
DAY 7

WEEK 1

Threads, Exceptions, and
Assertions

Today, you complete your weeklong journey through the Java language by
learning about three of its most useful elements: threads, exceptions, and asser-
tions.

Threads are objects that implement the Runnable interface, which indicates that
they can run simultaneously with other parts of a Java program. Exceptions are
objects that represent errors that may occur in a Java program. Assertions are
conditional statements and Boolean values that indicate a program is running
correctly, providing another means of detecting errors.

Threads enable your programs to make more efficient use of resources by iso-
lating the computing-intensive parts of a program so that they don’t slow down
the rest of the program. Exceptions and assertions enable your programs to rec-
ognize errors and respond to them. Exceptions even assist your programs to
correct the conditions if possible.

You start with exceptions because they’re one of the things that you use when
working with both assertions and threads.

09 6280 ch07 4/16/04 3:32 PM Page 181

Exceptions
Programmers in any language endeavor to write bug-free programs, programs that never
crash, programs that can handle any circumstance with grace and recover from unusual
situations without causing a user any undue stress. Good intentions aside, programs like
this don’t exist.

In real programs, errors occur because programmers didn’t anticipate possible problems,
didn’t test enough, or encountered situations out of their control—bad data from users,
corrupt files that don’t have the right data in them, network connections that don’t con-
nect, hardware devices that don’t respond, sun spots, gremlins, and so on.

In Java, the strange events that might cause a program to fail are called exceptions. Java
defines a number of language features that deal with exceptions:

• How to handle exceptions in your code and recover gracefully from potential
problems

• How to tell Java and users of your classes that you’re expecting a potential
exception

• How to create an exception if you detect one

• How your code is limited, yet made more robust by exceptions

With most programming languages, handling error conditions requires much more work
than handling a program that is running properly. It can require a confusing structure of
conditional statements to deal with errors that might occur.

As an example, consider the following statements that could be used to load a file from
disk. File input and output can be problematic because of a number of different circum-
stances such as disk errors, file-not-found errors, and the like. If the program must have
the data from the file to operate properly, it must deal with all these circumstances before
continuing.

Here’s the structure of one possible solution:

int status = loadTextFile();
if (status != 1) {

// something unusual happened, describe it
switch (status) {

case 2:
System.out.println(“File not found”);
break;

case 3:
System.out.println(“Disk error”);
break;

case 4:

182 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 182

Threads, Exceptions, and Assertions 183

7

System.out.println(“File corrupted”);
break;

default:
System.out.println(“Error”);

}
} else {

// file loaded OK, continue with program
}

This code tries to load a file with a method call to loadTextFile(), which presumably
has been defined elsewhere in the class. The method returns an integer that indicates
whether the file loaded properly (a value of 1) or an error occurred (anything other
than 1).

Depending on the error that occurs, the program uses a switch statement to address it.
The end result is an elaborate block of code in which the most common circumstance—a
successful file load—can be lost amid the error-handling code. This is the result of han-
dling only one possible error. If other errors take place later in the program, you might
end up with more nested if-else and switch-case blocks.

As you can see, error management would become a major problem after you start creat-
ing larger programs. Different programmers designate special values for handling errors,
and they might not document them well if at all.

Code to manage these kinds of errors can often obscure the program’s original intent,
making the class difficult to read and maintain.

Finally, if you try to deal with errors in this manner, there’s no easy way for the compiler
to check for consistency the way it can check to make sure that you called a method with
the right arguments.

Although the previous example uses Java syntax, you don’t ever have to deal with errors
that way with the Java language. There’s a better technique to deal with exceptional cir-
cumstances in a program: the use of a group of classes called exceptions.

Exceptions include errors that could be fatal to your program as well as other unusual
situations. By managing exceptions, you can manage errors and possibly work around
them.

Errors and other conditions in Java programs can be much more easily managed through
a combination of special language features, consistency checking at compile time, and a
set of extensible exception classes.

With these features, you can add a whole new dimension to the behavior and design of
your classes, your class hierarchy, and your overall system. Your class and interface defi-
nitions describe how your program is supposed to behave given the best circumstances.

09 6280 ch07 4/16/04 3:32 PM Page 183

By integrating exception handling into your program design, you can consistently
describe how the program will behave when circumstances are not ideal, and allow peo-
ple who use your classes to know what to expect in those cases.

Exception Classes
At this point, it’s likely that you’ve run into at least one Java exception—perhaps you
mistyped a method name or made a mistake in your code that caused a problem. Maybe
you tried to run a Java application without providing the command-line arguments that
were needed and saw an ArrayIndexOutOfBoundsException message.

Chances are, when an exception occurred, the application quit and spewed a bunch of
mysterious errors to the screen. Those errors are exceptions. When your program stops
without successfully finishing its work, an exception is thrown. Exceptions can be
thrown by the virtual machine, thrown by classes you use, or intentionally thrown in your
own programs.

The term “thrown” is fitting because exceptions also can be “caught.” Catching an excep-
tion involves dealing with the exceptional circumstance so that your program doesn’t
crash—you learn more about this later today.

The heart of the Java exception system is the exception itself. Exceptions in Java are
instances of classes that inherit from the Throwable class. An instance of a Throwable
class is created when an exception is thrown.

Throwable has two subclasses: Error and Exception. Instances of Error are internal
errors involving the Java virtual machine (the runtime environment). These errors are rare
and usually fatal to the program; there’s not much that you can do about them (either to
catch them or to throw them yourself).

The class Exception is more relevant to your own programming. Subclasses of
Exception fall into two general groups:

• Runtime exceptions (subclasses of the class RuntimeException) such as
ArrayIndexOutofBoundsException, SecurityException, and
NullPointerException

• Other exceptions such as EOFException and MalformedURLException

Runtime exceptions usually occur because of code that isn’t very robust. An
ArrayIndexOutofBounds exception, for example, should never be thrown if you’re prop-
erly checking to make sure that your code stays within the bounds of an array.
NullPointerException exceptions happen when you try to use a variable that doesn’t
refer to an object yet.

184 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 184

Threads, Exceptions, and Assertions 185

7

The final group of exceptions indicate something strange and out of control is happening.
An EOFException, for example, happens when you’re reading from a file and the file
ends before you expected it to end. A MalformedURLException happens when a URL
isn’t in the right format (perhaps a user typed it incorrectly). This group includes excep-
tions that you create to signal unusual cases that might occur in your own programs.

