
CHAPTER

6
Crawling the Web

with Java
By James Holmes

167

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 /

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 5:19:20 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1 6 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Have you ever wondered how Internet search engines like Google and Yahoo! can

search the Internet on virtually any topic and return a list of results so quickly?

Obviously it would be impossible to scour the Internet each time a search request

was initiated. Instead search engines query highly optimized databases of Web pages that

have been aggregated and indexed ahead of time. Compiling these databases ahead of time

allows search engines to scan billions of Web pages for something as esoteric as “astrophysics”

or as common as “weather” and return the results almost instantly.

The real mystery of search engines does not lie in their databases of Web pages, but rather

in how the databases are created. Search engines use software known as Web crawlers to

traverse the Internet and to save each of the individual pages passed by along the way. Search

engines then use additional software to index each of the saved pages, creating a database

containing all the words in the pages.

Web crawlers are an essential component to search engines; however, their use is not limited

to just creating databases of Web pages. In fact, Web crawlers have many practical uses. For

example, you might use a crawler to look for broken links in a commercial Web site. You

might also use a crawler to find changes to a Web site. To do so, first, crawl the site, creating

a record of the links contained in the site. At a later date, crawl the site again and then compare

the two sets of links, looking for changes. A crawler could also be used to archive the contents

of a site. Frankly, crawler technology is useful in many types of Web-related applications.

Although Web crawlers are conceptually easy in that you just follow the links from one

site to another, they are a bit challenging to create. One complication is that a list of links to

be crawled must be maintained, and this list grows and shrinks as sites are searched. Another

complication is the complexity of handling absolute versus relative links. Fortunately, Java

contains features that help make it easier to implement a Web crawler. First, Java’s support

for networking makes downloading Web pages simple. Second, Java’s support for regular

expression processing simplifies the finding of links. Third, Java’s Collection Framework

supplies the mechanisms needed to store a list of links.

The Web crawler developed in this chapter is called Search Crawler. It crawls the Web,

looking for sites that contain strings matching those specified by the user. It displays the

URLs of the sites in which matches are found. Although Search Crawler is a useful utility as

is, its greatest benefit is found when it is used as a starting point for your own crawler-based

applications.

Fundamentals of a Web Crawler
Despite the numerous applications for Web crawlers, at the core they are all fundamentally

the same. Following is the process by which Web crawlers work:

1. Download the Web page.

2. Parse through the downloaded page and retrieve all the links.

3. For each link retrieved, repeat the process.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 6 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Now let’s look at each step of the process in more detail.

In the first step, a Web crawler takes a URL and downloads the page from the Internet at

the given URL. Oftentimes the downloaded page is saved to a file on disk or put in a database.

Saving the page allows the crawler or other software to go back later and manipulate the page,

be it for indexing words (as in the case with a search engine) or for archiving the page for use

by an automated archiver.

In the second step, a Web crawler parses through the downloaded page and retrieves the

links to other pages. Each link in the page is defined with an HTML anchor tag similar to

the one shown here:

Link

After the crawler has retrieved the links from the page, each link is added to a list of links

to be crawled.

The third step of Web crawling repeats the process. All crawlers work in a recursive or loop

fashion, but there are two different ways to handle it. Links can be crawled in a depth-first or

breadth-first manner. Depth-first crawling follows each possible path to its conclusion before

another path is tried. It works by finding the first link on the first page. It then crawls the page

associated with that link, finding the first link on the new page, and so on, until the end of

the path has been reached. The process continues until all the branches of all the links have

been exhausted.

Breadth-first crawling checks each link on a page before proceeding to the next page.

Thus, it crawls each link on the first page and then crawls each link on the first page’s first

link, and so on, until each level of links has been exhausted. Choosing whether to use depth-

or breadth-first crawling often depends on the crawling application and its needs. Search

Crawler uses breadth-first crawling, but you can change this behavior if you like.

Although Web crawling seems quite simple at first glance, there’s actually a lot that goes

into creating a full-fledged Web crawling application. For example, Web crawlers need to

adhere to the “Robot protocol,” as explained in the following section. Web crawlers also have

to handle many “exception” scenarios such as Web server errors, redirects, and so on.

Adhering to the Robot Protocol
As you can imagine, crawling a Web site can put an enormous strain on a Web server’s resources

as a myriad of requests are made back to back. Typically, a few pages are downloaded at

a time from a Web site, not hundreds or thousands in succession. Web sites also often have

restricted areas that crawlers should not crawl. To address these concerns, many Web sites

adopted the Robot protocol, which establishes guidelines that crawlers should follow. Over

time, the protocol has become the unwritten law of the Internet for Web crawlers.

The Robot protocol specifies that Web sites wishing to restrict certain areas or pages from

crawling have a file called robots.txt placed at the root of the Web site. Ethical crawlers will

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

reference the robot file and determine which parts of the site are disallowed for crawling.

The disallowed areas will then be skipped by the ethical crawlers. Following is an example

robots.txt file and an explanation of its format:

robots.txt for http://somehost.com/

User-agent: *

Disallow: /cgi-bin/

Disallow: /registration # Disallow robots on registration page

Disallow: /login

The first line of the sample file has a comment on it, as denoted by the use of a hash (#)

character. Comments can be on lines unto themselves or on statement lines, as shown on

the fifth line of the preceding sample file. Crawlers reading robots.txt files should ignore

any comments.

The third line of the sample file specifies the User-agent to which the Disallow rules

following it apply. User-agent is a term used for the programs that access a Web site. For

example, when accessing a Web site with Microsoft’s Internet Explorer, the User-agent is

“Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)” or something similar to it. Each

browser has a unique User-agent value that it sends along with each request to a Web server.

Web crawlers also typically send a User-agent value along with each request to a Web

server. The use of User-agents in the robots.txt file allows Web sites to set rules on a User-

agent–by–User-agent basis. However, typically Web sites want to disallow all robots (or

User-agents) access to certain areas, so they use a value of asterisk (*) for the User-agent.

This specifies that all User-agents are disallowed for the rules that follow it. You might be

thinking that the use of an asterisk to disallow all User-agents from accessing a site would

prevent standard browser software from working with certain sections of Web sites. This

is not a problem, though, because browsers do not observe the Robot protocol and are not

expected to.

The lines following the User-agent line are called disallow statements. The disallow

statements define the Web site paths that crawlers are not allowed to access. For example,

the first disallow statement in the sample file tells crawlers not to crawl any links that begin

with “/cgi-bin/”. Thus, the URLs

http://somehost.com/cgi-bin/

http://somehost.com/cgi-bin/register

are both off limits to crawlers according to that line. Disallow statements are for paths and

not specific files; thus any link being requested that contains a path on the disallow list is

off limits.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

An Overview of the Search Crawler
Search Crawler is a basic Web crawler for searching the Web, and it illustrates the fundamental

structure of crawler-based applications. With Search Crawler, you can enter search criteria

and then search the Web in real time, URL by URL, looking for matches to the criteria.

Search Crawler’s interface, as shown in Figure 6-1, has three prominent sections, which

we will refer to as Search, Stats, and Matches. The Search section at the top of the window

has controls for entering search criteria, including the start URL for the search, the maximum

number of URLs to crawl, and the search string. The search criteria can be additionally

tweaked by choosing to limit the search to the site of the beginning URL and by selecting

the Case Sensitive check box for the search string.

The Stats section, located in the middle of the window, has controls showing the current

status of crawling when searching is underway. This section also has a progress bar to indicate

the progress toward completing the search.

The Matches section at the bottom of the window has a table listing all the matches found

by a search. These are the URLs of the Web pages that contain the search string.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Figure 6-1 The Search Crawler GUI interface

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

The SearchCrawler Class
SearchCrawler has a main() method, so on execution it will be invoked first. The main()

method instantiates a new SearchCrawler object and then calls its show() method, which

causes it to be displayed.

The SearchCrawler class is shown here and is examined in detail in the following

sections. Notice that it extends JFrame:

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.regex.*;

import javax.swing.*;

import javax.swing.table.*;

// The Search Web Crawler

public class SearchCrawler extends JFrame

{

// Max URLs drop-down values.

private static final String[] MAX_URLS =

{"50", "100", "500", "1000"};

// Cache of robot disallow lists.

private HashMap disallowListCache = new HashMap();

// Search GUI controls.

private JTextField startTextField;

private JComboBox maxComboBox;

private JCheckBox limitCheckBox;

private JTextField logTextField;

private JTextField searchTextField;

private JCheckBox caseCheckBox;

private JButton searchButton;

// Search stats GUI controls.

private JLabel crawlingLabel2;

private JLabel crawledLabel2;

private JLabel toCrawlLabel2;

private JProgressBar progressBar;

private JLabel matchesLabel2;

// Table listing search matches.

private JTable table;

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// Flag for whether or not crawling is underway.

private boolean crawling;

// Matches log file print writer.

private PrintWriter logFileWriter;

// Constructor for Search Web Crawler.

public SearchCrawler()

{

// Set application title.

setTitle("Search Crawler");

// Set window size.

setSize(600, 600);

// Handle window closing events.

addWindowListener(new WindowAdapter() {

public void windowClosing(WindowEvent e) {

actionExit();

}

});

// Set up File menu.

