

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Library of Congress Cataloging-in-Publication Data
Goodson, John, 1964-
The data access handbook : achieving optimal database application performance and scalability /

John Goodson and Robert A. Steward. — 1st ed.
p. cm.

ISBN 978-0-13-714393-1 (pbk. : alk. paper) 1. Database design—Handbooks, manuals, etc. 2.
Application software—Development—Handbooks, manuals, etc. 3. Computer networks—
Handbooks, manuals, etc. 4. Middleware—Handbooks, manuals, etc. I. Steward, Robert A.
(Robert Allan) II. Title.
QA76.9.D26G665 2009
005.3—dc22

2008054864

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN-13: 978-0-137-14393-1
ISBN-10: 0-137-14393-1
Text printed in the United States on recycled paper at RR Donnelley, Crawfordsville, Indiana.
First printing March 2009

Designing for
Performance: What’s Your

Strategy?

9

Designing your database application and the configu-

ration of the database middleware that connects

your application to the database server for optimal per-

formance isn’t easy. We refer to all these components as

your database application deployment. There is no one-

size-fits-all design. You must think about every compo-

nent to get the best performance possible.

Often you are not in control of every component that

affects performance. For example, your company may dic-

tate that all applications run on an application server. Also,

your database administrator most likely controls the data-

base server machine’s configuration. In these cases, you need

to consider the configurations that are dictated when design-

ing your database application deployment. For example, if

you know that the applications will reside on an application

server, you probably want to spend ample time planning for

connection and statement pooling, which are both discussed

in this chapter.

C H A P T E R T W O

Your Applications

Many software architects and developers don’t think that the design of their

database applications impacts the performance of those applications. This is not

true; application design is a key factor. An application is often coded to establish

a new connection to gather information about the database, such as supported

data types or database version. Avoid establishing additional connections for this

purpose because connections are performance-expensive, as we explain in this

chapter.

This section explores several key functional areas of applications that you

need to consider to achieve maximum performance:

• Database connections

• Transactions

• SQL statements

• Data retrieval

Some functional areas of applications, such as data encryption, affect perfor-

mance, but you can do little about the performance impact. We discuss these

areas and provide information about the performance impact you can expect.

When you make good application design decisions, you can improve perfor-

mance by doing the following:

• Reducing network traffic

• Limiting disk I/O

• Optimizing application-to-driver interaction

• Simplifying queries

For API-specific code examples and discussions, you should also read the

chapter for the standards-based API that you work with:

• For ODBC users, see Chapter 5, “ODBC Applications: Writing Good Code.”

• For JDBC users, see Chapter 6, “JDBC Applications: Writing Good Code.”

• For ADO.NET users, see Chapter 7, “.NET Applications: Writing Good

Code.”

Database Connections

The way you implement database connections may be the most important design

decision you make for your application.

10 Designing for Performance: What’s Your Strategy?

Your choices for implementing connections are as follows:

• Obtain a connection from a connection pool. Read the section, “Using

Connection Pooling,” page 12.

• Create a new connection one at a time as needed. Read the section, “Creating

a New Connection One at a Time as Needed,” page 16.

The right choice mainly depends on the CPU and memory conditions on the

database server, as we explain throughout this section.

Facts About Connections

Before we discuss how to make this decision, here are some important facts about

connections:

• Creating a connection is performance-expensive compared to all other tasks

a database application can perform.

• Open connections use a substantial amount of memory on both the data-

base server and database client machines.

• Establishing a connection takes multiple network round trips to and from

the database server.

• Opening numerous connections can contribute to out-of-memory condi-

tions, which might cause paging of memory to disk and, thus, overall perfor-

mance degradation.

• In today’s architectures, many applications are deployed in connection

pooled environments, which are intended to improve performance.

However, many times poorly tuned connection pooling can result in perfor-

mance degradation. Connection pools can be difficult to design, tune, and

monitor.

Why Connections Are Performance-Expensive

Developers often assume that establishing a connection is a simple request that

results in the driver making a single network round trip to the database server to

initialize a user. In reality, a connection typically involves many network round

trips between the driver and the database server. For example, when a driver con-

nects to Oracle or Sybase, that connection may take anywhere from seven to ten

network round trips to perform the following actions:

• Validate the user’s credentials.

• Negotiate code page settings between what the database driver expects and

what the database has available, if necessary.

Your Applications 11

• Get database version information.

• Establish the optimal database protocol packet size to be used for communi-

cation.

• Set session settings.

In addition, the database management system establishes resources on behalf

of the connection, which involves performance-expensive disk I/O and memory

allocation.

You might be thinking that you can eliminate network round trips if you

place your applications on the same machine as the database system. This is, in

most cases, not realistic because of the complexity of real-world enterprises—

many, many applications accessing many database systems with applications

running on several application servers. In addition, the server on which the data-

base system runs must be well tuned for the database system, not for many differ-

ent applications. Even if one machine would fit the bill, would you really want a

single point of failure?

Using Connection Pooling

A connection pool is a cache of physical database connections that one or more

applications can reuse. Connection pooling can provide significant performance

gains because reusing a connection reduces the overhead associated with estab-

lishing a physical connection. The caveat here is that your database server must

have enough memory to manage all the connections in the pool.

In this book, we discuss client-side connection pooling (connection pooling

provided by database drivers and application servers), not database-side connec-

tion pooling (connection pooling provided by database management systems).

Some database management systems provide connection pooling, and those

implementations work in conjunction with client-side connection pooling.

Although specific characteristics of database-side connection pooling vary, the

overall goal is to eliminate the overhead on the database server of establishing

and removing connections. Unlike client-side connection pooling, database-side

connection pooling does not optimize network round trips to the application. As

we stated previously, connecting to a database is performance-expensive because

of the resource allocation in the database driver (network round trips between

the driver and the database), and the resource allocation on the database server.

Client-side connection pooling helps solve the issue of expensive resource alloca-

tion for both the database driver and database server. Database-side connection

pooling only helps solve the issue on the database server.

12 Designing for Performance: What’s Your Strategy?

How Connection Pooling Works

In a pooled environment, once the initial physical connection is established, it

will likely not be closed for the life of the environment. That is, when an applica-

tion disconnects, the physical connection is not closed; instead, it is placed in the

pool for reuse. Therefore, re-establishing the connection becomes one of the

fastest operations instead of one of the slowest.

Here is a basic overview of how connection pooling works (as shown in

Figure 2-1):

1. When the application or application server is started, the connection

pool is typically populated with connections.

2. An application makes a connection request.

3. Either the driver or the Connection Pool Manager (depending on your

architecture) assigns one of the pooled connections to the application

instead of requesting that a new connection be established. This means

that no network round trips occur between the driver and the database

server for connection requests because a connection is available in the

pool. The result: Your connection request is fast.

4. The application is connected to the database.

5. When the connection is closed, it is placed back into the pool.

Your Applications 13

Application Server
1. Application server started;
 connection pool is populated.