Exceptions are arranged in a hierarchy just as other classes are, where the Exception
superclasses are more general errors and the subclasses are more specific errors. This
organization becomes more important to you as you deal with exceptions in your own
code.

The primary exception classes are part of the java.lang package (including Throwable,
Exception, and RuntimeException). Many of the other packages define other excep-
tions, and those exceptions are used throughout the class library. For example, the
java.io package defines a general exception class called IOException, which is sub-
classed not only in the java.io package for input and output exceptions (EOFException
and FileNotFoundException) but also in the java.net classes for networking excep-
tions such as MalformedURLException.

Managing Exceptions
Now that you know what an exception is, how do you deal with one in your own code?
In many cases, the Java compiler enforces exception management when you try to use
methods that throw exceptions; you need to deal with those exceptions in your own code,
or it simply won’t compile. In this section, you learn about consistency checking and
how to use three new keywords—try, catch, and finally—to deal with exceptions that
might occur.

Exception Consistency Checking
The more you work with the Java class libraries, the more likely you’ll run into a com-
piler error (an exception!) such as this one:

XMLParser.java:32: Exception java.lang.InterruptedException
must be caught or it must be declared in the throws clause
of this method.

If your program is causing runtime exceptions under any circumstances, you
should fix those problems before you even begin dealing with exception
management.

CAUTION

09 6280 ch07 4/16/04 3:32 PM Page 185

In Java, a method can indicate the kinds of errors it might potentially throw. For exam-
ple, methods that read from files can throw IOException errors, so those methods are
declared with a special modifier that indicates potential errors. When you use those
methods in your own Java programs, you have to protect your code against those excep-
tions. This rule is enforced by the compiler itself, in the same way that it checks to make
sure that you’re using methods with the correct number of arguments and that all your
variable types match what you’re assigning to them.

Why is this check in place? It makes your programs less likely to crash with fatal errors
because you know upfront the kind of exceptions that can be thrown by the methods a
program uses.

You no longer have to pore over the documentation or the code of an object you’re going
to use to ensure that you’ve dealt with all the potential problems—Java does the check-
ing for you. On the other side, if you define your methods so that they indicate the
exceptions they can throw, Java can tell your objects’ users to handle those errors.

Protecting Code and Catching Exceptions
Assume that you’ve been happily coding and the compiler screeches to a halt with an
exception as a class is compiled. According to the message, you have to either catch the
error or declare that your method throws it.

First, we’ll deal with catching potential exceptions, which requires two things:

• You protect the code that contains the method that might throw an exception inside
a try block.

• You deal with an exception inside a catch block.

What try and catch effectively mean is, “Try this bit of code that might cause an excep-
tion. If it executes okay, go on with the program. If the code doesn’t execute, catch the
exception and deal with it.”

You’ve seen try and catch before. On Day 6, “Packages, Interfaces, and Other Class
Features,” you used code when using a String value to create a floating-point number:

try {
float in = Float.parseFloat(input);

} catch (NumberFormatException nfe) {
System.out.println(input + “ is not a valid number.”);

}

186 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 186

Threads, Exceptions, and Assertions 187

7

Here’s what’s happening in these statements: The Float.parseFloat() class method
could potentially throw an exception of the class NumberFormatException, which signi-
fies that the thread has been interrupted for some reason.

To handle this exception, the call to parseFloat() is placed inside a try block and an
associated catch block has been set up. This catch block receives any
NumberFormatException objects thrown within the try block.

The part of the catch clause inside the parentheses is similar to a method definition’s
argument list. It contains the class of exception to be caught and a variable name. You
can use the variable to refer to that exception object inside the catch block.

One common use for this object is to call its getMessage() method. This method is pre-
sent in all exceptions, and it displays a detailed error message describing what happened.

Another useful method is printStackTrace(), which displays the sequence of method
calls that led to the statement that generated the exception.

The following example is a revised version of the try-catch block used on Day 6:

try {
float in = Float.parseFloat(input);

} catch (NumberFormatException nfe) {
System.out.println(“Oops: “ + nfe.getMessage());

}

The examples you have seen thus far catch a specific type of exception. Because excep-
tion classes are organized into a hierarchy and you can use a subclass anywhere that a
superclass is expected, you can catch groups of exceptions within the same catch state-
ment.

As an example, when you start writing programs that handle input and output from files,
Internet servers, and other places, you deal with several different types of IOException
exceptions (the IO stands for input/output). These exceptions include two of its sub-
classes, EOFException and FileNotFoundException. By catching IOException, you also
catch instances of any IOException subclass.

To catch several different exceptions that aren’t related by inheritance, you can use multi-
ple catch blocks for a single try, like this:

try {
// code that might generate exceptions

} catch (IOException ioe) {
System.out.println(“Input/output error”);
System.out.println(ioe.getMessage());

} catch (ClassNotFoundException cnfe) {
System.out.println(“Class not found”);

09 6280 ch07 4/16/04 3:32 PM Page 187

System.out.println(cnfe.getMessage());
} catch (InterruptedException ie) {

System.out.println(“Program interrupted”);
System.out.println(ie.getMessage());

}

In a multiple catch block, the first catch block that matches is executed and the rest
ignored.

188 Day 7

You can run into unexpected problems by using an Exception superclass in a
catch block followed by one or more of its subclasses in their own catch
blocks. For example, the input/output exception IOException is the super-
class of the end-of-file exception EOFException. If you put an IOException
block above an EOFException block, the subclass never catches any excep-
tions.

CAUTION

The finally Clause
Suppose that there is some action in your code that you absolutely must do, no matter
what happens, whether an exception is thrown or not. This is usually to free some exter-
nal resource after acquiring it, to close a file after opening it, or something similar.

Although you could put that action both inside a catch block and outside it, that would
be duplicating the same code in two different places, which is a situation you should
avoid as much as possible in your programming.

Instead, put one copy of that code inside a special optional block of the try-catch state-
ment that uses the keyword finally:

try {
readTextFile();

} catch (IOException ioe) {
// deal with IO errors

} finally {
closeTextFile();

}

Today’s first project shows how a finally statement can be used inside a method.