JMenuBar menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("File");

fileMenu.setMnemonic(KeyEvent.VK_F);

JMenuItem fileExitMenuItem = new JMenuItem("Exit",

KeyEvent.VK_X);

fileExitMenuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionExit();

}

});

fileMenu.add(fileExitMenuItem);

menuBar.add(fileMenu);

setJMenuBar(menuBar);

// Set up search panel.

JPanel searchPanel = new JPanel();

GridBagConstraints constraints;

GridBagLayout layout = new GridBagLayout();

searchPanel.setLayout(layout);

JLabel startLabel = new JLabel("Start URL:");

constraints = new GridBagConstraints();

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 3

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(startLabel, constraints);

searchPanel.add(startLabel);

startTextField = new JTextField();

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(startTextField, constraints);

searchPanel.add(startTextField);

JLabel maxLabel = new JLabel("Max URLs to Crawl:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(maxLabel, constraints);

searchPanel.add(maxLabel);

maxComboBox = new JComboBox(MAX_URLS);

maxComboBox.setEditable(true);

constraints = new GridBagConstraints();

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(maxComboBox, constraints);

searchPanel.add(maxComboBox);

limitCheckBox =

new JCheckBox("Limit crawling to Start URL site");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.WEST;

constraints.insets = new Insets(0, 10, 0, 0);

layout.setConstraints(limitCheckBox, constraints);

searchPanel.add(limitCheckBox);

JLabel blankLabel = new JLabel();

constraints = new GridBagConstraints();

constraints.gridwidth = GridBagConstraints.REMAINDER;

layout.setConstraints(blankLabel, constraints);

searchPanel.add(blankLabel);

JLabel logLabel = new JLabel("Matches Log File:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

1 7 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

layout.setConstraints(logLabel, constraints);

searchPanel.add(logLabel);

String file =

System.getProperty("user.dir") +

System.getProperty("file.separator") +

"crawler.log";

logTextField = new JTextField(file);

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(logTextField, constraints);

searchPanel.add(logTextField);

JLabel searchLabel = new JLabel("Search String:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(searchLabel, constraints);

searchPanel.add(searchLabel);

searchTextField = new JTextField();

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.insets = new Insets(5, 5, 0, 0);

constraints.gridwidth= 2;

constraints.weightx = 1.0d;

layout.setConstraints(searchTextField, constraints);

searchPanel.add(searchTextField);

caseCheckBox = new JCheckBox("Case Sensitive");

constraints = new GridBagConstraints();

constraints.insets = new Insets(5, 5, 0, 5);

constraints.gridwidth = GridBagConstraints.REMAINDER;

layout.setConstraints(caseCheckBox, constraints);

searchPanel.add(caseCheckBox);

searchButton = new JButton("Search");

searchButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

actionSearch();

}

});

constraints = new GridBagConstraints();

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

1 7 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 5, 5);

layout.setConstraints(searchButton, constraints);

searchPanel.add(searchButton);

JSeparator separator = new JSeparator();

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 5, 5);

layout.setConstraints(separator, constraints);

searchPanel.add(separator);

JLabel crawlingLabel1 = new JLabel("Crawling:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(crawlingLabel1, constraints);

searchPanel.add(crawlingLabel1);

crawlingLabel2 = new JLabel();

crawlingLabel2.setFont(

crawlingLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(crawlingLabel2, constraints);

searchPanel.add(crawlingLabel2);

JLabel crawledLabel1 = new JLabel("Crawled URLs:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(crawledLabel1, constraints);

searchPanel.add(crawledLabel1);

crawledLabel2 = new JLabel();

crawledLabel2.setFont(

crawledLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

layout.setConstraints(crawledLabel2, constraints);

searchPanel.add(crawledLabel2);

JLabel toCrawlLabel1 = new JLabel("URLs to Crawl:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(toCrawlLabel1, constraints);

searchPanel.add(toCrawlLabel1);

toCrawlLabel2 = new JLabel();

toCrawlLabel2.setFont(

toCrawlLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(toCrawlLabel2, constraints);

searchPanel.add(toCrawlLabel2);

JLabel progressLabel = new JLabel("Crawling Progress:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(progressLabel, constraints);

searchPanel.add(progressLabel);

progressBar = new JProgressBar();

progressBar.setMinimum(0);

progressBar.setStringPainted(true);

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(progressBar, constraints);

searchPanel.add(progressBar);

JLabel matchesLabel1 = new JLabel("Search Matches:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

constraints.insets = new Insets(5, 5, 10, 0);

layout.setConstraints(matchesLabel1, constraints);

searchPanel.add(matchesLabel1);

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

matchesLabel2 = new JLabel();

matchesLabel2.setFont(

matchesLabel2.getFont().deriveFont(Font.PLAIN));

constraints = new GridBagConstraints();

constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

constraints.insets = new Insets(5, 5, 10, 5);

layout.setConstraints(matchesLabel2, constraints);

searchPanel.add(matchesLabel2);

// Set up matches table.

table =

new JTable(new DefaultTableModel(new Object[][]{},

new String[]{"URL"}) {

public boolean isCellEditable(int row, int column)

{

return false;

}

});

// Set up Matches panel.

JPanel matchesPanel = new JPanel();

matchesPanel.setBorder(

BorderFactory.createTitledBorder("Matches"));

matchesPanel.setLayout(new BorderLayout());

matchesPanel.add(new JScrollPane(table),

BorderLayout.CENTER);

// Add panels to display.

getContentPane().setLayout(new BorderLayout());

getContentPane().add(searchPanel, BorderLayout.NORTH);

getContentPane().add(matchesPanel, BorderLayout.CENTER);

}

// Exit this program.

private void actionExit() {

System.exit(0);

}

// Handle Search/Stop button being clicked.

private void actionSearch() {

// If stop button clicked, turn crawling flag off.

if (crawling) {

crawling = false;

return;

1 7 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

ArrayList errorList = new ArrayList();

// Validate that start URL has been entered.

String startUrl = startTextField.getText().trim();

if (startUrl.length() < 1) {

errorList.add("Missing Start URL.");

}

// Verify start URL.

else if (verifyUrl(startUrl) == null) {

errorList.add("Invalid Start URL.");

}

// Validate that Max URLs is either empty or is a number.

int maxUrls = 0;

String max = ((String) maxComboBox.getSelectedItem()).trim();

if (max.length() > 0) {

try {

maxUrls = Integer.parseInt(max);

} catch (NumberFormatException e) {

}

if (maxUrls < 1) {

errorList.add("Invalid Max URLs value.");

}

}

// Validate that matches log file has been entered.

String logFile = logTextField.getText().trim();

if (logFile.length() < 1) {

errorList.add("Missing Matches Log File.");

}

// Validate that search string has been entered.

String searchString = searchTextField.getText().trim();

if (searchString.length() < 1) {

errorList.add("Missing Search String.");

}

// Show errors, if any, and return.

if (errorList.size() > 0) {

StringBuffer message = new StringBuffer();

// Concatenate errors into single message.

for (int i = 0; i < errorList.size(); i++) {

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 7 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

message.append(errorList.get(i));

if (i + 1 < errorList.size()) {

message.append("\n");

}

}

showError(message.toString());

return;

}

// Remove "www" from start URL if present.

startUrl = removeWwwFromUrl(startUrl);

// Start the Search Crawler.

search(logFile, startUrl, maxUrls, searchString);

}

private void search(final String logFile, final String startUrl,

final int maxUrls, final String searchString)

{

// Start the search in a new thread.