2. Application makes a
 connection request.

3. A pooled connection is
 given to the application.

4. Application is connected
 to the database.

5. When the connection is
 closed, it is placed back
 into the pool.

Application Server

Application

Application Server

Application

Figure 2-1 Connection pooling

Guidelines for Connection Pooling

Here are some general guidelines for using connection pooling. For details about

different connection pooling models, see Chapter 8, “Connection Pooling and

Statement Pooling.”

• A perfect scenario for using connection pooling is when your applications

reside on an application server, which implies multiple users using the appli-

cations.

• Consider using connection pooling if your application has multiple users

and your database server has enough memory to manage the maximum

number of connections that will be in the pool at any given time. In most

connection pooling models, it is easy to calculate the maximum number of

connections that will be in a pool because the connection pool implementa-

tion allows you to configure the maximum. If the implementation you are

using does not support configuring the maximum number of connections in

a pool, you must calculate how many connections will be in the pool during

peak times to determine if your database server can handle the load.

• Determine whether the number of database licenses you have accommo-

dates a connection pool. If you have limited licenses, answer the following

questions to determine if you have enough licenses to support a connection

pool:

a. Will other applications use database licenses? If yes, take this into

account when calculating how many licenses you need for your con-

nection pool.

b. Are you using a database that uses a streaming protocol, such as

Sybase, Microsoft SQL Server, or MySQL? If yes, you may be using

more database connections than you think. In streaming protocol

databases, only one request can be processed at a time over a single

connection; the other requests on the same connection must wait for

the preceding request to complete before a subsequent request can be

processed. Therefore, some database driver implementations duplicate

connections (establish another connection) when multiple requests

are sent over a single connection so that all requests can be processed

in a timely manner.

• When you develop your application to use connection pooling, open con-

nections just before the application needs them. Opening them earlier than

14 Designing for Performance: What’s Your Strategy?

necessary decreases the number of connections available to other users and

can increase the demand for resources. Don’t forget to close them when the

database work is complete so that the connection can return to the pool for

reuse.

When Not to Use Connection Pooling

Some applications are not good candidates for using connection pooling. If your

applications have any of the following characteristics, you probably don’t want to

use connection pooling. In fact, for these types of applications, connection pool-

ing may degrade performance.

• Applications that restart numerous times daily—This typically applies

only to architectures that are not using an application server. Depending on

the configuration of the connection pool, it may be populated with connec-

tions each time the application is started, which causes a performance

penalty up front.

• Single-user applications, such as report writers—If your application only

needs to establish a connection for a single user who runs reports two to

three times daily, the memory usage on the database server associated with a

connection pool degrades performance more than establishing the connec-

tion two or three times daily.

• Applications that run single-user batch jobs, such as end-of-
day/week/month reporting—Connection pooling provides no advantage

for batch jobs that access only one database server, which typically equates to

only one connection. Furthermore, batch jobs are usually run during off

hours when performance is not as much of a concern.

Your Applications 15

Performance Tip

When your application does not use connection pooling, avoid connect-

ing and disconnecting multiple times throughout your application to exe-

cute SQL statements, because each connection might use five to ten

times as many network requests as the SQL statement.

Creating a New Connection One at a Time as Needed

When you create a new connection one at a time as needed, you can design your

application to create either of the following:

• One connection for each statement to be executed

• One connection for multiple statements, which is often referred to as using

multiple threads

Figure 2-2 compares these two connection models.

16 Designing for Performance: What’s Your Strategy?

S1

S2

S3

S4

S5

S1 C1

C1
S2 C2

S3 C3

S4 C4

S5 C5

One Connection for Multiple Statements One Connection for Each Statement

Connection C1
Statements S1,S2,S3,S4,S5
all share connection C1.

Connections C1,C2,C3,C4,C5
Statements S1,S2,S3,S4,S5
all have their own connection.

Figure 2-2 Comparing two connection models

The advantage of using one connection for each statement is that each state-

ment can access the database at the same time. The disadvantage is the overhead

of establishing multiple connections.

The advantages and disadvantages of using one connection for multiple

statements are explained later in this section.

One Connection for Multiple Statements

Before we can explain the details of one connection for multiple statements, we

need to define statement. Some people equate “statement” to “SQL statement.”

We like the definition of “statement” that is found in the Microsoft ODBC 3.0

Programmer’s Reference:

A statement is most easily thought of as an SQL statement, such as SELECT *

FROM Employee. However, a statement is more than just an SQL statement—

it consists of all of the information associated with that SQL statement, such as

any result sets created by the statement and parameters used in the execution

of the statement. A statement does not even need to have an application-

defined SQL statement. For example, when a catalog function such as

SQLTables is executed on a statement, it executes a predefined SQL statement

that returns a list of table names.1

To summarize, a statement is not only the request sent to the database but

the result of the request.

How One Connection for Multiple Statements Works

Your Applications 17

Note

Because of the architecture of the ADO.NET API, this connection model

typically does not apply.

When you develop your application to use one connection for multiple

statements, an application may have to wait for a connection. To understand

why, you must understand how one connection for multiple statements works;

this depends on the protocol of the database system you are using: streaming or

cursor based. Sybase, Microsoft SQL Server, and MySQL are examples of stream-

ing protocol databases. Oracle and DB2 are examples of cursor-based protocol

databases.

Streaming protocol database systems process the query and send results

until there are no more results to send; the database is uninterruptable.

Therefore, the network connection is “busy” until all results are returned

(fetched) to the application.

Cursor-based protocol database systems assign a database server-side

“name” (cursor) to a SQL statement. The server operates on that cursor in incre-

mental time segments. The driver tells the database server when to work and

how much information to return. Several cursors can use the network connec-

tion, each working in small slices of time.

1 Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide, Volume I. Redmond: Microsoft Press,
1997

18 Designing for Performance: What’s Your Strategy?

Example A: Streaming Protocol Result Sets

Let’s look at the case where your SQL statement creates result sets and

your application is accessing a streaming protocol database. In this

case, the connection is unavailable to process another SQL statement

until the first statement is executed and all results are returned to the

application. The time this takes depends on the size of the result set.

Figure 2-3 shows an example.

Figure 2-3 Streaming protocol result sets

Streaming Protocol
Database

Statement requesting
result sets is sent.

Result sets returned: All packets must be
received before connection is available.

Driver CONNECTION

Example B: Streaming Protocol Updates

Let’s look at the case where the SQL statement updates the database

and your application is accessing a streaming protocol database, as

shown in Figure 2-4. The connection is available as soon as the state-

ment is executed and the row count is returned to the application.

Figure 2-4 Streaming protocol updates

Streaming Protocol
Database

Update statement is sent.

Row count is returned;
then connection is available.

Driver CONNECTION

Figure 2-5 Cursor-based protocol/result sets

Your Applications 19

Example C: Cursor-Based Protocol/Result Sets

Last, let’s look at the case where your SQL statement creates result sets

and your application is accessing a cursor-based protocol database.

Unlike Example A, which is a streaming protocol example, the connec-

tion is available before all the results are returned to the application.

When using cursor-based protocol databases, the result sets are

returned as the driver asks for them. Figure 2-5 shows an example.

Time0

Cursor-Based
Protocol Database

SQL Select statement 1 is executed.

Driver CONNECTION

SQL Select statement 2 is waiting to
be executed until the fetched rows for
statement 1 are returned.