The HexRead application in Listing 7.1 reads sequences of two-digit hexadecimal num-
bers and displays their decimal values. There are three sequences to read:

• 000A110D1D260219

• 78700F1318141E0C

• 6A197D45B0FFFFFF

09 6280 ch07 4/16/04 3:32 PM Page 188

Threads, Exceptions, and Assertions 189

7

As you learned on Day 2, “The ABCs of Programming,” hexadecimal is a base-16 num-
bering system where the single-digit numbers range from 00 (decimal 0) to 0F (decimal
15), and double-digit numbers range from 10 (decimal 16) to FF (decimal 255).

LISTING 7.1 The Full Text of HexRead.java

1: class HexRead {
2: String[] input = { “000A110D1D260219 “,
3: “78700F1318141E0C “,
4: “6A197D45B0FFFFFF “ };
5:
6: public static void main(String[] arguments) {
7: HexRead hex = new HexRead();
8: for (int i = 0; i < hex.input.length; i++)
9: hex.readLine(hex.input[i]);
10: }
11:
12: void readLine(String code) {
13: try {
14: for (int j = 0; j + 1 < code.length(); j += 2) {
15: String sub = code.substring(j, j+2);
16: int num = Integer.parseInt(sub, 16);
17: if (num == 255)
18: return;
19: System.out.print(num + “ “);
20: }
21: } finally {
22: System.out.println(“**”);
23: }
24: return;
25: }
26: }

The output of this program is as follows:

0 10 17 13 29 38 2 25 **
120 112 15 19 24 20 30 12 **
106 25 125 69 176 **

Line 15 of the program reads two characters from code, the string that was sent to the
readLine() method, by calling the string’s substring(int, int) method.

09 6280 ch07 4/16/04 3:32 PM Page 189

The two-character substring contains a hexadecimal number stored as a String. The
Integer class method parseInt can be used with a second argument to convert this
number into an integer. Use 16 as the argument for a hexadecimal (base 16) conver-
sion, 8 for an octal (base 8) conversion, and so on.

In the HexRead application, the hexadecimal FF is used to fill out the end of a sequence
and should not be displayed as a decimal value. This is accomplished by using a try-
finally block in lines 13–23 of Listing 7.1.

The try-finally block causes an unusual thing to happen when the return statement is
encountered at line 18. You would expect return to cause the readLine() method to be
exited immediately.

Because it is within a try-finally block, the statement within the finally block is exe-
cuted no matter how the try block is exited. The text “**” is displayed at the end of a
line of decimal values.

190 Day 7

In the substring() method of the String class, you select a substring in a
somewhat counterintuitive way. The first argument specifies the index of
the first character to include in the substring, but the second argument does
not specify the last character. Instead, the second argument indicates the
index of the last character plus 1. A call to substring(2, 5) for a string
would return the characters from index position 2 to index position 4.

NOTE

The finally statement is useful outside exceptions—it can execute cleanup
code after a return, break, or continue statement inside loops. For the latter
cases, you use a try statement with a finally but without a catch state-
ment.

NOTE

Declaring Methods That Might Throw
Exceptions

In previous examples, you learned how to deal with methods that might throw exceptions
by protecting code and catching any exceptions that occur. The Java compiler checks to
make sure that you’ve dealt with a method’s exceptions—but how did it know which
exceptions to tell you about in the first place?

09 6280 ch07 4/16/04 3:32 PM Page 190

Threads, Exceptions, and Assertions 191

7

The answer is that the original method indicated the exceptions that it might possibly
throw as part of its definition. You can use this mechanism in your own methods—in
fact, it’s good style to do so to make sure that users of your classes are alerted to the
errors your methods may experience.

To indicate that a method may possibly throw an exception, you use a special clause in
the method definition called throws.

The throws Clause
If some code in your method’s body may throw an exception, add the throws keyword
after the closing parenthesis of the method followed by the name or names of the excep-
tion that your method throws, as in this example:

public boolean getFormula(int x, int y) throws NumberFormatException {
// body of method

}

If your method may throw multiple kinds of exceptions, you can declare them all in the
throws clause separated by commas:

public boolean storeFormula(int x, int y)
throws NumberFormatException, EOFException {

// body of method
}

Note that as with catch, you can use a superclass of a group of exception to indicate that
your method may throw any subclass of that exception. For instance:

public void loadFormula() throws IOException {
// ...

}

Keep in mind that adding a throws method to your method definition simply means that
the method might throw an exception if something goes wrong, not that it actually will.
The throws clause provides extra information to your method definition about potential
exceptions and allows Java to make sure that your method is being used correctly by
other people.

Think of a method’s overall description as a contract between the designer of that
method and the caller of the method. (You can be on either side of that contract, of
course.)

Usually the description indicates the types of a method’s arguments, what it returns,
and the particulars of what it normally does. By using throws, you are adding informa-
tion about the abnormal things the method can do. This new part of the contract helps

09 6280 ch07 4/16/04 3:32 PM Page 191

separate and make explicit all the places where exceptional conditions should be handled
in your program, and that makes large-scale design easier.

Which Exceptions Should You Throw?
After you decide to declare that your method might throw an exception, you must decide
which exceptions it might throw and actually throw them or call a method that will throw
them (you learn about throwing your own exceptions in the next section).

In many instances, this is apparent from the operation of the method itself. Perhaps
you’re already creating and throwing your own exceptions, in which case, you’ll know
exactly which exceptions to throw.

You don’t really have to list all the possible exceptions that your method could throw;
some exceptions are handled by the runtime itself and are so common that you don’t
have to deal with them.

In particular, exceptions of either the Error or RuntimeException class or any of their
subclasses do not have to be listed in your throws clause.

They get special treatment because they can occur anywhere within a Java program and
are usually conditions that you, as the programmer, did not directly cause.

One good example is OutOfMemoryError, which can happen anywhere, at any time, and
for any number of reasons. These two types of exceptions are called unchecked excep-
tions.

Unchecked exceptions are subclasses of the RuntimeException and Error classes and
are usually thrown by the Java runtime itself. You do not have to declare that your
method throws them and usually need not deal with them in any other way.

192 Day 7

You can, of course, choose to list these errors and runtime exceptions in
your throws clause if you want, but your method’s callers will not be forced
to handle them; only non-runtime exceptions must be handled.

NOTE

All other exceptions are called checked exceptions and are potential candidates for a
throws clause in your method.

Passing On Exceptions
There are times when it doesn’t make sense for your method to deal with an exception. It
might be better for the method that calls your method to deal with that exception. There’s

09 6280 ch07 4/16/04 3:32 PM Page 192

Threads, Exceptions, and Assertions 193

7

nothing wrong with this; it’s a fairly common occurrence that you pass an exception back
to the method that calls your method.