Thread thread = new Thread(new Runnable() {

public void run() {

// Show hour glass cursor while crawling is under way.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

// Disable search controls.

startTextField.setEnabled(false);

maxComboBox.setEnabled(false);

limitCheckBox.setEnabled(false);

logTextField.setEnabled(false);

searchTextField.setEnabled(false);

caseCheckBox.setEnabled(false);

// Switch Search button to "Stop."

searchButton.setText("Stop");

// Reset stats.

table.setModel(new DefaultTableModel(new Object[][]{},

new String[]{"URL"}) {

public boolean isCellEditable(int row, int column)

{

return false;

}

});

1 8 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

updateStats(startUrl, 0, 0, maxUrls);

// Open matches log file.

try {

logFileWriter = new PrintWriter(new FileWriter(logFile));

} catch (Exception e) {

showError("Unable to open matches log file.");

return;

}

// Turn crawling flag on.

crawling = true;

// Perform the actual crawling.

crawl(startUrl, maxUrls, limitCheckBox.isSelected(),

searchString, caseCheckBox.isSelected());

// Turn crawling flag off.

crawling = false;

// Close matches log file.

try {

logFileWriter.close();

} catch (Exception e) {

showError("Unable to close matches log file.");

}

// Mark search as done.

crawlingLabel2.setText("Done");

// Enable search controls.

startTextField.setEnabled(true);

maxComboBox.setEnabled(true);

limitCheckBox.setEnabled(true);

logTextField.setEnabled(true);

searchTextField.setEnabled(true);

caseCheckBox.setEnabled(true);

// Switch search button back to "Search."

searchButton.setText("Search");

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

// Show message if search string not found.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

if (table.getRowCount() == 0) {

JOptionPane.showMessageDialog(SearchCrawler.this,

"Your Search String was not found. Please try another.",

"Search String Not Found",

JOptionPane.WARNING_MESSAGE);

}

}

});

thread.start();

}

// Show dialog box with error message.

private void showError(String message) {

JOptionPane.showMessageDialog(this, message, "Error",

JOptionPane.ERROR_MESSAGE);

}

// Update crawling stats.

private void updateStats(

String crawling, int crawled, int toCrawl, int maxUrls)

{

crawlingLabel2.setText(crawling);

crawledLabel2.setText("" + crawled);

toCrawlLabel2.setText("" + toCrawl);

// Update progress bar.

if (maxUrls == -1) {

progressBar.setMaximum(crawled + toCrawl);

} else {

progressBar.setMaximum(maxUrls);

}

progressBar.setValue(crawled);

matchesLabel2.setText("" + table.getRowCount());

}

// Add match to matches table and log file.

private void addMatch(String url) {

// Add URL to matches table.

DefaultTableModel model =

(DefaultTableModel) table.getModel();

model.addRow(new Object[]{url});

// Add URL to matches log file.

try {

1 8 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:08 AM

Color profile: Generic CMYK printer profile
Composite Default screen

logFileWriter.println(url);

} catch (Exception e) {

showError("Unable to log match.");

}

}

// Verify URL format.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

}

return verifiedUrl;

}

// Check if robot is allowed to access the given URL.

private boolean isRobotAllowed(URL urlToCheck) {

String host = urlToCheck.getHost().toLowerCase();

// Retrieve host's disallow list from cache.

ArrayList disallowList =

(ArrayList) disallowListCache.get(host);

// If list is not in the cache, download and cache it.

if (disallowList == null) {

disallowList = new ArrayList();

try {

URL robotsFileUrl =

new URL("http://" + host + "/robots.txt");

// Open connection to robot file URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

robotsFileUrl.openStream()));

// Read robot file, creating list of disallowed paths.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

String line;

while ((line = reader.readLine()) != null) {

if (line.indexOf("Disallow:") == 0) {

String disallowPath =

line.substring("Disallow:".length());

// Check disallow path for comments and remove if present.

int commentIndex = disallowPath.indexOf("#");

if (commentIndex != - 1) {

disallowPath =

disallowPath.substring(0, commentIndex);

}

// Remove leading or trailing spaces from disallow path.

disallowPath = disallowPath.trim();

// Add disallow path to list.

disallowList.add(disallowPath);

}

}

// Add new disallow list to cache.

disallowListCache.put(host, disallowList);

}

catch (Exception e) {

/* Assume robot is allowed since an exception

is thrown if the robot file doesn't exist. */

return true;

}

}

/* Loop through disallow list to see if

crawling is allowed for the given URL. */

String file = urlToCheck.getFile();

for (int i = 0; i < disallowList.size(); i++) {

String disallow = (String) disallowList.get(i);

if (file.startsWith(disallow)) {

return false;

}

}

return true;

}

// Download page at given URL.

1 8 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

private String downloadPage(URL pageUrl) {

try {

// Open connection to URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

pageUrl.openStream()));

// Read page into buffer.

String line;

StringBuffer pageBuffer = new StringBuffer();

while ((line = reader.readLine()) != null) {

pageBuffer.append(line);

}

return pageBuffer.toString();

} catch (Exception e) {

}

return null;

}

// Remove leading "www" from a URL's host if present.

private String removeWwwFromUrl(String url) {

int index = url.indexOf("://www.");

if (index != -1) {

return url.substring(0, index + 3) +

url.substring(index + 7);

}

return (url);

}

// Parse through page contents and retrieve links.

private ArrayList retrieveLinks(

URL pageUrl, String pageContents, HashSet crawledList,

boolean limitHost)

{

// Compile link matching pattern.

Pattern p =

Pattern.compile("<a\\s+href\\s*=\\s*\"?(.*?)[\"|>]",

Pattern.CASE_INSENSITIVE);

Matcher m = p.matcher(pageContents);

// Create list of link matches.

ArrayList linkList = new ArrayList();

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

while (m.find()) {

String link = m.group(1).trim();

// Skip empty links.

if (link.length() < 1) {

continue;

}

// Skip links that are just page anchors.

if (link.charAt(0) == '#') {

continue;

}

// Skip mailto links.

if (link.indexOf("mailto:") != -1) {

continue;

}

// Skip JavaScript links.

if (link.toLowerCase().indexOf("javascript") != -1) {

continue;

}

// Prefix absolute and relative URLs if necessary.

if (link.indexOf("://") == -1) {

// Handle absolute URLs.

if (link.charAt(0) == '/') {

link = "http://" + pageUrl.getHost() + link;

// Handle relative URLs.

} else {

String file = pageUrl.getFile();

if (file.indexOf('/') == -1) {

link = "http://" + pageUrl.getHost() + "/" + link;

} else {

String path =

file.substring(0, file.lastIndexOf('/') + 1);

link = "http://" + pageUrl.getHost() + path + link;

}

}

}

// Remove anchors from link.

int index = link.indexOf('#');

if (index != -1) {

link = link.substring(0, index);

1 8 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

}

// Remove leading "www" from URL's host if present.

link = removeWwwFromUrl(link);

// Verify link and skip if invalid.

URL verifiedLink = verifyUrl(link);

if (verifiedLink == null) {

continue;

}

/* If specified, limit links to those

having the same host as the start URL. */

if (limitHost &&

!pageUrl.getHost().toLowerCase().equals(

verifiedLink.getHost().toLowerCase()))

{

continue;

}

// Skip link if it has already been crawled.

if (crawledList.contains(link)) {

continue;

}

// Add link to list.

linkList.add(link);

}

return (linkList);

}

/* Determine whether or not search string is

matched in the given page contents. */

private boolean searchStringMatches(

String pageContents, String searchString,

boolean caseSensitive)

{

String searchContents = pageContents;

/* If case-sensitive search, lowercase

page contents for comparison. */

if (!caseSensitive) {

searchContents = pageContents.toLowerCase();

}

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// Split search string into individual terms.

Pattern p = Pattern.compile("[\\s]+");

String[] terms = p.split(searchString);

// Check to see if each term matches.

for (int i = 0; i < terms.length; i++) {

if (caseSensitive) {

if (searchContents.indexOf(terms[i]) == -1) {

return false;

}

} else {

if (searchContents.indexOf(terms[i].toLowerCase()) == -1) {

return false;

}

}

}

return true;

}

// Perform the actual crawling, searching for the search string.

public void crawl(

String startUrl, int maxUrls, boolean limitHost,

String searchString, boolean caseSensitive)

{

// Set up crawl lists.

HashSet crawledList = new HashSet();

LinkedHashSet toCrawlList = new LinkedHashSet();

// Add start URL to the to crawl list.

toCrawlList.add(startUrl);

/* Perform actual crawling by looping

through the To Crawl list. */

while (crawling && toCrawlList.size() > 0)

{

/* Check to see if the max URL count has

been reached, if it was specified.*/

if (maxUrls != -1) {

if (crawledList.size() == maxUrls) {

break;

}

}

// Get URL at bottom of the list.

1 8 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

String url = (String) toCrawlList.iterator().next();

// Remove URL from the To Crawl list.

toCrawlList.remove(url);

// Convert string url to URL object.

URL verifiedUrl = verifyUrl(url);

// Skip URL if robots are not allowed to access it.

if (!isRobotAllowed(verifiedUrl)) {

continue;

}

// Update crawling stats.

updateStats(url, crawledList.size(), toCrawlList.size(),

maxUrls);

// Add page to the crawled list.

crawledList.add(url);

// Download the page at the given URL.

String pageContents = downloadPage(verifiedUrl);

/* If the page was downloaded successfully, retrieve all its

links and then see if it contains the search string. */

if (pageContents != null && pageContents.length() > 0)

{

// Retrieve list of valid links from page.