Driver CONNECTION

Time1

Application fetches rows from results
of statement 1.

Connection is available when fetched
rows are returned.

Driver CONNECTION

Advantages and Disadvantages

The advantage of using one connection for multiple statements is that it reduces

the overhead of establishing multiple connections, while allowing multiple state-

ments to access the database. The overhead is reduced on both the database

server and client machines.

The disadvantage of using this method of connection management is that

the application may have to wait to execute a statement until the single connec-

tion is available. We explained why in “How One Connection for Multiple

Statements Works,” page 17.

Guidelines for One Connection for Multiple Statements

Here are some guidelines for when to use one connection for multiple state-

ments:

• Consider using this connection model when your database server has hard-

ware constraints such as limited memory and one or more of the following

conditions are true:

a. You are using a cursor-based protocol database.

b. The statements in your application return small result sets or no result

sets.

c. Waiting for a connection is acceptable. The amount of time that is

acceptable for the connection to be unavailable depends on the require-

ments of your application. For example, 5 seconds may be acceptable for

an internal application that logs an employee’s time but may not be

acceptable for an online transaction processing (OLTP) application such

as an ATM application. What is an acceptable response time for your

application?

• This connection model should not be used when your application uses

transactions.

Case Study: Designing Connections

Let’s look at one case study to help you understand how to design database con-

nections. The environment details are as follows:

• The environment includes a middle tier that must support 20 to 100 concur-

rent database users, and performance is key.

20 Designing for Performance: What’s Your Strategy?

• CPU and memory are plentiful on both the middle tier and database server.

• The database is Oracle, Microsoft SQL Server, Sybase, or DB2.

• The API that the application uses is ODBC, JDBC, or ADO.NET.

• There are 25 licenses for connections to the database server.

Here are some possible solutions:

• Solution 1: Use a connection pool with a maximum of 20 connections, each

with a single statement.

• Solution 2: Use a connection pool with a maximum of 5 connections, each

with 5 statements.

• Solution 3: Use a single connection with 5 to 25 statements.

The key information in this case study is the ample CPU and memory on

both the middle tier and database server and the ample number of licenses to the

database server. The other information is really irrelevant to the design of the

database connections.

Solution 1 is the best solution because it performs better than the other two

solutions. Why? Processing one statement per connection provides faster results

for users because all the statements can access the database at the same time.

The architecture for Solutions 2 and 3 is one connection for multiple state-

ments. In these solutions, the single connection can become a bottleneck, which

means slower results for users. Therefore, these solutions do not meet the

requirement of “performance is key.”

Transaction Management

A transaction is one or more SQL statements that make up a unit of work per-

formed against the database, and either all the statements in a transaction are

committed as a unit or all the statements are rolled back as a unit. This unit of

work typically satisfies a user request and ensures data integrity. For example,

when you use a computer to transfer money from one bank account to another,

the request involves a transaction: updating values stored in the database for

both accounts. For a transaction to be completed and database changes to be

made permanent, a transaction must be completed in its entirety.

What is the correct transaction commit mode to use in your application?

What is the right transaction model for your database application: local or dis-

tributed? Use the guidelines in this section to help you manage transactions more

efficiently.

Your Applications 21

You should also read the chapter for the standards-based API that you work

with; these chapters provide specific examples for each API:

• For ODBC users, see Chapter 5.

• For JDBC users, see Chapter 6.

• For ADO.NET users, see Chapter 7.

Managing Commits in Transactions

Committing (and rolling back) transactions is slow because of the disk I/O and

potentially the number of network round trips required. What does a commit

actually involve? The database must write to disk every modification made by a

transaction to the database. This is usually a sequential write to a journal file (or

log); nevertheless, it involves expensive disk I/O.

In most standards-based APIs, the default transaction commit mode is auto-

commit. In auto-commit mode, a commit is performed for every SQL statement

that requires a request to the database, such as Insert, Update, Delete, and

Select statements. When auto-commit mode is used, the application does not

control when database work is committed. In fact, commits commonly occur

when there’s actually no real work to commit.

Some database systems, such as DB2, do not support auto-commit mode.

For these databases, the database driver, by default, sends a commit request to the

database after every successful operation (SQL statement). This request equates

to a network round trip between the driver and the database. The round trip to

the database occurs even though the application did not request the commit and

even if the operation made no changes to the database. For example, the driver

makes a network round trip even when a Select statement is executed.

Because of the significant amount of disk I/O required to commit every

operation on the database server and because of the extra network round trips

that occur between the driver and the database, in most cases you will want to

turn off auto-commit mode in your application. By doing this, your application

can control when the database work is committed, which provides dramatically

better performance.

Consider the following real-world example. ASoft Corporation coded a

standards-based database application and experienced poor performance in test-

ing. Its performance analysis showed that the problem resided in the bulk five

million Insert statements sent to the database. With auto-commit mode on, this

meant an additional five million Commit statements were being issued across the

22 Designing for Performance: What’s Your Strategy?

network and that every inserted row was written to disk immediately following

the execution of the Insert. When auto-commit mode was turned off in the

application, the number of statements issued by the driver and executed on the

database server was reduced from ten million (five million Inserts + five mil-

lion Commits) to five million and one (five million Inserts + one Commit). As a

consequence, application processing was reduced from eight hours to ten min-

utes. Why such a dramatic difference in time? There was significantly less disk

I/O required by the database server, and there were 50% fewer network round

trips.

Your Applications 23

Performance Tip

Although turning off auto-commit mode can help application perfor-

mance, do not take this tip too far. Leaving transactions active can

reduce throughput by holding locks on rows for longer than necessary,

preventing other users from accessing the rows. Typically, committing

transactions in intervals provides the best performance as well as accept-

able concurrency.

If you have turned off auto-commit mode and are using manual commits,

when does it make sense to commit work? It depends on the following factors:

• The type of transactions your application performs. For example, does your

application perform transactions that modify or read data? If your applica-

tion modifies data, does it update large amounts of data?

• How often your application performs transactions.

For most applications, it’s best to commit a transaction after every logical

unit of work. For example, consider a banking application that allows users to

transfer money from one account to another. To protect the data integrity of that

work, it makes sense to commit the transaction after both accounts are updated

with the new amounts.

However, what if an application allows users to generate reports of account

balances for each day over a period of months? The unit of work is a series of

Select statements, one executed after the other to return a column of balances.

In most cases, for every Select statement executed against the database, a lock is

placed on rows to prevent another user from updating that data. By holding

locks on rows for longer than necessary, active transactions can prevent other

users from updating data, which ultimately can reduce throughput and cause

concurrency issues. In this case, you may want to commit the Select statements

in intervals (after every five Select statements, for example) so that locks are

released in a timely manner.

In addition, be aware that leaving transactions active consumes database

memory. Remember that the database must write every modification made by a

transaction to a log that is stored in database memory. Committing a transaction

flushes the contents of the log and releases database memory. If your application

uses transactions that update large amounts of data (1,000 rows, for example)

without committing modifications, the application can consume a substantial

amount of database memory. In this case, you may want to commit after every

statement that updates a large amount of data.