For example, consider the hypothetical example of WebRetriever, a class that loads a
Web page using its Web address and stores it in a file. As you learn on Day 17,
“Communicating Across the Internet,” you can’t work with Web addresses without deal-
ing with MalformedURLException, the exception thrown when an address isn’t in the
right format.

To use WebRetriever, another class calls its constructor method with the address as an
argument. If the address specified by the other class isn’t in the right format, a
MalformedURLException is thrown. Instead of dealing with this, the constructor of the
WebRetriever class could have the following definition:

public WebRetriever() throws MalformedURLException {
// ...

}

This would force any class that works with WebRetriever objects to deal with
MalformedURLException errors (or pass the buck with their own throws clause, of
course).

One thing is true at all times: It’s better to pass on exceptions to calling methods than to
catch them and do nothing in response.

In addition to declaring methods that throw exceptions, there’s one other instance in
which your method definition may include a throws clause: Within that method, you
want to call a method that throws an exception, but you don’t want to catch or deal with
that exception.

Rather than using the try and catch clauses in your method’s body, you can declare
your method with a throws clause so that it, too, might possibly throw the appropriate
exception. It’s then the responsibility of the method that calls your method to deal with
that exception. This is the other case that tells the Java compiler that you have done
something with a given exception.

Using this technique, you could create a method that deals with number format excep-
tions without a try-catch block:

public void readFloat(String input) throws NumberFormatException {
float in = Float.parseFloat(input);

}

After you declare your method to throw an exception, you can use other methods that
also throw those exceptions inside the body of this method, without needing to protect
the code or catch the exception.

09 6280 ch07 4/16/04 3:32 PM Page 193

throws and Inheritance
If your method definition overrides a method in a superclass that includes a throws
clause, there are special rules for how your overridden method deals with throws. Unlike
other parts of the method signature that must mimic those of the method it is overriding,
your new method does not require the same set of exceptions listed in the throws clause.

Because there’s a possibility that your new method might deal better with exceptions
instead of just throwing them, your method can potentially throw fewer types of excep-
tions. It could even throw no exceptions at all. That means that you can have the follow-
ing two class definitions and things will work just fine:

public class RadioPlayer {
public void startPlaying() throws SoundException {

// body of method
}

}

public class StereoPlayer extends RadioPlayer {
public void startPlaying() {

// body of method
}

}

The converse of this rule is not true: A subclass method cannot throw more exceptions
(either exceptions of different types or more general exception classes) than its super-
class method.

Creating and Throwing Your Own Exceptions
There are two sides to every exception: the side that throws the exception and the side
that catches it. An exception can be tossed around a number of times to a number of
methods before it’s caught, but eventually it will be caught and dealt with.

Who does the actual throwing? Where do exceptions come from? Many exceptions are
thrown by the Java runtime or by methods inside the Java classes themselves. You also

194 Day 7

You can, of course, deal with other exceptions using try and catch in the
body of your method in addition to passing on the exceptions you listed in
the throws clause. You also can both deal with the exception in some way
and then rethrow it so that your method’s calling method has to deal with it
anyhow. You learn how to throw methods in the next section.

NOTE

09 6280 ch07 4/16/04 3:32 PM Page 194

Threads, Exceptions, and Assertions 195

7

can throw any of the standard exceptions that the Java class libraries define, or you can
create and throw your own exceptions.

Throwing Exceptions
Declaring that your method throws an exception is useful only to your method’s users
and to the Java compiler, which checks to make sure that all your exceptions are being
handled. The declaration itself doesn’t do anything to actually throw that exception
should it occur; you must do that yourself as needed in the body of the method.

You need to create a new instance of an exception class to throw an exception. After you
have that instance, use the throw statement to throw it.

Here’s an example using a hypothetical NotInServiceException class that is a subclass
of the Exception class:

NotInServiceException nise = new NotInServiceException();
throw nise;

You only can throw objects that implement the Throwable interface.

Depending on the exception class you’re using, the exception also may have arguments
to its constructor that you can use. The most common of these is a string argument,
which enables you to describe the problem in greater detail (which can be useful for
debugging purposes). Here’s an example:

NotInServiceException nise = new
NotInServiceException(“Exception: Database Not in Service”);

throw nise;

After an exception is thrown, the method exits immediately without executing any other
code, other than the code inside a finally block if one exists. The method won’t return a
value either. If the calling method does not have a try or catch surrounding the call to
your method, the program might exit based on the exception you threw.

Creating Your Own Exceptions
Although there are a fair number of exceptions in the Java class library that you can use
in your own methods, you might need to create your own exceptions to handle the differ-
ent kinds of errors that your programs run into. Creating new exceptions is easy.

Your new exception should inherit from some other exception in the Java hierarchy. All
user-created exceptions should be part of the Exception hierarchy rather than the Error
hierarchy, which is reserved for errors involving the Java virtual machine. Look for an
exception that’s close to the one you’re creating; for example, an exception for a bad file
format would logically be an IOException. If you can’t find a closely related exception

09 6280 ch07 4/16/04 3:32 PM Page 195

for your new exception, consider inheriting from Exception, which forms the “top” of
the exception hierarchy for checked exceptions (unchecked exceptions should inherit
from RuntimeException).

Exception classes typically have two constructors: The first takes no arguments, and the
second takes a single string as an argument.

Exception classes are like other classes. You can put them in their own source files and
compile them just as you would other classes:

public class SunSpotException extends Exception {
public SunSpotException() {}
public SunSpotException(String msg) {

super(msg);
}

}

Combining throws, try, and throw
What if you want to combine all the approaches shown so far? You want to handle
incoming exceptions yourself in your method, but also you want the option to pass the
exception on to your method’s caller. Simply using try and catch doesn’t pass on the
exception, and adding a throws clause doesn’t give you a chance to deal with the excep-
tion.

If you want to both manage the exception and pass it on to the caller, use all three mech-
anisms: the throws clause, the try statement, and a throw statement to explicitly rethrow
the exception.

Here’s a method that uses this technique:

public void readMessage() throws IOException {
MessageReader mr = new MessageReader();

try {
mr.loadHeader();

} catch (IOException e) {
// do something to handle the
// IO exception and then rethrow
// the exception ...
throw e;

}
}

This works because exception handlers can be nested. You handle the exception by doing
something responsible with it but decide that it is important enough to give the method’s
caller a chance to handle it as well.