ArrayList links =

retrieveLinks(verifiedUrl, pageContents, crawledList,

limitHost);

// Add links to the To Crawl list.

toCrawlList.addAll(links);

/* Check if search string is present in

page, and if so, record a match. */

if (searchStringMatches(pageContents, searchString,

caseSensitive))

{

addMatch(url);

}

}

// Update crawling stats.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 8 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

updateStats(url, crawledList.size(), toCrawlList.size(),

maxUrls);

}

}

// Run the Search Crawler.

public static void main(String[] args) {

SearchCrawler crawler = new SearchCrawler();

crawler.show();

}

}

The SearchCrawler Variables
SearchCrawler starts off by declaring several instance variables, most of which hold references

to the interface controls. First, the MAX_URLS String array declares the list of values to

be displayed in the Max URLs to Crawl combo box. Second, disallowListCache is defined

for caching robot disallow lists so that they don’t have to be retrieved for each URL being

crawled. Next, each of the interface controls is declared for the Search, Stats, and Matches

sections of the interface. After the interface controls have been declared, the crawling flag

is defined for tracking whether or not crawling is underway. Finally, the logFileWriter

instance variable, which is used for printing search matches to a log file, is declared.

The SearchCrawler Constructor
When the SearchCrawler is instantiated, all the interface controls are initialized inside its

constructor. The constructor contains a lot of code, but most of it is straightforward. The

following discussion gives an overview.

First, the application’s window title is set with a call to setTitle(). Next, the setSize()

call establishes the window’s width and height in pixels. After that, a window listener is

added by calling addWindowListener(), which passes a WindowAdapter object that

overrides the windowClosing() event handler. This handler calls the actionExit() method

when the application’s window is closed. Next, a menu bar with a File menu is added to the

application’s window.

The next several lines of the constructor initiate and lay out the interface controls. Similar

to other applications in this book, the layout is arranged using the GridBagLayout class

and its associated GridBagConstraints class. First, the Search section of the interface is laid

out, followed by the Stats section. The Search section includes all the controls for entering

the search criteria and constraints. The Stats section holds all the controls for displaying the

current crawling status, such as how many URLs have been crawled and how many URLs

are left to crawl.

It’s important to point out three things in the Search and Stats sections. First, the Matches

Log File text field control is initialized with a string containing a filename. This string is set

1 9 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

to a file called crawler.log in the directory the application is run from, as specified by the

Java environment variable user.dir. Second, an ActionListener is added to the Search

button so that the actionSearch() method is called each time the button is clicked. Third,

the font for each label that is used to display results is updated with a call to setFont(). The

setFont() call is used to turn off the bolding of the label fonts so that they are distinguished

in the interface.

Following the Search and Stats sections of the interface is the Matches section that consists

of the matches table, which contains the URLs containing the search string. The matches table

is instantiated with a new DefaultTableModel subclass passed to its constructor. Typically a

fully qualified subclass of DefaultTableModel is used to customize the data model used by

a JTable; however, in this case only the isCellEditable() method needs to be implemented.

The isCellEditable() method instructs the table that no cells should be editable by returning

false, regardless of the row and column specified.

Once the matches table is initialized, it is added to the Matches panel. Finally, the Search

panel and Matches panel are added to the interface.

The actionSearch() Method
The actionSearch() method is invoked each time the Search (or Stop) button is clicked. The

actionSearch() method starts with these lines of code:

// If stop button clicked, turn crawling flag off.

if (crawling) {

crawling = false;

return;

}

Since the Search button in the interface doubles as both the Search button and the Stop button,

it’s necessary to know which of the two buttons was clicked. When crawling is underway,

the crawling flag is set to true. Thus if the crawling flag is true when the actionsearch()

method is invoked, the Stop button was clicked. In this scenario, the crawling flag is set

to false and actionSearch() returns so that the rest of the method is not executed.

Next, an ArrayList variable, errorList, is initialized:

ArrayList errorList = new ArrayList();

The errorList is used to hold any error messages generated by the next several lines of code

that validate all required search fields have been entered.

It goes without saying that the Search Crawler will not function without a URL that

specifies the location at which to start crawling. The following code verifies that a starting

URL has been entered and that the URL is valid:

// Validate that the start URL has been entered.

String startUrl = startTextField.getText().trim();

if (startUrl.length() < 1) {

errorList.add("Missing Start URL.");

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 1

AppDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

}

// Verify start URL.

else if (verifyUrl(startUrl) == null) {

errorList.add("Invalid Start URL.");

}

If either of these checks fails, an error message is added to the error list.

Next, the Max URLs to Crawl combo box value is validated:

// Validate that Max URLs is either empty or is a number.

int maxUrls = -1;

String max = ((String) maxComboBox.getSelectedItem()).trim();

if (max.length() > 0) {

try {

maxUrls = Integer.parseInt(max);

} catch (NumberFormatException e) {

}

if (maxUrls < 1) {

errorList.add("Invalid Max URLs value.");

}

}

Validating the maximum number of URLs to crawl is a bit more involved than the other

validations in this method. This is because the Max URLs to Crawl field can either contain

a positive number that indicates the maximum number of URLs to crawl or can be left blank

to indicate that no maximum should be used. Initially, maxUrls is defaulted to –1 to indicate

no maximum. If the user enters something into the Max URLs to Crawl field, it is validated

as being a valid numeric value with a call to Integer.parseInt(). Integer.parseInt() converts

a String representation of an integer into an int value. If the String representation cannot be

converted to an integer, a NumberFormatException is thrown and the maxUrls value is not

set. Next, maxUrls is checked to see if it is less than 1. If so, an error is added to the error list.

Next, the Matches Log File and Search String fields are validated:

// Validate that the matches log file has been entered.

String logFile = logTextField.getText().trim();

if (logFile.length() < 1) {

errorList.add("Missing Matches Log File.");

}

// Validate that the search string has been entered.

String searchString = searchTextField.getText().trim();

if (searchString.length() < 1) {

errorList.add("Missing Search String.");

}

If either of these fields has not been entered, an error message is added to the error list.

1 9 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The following code checks to see if any errors have been recorded during validation.

If so, all the errors are concatenated into a single message and displayed with a call to

showError().

// Show errors, if any, and return.

if (errorList.size() > 0) {

StringBuffer message = new StringBuffer();

// Concatenate errors into single message.

for (int i = 0; i < errorList.size(); i++) {

message.append(errorList.get(i));

if (i + 1 < errorList.size()) {

message.append("\n");

}

}

showError(message.toString());

return;

}

For efficiency’s sake, a StringBuffer object (referred to by message) is used to hold the

concatenated message. The error list is iterated over with a for loop, adding each message

to message. Notice that each time a message is added, a check is performed to see if the

message is the last in the list or not. If the message is not the last message in the list, a

newline (\n) character is added so that each message will be displayed on its own line in

the error dialog box shown with the showError() method.

Finally, after all the field validations are successful, actionSearch() concludes by removing

“www” from the starting URL and then calling the search() method:

// Remove "www" from start URL if present.

startUrl = removeWwwFromUrl(startUrl);

// Start the Search Crawler.

search(logFile, startUrl, maxUrls, searchString);

The search() Method
The search() method is used to begin the Web crawling process. Since this process can take

a considerable amount of time to complete, a new thread is created so that the search code

can run independently. This frees up Swing’s event thread, allowing changes in the interface

to take place while crawling is underway.

The search() method starts with these lines of code:

// Start the search in a new thread.

Thread thread = new Thread(new Runnable() {

public void run() {

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

To run the search code in a separate thread, a new Thread object is instantiated with

a Runnable instance passed to its constructor. Instead of creating a separate class that

implements the Runnable interface, the code is in-lined.

Before the search starts, the interface controls are updated to indicate that crawling is

underway, as shown here:

// Show hour glass cursor while crawling is under way.

setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

// Disable search controls.

startTextField.setEnabled(false);

maxComboBox.setEnabled(false);

limitCheckBox.setEnabled(false);

logTextField.setEnabled(false);

searchTextField.setEnabled(false);

caseCheckBox.setEnabled(false);

// Switch search button to "Stop."

searchButton.setText("Stop");

First, the application’s cursor is set to the WAIT_CURSOR to signify that the application

is busy. On most operating systems, the WAIT_CURSOR is an hourglass. After the cursor

has been set, each of the search interface controls is disabled by calling the setEnabled()

method with a false flag on the control. Next, the Search button is changed to read “Stop.”

The Search button is changed, because when searching is underway the button doubles as

a control for stopping the current search.

After disabling the search controls, the Stats section of the interface is reset, as shown here:

// Reset stats.

table.setModel(new DefaultTableModel(new Object[][]{},

new String[]{"URL"}) {

public boolean isCellEditable(int row, int column)

{

return false;

}

});

updateStats(startUrl, 0, 0, maxUrls);

First, the matches table’s data model is reset by passing the setModel() method an all new,

empty DefaultTableModel instance. Second, the updateStats() method is called to refresh

the progress bar and the status labels.

Next, the log file is opened and the crawling flag is turned on:

// Open matches log file.

try {

logFileWriter = new PrintWriter(new FileWriter(logFile));

} catch (Exception e) {

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

1 9 4 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

showError("Unable to open matches log file.");

return;

}

// Turn crawling flag on.

crawling = true;

The log file is opened by way of creating a new PrintWriter instance for writing to the

file. If the file cannot be opened, an error dialog box is displayed by calling showError().

