WEEK 2

DAY 14

Writing Java Applets
and Java Web Start
Applications

The first exposure of many people to the Java programming language is in the
form of applets, small and secure Java programs that run as part of a World
Wide Web page.

Though you can do similar things with Macromedia Flash and other technol-
ogy, Java remains an effective choice for Web-based programming.

Java Web Start, a protocol for downloading and running Java programs, makes
it possible to run applications from a Web browser as if they were applets.

Today, you will learn how to create both kinds of Web-based Java programming
as you explore the following topics:

* How to create a simple applet and present it on a Web page

* How to send information from a Web page to an applet

| 376

Day 14

* How to store an applet in a Java archive so that it can be downloaded more quickly
by Web browsers

* How to create applets run by the Java Plug-in, a virtual machine that improves a
Web browser’s Java support

* How to install and run Java applications in a Web browser

e How to publish your application’s files and run it

How Applets and Applications Are Different

The difference between Java applets and applications lies in how they are run.

Applications are usually run by loading the application’s main class file with a Java
interpreter, such as the java tool in the Java 2 SDK.

Applets, on the other hand, are run on any browser that can support Java, such as
Mozilla, Internet Explorer, and Opera. Applets also can be tested by using the SDK’s
appletviewer tool.

For an applet to run, it must be included on a Web page using HTML tags. When a user
with a Java-capable browser loads a Web page that includes an applet, the browser down-
loads the applet from a Web server and runs it on the Web user’s own system using a
Java interpreter.

For many years, browsers used their own built-in Java interpreters to run applets.
Because these interpreters haven’t been kept current with new versions of the language,
Sun offers the Java Plug-in, an interpreter that can be configured to run applets with each
of the popular browsers.

Like an application, a Java applet includes a class file and any other helper classes that
are needed to run the program. The Java 2 class library is included automatically.

Applet Security Restrictions

Because Java applets are run on a Web user’s system when loaded by a browser, they are
subject to stringent security restrictions:
e They cannot read or write files on the user’s file system.
* They cannot communicate with an Internet site other than the one that served the
applet’s Web page.
* They cannot load or run programs stored on the user’s system, such as executable
programs and shared libraries.

Writing Java Applets and Java Web Start Applications 377 |

Java applications have none of these restrictions. They can take full advantage of Java’s
capabilities.

These restrictive security rules apply to all applets run by the Java Plug-in or a browser’s
built-in interpreter. There is one way to get around this with the plug-in—an applet that
has been digitally signed to verify the identity of the author can be granted the same
access as Java applications. If a Web user accepts a signed applet’s security certificate,
the applet can run without restriction.

CAUTION Although Java’s security model makes it difficult for a malicious applet to do
harm to a user’s system, it will never be 100 percent secure. Search Google
or another Web search engine for “hostile applets”, and you’ll find discus-
sion of security issues in different versions of Java and how they have been
addressed.

Choosing a Java Version

A Java programmer who writes applets must decide which Java version to employ.

Some programmers have stuck with Java 1.1, the most up-to-date version of the language
supported by the built-in Java interpreter available for Internet Explorer and some ver-
sions of Netscape Navigator.

However, this strategy has become less effective because Microsoft has stopped includ-
ing the Java interpreter with Internet Explorer as part of an ongoing legal matter involv-
ing Sun Microsystems.

To provide a way for applet programmers to use current versions of Java, Sun offers the
Java Plug-in, which must be downloaded and installed by browser users unless it was
included with their operating system.

Java 2 has been designed so that a program using only Java 1.1 features can usually com-
pile and run successfully on a Java 1.1 interpreter or 1.1-capable browser.

If an applet uses any feature introduced with Java 2, the program only will run success-
fully on a browser has been equipped with the Java Plug-in. The only test environment
that always supports the most current version of Java is the latest appletviewer from the
corresponding SDK.

This situation is a common source of errors for Java applet programmers. If you write a
Java 2 applet and run it on a browser without the plug-in, you will get security errors,
class-not-found errors, and other problems that prevent the applet from running.

378 Day 14

NOTE In this book, Java 2 techniques are used for all programs, even applets.
Techniques to write applets for older versions are covered in Appendix E,
"Writing Java 1.1 Applets.”

Creating Applets

The Java programs you’ve created up to this point have been applications.

Applets differ significantly from applications. First, applets do not have a main() method
that automatically is called to begin the program. Instead, several methods are called at
different points in the execution of an applet.

Applets are subclasses of the JApplet class in the javax.swing package and are graphi-
cal user interface components similar to frames. They can contain other components and
have layout managers applied to them.

By inheriting from JApplet, an applet runs as part of a Web browser and can respond to
events such as the browser page being reloaded. It also can take input from users.

All applets are created by subclassing JApplet:

public class AppletName extends javax.swing.JApplet {
/! Applet code here
}

Applets must be declared public.