How often your application performs transactions also determines when

you should commit them. For example, if your application performs only three

transactions over the course of a day, commit after every transaction. In contrast,

if your application constantly performs transactions that are composed of

Select statements, you may want to commit after every five Select statements.

Isolation Levels

We will not go into the details of isolation levels in this book, but architects

should know the default transaction isolation level of the database system they

are using. A transaction isolation level represents a particular locking strategy

used in the database system to improve data integrity.

Most database systems support several isolation levels, and the standards-

based APIs provide ways for you to set isolation levels. However, if the database

driver you are using does not support the isolation level you set in your applica-

tion, the setting has no effect. Make sure you choose a driver that gives you the

level of data integrity that you need.

Local Transactions Versus Distributed Transactions

A local transaction is a transaction that accesses and updates data on only one

database. Local transactions are significantly faster than distributed transactions

because local transactions do not require communication between multiple

databases, which means less logging and fewer network round trips are required

to perform local transactions.

24 Designing for Performance: What’s Your Strategy?

Use local transactions when your application does not have to access or

update data on multiple networked databases.

A distributed transaction is a transaction that accesses and updates data on

multiple networked databases or systems and must be coordinated among those

databases or systems. These databases may be of several types located on a single

server, such as Oracle, Microsoft SQL Server, and Sybase; or they may include

several instances of a single type of database residing on numerous servers.

The main reason to use distributed transactions is when you need to make

sure that databases stay consistent with one another. For example, suppose a cat-

alog company has a central database that stores inventory for all its distribution

centers. In addition, the company has a database for its east coast distribution

center and one for the west coast. When a catalog order is placed, an application

updates the central database and updates either the east or west coast database.

The application performs both operations in one distributed transaction to

ensure that the information in the central database remains consistent with the

information in the appropriate distribution center’s database. If the network

connection fails before the application updates both databases, the entire trans-

action is rolled back; neither database is updated.

Distributed transactions are substantially slower than local transactions

because of the logging and network round trips needed to communicate between

all the components involved in the distributed transaction.

For example, Figure 2-6 shows what happens during a local transaction.

Your Applications 25

Application

Driver

3 1

2

Figure 2-6 Local transaction

The following occurs when the application requests a transaction:

1. The driver issues a commit request.

2. If the database can commit the transaction, it does, and writes an entry

to its log. If it cannot, it rolls back the transaction.

3. The database replies with a status to the driver indicating if the commit

succeeded or failed.

Figure 2-7 shows what happens during a distributed transaction, in which all

databases involved in the transaction must either commit or roll back the trans-

action.

26 Designing for Performance: What’s Your Strategy?

Application

Driver

Transaction Coordinator

4 1

3c 2a 2c 3a 3c 2a 2c 3a

2b
3b

2b
3b

Figure 2-7 Distributed transaction

The following occurs when the application requests a transaction:

1. The driver issues a commit request.

2. The transaction coordinator sends a precommit request to all databases

involved in the transaction.

a. The transaction coordinator sends a commit request command to all

databases.

b. Each database executes the transaction up to the point where the data-

base is asked to commit, and each writes recovery information to its

logs.

c. Each database replies with a status message to the transaction coordina-

tor indicating whether the transaction up to this point succeeded or

failed.

3. The transaction coordinator waits until it has received a status message from

each database. If the transaction coordinator received a status message from

all databases indicating success, the following occurs:

a. The transaction coordinator sends a commit message to all the data-

bases.

b. Each database completes the commit operation and releases all the locks

and resources held during the transaction.

c. Each database replies with a status to the transaction coordinator indi-

cating whether the operation succeeded or failed.

4. The transaction coordinator completes the transaction when all acknowl-

edgments have been received and replies with a status to the driver indicat-

ing if the commit succeeded or failed.

Your Applications 27

Note for Java Users

The default transaction behavior of many Java application servers uses

distributed transactions, so changing that default transaction behavior to

local transactions, if distributed transactions are not required, can

improve performance.

SQL Statements

Will your application have a defined set of SQL statements that are executed

multiple times? If your answer is yes, you will most likely want to use prepared

statements and statement pooling if your environment supports it.

Using Statements Versus Prepared Statements

A prepared statement is a SQL statement that has been compiled, or prepared,

into an access or query plan for efficiency. A prepared statement is available for

reuse by the application without the overhead in the database of re-creating the

query plan. A prepared statement is associated with one connection and is avail-

able until it is explicitly closed or the owning connection is closed.

Most applications have a set of SQL statements that are executed multiple

times and a few SQL statements that are executed only once or twice during the

life of an application. Although the overhead for the initial execution of a pre-

pared statement is high, the advantage is realized with subsequent executions of

the SQL statement. To understand why, let’s examine how a database processes a

SQL statement.

The following occurs when a database receives a SQL statement:

1. The database parses the statement and looks for syntax errors.

2. The database validates the user to make sure the user has privileges to

execute the statement.

3. The database validates the semantics of the statement.

4. The database figures out the most efficient way to execute the statement

and prepares a query plan. Once the query plan is created, the database

can execute the statement.

When a prepared query is sent to the database, the database saves the query

plan until the driver closes it. This allows the query to be executed time and time

again without repeating the steps described previously. For example, if you send

the following SQL statement to the database as a prepared statement, the data-

base saves the query plan:

SELECT * FROM Employees WHERE SSID = ?

Note that this SQL statement uses a parameter marker, which allows the

value in the WHERE clause to change for each execution of the statement. Do not

use a literal in a prepared statement unless the statement will be executed with

the same value(s) every time. This scenario would be rare.

Using a prepared statement typically results in at least two network round

trips to the database server:

• One network round trip to parse and optimize the query

• One or more network round trips to execute the query and retrieve the

results

28 Designing for Performance: What’s Your Strategy?

Note that not all database systems support prepared statements; Oracle,

DB2, and MySQL do, and Sybase and Microsoft SQL Server do not. If your appli-

cation sends prepared statements to either Sybase or Microsoft SQL Server, these

database systems create stored procedures. Therefore, the performance of using

prepared statements with these two database systems is slower.

Some database systems, such as Oracle and DB2, let you perform a prepare

and execute together. This functionality provides two benefits. First, it eliminates

a round trip to the database server. Second, when designing your application, you

don’t need to know whether you plan to execute the statement again, which

allows you to optimize the next execution of the statement automatically.

Read the next section about statement pooling to see how prepared state-

ments and statement pooling go hand in hand.

Statement Pooling

If you have an application that repeatedly executes the same SQL statements,

statement pooling can improve performance because it prevents the overhead of

repeatedly parsing and creating cursors (server-side resource to manage the SQL

request) for the same statement, along with the associated network round trips.

A statement pool is a group of prepared statements that an application can

reuse. Statement pooling is not a feature of a database system; it is a feature of

database drivers and application servers. A statement pool is owned by a physical

connection, and prepared statements are placed in the pool after their initial exe-

cution. For details about statement pooling, see Chapter 8, “Connection Pooling

and Statement Pooling.”