The crawling flag is set to true to indicate to the actionSearch() method that crawling is

underway.

The following code kicks off the actual search crawling by invoking the crawl() method:

// Perform the actual crawling.

crawl(startUrl, maxUrls, limitCheckBox.isSelected(),

searchString, caseCheckBox.isSelected());

After crawling has completed, the crawling flag is turned off and the matches log file is

closed, as shown here:

// Turn crawling flag off.

crawling = false;

// Close matches log file.

try {

logFileWriter.close();

} catch (Exception e) {

showError("Unable to close matches log file.");

}

The crawling flag is set to false to indicate that crawling is no longer underway. Next,

the matches log file is closed since crawling is finished. Similar to opening the file, if an

exception is thrown while trying to close the file, an error dialog box will be shown with

a call to showError().

Because crawling is finished, the search controls are reactivated by the following code:

// Mark search as done.

crawlingLabel2.setText("Done");

// Enable search controls.

startTextField.setEnabled(true);

maxComboBox.setEnabled(true);

limitCheckBox.setEnabled(true);

logTextField.setEnabled(true);

searchTextField.setEnabled(true);

caseCheckBox.setEnabled(true);

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// Switch search button back to "Search."

searchButton.setText("Search");

// Return to default cursor.

setCursor(Cursor.getDefaultCursor());

First, the Crawling field is updated to display “Done.” Second, each of the search controls

is reenabled. Third, the Stop button is reverted back to displaying “Search.” Finally, the

cursor is reverted back to the default application cursor.

If the search did not yield any matches, the following code displays a dialog box to

indicate this fact:

// Show message if search string not found.

if (table.getRowCount() == 0) {

JOptionPane.showMessageDialog(SearchCrawler.this,

"Your Search String was not found. Please try another.",

"Search String Not Found",

JOptionPane.WARNING_MESSAGE);

}

The search() method wraps up with the following lines of code:

}

});

thread.start();

After the Runnable implementation’s run() method has been defined, the search thread

is started with a call to thread.start(). Upon the thread’s execution, the Runnable instance’s

run() method will be invoked.

The showError() Method
The showError() method, shown here, displays an error dialog box on the screen with the

given message. This method is invoked if any required search options are missing or if there

are any problems opening, writing to, or closing the log file.

// Show dialog box with error message.

private void showError(String message) {

JOptionPane.showMessageDialog(this, message, "Error",

JOptionPane.ERROR_MESSAGE);

}

The updateStats() Method
The updateStats() method, shown here, updates the values displayed in the Stats section

of the interface:

1 9 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

// Update crawling stats.

private void updateStats(

String crawling, int crawled, int toCrawl, int maxUrls)

{

crawlingLabel2.setText(crawling);

crawledLabel2.setText("" + crawled);

toCrawlLabel2.setText("" + toCrawl);

// Update progress bar.

if (maxUrls == -1) {

progressBar.setMaximum(crawled + toCrawl);

} else {

progressBar.setMaximum(maxUrls);

}

progressBar.setValue(crawled);

matchesLabel2.setText("" + table.getRowCount());

}

First, the crawling results are updated to reflect the current URL being crawled, the

number of URLs crawled thus far, and the number of URLs that are left to crawl. Take note

that the URLs to Crawl field may be misleading. It displays the number of links that have

been aggregated and put in the To Crawl queue, not the difference between the specified

maximum URLs and the number of URLs that have been crawled thus far. Notice also that

when setText() is called with crawled and toCrawl, it is passed an empty string (" ") plus

an int value. This is so that Java will convert the int values into String objects, which the

setText() method requires.

Next, the progress bar is updated to reflect the current progress made toward finishing

crawling. If the Max URLs to Crawl text field was left blank, which specifies that crawling

should not be capped, the maxUrls variable will have the value –1. In this case, the progress

bar’s maximum is set to the number of URLs that have been crawled plus the number of

URLs left to crawl. If, on the other hand, a Max URLs to Crawl value was specified, it will

be used as the progress bar’s maximum. After establishing the progress bar’s maximum value,

its current value is set. The JProgressBar class uses the maximum and current values to

calculate the percentage shown in text on the progress bar.

Finally, the Search Matches label is updated to reflect the current number of URLs that

contain the specified search string.

The addMatch() Method
The addMatch() method is called by the crawl() method each time a match with the search

string is found. The addMatch() method, shown here, adds a URL to both the matches table

and the log file:

// Add match to matches table and log file.

private void addMatch(String url) {

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

// Add URL to matches table.

DefaultTableModel model =

(DefaultTableModel) table.getModel();

model.addRow(new Object[]{url});

// Add URL to matches log file.

try {

logFileWriter.println(url);

} catch (Exception e) {

showError("Unable to log match.");

}

}

This method first adds the URL to the matches table by retrieving the table’s data model

and calling its addRow() method. Notice that the addRow() method takes an Object array

as input. In order to satisfy that requirement, the url String object is wrapped in an Object

array. After adding the URL to the matches table, the URL is written to the log file with a call

to logFileWriter.println(). This call is wrapped in a try-catch block; and if an exception is

thrown, the showError() method is called to alert the user that an error has occurred while

trying to write to the log file.

The verifyUrl() Method
The verifyUrl() method, shown here, is used throughout SearchCrawler to verify the

format of a URL. Additionally, this method serves to convert a string representation of a

URL into a URL object:

// Verify URL format.

private URL verifyUrl(String url) {

// Only allow HTTP URLs.

if (!url.toLowerCase().startsWith("http://"))

return null;

// Verify format of URL.

URL verifiedUrl = null;

try {

verifiedUrl = new URL(url);

} catch (Exception e) {

return null;

}

return verifiedUrl;

}

This method first verifies that the given URL is an HTTP URL since only HTTP URLs are

supported by Search Crawler. Next, the URL being verified is used to construct a new URL

1 9 8 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

object. If the URL is malformed, the URL class constructor will throw an exception resulting

in null being returned from this method. A null return value is used to denote that the string

passed to url is not valid or verified.

The isRobotAllowed() Method
The isRobotAllowed() method fulfills the robot protocol. In order to fully explain this

method, we’ll review it line by line.

The isRobotAllowed() method starts with these lines of code:

String host = urlToCheck.getHost().toLowerCase();

// Retrieve host's disallow list from cache.

ArrayList disallowList =

(ArrayList) disallowListCache.get(host);

// If list is not in the cache, download and cache it.

if (disallowList == null) {

disallowList = new ArrayList();

In order to efficiently check whether or not robots are allowed to access a URL, Search

Crawler caches each host’s disallow list after it has been retrieved. This significantly improves

the performance of Search Crawler because it avoids downloading the disallow list for each

URL being verified. Instead, it just retrieves the list from cache.

The disallow list cache is keyed on the host portion of a URL, so isRobotAllowed()

starts out by retrieving the urlToCheck’s host by calling its getHost() method. Notice that

toLowerCase() is tacked on to the end of the getHost() call. Lowercasing the host ensures

that duplicate host entries are not placed in the cache. Take note that the host portion of

URLs is case insensitive on the Internet; however, the cache keys are case-sensitive strings.

After retrieving the urlToCheck’s host, an attempt to retrieve a disallow list from the cache

for the host is made. If there is not a list in cache already, null is returned, signaling that the

disallow list must be downloaded from the host. The process of retrieving the disallow list

from a host starts by creating a new ArrayList object.

Next, the contents of the disallow list are populated, beginning with the following lines

of code:

try {

URL robotsFileUrl =

new URL("http://" + host + "/robots.txt");

// Open connection to robot file URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

robotsFileUrl.openStream()));

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 1 9 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

As mentioned earlier, Web site owners wishing to prevent Web crawlers from crawling their

site, or portions of their site, must have a file called robots.txt at the root of their Web site

hierarchy. The host portion of the urlToCheck is used to construct a URL, robotsFileUrl,

pointing to the robots.txt file. Then a BufferedReader object is created for reading the

contents of the robots.txt file. The BufferedReader’s constructor is passed an instance of

InputStreamReader, whose constructor is passed the InputStream object returned from

calling robotsFileUrl.openStream().

The following sequence sets up a while loop for reading the contents of the robots.txt file:

// Read robot file, creating list of disallowed paths.

String line;

while ((line = reader.readLine()) != null) {

if (line.indexOf("Disallow:") == 0) {

String disallowPath =

line.substring("Disallow:".length());

The loop reads the contents of the file, line by line, until the reader.readLine() method

returns null, signaling that all lines have been read. Each line that is read is checked to see

if it has a Disallow statement by using the indexOf() method defined by String. If the line

does in fact have a Disallow statement, the disallow path is culled from the line by taking

a substring of the line from the point where the string "Disallow:" ends.