196 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 196

Threads, Exceptions, and Assertions 197

7

Exceptions can float all the way up the chain of method callers this way (usually not
being handled by most of them) until, at last, the system itself handles any uncaught
exceptions by aborting your program and printing an error message.

If it’s possible for you to catch an exception and do something intelligent with it, you
should.

When and When Not to Use Exceptions
Because throwing, catching, and declaring exceptions are related concepts and can be
confusing, here’s a quick summary of when to do what.

When to Use Exceptions
You can do one of three things if your method calls another method that has a throws
clause:

• Deal with the exception by using try and catch statements

• Pass the exception up the calling chain by adding your own throws clause to your
method definition

• Perform both of the preceding methods by catching the exception using catch and
then explicitly rethrowing it using throw

In cases where a method throws more than one exception, you can handle each of those
exceptions differently. For example, you might catch some of those exceptions while
allowing others to pass up the calling chain.

If your method throws its own exceptions, you should declare that it throws those meth-
ods using the throws statement. If your method overrides a superclass method that has a
throws statement, you can throw the same types of exceptions or subclasses of those
exceptions; you cannot throw any different types of exceptions.

Finally, if your method has been declared with a throws clause, don’t forget to actually
throw the exception in the body of your method using the throw statement.

When Not to Use Exceptions
Although they might seem appropriate at the time, there are several cases in which you
should not use exceptions.

First, you should not use exceptions for circumstances you expect and could avoid
easily. For example, although you can rely on an ArrayIndexOutofBounds exception to

09 6280 ch07 4/16/04 3:32 PM Page 197

indicate when you’ve gone past the end of an array, it’s easy to use the array’s length
variable to prevent you from going beyond the bounds.

In addition, if your users will enter data that must be an integer, testing to make sure that
the data is an integer is a much better idea than throwing an exception and dealing with it
somewhere else.

Exceptions take up a lot of processing time for your Java program. A simple test or series
of tests will run much faster than exception handling and make your program more effi-
cient. Exceptions should be used only for truly exceptional cases that are out of your
control.

It’s also easy to get carried away with exceptions and to try to make sure that all your
methods have been declared to throw all the possible exceptions that they can possibly
throw. This makes your code more complex; in addition, if other people will be using
your code, they’ll have to deal with handling all the exceptions that your methods might
throw.

You’re making more work for everyone involved when you get carried away with excep-
tions. Declaring a method to throw either few or many exceptions is a trade-off; the more
exceptions your method can throw, the more complex that method is to use. Declare only
the exceptions that have a reasonably fair chance of happening and that make sense for
the overall design of your classes.

Bad Style Using Exceptions
When you first start using exceptions, it might be appealing to work around the compiler
errors that result when you use a method that declares a throws statement. Although it is
legal to add an empty catch clause or to add a throws statement to your own method
(and there are appropriate reasons for doing so), intentionally dropping exceptions with-
out dealing with them subverts the checks that the Java compiler does for you.

The Java exception system was designed so that if an error can occur, you’re warned
about it. Ignoring those warnings and working around them makes it possible for fatal
errors to occur in your program—errors that you could have avoided with a few lines of
code. Even worse, adding throws clauses to your methods to avoid exceptions means
that the users of your methods (objects further up in the calling chain) will have to deal
with them. You’ve just made your methods more difficult to use.

Compiler errors regarding exceptions are there to remind you to reflect on these issues.
Take the time to deal with the exceptions that might affect your code. This extra care
richly rewards you as you reuse your classes in later projects and in larger and larger pro-
grams. Of course, the Java 2 class library has been written with exactly this degree of

198 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 198

Threads, Exceptions, and Assertions 199

7

care, and that’s one of the reasons it’s robust enough to be used in constructing all your
Java projects.

Assertions
Exceptions are one way to improve the reliability of your Java programs. Assertions are
expressions that represent a condition that a programmer believes to be true at a specific
place in a program. If an assertion isn’t true, an error results.

The assert keyword is followed by a conditional expression or Boolean value, as in this
example:

assert price > 0;

In this example, the assert statement claims that a variable named price has a value
greater than 0. Assertions are a way to assure yourself that a program is running correctly
by putting it to the test, writing conditional expressions that identify correct behavior.

The assert keyword must be followed by one of three things: an expression that is true or
false, a boolean variable, or a method that returns a boolean.

If the assertion that follows the assert keyword is not true, an AssertionError excep-
tion is thrown. To make the error message associated with an assertion more meaningful,
you can specify a string in an assert statement, as in the following example:

assert price > 0 : “Price less than 0.”;

In this example, if price is less than 0 when the assert statement is executed, an
AssertionError exception is thrown with the error message “Price less than 0”.

You can catch these exceptions or leave them for the Java interpreter to deal with. Here’s
an example of how the SDK’s interpreter responds when an assert statement is false:

Exception in thread “main” java.lang.AssertionError
at AssertTest.main(AssertTest.java:14)

Here’s an example when an assert statement with a descriptive error message is false:

Exception in thread “main” java.lang.AssertionError: Price less than 0.
at AssertTest.main(AssertTest.java:14)

Although assertions are an official part of the Java language, they are not supported by
default by the tools included with the SDK, and the same may be true with other Java
development tools.

To enable assertions with the SDK, you must use command-line arguments when run-
ning the interpreter.

09 6280 ch07 4/16/04 3:32 PM Page 199

A class that contains assert statements can be compiled normally, as long as you’re using
a current version of the SDK.

The compiler includes support for assertions in the class file (or files) that it produces.
(In Java 2 version 1.4, the compiler required the -source 1.4 flag to support assertions.)

There are several ways to turn on assertions in the SDK’s Java interpreter.

To enable assertions in all classes except those in the Java class library, use the -ea argu-
ment, as in this example:

java -ea PriceChecker

To enable assertions only in one class, follow -ea with a colon (“:”) and the name of the
class, like this:

java -ea:PriceChecker PriceChecker

You also can enable assertions for a specific package by following -ea: with the name of
the package (or ... for the default package).

200 Day 7

There’s also an -esa flag that enables assertions in the Java class library.
There isn’t much reason for you to do this because you’re probably not test-
ing the reliability of that code.

TIP

When a class that contains assertions is run without an -ea or -esa flag, all assert state-
ments are ignored.