Your Applications 29

Performance Tip

If your application makes a request only once during its life span, it is

better to use a statement than a prepared statement because it results in

only a single network round trip. Remember, reducing network commu-

nication typically provides the most performance gain. For example, if

you have an application that runs an end-of-day sales report, the query

that generates the data for that report should be sent to the database

server as a statement, not as a prepared statement.

How does using statement pooling affect whether you use a statement or a

prepared statement?

• If you are using statement pooling and a SQL statement will only be exe-

cuted once, use a statement, which is not placed in the statement pool. This

avoids the overhead associated with finding that statement in the pool.

• If a SQL statement will be executed infrequently but may be executed multi-

ple times during the life of a statement pool, use a prepared statement.

Under similar circumstances without statement pooling, use a statement.

For example, if you have some statements that are executed every 30 minutes

or so (infrequently), the statement pool is configured for a maximum of 200

statements, and the pool never gets full, use a prepared statement.

Data Retrieval

To retrieve data efficiently, do the following:

• Return only the data you need. Read “Retrieving Long Data,” page 31.

• Choose the most efficient way to return the data. Read “Limiting the

Amount of Data Returned,” page 34, and “Choosing the Right Data Type,”

page 34.

• Avoid scrolling through the data. Read “Using Scrollable Cursors,” page 36.

• Tune your database middleware to reduce the amount of information that is

communicated between the database driver and the database. Read “The

Network,” page 44.

For specific API code examples, read the chapter for the standards-based API

that you work with:

• For ODBC users, see Chapter 5.

• For JDBC users, see Chapter 6.

• For ADO.NET users, see Chapter 7.

Understanding When the Driver Retrieves Data

You might think that if your application executes a query and then fetches one

row of the results, the database driver only retrieves that one row. However, in

most cases, that is not true; the driver retrieves many rows of data (a block of

data) but returns only one row to the application. This is why the first fetch your

30 Designing for Performance: What’s Your Strategy?

application performs may take longer than subsequent fetches. Subsequent

fetches are faster because they do not require network round trips; the rows of

data are already in memory on the client.

Some database drivers allow you to configure connection options that spec-

ify how much data to retrieve at a time. Retrieving more data at one time

increases throughput by reducing the number of times the driver fetches data

across the network when retrieving multiple rows. Retrieving less data at one

time increases response time, because there is less of a delay waiting for the server

to transmit data. For example, if your application normally fetches 200 rows, it is

more efficient for the driver to fetch 200 rows at one time over the network than

to fetch 50 rows at a time during four round trips over the network.

Retrieving Long Data

Retrieving long data—such as large XML data, long varchar/text, long varbinary,

Clobs, and Blobs—across a network is slow and resource intensive. Do your

application users really need to have the long data available to them? If yes, care-

fully think about the most optimal design. For example, consider the user inter-

face of an employee directory application that allows the user to look up an

employee’s phone extension and department, and optionally, view an employee’s

photograph by clicking the name of the employee.

Employee Phone Dept

Harding X4568 Manager

Hoover X4324 Sales

Lincoln X4329 Tech

Taft X4569 Sales

Returning each employee’s photograph would slow performance unneces-

sarily just to look up the phone extension. If users do want to see the photograph,

they can click on the employee’s name and the application can query the data-

base again, specifying only the long columns in the Select list. This method

allows users to return result sets without having to pay a high performance

penalty for network traffic.

Having said this, many applications are designed to send a query such as

SELECT * FROM employees and then request only the three columns they want

Your Applications 31

to see. In this case, the driver must still retrieve all the data across the network,

including the employee photographs, even though the application never requests

the photograph data.

Some database systems have optimized the expensive interaction between

the database middleware and the database server when retrieving long data by

providing an optimized database data type called LOBs (CLOB, BLOB, and so

on). If your database system supports these data types and long data is created

using those types, then the processing of queries such as SELECT * FROM

employees is less expensive. Here’s why. When a result row is retrieved, the driver

retrieves only a placeholder for the long data (LOB) value. That placeholder is

usually the size of an integer—very small. The actual long data (picture, docu-

ment, scanned image, and so on) is retrieved only when the application specifi-

cally retrieves the value of the result column.

For example, if an employees table was created with the columns FirstName,

LastName, EmpId, Picture, OfficeLocation, and PhoneNumber, and the Picture

column is a long varbinary type, the following interaction would occur between

the application, the driver, and the database server:

1. Execute a statement—The application sends a SQL statement (for

example, SELECT * FROM table WHERE ...) to the database server via

the driver.

2. Fetch rows—The driver retrieves all the values of all the result columns

from the database server because the driver doesn’t know which values

the application will request. All values must be available when needed,

which means that the entire image of the employee must be retrieved

from the database server regardless of whether the application eventu-

ally processes it.

3. Retrieve result values into the application—When the application

requests data, it is moved from the driver into the application buffers on

a column-by-column basis. Even if result columns were prebound by the

application, the application can still request result columns ad hoc.

Now suppose the employees table is created with the same columns except

that the Picture field is a BLOB type. Now the following interaction would occur

between the application, the driver, and the database server:

32 Designing for Performance: What’s Your Strategy?

1. Execute a statement—The application sends a SQL statement (for

example, SELECT * FROM table WHERE ...) to the database server via

the driver.

2. Fetch rows—The driver retrieves all the values of all the result columns

from the database server, as it did in the previous example. However, in

this case, the entire employee image is not retrieved from the database

server; instead, a placeholder integer value is retrieved.

3. Retrieve result values into the application—When the application

requests data, it is moved from the driver into the application buffers on

a column-by-column basis. If the application requests the contents of

the Picture column, the driver initiates a request to the database server

to retrieve the image of the employee that is identified by the place-

holder value it retrieved. In this scenario, the performance hit associated

with retrieving the image is deferred until the application actually

requests that data.

In general, LOB data types are useful and preferred because they allow effi-

cient use of long data on an as-needed basis. When the intent is to process large

amounts of long data, using LOBs results in extra round trips between the driver

and the database server. For example, in the previous example, the driver had to

initiate an extra request to retrieve the LOB value when it was requested. These

extra round trips usually are somewhat insignificant in the overall performance

of the application because the number of overall round trips needed between the

driver and the database server to return the entire contents of the long data is the

expensive part of the execution.

Although you might prefer to use LOB types, doing so is not always possible

because much of the data used in an enterprise today was not created yesterday.

The majority of data you process was created long before LOB types existed, so

the schema of the tables you use may not include LOB types even if they are sup-

ported by the version of the database system you are using. The coding tech-

niques presented in this section are preferred regardless of the data types defined

in the schema of your tables.

Your Applications 33

Performance Tip

Design your application to exclude long data from the Select list.

Limiting the Amount of Data Returned

One of the easiest ways to improve performance is to limit the amount of net-

work traffic between the database driver and the database server—one way is to

write SQL queries that instruct the driver to retrieve from the database and

return to the application only the data that the application requires. However,

some applications need to use SQL queries that generate a lot of traffic. For

example, consider an application that needs to display information from support

case histories, which each contain a 10MB log file. But, does the user really need

to see the entire contents of the file? If not, performance would improve if the

application displayed only the first 1MB of the log file.