As discussed, comments can be interspersed in the robots.txt file by using a hash (#)

character followed by a comment. Since comments will interfere with the Disallow statement

comparisons, they are removed in the following lines of code:

// Check disallow path for comments and remove if present.

int commentIndex = disallowPath.indexOf("#");

if (commentIndex != - 1) {

disallowPath =

disallowPath.substring(0, commentIndex);

}

// Remove leading or trailing spaces from disallow path.

disallowPath = disallowPath.trim();

// Add disallow path to list.

disallowList.add(disallowPath);

}

}

First, the disallow path is searched to see if it contains a hash character. If it does, the disallow

path is substringed, removing the comment from the end of the string. After checking and

potentially removing a comment from the disallow path, disallowPath.trim() is called to

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

remove any leading or trailing space characters. Similar to comments, extraneous space

characters will trip up comparisons, so they are removed. Finally, the disallow path is added to

the list of disallow paths.

After the disallow path list has been created, it is added to the disallow list cache, as

shown here:

// Add new disallow list to cache.

disallowListCache.put(host, disallowList);

}

catch (Exception e) {

/* Assume robot is allowed since an exception

is thrown if the robot file doesn't exist. */

return true;

}

}

The disallow path is added to the disallow list cache so that subsequent requests for the list

can be quickly retrieved from cache instead of having to be downloaded again.

If an error occurs while opening the input stream to the robot file URL or while reading

the contents of the file, an exception will be thrown. Since an exception will be thrown if

the robots.txt file does not exist, we’ll assume robots are allowed if an exception is thrown.

Normally, the error checking in this scenario should be more robust; however, for simplicity

and brevity’s sake, we’ll make the blanket decision that robots are allowed.

Next, the following code iterates over the disallow list to see if the urlToCheck is allowed

or not:

/* Loop through disallow list to see if the

crawling is allowed for the given URL. */

String file = urlToCheck.getFile();

for (int i = 0; i < disallowList.size(); i++) {

String disallow = (String) disallowList.get(i);

if (file.startsWith(disallow)) {

return false;

}

}

return true;

Each iteration of the for loop checks to see if the file portion of the urlToCheck is found

in the disallow list. If the urlToCheck’s file does in fact match one of the statements in the

disallow list, then false is returned, indicating that crawlers are not allowed to crawl the given

URL. However, if the list is iterated over and no match is made, true is returned, indicating

that crawling is allowed.

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The downloadPage() Method
The downloadPage() method, shown here, simply does as its name implies: it downloads

the Web page at the given URL and returns the contents of the page as a large string:

// Download page at given URL.

private String downloadPage(URL pageUrl) {

try {

// Open connection to URL for reading.

BufferedReader reader =

new BufferedReader(new InputStreamReader(

pageUrl.openStream()));

// Read page into buffer.

String line;

StringBuffer pageBuffer = new StringBuffer();

while ((line = reader.readLine()) != null) {

pageBuffer.append(line);

}

return pageBuffer.toString();

} catch (Exception e) {

}

return null;

}

Downloading Web pages from the Internet in Java is quite simple, as evidenced

by this method. First, a BufferedReader object is created for reading the contents of

the page at the given URL. The BufferedReader’s constructor is passed an instance of

InputStreamReader, whose constructor is passed the InputStream object returned from

calling pageUrl.openStream(). Next, a while loop is used to read the contents of the

page, line by line, until the reader.readLine() method returns null, signaling that all lines

have been read. Each line that is read with the while loop is added to the pageBuffer

StringBuffer instance. After the page has been downloaded, its contents are returned

as a String by calling pageBuffer.toString().

If an error occurs when opening the input stream to the page URL or while reading the

contents of the Web page, an exception will be thrown. This exception will be caught by the

empty catch block. The catch block has purposefully been left blank so that execution will

continue to the remaining return null line. A return value of null from this method indicates

to callers that an error occurred.

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

2 0 2 T h e A r t O f J a v a

ApDev TIGHT / The Art Of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

The removeWwwFromUrl() Method
The removeWwwFromUrl() method is a simple utility method used to remove the

“www” portion of a URL’s host. For example, take the URL:

http://www.osborne.com

This method removes the “www.” piece of the URL, yielding:

http://osborne.com

Because many Web sites intermingle URLs that do and don’t start with “www”, the

Search Crawler uses this technique to find the “lowest common denominator” URL.

Effectively, both URLs are the same on most Web sites, and having the lowest common

denominator allows the Search Crawler to skip over duplicate URLs that would otherwise

be redundantly crawled.

The removeWwwFromUrl() method is shown here:

// Remove leading "www" from a URL's host if present.

private String removeWwwFromUrl(String url) {

int index = url.indexOf("://www.");

if (index != -1) {

return url.substring(0, index + 3) +

url.substring(index + 7);

}

return (url);

}

The removeWwwFromUrl() method starts out by finding the index of "://www." inside

the string passed to url. The "://" at the beginning of the string passed to the indexOf()

method indicates that "www" should be found at the beginning of a URL where the protocol

is defined (for example, http://www.osborne.com). This way, URLs that simply contain the

string "www" are not tampered with. If url contains "://www.", the characters before and

after "www." are concatenated and returned. Otherwise, the string passed to url is returned.

The retrieveLinks() Method
The retrieveLinks() method parses through the contents of a Web page and retrieves all the

relevant links. The Web page for which links are being retrieved is stored in a large String

object. To say the least, parsing through this string, looking for specific character sequences,

would be quite cumbersome using the methods defined by the String class. Fortunately,

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 0 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

beginning with Java 2, v1.4, Java comes standard with a regular expression API library that

makes easy work of parsing through strings.

The regular expression API is contained in java.util.regex. The topic of regular expressions

is fairly large, and a complete discussion is beyond the scope of this book. However, because

parsing regular expressions is key to Search Crawler, a brief overview is presented here.

An Overview of Regular Expression Processing
As the term is used here, a regular expression is a sequence of characters that describes

a character sequence. This general description, called a pattern, can then be used to find

matches in other character sequences. Regular expressions can specify wildcard characters,

sets of characters, and various quantifiers. Thus, you can specify a regular expression that

represents a general form that can match several different specific character sequences.

There are two classes that support regular expression processing: Pattern and Matcher.

You use Pattern to define a regular expression. To match the pattern against another

sequence, use Matcher.

The Pattern class defines no constructors. Instead, a pattern is created by calling the

compile() factory method. The form used here is

static Pattern compile(String pattern, int options)

Here, pattern is the regular expression that you want to use, and options specifies one

or more options that affect matching. The option used by Search Crawler is

Pattern.CASE_INSENSITIVE, which causes the case of the strings to be ignored. The

compile() method transforms the string in pattern into a pattern that can be used for pattern

matching by the Matcher class. It returns a Pattern object that contains the pattern.

Once you have created a Pattern object, you will use it to create a Matcher. This is

done by calling the matcher() factory method defined by Pattern. It is shown here:

Matcher matcher(CharSequence str)

Here, str is the character sequence that the pattern will be matched against. This is called

the input sequence. CharSequence is an interface that was added by Java 2, v1.4 and

defines a read-only set of characters. It is implemented by the String class, among others.

Thus, you can pass a string to matcher().

You will use methods defined by Matcher to perform various pattern-matching

operations. The ones used by retrieveLinks() are find() and group(). The find() method

determines if a subsequence of the input sequence matches the pattern. The version used

by Search Crawler is shown here:

boolean find()

It returns true if there is a matching subsequence and false otherwise. This method can be

called repeatedly, allowing it to find all matching subsequences. Each call to find() begins

where the previous one left off.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can obtain a string containing a matching sequence by calling group(). The form

used by Search Crawler is shown here:

String group(int which)

Here, which specifies the sequence (group of characters), with the first group being 1. The

matching string is returned.

Regular Expression Syntax
The syntax and rules that define a regular expression are similar to those used by Perl 5.

Although no single rule is complicated, there are a large number of them, and a complete

discussion is beyond the scope of this book. However, a few of the more commonly used

constructs are described here.

In general, a regular expression is comprised of normal characters, character classes

(sets of characters), wildcard characters, and quantifiers. A normal character is matched

as is. Thus, if a pattern consists of "xy", the only input sequence that will match it is "xy".

Characters such as newlines and tabs are specified using the standard escape sequences,

which begin with a backslash (\). For example, a newline is specified by \n. In the language

of regular expressions, a normal character is also called a literal.

A character class is a set of characters. A character class is specified by putting the

characters in the class between brackets. For example, the class [wxyz] matches w, x, y,

or z. To specify an inverted set, precede the characters with a circumflex (^). For example,

[^wxyz] matches any character except w, x, y, or z. You can specify a range of characters

using a hyphen. For example, to specify a character class that will match the digits 1

through 9, use [1–9].

The wildcard character is the dot (.), and it matches any character. Thus, a pattern that

consists of "." will match these (and other) input sequences: "A", "a", "x", and so on.