Because Java has added the assert keyword, you must not use it as the name of a vari-
able in your programs, even if they are not compiled with support for assertions enabled.

The next project, CalorieCounter, is a calculator application that uses an assertion.
Listing 7.2 contains the source.

LISTING 7.2 The Full Source of CalorieCounter.java

1: public class CalorieCounter {
2: float count;
3:
4: public CalorieCounter(float calories, float fat, float fiber) {
5: if (fiber > 4) {
6: fiber = 4;
7: }
8: count = (calories / 50) + (fat / 12) - (fiber / 5);

09 6280 ch07 4/16/04 3:32 PM Page 200

Threads, Exceptions, and Assertions 201

7

9: assert count > 0 : “Adjusted calories < 0”;
10: }
11:
12: public static void main(String[] arguments) {
13: if (arguments.length < 2) {
14: System.out.println(“Usage: java CalorieCounter cal fat fiber”);
15: System.exit(-1);
16: }
17: try {
18: int calories = Integer.parseInt(arguments[0]);
19: int fat = Integer.parseInt(arguments[1]);
20: int fiber = Integer.parseInt(arguments[2]);
21: CalorieCounter diet = new CalorieCounter(calories, fat, fiber);
22: System.out.println(“Adjusted calories: “ + diet.count);
23: } catch (NumberFormatException nfe) {
24: System.out.println(“All arguments must be numeric.”);
25: System.exit(-1);
26: }
27: }
28: }

The CalorieCounter application calculates an adjusted calories total for a food item
using its calories, fat grams, and fiber grams as input. Programs such as this are common
in weight management programs, enabling dieters to monitor their daily food intake.

The application takes three command-line arguments: calories, fat, and fiber, which
are received as strings and converted to integer values in lines 18–20.

The CalorieCounter constructor takes the three values and plugs them into a formula in
line 8 to produce an adjusted calorie count.

One of the assumptions of the constructor is that the adjusted count always will be a pos-
itive value. This is challenged with the following assert statement:

assert count > 0 : “Adjusted calories < 0”;

The compiled class should be run with the -ea flag to employ assertions, as in this
example:

java -ea CalorieCounter 150 3 0

Those values produce an adjusted calorie count of 3.25. To see the assertion proven false,
use 30 calories, 0 grams of fat, and 6 grams of fiber as input.

Assertions are an unusual feature of the Java language—under most circumstances they
cause absolutely nothing to happen. They’re a means of expressing in a class the

LISTING 7.2 continued

09 6280 ch07 4/16/04 3:32 PM Page 201

conditions under which it is running correctly (and the things you assume to be true as it
runs). If you make liberal use of them in a class, it will either be more reliable or you’ll
learn that some of your assumptions are incorrect, which is useful knowledge in its own
right.

202 Day 7

Some Java programmers believe that because assertions can be turned off at
runtime, they’re an unreliable means of improving the reliability of a class.

CAUTION

Threads
One thing to consider in Java programming is how system resources are being used.
Graphics, complex mathematical computations, and other intensive tasks can take up a
lot of processor time.

This is especially true of programs that have a graphical user interface, which is a style
of software that you’ll be learning about next week.

If you write a graphical Java program that is doing something that consumes a lot of the
computer’s time, you might find that the program’s graphical user interface responds
slowly—drop-down lists take a second or more to appear, button clicks are recognized
slowly, and so on.

To solve this problem, you can segregate the processor-hogging functions in a Java class
so that they run separately from the rest of the program.

This is possible through the use of a feature of the Java language called threads.

Threads are parts of a program set up to run on their own while the rest of the program
does something else. This also is called multitasking because the program can handle
more than one task simultaneously.

Threads are ideal for anything that takes up a lot of processing time and runs continu-
ously.

By putting the workload of the program into a thread, you are freeing up the rest of the
program to handle other things. You also make handling the program easier for the vir-
tual machine because all the intensive work is isolated into its own thread.

Writing a Threaded Program
Threads are implemented in Java with the Thread class in the java.lang package.

09 6280 ch07 4/16/04 3:32 PM Page 202

Threads, Exceptions, and Assertions 203

7

The simplest use of threads is to make a program pause in execution and stay idle during
that time. To do this, call the Thread class method sleep(long) with the number of mil-
liseconds to pause as the only argument.

This method throws an exception, InterruptedException, whenever the paused thread
has been interrupted for some reason. (One possible reason: The user closes the program
while it is sleeping.)

The following statements stop a program in its tracks for 3 seconds:

try {
Thread.sleep(3000);

catch (InterruptedException ie) {
// do nothing

}

The catch block does nothing, which is typical when you’re using sleep().

One way to use threads is to put all the time-consuming behavior into its own class.

A thread can be created in two ways: By subclassing the Thread class or implementing
the Runnable interface in another class. Both belong to the java.lang package, so no
import statement is necessary to refer to them.

Because the Thread class implements Runnable, both techniques result in objects that
start and stop threads in the same manner.

To implement the Runnable interface, add the keyword implements to the class declara-
tion followed by the name of the interface, as in the following example:

public class StockTicker implements Runnable {
public void run() {

// ...
}

}

When a class implements an interface, it must include all methods of that interface. The
Runnable interface contains only one method, run().

The first step in creating a thread is to create a reference to an object of the Thread class:

Thread runner;

This statement creates a reference to a thread, but no Thread object has been assigned to
it yet. Threads are created by calling the constructor Thread(Object) with the threaded
object as an argument. You could create a threaded StockTicker object with the follow-
ing statement:

09 6280 ch07 4/16/04 3:32 PM Page 203

StockTicker tix = new StockTicker();
Thread tickerThread = new Thread(tix);

Two good places to create threads are the constructor for an application and the construc-
tor for a component (such as a panel).

A thread is begun by calling its start() method, as in the following statement:

tickerThread.start();

The following statements can be used in a thread class to start the thread:

Thread runner;
if (runner == null) {

runner = new Thread(this);
runner.start();

}

The this keyword used in the Thread() constructor refers to the object in which these
statements are contained. The runner variable has a value of null before any object is
assigned to it, so the if statement is used to make sure that the thread is not started more
than once.

To run a thread, its start() method is called, as in this statement from the preceding
example:

runner.start();

Calling a thread’s start() method causes another method to be called—namely, the
run() method that must be present in all threaded objects.