34 Designing for Performance: What’s Your Strategy?

Performance Tip

When you cannot avoid returning data that generates a lot of network

traffic, control the amount of data being sent from the database to the

driver by doing the following:

• Limiting the number of rows sent across the network

• Reducing the size of each row sent across the network

You can do this by using the methods or functions of the API you work

with. For example, in JDBC, use setMaxRows() to limit the number of

rows a query returns. In ODBC, call SQLSetStmtAttr() with the

SQL_ATTR_MAX_LENGTH option to limit the number of bytes of data

returned for a column value.

Choosing the Right Data Type

Advances in processor technology have brought significant improvements to the

way that operations, such as floating-point math, are handled. However, when

the active portion of your application does not fit into on-chip cache, retrieving

and returning certain data types is expensive. When you are working with data

on a large scale, select the data type that can be processed most efficiently.

Retrieving and returning certain data types across the network can increase or

decrease network traffic. Table 2-1 lists the fastest to the slowest data types to

process and explains why.

Table 2-1 Fastest to Slowest Processing of Data Types
Data Type Processing

binary Transfer of raw bytes from database to application buffers.

int, smallint, float Transfer of fixed formats from database to application buffers.

decimal Transfer of proprietary data from database to database driver. Driver
must decode, which uses CPU, and then typically has to convert to a
string. (Note: All Oracle numeric types are actually decimals.)

timestamp Transfer of proprietary data from database to database driver. Driver
must decode, which uses CPU, and then typically has to convert to a
multipart structure or to a string. The difference between timestamp
processing and decimal is that this conversion requires conversion
into multiple parts (year, month, day, second, and so on).

char Typically, transfer of larger amounts of data that must be converted
from one code page to another, which is CPU intensive, not because
of the difficulty, but because of the amount of data that must be con-
verted.

Figure 2-8 shows a comparison of how many rows per second are returned

when a column is defined as a 64-bit integer data type versus a decimal(20) data

type. The same values are returned in each case. As you can see in this figure,

many more rows per second are returned when the data is returned as an integer.

Your Applications 35

Threads

R
ow

s/
S

ec
on

d

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9 10

Decimal(20)
64-bit Integer

Figure 2-8 Comparison of different data types

Using Scrollable Cursors

Scrollable cursors allow an application to go both forward and backward

through a result set. However, because of limited support for server-side scrol-

lable cursors in many database systems, drivers often emulate scrollable cursors,

storing rows from a scrollable result set in a cache on the machine where the dri-

ver resides (client or application server). Table 2-2 lists five major database sys-

tems and explains their support of server-side scrollable cursors.

Table 2-2 Database Systems Support of Server-Side Scrollable
Cursors

Database System Explanation

Oracle No native support of database server-side scrollable cursors.
Drivers expose scrollable cursors to applications by emulating the
functionality on the client.

MySQL No native support of database server-side scrollable cursors.
Drivers expose scrollable cursors to applications by emulating the
functionality on the client.

Microsoft SQL Server-side scrollable cursors are supported through stored
Server procedures. Most drivers expose server-side cursors to applications.

DB2 Native support of some server-side scrollable cursor models. Some
drivers support server-side scrollable cursors for the most recent
DB2 versions. However, most drivers expose scrollable cursors to
applications by emulating the functionality on the client.

Sybase ASE Native support for server-side scrollable cursors was introduced in
Sybase ASE 15. Versions prior to 15 do not natively support server-
side scrollable cursors. Drivers expose scrollable cursors to applica-
tions by emulating the functionality on the client.

36 Designing for Performance: What’s Your Strategy?

Performance Tip

For multiuser, multivolume applications, it’s possible that billions, or

even trillions, of network packets move between the driver and the data-

base server over the course of a day. Choosing data types that are

processed efficiently can incrementally boost performance.

One application design flaw that we have seen many times is that an applica-

tion uses a scrollable cursor to determine how many rows a result set contains

even if server-side scrollable cursors are not supported in the database system.

Here is an ODBC example; the same concept holds true for JDBC. Unless you are

certain that the database natively supports using a scrollable result set, do not call

SQLExtendedFetch() to find out how many rows the result set contains. For dri-

vers that emulate scrollable cursors, calling SQLExtendedFetch() results in the

driver returning all results across the network to reach the last row.

This emulated model of scrollable cursors provides flexibility for the devel-

oper but comes with a performance penalty until the client cache of rows is fully

populated. Instead of using a scrollable cursor to determine the number of rows,

count the rows by iterating through the result set or get the number of rows by

submitting a Select statement with the Count function. For example:

SELECT COUNT(*) FROM employees WHERE ...

Extended Security

It is no secret that performance penalties are a side effect of extended security. If

you’ve ever developed an application that required security, we’re sure that

you’ve discovered this hard truth. We include this section in the book simply to

point out the penalties that go along with security and to provide suggestions for

limiting these penalties if possible.

In this section, we discuss two types of security: network authentication and

data encryption across the network (as opposed to data encrypted in the data-

base).

If your database driver of choice does not support network authentication or

data encryption, you cannot use this functionality in your database application.

Network Authentication

On most computer systems, an encrypted password is used to prove a user’s

identity. If the system is a distributed network system, this password is transmit-

ted over the network and can possibly be intercepted and decrypted by malicious

hackers. Because this password is the one secret piece of information that identi-

fies a user, anyone knowing a user’s password can effectively be that user.

In your enterprise, the use of passwords may not be secure enough. You

might need network authentication.

Your Applications 37

Kerberos, a network authentication protocol, provides a way to identify

users. Any time users request a network service, such as a database connection,

they must prove their identity.

Kerberos was originally developed at MIT as a solution to the security issues

of open network computing environments. Kerberos is a trusted third-party

authentication service that verifies users’ identities.

Kerberos keeps a database (the Kerberos server) of its clients and their pri-

vate keys. The private key is a complex formula-driven value known only to

Kerberos and the client to which it belongs. If the client is a user, the private key is

an encrypted password.

Both network services that require authentication and clients who want to

use these services must register with Kerberos. Because Kerberos knows the pri-

vate keys of all clients, it creates messages that validate the client to the server and

vice versa.

In a nutshell, here is how Kerberos works:

1. The user obtains credentials that are used to request access to network
services. These credentials are obtained from the Kerberos server and

are in the form of a Ticket-Granting Ticket (TGT). This TGT authorizes

the Kerberos server to grant the user a service ticket, which authorizes

his access to network services.

2. The user requests authentication for a specific network service. The

Kerberos server verifies the user’s credentials and sends a service ticket

to him.

3. The user presents the service ticket to the end server. If the end server

validates the user, the service is granted.

Figure 2-9 shows an example of requesting a database connection (a network

service) when using Kerberos.

An application user requests a database connection after a TGT has been

obtained:

1. The application sends a request for a database connection to the

Kerberos server.

2. The Kerberos server sends back a service ticket.

3. The application sends the service ticket to the database server.

4. The database server validates the client and grants the connection.

38 Designing for Performance: What’s Your Strategy?

Figure 2-9 Kerberos

Even when you don’t use Kerberos, database connections are performance-

expensive; they can require seven to ten network round trips (see the section,

“Why Connections Are Performance-Expensive,” page 11, for more details).