A quantifier determines how many times an expression is matched. The quantifiers

are shown here:

+ Match one or more.

* Match zero or more.

? Match zero or one.

For example, the pattern "x+" will match "x", "xx", and "xxx", among others.

A Close Look at retrieveLinks()
The retrieveLinks() method uses the regular expression API to obtain the links from a page.

It begins with these lines of code:

// Compile link matching pattern.

Pattern p =

Pattern.compile("<a\\s+href\\s*=\\s*\"?(.*?)[\"|>]",

Pattern.CASE_INSENSITIVE);

Matcher m = p.matcher(pageContents);

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 5

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The regular expression used to obtain links can be broken down as a series of steps, as shown

in the following table:

Character Sequence Explanation
<a Look for the characters "<a".

\\s+ Look for one or more space characters.

href Look for the characters “href”.

\\s* Look for zero or more space characters.

= Look for the character "=".

\\s* Look for zero or more space characters.

\"? Look for zero or one quote character.

(.*?) Look for zero or more of any character until the next part

of the pattern is matched, and place the results in a group.

[\”|>] Look for quote character or greater than (">") character.

Notice that Pattern.CASE_INSENSITIVE is passed to the pattern compiler. As

mentioned, this indicates that the pattern should ignore case when searching for matches.

Next, a list to hold the links is created, and the search for the links begins, as shown here:

// Create list of link matches.

ArrayList linkList = new ArrayList();

while (m.find()) {

String link = m.group(1).trim();

Each link is found by cycling through m with a while loop. The find() method of Matcher

returns true until no more matches are found. Each match (link) found is retrieved by calling

the group() method defined by Matcher. Notice that group() takes 1 as an argument. This

specifies that the first group from the matching sequences be returned. Notice also that trim() is

called on the return value from the group() method. This removes any unnecessary leading or

trailing space from the value.

Many of the links found in Web pages are not suited for crawling. The following code

filters out several links that the Search Crawler is uninterested in:

// Skip empty links.

if (link.length() < 1) {

continue;

}

// Skip links that are just page anchors.

if (link.charAt(0) == '#') {

continue;

}

// Skip mailto links.

2 0 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

if (link.indexOf("mailto:") != -1) {

continue;

}

// Skip JavaScript links.

if (link.toLowerCase().indexOf("javascript") != -1) {

continue;

}

First, empty links are skipped so as not to waste any more time on them. Second, links that

are simply anchors into a page are skipped by checking to see if the first character of the link

is a hash (#).

Page anchors allow for links to be made to a certain section of a page. Take, for example,

this URL:

http://osborne.com/#contact

This URL has an anchor to the “contact” section of the page located at http://osborne.com.

Links inside the page at http://osborne.com can reference the section relatively as just

“#contact”. Since anchors are not links to “new” pages, they are skipped over.

Next, “mailto” links are skipped. Mailto links are used for specifying an e-mail link in

a Web page. For example, the link

mailto:books@osborne.com

is a mailto link. Since mailto links don’t point to Web pages and cannot be crawled, they are

skipped over. Finally, JavaScript links are skipped. JavaScript is a scripting language that

can be embedded in Web pages for adding interactive functionality to the page. Additionally,

JavaScript functionality can be accessed from links. Similar to mailto links, JavaScript links

cannot be crawled; thus they are overlooked.

As you’ve just seen, the links in Web pages can take many formats, such as mailto and

JavaScript formats. Additionally, traditional links inside Web pages can take a few different

formats as well. Following are the three formats that traditional links can take:

� http://osborne.com/books/ArtofJava

� /books/ArtofJava

� books/ArtofJava

The first of the three links shown here is considered to be a fully qualified URL. The

second example is a shortened version of the first URL, omitting the “host” portion of the

URL. Notice the slash (/) at the beginning of the URL. The slash indicates that the URL is

what’s called “absolute.” Absolute URLs are URLs that start at the root of a Web site. The

third example is again a shortened version of the first URL, omitting the “host” portion of

the URL. Notice that this third example does not have the leading slash. Since the leading

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 7

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

2 0 8 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

slash is absent, the URL is considered to be “relative.” Relative, in the realm of URLs, means

that the URL address is relative to the URL on which the link is found.

The lines of code in the next section handle converting absolute and relative links into fully

qualified URLs:

// Prefix absolute and relative URLs if necessary.

if (link.indexOf("://") == -1) {

// Handle absolute URLs.

if (link.charAt(0) == '/') {

link = "http://" + pageUrl.getHost() + link;

// Handle relative URLs.

} else {

String file = pageUrl.getFile();

if (file.indexOf('/') == -1) {

link = "http://" + pageUrl.getHost() + "/" + link;

} else {

String path =

file.substring(0, file.lastIndexOf('/') + 1);

link = "http://" + pageUrl.getHost() + path + link;

}

}

}

First, the link is checked to see whether or not it is fully qualified by looking for the

presence of "://" in the link. If these characters exist, the URL is assumed to be fully qualified.

However, if they are not present, the link is converted to a fully qualified URL. As discussed,

links beginning with a slash (/) are absolute, so this code adds "http://" and the current page’s

URL host to the link to fully qualify it. Relative links are converted here in a similar fashion.

For relative links, the current page URL’s filename is taken and checked to see if it contains

a slash (/). A slash in the filename indicates that the file is in a directory hierarchy. For

example, a file may look like this:

dir1/dir2/file.html

or simply like this:

file.html

In the latter case, "http://", the current page’s URL host, and "/" are added to the link since

the current page is at the root of the Web site. In the former case, the “path” (or directory)

portion of the filename is retrieved to create the fully qualified URL. This case concatenates

"http://", the current page’s URL host, the path, and the link together to create a fully

qualified URL.

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 0 9

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Next, page anchors and "www" are removed from the fully qualified link:

// Remove anchors from link.

int index = link.indexOf('#');

if (index != -1) {

link = link.substring(0, index);

}

// Remove leading "www" from URL's host if present.

link = removeWwwFromUrl(link);

For the same reason that anchor-only links are skipped over, links with anchors tacked on

to the end are skipped over. The leading "www" is also removed from links so that duplicate

links are skipped over later in this method.

Next, the link is verified to make sure it is a valid URL:

// Verify link and skip if invalid.

URL verifiedLink = verifyUrl(link);

if (verifiedLink == null) {

continue;

}

After validating that the link is a URL, the following code checks to see if the link’s host

is the same as the one specified by Start URL and checks to see if the link has already

been crawled:

/* If specified, limit links to those

having the same host as the start URL. */

if (limitHost &&

!pageUrl.getHost().toLowerCase().equals(

verifiedLink.getHost().toLowerCase()))

{

continue;

}

// Skip link if it has already been crawled.

if (crawledList.contains(link)) {

continue;

}

Finally, the retrieveLinks() method ends by adding each link that passes all filters

to the link list.

// Add link to list.

linkList.add(link);

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 0 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

}

return (linkList);

After the while loop finishes and all links have been added to the link list, the link list is

returned.

The searchStringMatches() Method
The searchStringMatches() method, shown here, is used to search through the contents

of a Web page downloaded during crawling, determining whether or not the specified search

string is present in the page:

/* Determine whether or not search string is

present in the given page contents. */

private boolean searchStringMatches(

String pageContents, String searchString,

boolean caseSensitive)

{

String searchContents = pageContents;

/* If case-sensitive search, lowercase

page contents before comparison. */

if (!caseSensitive) {

searchContents = pageContents.toLowerCase();

}

// Split search string into individual terms.

Pattern p = Pattern.compile("[\\s]+");

String[] terms = p.split(searchString);

// Check to see if each term matches.

for (int i = 0; i < terms.length; i++) {

if (caseSensitive) {

if (searchContents.indexOf(terms[i]) == -1) {

return false;

}

} else {

if (searchContents.indexOf(terms[i].toLowerCase()) == -1) {

return false;

}

}

}

return true;

}

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Because the search string can be either case insensitive (default) or case sensitive,

searchStringMatches() starts out by declaring a local variable, searchContents, that

refers to the string to be searched. By default, the pageContents variable is assigned to

searchContents. If the search is case sensitive, however, the searchContents variable

is set to a lowercased version of the pageContents string.

Next, the search string is split into individual search terms using Java’s regular expression

library. To split the search string, first, a regular expression pattern is compiled with the

Pattern object’s static compile() method. The pattern used here, "[\\s]+", states that one or

more white space characters (that is, spaces, tabs, or newlines) should be matched. Second,

the compiled Pattern’s split() method is invoked with the search string, which yields

a String array containing individual search terms.

After breaking the search string up, the individual terms are cycled through, checking to

see if each term is found in the page’s contents. The indexOf() method defined by String is

used to search through the searchContents variable. A return value of –1 indicates that the

search term was not found, and thus false is returned since all terms must be found in order

to have a match. Notice that if the search is case insensitive, the search term is lowercased in

the comparison. This coincides with the value assigned to the searchContents variable at the

beginning of this method. If the for loop executes in its entirety, the searchStringMatches()

method concludes by returning true, indicating that all terms in the search string matched.