The run() method is the engine of a threaded class. In the introduction to threads, they
were described as a means of segregating processor-intensive work so that it ran sepa-
rately from the rest of a class. This kind of behavior would be contained within a thread’s
run() method and the methods that it calls.

A Threaded Application
Threaded programming requires a lot of interaction among different objects, so it should
become clearer when you see it in action.

Listing 7.3 contains a class that finds a specific prime number in a sequence, such as
the 10th prime, 100th prime, or 1,000th prime. This can take some time, especially for
numbers beyond 100,000, so the search for the right prime takes place in its own thread.

Enter the text of Listing 7.3 in your Java editor and save it as PrimeFinder.java.

204 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 204

Threads, Exceptions, and Assertions 205

7

LISTING 7.3 The Full Text of PrimeFinder.java

1: public class PrimeFinder implements Runnable {
2: public long target;
3: public long prime;
4: public boolean finished = false;
5: private Thread runner;
6:
7: PrimeFinder(long inTarget) {
8: target = inTarget;
9: if (runner == null) {
10: runner = new Thread(this);
11: runner.start();
12: }
13: }
14:
15: public void run() {
16: long numPrimes = 0;
17: long candidate = 2;
18: while (numPrimes < target) {
19: if (isPrime(candidate)) {
20: numPrimes++;
21: prime = candidate;
22: }
23: candidate++;
24: }
25: finished = true;
26: }
27:
28: boolean isPrime(long checkNumber) {
29: double root = Math.sqrt(checkNumber);
30: for (int i = 2; i <= root; i++) {
31: if (checkNumber % i == 0)
32: return false;
33: }
34: return true;
35: }
36: }

Compile the PrimeFinder class when you’re finished. This class doesn’t have a main()
method, so you can’t run it as an application. You create a program that uses this class
next.

The PrimeFinder class implements the Runnable interface, so it can be run as a thread.

There are three public instance variables:

• target—A Long that indicates when the specified prime in the sequence has been
found. If you’re looking for the 5,000th prime, target equals 5000.

09 6280 ch07 4/16/04 3:32 PM Page 205

• prime—A long that holds the last prime number found by this class.

• finished—A Boolean that indicates when the target has been reached.

There is also a private instance variable called runner that holds the Thread object that
this class runs in. This object should be equal to null before the thread has been started.

The PrimeFinder constructor method in lines 7–13 sets the target instance variable and
starts the thread if it hasn’t already been started. When the thread’s start() method is
called, it in turn calls the run() method of the threaded class.

The run() method is in lines 15–26. This method does most of the work of the thread,
which is typical of threaded classes. You want to put the most computing-intensive tasks
in their own thread so that they don’t bog down the rest of the program.

This method uses two new variables: numPrimes, the number of primes that have been
found, and candidate, the number that might possibly be prime. The candidate variable
begins at the first possible prime number, which is 2.

The while loop in lines 18–24 continues until the right number of primes has been
found.

First, it checks whether the current candidate is prime by calling the isPrime(long)
method, which returns true if the number is prime and false otherwise.

If the candidate is prime, numPrimes increases by one, and the prime instance variable
is set to this prime number.

The candidate variable is then incremented by one, and the loop continues.

After the right number of primes has been found, the while loop ends, and the finished
instance variable is set to true. This indicates that the PrimeFinder object has found the
right prime number and is finished searching.

The end of the run() method is reached in line 26, and the thread is no longer doing any
work.

The isPrime() method is contained in lines 28–35. This method determines whether a
number is prime by using the % operator, which returns the remainder of a division oper-
ation. If a number is evenly divisible by 2 or any higher number (leaving a remainder
of 0), it is not a prime number.

Listing 7.4 contains an application that uses the PrimeFinder class. Enter the text of
Listing 7.4 and save the file as PrimeThreads.java.

206 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 206

Threads, Exceptions, and Assertions 207

7

LISTING 7.4 The Full Text of PrimeThreads.java

1: public class PrimeThreads {
2: public static void main(String[] arguments) {
3: PrimeThreads pt = new PrimeThreads(arguments);
4: }
5:
6: public PrimeThreads(String[] arguments) {
7: PrimeFinder[] finder = new PrimeFinder[arguments.length];
8: for (int i = 0; i < arguments.length; i++) {
9: try {
10: long count = Long.parseLong(arguments[i]);
11: finder[i] = new PrimeFinder(count);
12: System.out.println(“Looking for prime “ + count);
13: } catch (NumberFormatException nfe) {
14: System.out.println(“Error: “ + nfe.getMessage());
15: }
16: }
17: boolean complete = false;
18: while (!complete) {
19: complete = true;
20: for (int j = 0; j < finder.length; j++) {
21: if (finder[j] == null) continue;
22: if (!finder[j].finished) {
23: complete = false;
24: } else {
25: displayResult(finder[j]);
26: finder[j] = null;
27: }
28: }
29: try {
30: Thread.sleep(1000);
31: } catch (InterruptedException ie) {
32: // do nothing
33: }
34: }
35: }
36:
37: private void displayResult(PrimeFinder finder) {
38: System.out.println(“Prime “ + finder.target
39: + “ is “ + finder.prime);
40: }
41: }

Save and compile the file when you’re finished.

The PrimeThreads application can be used to find one or more prime numbers in
sequence. Specify the prime numbers that you’re looking for as command-line arguments
and include as many as you want.

09 6280 ch07 4/16/04 3:32 PM Page 207

If you’re using the SDK, here’s an example of how you can run the application:

java PrimeThreads 1 10 100 1000

This produces the following output:

Looking for prime 1
Looking for prime 10
Looking for prime 100
Looking for prime 1000
Prime 1 is 2
Prime 10 is 29
Prime 100 is 541
Prime 1000 is 7919

The for loop in lines 8–16 of the PrimeThreads application creates one PrimeFinder
object for each command-line argument specified when the program is run.

Because arguments are Strings and the PrimeFinder constructor requires long values,
the Long.parseLong(String) class method is used to handle the conversion. All the
number-parsing methods throw NumberFormatException exceptions, so they are
enclosed in try-catch blocks to deal with arguments that are not numeric.

When a PrimeFinder object is created, the object starts running in its own thread (as
specified in the PrimeFinder constructor).

The while loop in lines 18–34 checks to see whether any PrimeFinder thread has com-
pleted, which is indicated by its finished instance variable equaling true. When a
thread has completed, the displayResult() method is called in line 25 to display the
prime number that was found. The thread then is set to null, freeing the object for
garbage collection (and preventing its result from being displayed more than once).