Using Kerberos comes with the price of adding more network round trips to

establish a database connection.

Your Applications 39

Application Kerberos
Server

1

2

3

4

Performance Tip

To get the best performance possible when using Kerberos, place the

Kerberos server on a dedicated machine, reduce the networking services

run on this machine to the absolute minimum, and make sure you have

a fast, reliable network connection to the machine.

Data Encryption Across the Network

If your database connection is not configured to use data encryption, data is sent

across the network in a “native” format; for example, a 4-byte integer is sent

across the network as a 4-byte integer. The native format is defined by either of

the following:

• The database vendor

• The database driver vendor in the case of a driver with an independent pro-

tocol architecture such as a Type 3 JDBC driver

The native format is designed for fast transmission and can be decoded by

interceptors given some time and effort.

Because a native format does not provide complete protection from inter-

ceptors, you may want to use data encryption to provide a more secure transmis-

sion of data. For example, you may want to use data encryption in the following

scenarios:

• You have offices that share confidential information over an intranet.

• You send sensitive data, such as credit card numbers, over a database connec-

tion.

• You need to comply with government or industry privacy and security

requirements.

Data encryption is achieved by using a protocol for managing the security of

message transmission, such as Secure Sockets Layer (SSL). Some database sys-

tems, such as DB2 for z/OS, implement their own data encryption protocol. The

way the database-specific protocols work and the performance penalties associ-

ated with them are similar to SSL.

In the world of database applications, SSL is an industry-standard protocol

for sending encrypted data over database connections. SSL secures the integrity

of your data by encrypting information and providing client/server authentica-

tion.

From a performance perspective, SSL introduces an additional processing

layer, as shown in Figure 2-10.

40 Designing for Performance: What’s Your Strategy?

Application Layers

SSL

TCP/IP

Figure 2-10 SSL: an additional processing layer

The SSL layer includes two CPU-intensive phases: SSL handshake and

encryption.

When encrypting data using SSL, the database connection process includes

extra steps between the database driver and the database to negotiate and agree

upon the encryption/decryption information that will be used. This is called the

SSL handshake. An SSL handshake results in multiple network round trips as

well as additional CPU to process the information needed for every SSL connec-

tion made to the database.

During an SSL handshake, the following steps take place, as shown in Fig-

ure 2-11:

1. The application via a database driver sends a connection request to the

database server.

2. The database server returns its certificate and a list of supported encryp-

tion methods (cipher suites).

3. A secure, encrypted session is established when both the database driver

and the server have agreed on an encryption method.

Your Applications 41

Application

1

2

3

Figure 2-11 SSL handshake

Encryption is performed on each byte of data transferred; therefore, the

more data being encrypted, the more processing cycles occur, which means

slower network throughput.

SSL supports symmetric encryption methods such as DES, RC2, and Triple

DES. Some of these symmetric methods cause a larger performance penalty than

others, for example, Triple DES is slower than DES because larger keys must be

used to encrypt/decrypt the data. Larger keys mean more memory must be refer-

enced, copied, and processed. You cannot always control which encryption

method your database server uses, but it is good to know which one is used so

that you can set realistic performance goals.

Figure 2-12 shows an example of how an SSL connection can affect through-

put. In this example, the same benchmark was run twice using the same applica-

tion, JDBC driver, database server, hardware, and operating system. The only

variable was whether an SSL connection was used.

Figure 2-12 Rows per second: SSL versus non-SSL

Figure 2-13 shows the CPU associated with the throughput of this example.

As you can see, CPU use increases when using an SSL connection.

42 Designing for Performance: What’s Your Strategy?

Threads

R
ow

s/
S

ec
on

d

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10

SSL
Non-SSL

Select 1 row of 3100 bytes.

Threads

C
P

U
 U

til
iz

at
io

n

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10

SSL

Non-SSL

Select 1 row of 3100 bytes.

Figure 2-13 CPU utilization: SSL versus non-SSL

Static SQL Versus Dynamic SQL

At the inception of relational database systems and into the 1980s, the only

portable interface for applications was embedded SQL. At that time, there was no

common function API such as a standards-based database API, for example,

ODBC. Embedded SQL is SQL statements written within an application pro-

gramming language such as C. These statements are preprocessed by a SQL pre-

processor, which is database dependent, before the application is compiled. In

the preprocessing stage, the database creates the access plan for each SQL state-

ment. During this time, the SQL was embedded and, typically, always static.

In the 1990s, the first portable database API for SQL was defined by the SQL

Access Group. Following this specification came the ODBC specification from

Microsoft. The ODBC specification was widely adopted, and it quickly became

the de facto standard for SQL APIs. Using ODBC, SQL did not have to be embed-

ded into the application programming language, and precompilation was no

longer required, which allowed database independence. Using SQL APIs, the SQL

is not embedded; it is dynamic.

What is static SQL and dynamic SQL? Static SQL is SQL statements in an

application that do not change at runtime and, therefore, can be hard-coded into

the application. Dynamic SQL is SQL statements that are constructed at run-

time; for example, the application may allow users to enter their own queries.

Thus, the SQL statements cannot be hard-coded into the application.

Static SQL provides performance advantages over dynamic SQL because sta-

tic SQL is preprocessed, which means the statements are parsed, validated, and

optimized only once.

Static SQL Versus Dynamic SQL 43

Performance Tip

To limit the performance penalty associated with data encryption, con-

sider establishing a connection that uses encryption for accessing sensi-

tive data such as an individual’s tax ID number, and another connection

that does not use encryption for accessing data that is less sensitive,

such as an individual’s department and title. There is one caveat here:

Not all database systems allow this. Oracle and Microsoft SQL Server are

examples of database systems that do. Sybase is an example of either all

connections to the database use encryption or none of them do.

If you are using a standards-based API, such as ODBC, to develop your

application, static SQL is probably not an option for you. However, you can

achieve a similar level of performance by using either statement pooling or

stored procedures. See “Statement Pooling,” page 29, for a discussion about how

statement pooling can improve performance.

A stored procedure is a set of SQL statements (a subroutine) available to

applications accessing a relational database system. Stored procedures are physi-

cally stored in the database. The SQL statements you define in a stored procedure

are parsed, validated, and optimized only once, as with static SQL.

Stored procedures are database dependent because each relational database

system implements stored procedures in a proprietary way. Therefore, if you

want your application to be database independent, think twice before using

stored procedures.

44 Designing for Performance: What’s Your Strategy?

Note

Today, a few tools are appearing on the market that convert dynamic

SQL in a standards-based database application into static SQL. Using sta-

tic SQL, applications achieve better performance and decreased CPU

costs. The CPU normally used to prepare a dynamic SQL statement is

eliminated.

The Network

The network, which is a component of the database middleware, has many fac-

tors that affect performance: database protocol packets, network packets, net-

work hops, network contention, and packet fragmentation. See “Network,” in

Chapter 4 (page 86) for details on how to understand the performance implica-

tions of the network and guidelines for dealing with them.

In this section, let’s look at one important fact about performance and the

network: database application performance improves when communication

between the database driver and the database is optimized.