The crawl() Method
The crawl() method is the core of the search Web crawler because it performs the actual

crawling. It begins with these lines of code:

// Set up crawl lists.

HashSet crawledList = new HashSet();

LinkedHashSet toCrawlList = new LinkedHashSet();

// Add start URL to the To Crawl list.

toCrawlList.add(startUrl);

There are several techniques that can be employed to crawl Web sites, recursion being a

natural choice because crawling itself is recursive. Recursion, however, can be quite resource

intensive, so the Search Crawler uses a queue technique. Here, toCrawlList is initialized to

hold the queue of links to crawl. The start URL is then added to toCrawlList to begin the

crawling process.

After initializing the To Crawl list and adding the start URL, crawling begins with a

while loop set up to run until the crawling flag is turned off or until the To Crawl list has

been exhausted, as shown here:

/* Perform actual crawling by looping

through the To Crawl list. */

while (crawling && toCrawlList.size() > 0)

{

/* Check to see if the max URL count has

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 1 1

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

2 1 2 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

been reached, if it was specified.*/

if (maxUrls != -1) {

if (crawledList.size() == maxUrls) {

break;

}

}

Remember that the crawling flag is used to stop crawling prematurely. If the Stop button

on the interface is clicked during crawling, crawling is set to false. The next time the while

loop’s expression is evaluated, the loop will end because the crawling flag is false. The first

section of code inside the while loop checks to see if the crawling limit specified by maxUrls

has been reached. This check is performed only if the maxUrls variable has been set, as

indicated by a value other than –1.

Upon each iteration of the while loop, the following code is executed:

// Get URL at bottom of the list.

String url = (String) toCrawlList.iterator().next();

// Remove URL from the To Crawl list.

toCrawlList.remove(url);

// Convert string url to URL object.

URL verifiedUrl = verifyUrl(url);

// Skip URL if robots are not allowed to access it.

if (!isRobotAllowed(verifiedUrl)) {

continue;

}

First, the URL at the bottom of the To Crawl list is “popped” off. Thus, the list works in a

first in, first out (FIFO) manner. Since the URLs are stored in a LinkedHashSet object, there

is not actually a “pop” method. Instead, the functionality of a pop method is simulated by

first retrieving the value at the bottom of the list with a call to toCrawlList.iterator().next().

Then the URL retrieved from the list is removed from the list by calling toCrawlList.remove(),

passing in the URL as an argument.

After retrieving the next URL from the To Crawl list, the string representation of the URL

is converted to a URL object using the verifyUrl() method. Next, the URL is checked to see

whether or not it is allowed to be crawled by calling the isRobotAllowed() method. If the

crawler is not allowed to crawl the given URL, then continue is executed to skip to the next

iteration of the while loop.

After retrieving and verifying the next URL on the crawl list, the results are updated in the

Stats section, as shown here:

// Update crawling stats.

updateStats(url, crawledList.size(), toCrawlList.size(),

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

maxUrls);

// Add page to the crawled list.

crawledList.add(url);

// Download the page at the given URL.

String pageContents = downloadPage(verifiedUrl);

The output is updated with a call to updateStats(). The URL is then added to the crawled

list, indicating that it has been crawled and that subsequent references to the URL should

be skipped. Next, the page at the given URL is downloaded with a call to downloadPage().

If the downloadPage() method successfully downloads the page at the given URL, the

following code is executed:

/* If the page was downloaded successfully, retrieve all of its

links and then see if it contains the search string. */

if (pageContents != null && pageContents.length() > 0)

{

// Retrieve list of valid links from page.

ArrayList links =

retrieveLinks(verifiedUrl, pageContents, crawledList,

limitHost);

// Add links to the To Crawl list.

toCrawlList.addAll(links);

/* Check if search string is present in

page, and if so, record a match. */

if (searchStringMatches(pageContents, searchString,

caseSensitive))

{

addMatch(url);

}

}

First, the page links are retrieved by calling the retrieveLinks() method. Each of the

links returned from the retrieveLinks() call is then added to the To Crawl list. Next, the

downloaded page is searched to see if the search string is found in the page with a call to

searchStringMatches(). If the search string is found in the page, the page is recorded as

a match with the addMatch() method.

The crawl() method finishes by calling updateStats() again at the end of the while loop:

// Update crawling stats.

updateStats(url, crawledList.size(), toCrawlList.size(),

maxUrls);

}

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 1 3

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The first call to updateStats(), earlier in this method, updates the label that indicates which

URL is being crawled. This second call updates all the other values because they will have

changed since the first call.

Compiling and Running the Search Web Crawler
As mentioned earlier, SearchCrawler takes advantage of Java’s new regular expression

package: java.util.regex. The regular expression package was introduced in JDK 1.4;

thus you will need to use JDK 1.4 or later to compile and run SearchCrawler.

Compile SearchCrawler like this:

javac SearchCrawler.java

Run SearchCrawler like this:

javaw SearchCrawler

Search Crawler has a simple, yet feature-rich, interface that’s easy to use. First, in the Start

URL field, enter the URL at which you want your search to begin. Next, choose the maximum

number of URLs you want to crawl and whether or not you want to limit crawling to only

the Web site specified in the Start URL field. If you want the crawler to continue crawling

until it has exhausted all links it finds, you can leave the Max URLs to Crawl field blank.

Be forewarned, however, that choosing not to set a maximum value will likely result in

a search that will run for a very long time.

Next you’ll notice a Matches Log File specified for you. This text field is prepopulated,

specifying that the log file be written to a file called crawler.log in the directory that you are

running the Search Crawler from. If you’d like to have the log file written to a different file,

simply enter the new filename. Next, enter the string you want to search for and then select

whether or not you want the search to be case sensitive. Note that entering a search string

containing multiple words requires matching pages to include all the words specified.

Once you have entered all your search criteria and configured the search constraints, click

the Search button. You’ll notice that the search controls become disabled and the Search button

changes to a Stop button. After searching has completed, the search controls will be reenabled,

and the Stop button will revert back to being the Search button. Clicking the Stop button

will cause the crawler to stop crawling after it has finished crawling the URL it is currently

crawling. Figure 6-2 shows the Search Crawler in action.

A few key points about Search Crawler’s functionality:

� Only HTTP links are supported, not HTTPS or FTP.

� URLs that redirect to another URL are not supported.

� Similar links such as “http://osborne.com” and “http://osborne.com/” (notice the

trailing slash) are treated as separate unique links. This is because the Search

Crawler cannot categorically know that both are the same in all instances.

2 1 4 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 6 : C r a w l i n g t h e W e b w i t h J a v a 2 1 5

AppDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

Web Crawler Ideas
Search Crawler is an excellent illustration of Java’s networking capabilities. It is also

an application that demonstrates the core technology associated with Web crawling. As

mentioned at the start of this chapter, although Search Crawler is useful as is, its greatest

benefit is as a starting point for your own crawler-based projects.

To begin, you might try enhancing Search Crawler. Try changing the way it follows links,

perhaps to use depth-first crawling rather than breadth-first. Also try adding support for

URLs that redirect to other URLs. Experiment with optimizing the search, perhaps by using

additional threads to download multiple pages at the same time.

Next, you will want to try creating your own crawler-based projects. Here are some ideas:

� Broken Link Crawler A broken link crawler could be used to crawl a Web site

and find any links that are broken. Each broken link would be recorded. At the end

of crawling, a report would be generated listing each page that had broken links along

Figure 6-2 The Search Crawler in action

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

with a breakdown of each broken link on that page. This application would be

especially useful for large Web sites where there are hundreds if not thousands

of pages to check for broken links.

� Comparison Crawler A comparison crawler could be used to crawl several

Web sites in an effort to find the lowest price for a list of products. For example, a

comparison crawler might visit Amazon.com, Barnes&Noble.com, and a few others

to find the lowest prices for books. This technique is often called “screen scraping”

and is used to compare the price of many different types of goods on the Internet.

� Archiver Crawler An archiver crawler could be used to crawl a site and save or

“archive” all of its pages. There are many reasons for archiving a site, including having

the ability to view the site offline, creating a backup, or obtaining a snapshot in time

of the Web site. In fact, a search engine’s use of crawler technology is actually in the

capacity of an archiver crawler. Search engines crawl the Internet and save all the pages

along the way. Afterward they go back and sift through the data and index it so it can

be searched rapidly.

As the preceding ideas show, crawler-based technology is useful in a wide variety of

Web-based applications.

2 1 6 T h e A r t o f J a v a

ApDev TIGHT / The Art of Java / Schildt/Holmes / 222971-3 / Chapter 6

P:\010Comp\ApDev\971-3\ch06.vp
Monday, July 07, 2003 10:04:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