The call to Thread.sleep(1000) in line 30 causes the while loop to pause for 1 second
during each pass through the loop. A slowdown in loops helps keep the Java interpreter
from executing statements at such a furious pace that it becomes bogged down.

Stopping a Thread
Stopping a thread is a little more complicated than starting one. The Thread class
includes a stop() method that can be called to stop a thread, but it creates instabilities in
Java’s runtime environment and can introduce hard-to-detect errors into a program. For
this reason, the method has been deprecated, indicating that it should not be used in favor
of another technique.

A better way to stop a thread is to place a loop in the thread’s run() method that ends
when a variable changes in value, as in the following example:

208 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 208

Threads, Exceptions, and Assertions 209

7

public void run() {
while (okToRun == true) {

// ...
}

}

The okToRun variable could be an instance variable of the thread’s class. If it is changed
to false, the loop inside the run() method ends.

Another option you can use to stop a thread is to only loop in the run() method while
the currently running thread has a variable that references it.

In previous examples, a Thread object called runner has been used to hold the current
thread.

A class method, Thread.currentThread(), returns a reference to the current thread (in
other words, the thread in which the object is running).

The following run() method loops as long as runner and currentThread() refer to the
same object:

public void run() {
Thread thisThread = Thread.currentThread();
while (runner == thisThread) {

// ...
}

}

If you use a loop like this, you can stop the thread anywhere in the class with the follow-
ing statement:

runner = null;

Summary
Exceptions, assertions, and threads aid your program’s design and robustness.

Exceptions enable you to manage potential errors. By using try, catch, and finally,
you can protect code that might result in exceptions by handling those exceptions as they
occur.

Handling exceptions is only half the equation; the other half is generating and throwing
exceptions. A throws clause tells a method’s users that the method might throw an
exception. It also can be used to pass on an exception from a method call in the body of
your method.

09 6280 ch07 4/16/04 3:32 PM Page 209

You can create and throw exceptions with the throw keyword and even define your own
new exceptions and subclasses of Exception.

Assertions enable you to use conditional statements and booleans to indicate that a pro-
gram is running correctly. When this isn’t the case, an assertion exception is thrown.

Threads enable you to run the most processor-intensive parts of a Java class separately
from the rest of the class. This is especially useful when the class is doing something
computing-intensive such as animation, complex mathematics, or looping through a large
amount of data quickly.

You also can use threads to do several things at once and to start and stop threads exter-
nally.

Threads implement the Runnable interface, which contains one method: run(). When
you start a thread by calling its start() method, the thread’s run() method is called
automatically.

Q&A
Q I’m still not sure I understand the differences between exceptions, errors, and

runtime exceptions. Is there another way of looking at them?

A Errors are caused by dynamic linking or virtual machine problems, and are thus
too low-level for most programs to care about—or be able to handle even if they
did care about them.

Runtime exceptions are generated by the normal execution of Java code, and
although they occasionally reflect a condition you will want to handle explicitly,
more often they reflect a coding mistake made by the programmer, and thus simply
need to print an error to help flag that mistake.

Exceptions that are non-runtime exceptions (IOException exceptions, for example)
are conditions that, because of their nature, should be explicitly handled by any
robust and well-thought-out code. The Java class library has been written using
only a few of these, but those few are important to using the system safely and cor-
rectly. The compiler helps you handle these exceptions properly via its throws
clause checks and restrictions.

Q Is there any way to get around the strict restrictions placed on methods by the
throws clause?

A Yes. Suppose that you have thought long and hard and have decided that you need
to circumvent this restriction. This is almost never the case because the right solu-
tion is to go back and redesign your methods to reflect the exceptions that you

210 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 210

Threads, Exceptions, and Assertions 211

7

need to throw. Imagine, however, that for some reason a system class has you in a
bind. Your first solution is to subclass RuntimeException to make up a new,
unchecked exception of your own. Now you can throw it to your heart’s content
because the throws clause that was annoying you does not need to include this new
exception. If you need a lot of such exceptions, an elegant approach is to mix in
some novel exception interfaces with your new Runtime classes. You’re free to
choose whatever subset of these new interfaces you want to catch (none of the
normal Runtime exceptions need to be caught), whereas any leftover Runtime
exceptions are allowed to go through that otherwise annoying standard method in
the library.

Quiz
Review today’s material by taking this three-question quiz.

Questions
1. What keyword is used to jump out of a try block and into a finally block?

a. catch

b. return

c. while

2. What class should be the superclass of any exceptions you create in Java?

a. Throwable

b. Error

c. Exception

3. If a class implements the Runnable interface, what methods must the class contain?

a. start(), stop(), and run()

b. actionPerformed()

c. run()

Answers
1. b.

2. c. Throwable and Error are of use primarily by Java. The kinds of errors you’ll
want to note in your programs belong in the Exception hierarchy.

3. c. The Runnable interface requires only the run() method.

09 6280 ch07 4/16/04 3:32 PM Page 211

Certification Practice
The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

The AverageValue application is supposed to take up to 10 floating-point numbers as
command-line arguments and display their average.

Given:

public class AverageValue {
public static void main(String[] arguments) {

float[] temps = new float[10];
float sum = 0;
int count = 0;
int i;
for (i = 0; i < arguments.length & i < 10; i++) {

try {
temps[i] = Float.parseFloat(arguments[i]);
count++;

} catch (NumberFormatException nfe) {
System.out.println(“Invalid input: “ + arguments[i]);

}
sum += temps[i];

}
System.out.println(“Average: “ + (sum / i));

}
}

Which statement contains an error?

a. for (i = 0; i < arguments.length & i < 10; i++) {

b. sum += temps[i];

c. System.out.println(“Average: “ + (sum / i));

d. None; the program is correct.

The answer is available on the book’s Web site at http://www.java21days.com. Visit the
Day 7 page and click the Certification Practice link.

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Modify the PrimeFinder class so that it throws a new exception,
NegativeNumberException, if a negative number is sent to the constructor.

212 Day 7

09 6280 ch07 4/16/04 3:32 PM Page 212

Threads, Exceptions, and Assertions 213

7

2. Modify the PrimeThreads application so that it can handle the new
NegativeNumberException error.

Where applicable, exercise solutions are offered on the book’s Web site at
http://www.java21days.com.

09 6280 ch07 4/16/04 3:32 PM Page 213

