.17 Example of the DECOMPOSE XML DOCUMENTS command

11.3 Shredding with Annotated XML Schemas 317

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 317

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

If you don’t specify a message-file then the error report is written to standard output. Figure
11.18 shows a sample error report. For each document that failed to shred, the error report shows
the document identifier (xdb:documentId). This identifier is obtained from the first column that
is produced by the SQL statement in the DECOMPOSE XML DOCUMENTS command. The error
report also contains the DB2 error message for each document that failed. Figure 11.18 reveals
that document 1002 contains an unexpected XML attribute called status, and that document
1005 contains an element or attribute value abc that is invalid because the XML Schema
expected to find a value of type xs:integer. If you need more detailed information on why a
document is not valid for a given XML Schema, use the stored procedure XSR_GET_PARSING_
DIAGNOSTICS, which we discuss in section 17.6, Diagnosing Validation and Parsing Errors.

<?xml version='1.0' ?>
<xdb:errorReport

xmlns:xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">
<xdb:document>

<xdb:documentId>1002</xdb:documentId>
<xdb:errorMsg>SQL16271N Unknown attribute "status" at or
near line “1" in document "1002".</xdb:errorMsg>

</xdb:document>
<xdb:document>

<xdb:documentId>1005</xdb:documentId>
<xdb:errorMsg> SQL16267N An XML value "abc" at or near
line "1" in document "1005" is not valid according to
its declared XML schema type "xs:integer" or is outside
the supported range of values for the XML schema type

</xdb:errorMsg>
</xdb:document>

</xdb:errorReport>

Figure 11.18 Sample error report from bulk decomp

11.4 SUMMARY

When you consider shredding XML documents into relational tables, remember that XML and
relational data are based on fundamentally different data models. Relational tables are flat and
unordered collections of rows with strictly typed columns, and each row in a table must have the
same structure. One-to-many relationships are expressed by using multiple tables and join rela-
tionships between them. In contrast, XML documents tend to have a hierarchical and nested
structure that can represent multiple one-to-many relationships in a single document. XML
allows elements to be repeated any number of times, and XML Schemas can define hundreds or
thousands of optional elements and attributes that may or may not exist in any given document.
Due to these differences, shredding XML data to relational tables can be difficult, inefficient, and
sometimes prohibitively complex.

318 Chapter 11 Converting XML to Relational Data

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 318

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

If the structure of your XML data is of limited complexity such that it can easily be mapped to
relational tables, and if your XML format is unlikely to change over time, then XML shredding
can sometimes be useful to feed existing relational applications and reporting software.

DB2 offers two methods for shredding XML data. The first method uses SQL INSERT statements
with the XMLTABLE function. One such INSERT statement is required for each target table and
multiple statements can be combined in a stored procedure to avoid repetitive parsing of the same
XML document. The shredding statements can include XQuery and SQL functions, joins to other
tables, or references to DB2 sequences. These features allow for customization and a high degree
of flexibility in the shredding process, but require manual coding. The second approach for shred-
ding XML data uses annotations in an XML Schema to define the mapping from XML to rela-
tional tables and columns. IBM Data Studio Developer provides a visual interface to create this
mapping conveniently with little or no manual coding.

11.4 Summary 319

11_0138150478_ch11.qxd 7/15/09 12:56 PM Page 319

0138150478, DB2 pureXML Cookbook
Copyright 2010 by International Business Machines Corporation