With this in mind, you should always ask yourself: How can I reduce

the information that is communicated between the driver and the database? One

important factor in this optimization is the size of database protocol packets.

The size of database protocol packets sent by the database driver to the data-

base server must be equal to or less than the maximum database protocol packet

size allowed by the database server. If the database server accepts a maximum

packet size of 64KB, the database driver must send packets of 64KB or less.

Typically, the larger the packet size, the better the performance, because fewer

packets are needed to communicate between the driver and the database. Fewer

packets means fewer network round trips to and from the database.

For example, if the database driver uses a packet size of 32KB and the data-

base server’s packet size is configured for 64KB, the database server must limit its

packet size to the smaller 32KB packet size used by the driver—increasing the

number of packets sent over the network to return the same amount of data to

the client (as shown in Figure 2-14).

The Network 45

Using 64KB Packets

Driver

Using 32KB Packets

Driver

Figure 2-14 Using different packet sizes

This increase in the number of packets also means an increase in packet

overhead. High packet overhead reduces throughput, or the amount of data that

is transferred from sender to receiver over a period of time.

You might be thinking, “But how can I do anything about the size of data-

base protocol packets?”You can use a database driver that allows you to configure

their size. See “Runtime Performance Tuning Options,” page 62, for more infor-

mation about which performance tuning options to look for in a database driver.

The Database Driver

The database driver, which is a component of the database middleware, can

degrade the performance of your database application because of the following

reasons:

• The architecture of the driver is not optimal.

• The driver is not tunable. It does not have runtime performance tuning

options that allow you to configure the driver for optimal performance.

See Chapter 3, “Database Middleware: Why It’s Important,” for a detailed

description of how a database driver can improve the performance of your data-

base application.

In this section, let’s look at one important fact about performance and a

database driver: The architecture of your database driver matters. Typically, the

most optimal architecture is database wire protocol.

Database wire protocol drivers communicate with the database directly,

eliminating the need for the database’s client software, as shown in Figure 2-15.

46 Designing for Performance: What’s Your Strategy?

Application

Database
Driver

Database Wire Protocol

Standards-Based Calls

Figure 2-15 Database wire protocol architecture

Using a wire protocol database driver improves the performance of your

database application because it does the following:

• Decreases latency by eliminating the processing required in the client soft-

ware and the extra network traffic caused by the client software.

• Reduces network bandwidth requirements from extra transmissions. That is,

database wire protocol drivers optimize network traffic because they can

control interaction with TCP.

We go into more detail about the benefits of using a database wire protocol

driver in “Database Driver Architecture,” page 55.

Know Your Database System

You may think your database system supports all the functionality that is speci-

fied in the standards-based APIs (such as ODBC, JDBC, and ADO.NET). That is

likely not true. Yet, the driver you use may provide the functionality, which is

often a benefit to you. For example, if your application performs bulk inserts or

updates, you can improve performance by using arrays of parameters. Yet, not all

database systems support arrays of parameters. In any case, if you use a database

driver that supports them, you can use this functionality even if the database sys-

tem does not support it, which 1) results in performance improvements for bulk

inserts or updates, and 2) eliminates the need for you to implement the function-

ality yourself.

The trade-off of using functionality that is not natively supported by your

database system is that emulated functionality can increase CPU use. You must

weigh this trade-off against the benefit of having the functionality in your appli-

cation.

The protocol of your database system is another important implementation

detail that you should understand. Throughout this chapter, we discussed design

decisions that are affected by the protocol used by your database system of

choice: cursor-based or streaming. Explanations of these two protocols can be

found in “One Connection for Multiple Statements” on page 16.

Table 2-3 lists some common functionality and whether it is natively sup-

ported by five major database systems.

Know Your Database System 47

Table 2-3 Database System Native Support
Microsoft

Functionality DB2 SQL Server MySQL Oracle Sybase ASE

Cursor-based Supported Supported Not Supported Not
protocol supported supported

Streaming Not Not Supported Not Supported
protocol supported supported supported

Prepared Native Native Native Native Not
statements supported

Arrays of Depends Depends Not Native Not
parameters on version on version supported supported

Scrollable Supported Supported Not Not Depends
cursors1 supported supported on version

Auto-commit Not Not Native Native Native
mode supported supported

LOB locators Native Native Not Native Not
supported supported

1 See Table 2-2, page 36, for more information about how these database systems support
scrollable cursors.

Using Object-Relational Mapping Tools

Most business applications access data in relational databases. However, the rela-

tional model is designed for efficiently storing and retrieving data, not for the

object-oriented model often used for business applications.

As a result, new object-relational mapping (ORM) tools are becoming popu-

lar with many business application developers. Hibernate and Java Persistence

API (JPA) are such tools for the Java environment, and NHibernate and

ADO.NET Entity Framework are such tools for the .NET environment.

Object-relational mapping tools map object-oriented programming objects

to the tables of relational databases. When using relational databases with

objects, typically, an ORM tool can reduce development costs because the tool

does the object-to-table and table-to-object conversions needed. Otherwise,

these conversions must be written in addition to the application development.

ORM tools allow developers to focus on the business application.

48 Designing for Performance: What’s Your Strategy?

From a design point of view, you need to know that when you use object-

relational mapping tools you lose much of the ability to tune your database

application code. For example, you are not writing the SQL statements that are

sent to the database; the ORM tool is creating them. This can mean that the SQL

statements could be more complex than ones you would write, which can result

in performance issues. Also, you don’t get to choose the API calls used to return

data, for example, SQLGetData versus SQLBindCol for ODBC.

To optimize application performance when using an ORM tool, we recom-

mend that you tune your database driver appropriately for use with the database

your application is accessing. For example, you can use a tool to log the packets

sent between the driver and the database and configure the driver to send a

packet size that is equal to the packet size of that configured on the database. See

Chapter 4, “The Environment: Tuning for Performance,” for more information.

Summary

Many factors affect performance. Some are beyond your control, but thoughtful

design of your application and the configuration of the database middleware that

connects your application to the database server can result in optimal perfor-

mance.

If you are going to design only one aspect of your application, let it be data-

base connections, which are performance-expensive. Establishing a connection

can take up to ten network round trips. You should assess whether connection

pooling or one connection at a time is more appropriate for your situation.

When designing your database application, here are some important ques-

tions to ask: Are you retrieving only the minimum amount of data that you need?

Are you retrieving the most efficient data type? Would a prepared statement save

you some overhead? Could you use a local transaction instead of a more perfor-

mance-expensive distributed transaction?

Lastly, make sure that you are using the best database driver for your applica-

tion. Does your database driver support all the functionality that you want to use

in your application? For example, does your driver support statement pooling?

Does the driver have runtime performance tuning options that you can config-

ure to improve performance? For example, can you configure the driver to

reduce network activity?

Summary 49

	CHAPTER 2 DESIGNING FOR PERFORMANCE: WHAT’S YOUR STRATEGY?
	Your Applications
	Database Connections
	Transaction Management
	SQL Statements
	Data Retrieval
	Extended Security

	Static SQL Versus Dynamic SQL
	The Network
	The Database Driver
	Know Your Database System
	Using Object-Relational Mapping Tools
	Summary