When a Java-equipped browser finds a Java applet on a Web page, the applet’s class is
loaded along with any other helper classes used by the applet. The browser automatically
creates an instance of the applet’s class and calls methods of the JApplet class when spe-
cific events take place.

Different applets that use the same class use different instances, so you could place more
than one copy of the same type of applet on a page.

Applet Methods

Applets have methods called when specific things occur as the applet runs.

One example is the paint () method, which is called whenever the applet window needs
to be displayed or redisplayed.

The paint () method is similar to the paintComponent () method you worked with yes-
terday on Day 13, “Using Color, Fonts, and Graphics.” For text and graphics to be dis-

played on the applet window, the paint () method must be overridden with behavior to
display something.

Writing Java Applets and Java Web Start Applications 379 |

The following sections describe events that may occur as an applet runs: initialization,
starting, stopping, destruction, and painting.

Initialization

Initialization occurs the first time an applet is loaded. It can be used to create objects the
applet needs, load graphics or fonts, and the like.

To provide behavior for the initialization of an applet, you override the init () method in
the following manner:
public void init() {
/| Code here
}

One useful thing to do when initializing an applet is to set the color of its background
window using a Color object, as in the following example:

Color avocado = new Color(102, 153, 102);
setBackground(avocado)

The preceding statements changes the applet window to avocado green when placed in
an init () method.

Starting

An applet is started after it is initialized and when the applet is restarted after being
stopped. Starting can occur several times during an applet’s life cycle, but initialization
happens only once.

An applet restarts when a Web user returns to a page containing the applet. If a user
clicks the Back button to return to the applet’s page, it starts again.

To provide starting behavior, override the start () method as follows:

public void start() {
/] Code here
}

Functionality that you put in the start () method might include starting a thread to con-
trol the applet and calling methods of other objects that it uses.

Stopping

An applet stops when the user leaves a Web page that contains a running applet or when
the stop() method is called.

By default, any threads an applet has started continue running even after a user leaves the
applet’s page. By overriding stop (), you can suspend execution of these threads and
restart them if the applet is viewed again. A stop() method takes this form:

| 380

Day 14

public void stop() {
// Code here

}
Destruction

Destruction is the opposite of initialization. An applet’s destroy () method enables it to
clean up after itself before it is freed from memory or the browser exits.

You can use this method to kill any running threads or to release any other running
objects. Generally, you won’t want to override destroy () unless you have specific
resources that need to be released, such as threads that the applet has created. To provide
cleanup behavior for your applet, override the destroy () method as follows:

public void destroy() {
// Code here

}

Because Java handles the removal of objects automatically when they are no longer
needed, there’s normally no need to use the destroy() method in an applet.

Painting
Painting is how an applet displays text and graphics in its window.

The paint () method is called automatically by the environment that contains the
applet—normally a Web browser—whenever the applet window must be redrawn. It can
occur hundreds of times: once at initialization, again if the browser window is brought
out from behind another window or moved to a different position, and so on.

You must override the paint () method of your JApplet subclass to display anything.
The method takes the following form:
public void paint(Graphics screen) {
Graphics2D screen2D = (Graphics2D)screen;
/| Code here
}

Unlike other applet methods, paint () takes an argument: a Graphics object that repre-
sents the area in which the applet window is displayed.

Like yesterday with the paintComponent () method, a Graphics2D object is cast from
this Graphics object and used for all text and graphics drawn in the applet window using
Java2D.

The Graphics and Graphics2D classes are part of the java.awt package.

There are times in an applet when you do something that requires the window to be
repainted. For example, if you change the applet’s background color, it won’t be shown
until the applet window is redrawn.

Writing Java Applets and Java Web Start Applications 381 |

To request that the window be redrawn in an applet, call the applet’s repaint () method
without any arguments:

repaint();

Writing an Applet

Today’s first project is the Watch applet, which displays the current date and time and
updates the information roughly once a second.

This project uses objects of several classes:

* GregorianCalendar—A class in the java.util package that represents date/time
values in the Gregorian calendar system, which is in use throughout the Western
world

* Font—A java.awt class that represents the size, style, and family of a display font

* Color and Graphics2D—Two java.awt classes described in the previous section

Listing 14.1 shows the source code for the applet.

LisTING 14.1 The Full Text of Watch.java

import java.awt.*;
import java.util.*;

1:
2:
3:
4: public class Watch extends javax.swing.JApplet {

5: private Color butterscotch = new Color(255, 204, 102);
6 private String lastTime = "";

7

8

public void init() {

9: setBackground(Color.black);

10: }

11:

12: public void paint(Graphics screen) {

13: Graphics2D screen2D = (Graphics2D)screen;

14: Font type = new Font("Monospaced", Font.BOLD, 20);
15: screen2D.setFont(type);

16: GregorianCalendar day = new GregorianCalendar();
17: String time = day.getTime().toString();

18: screen2D.setColor(Color.black);

19: screen2D.drawString(lastTime, 5, 25);

20: screen2D.setColor (butterscotch);

21: screen2D.drawString(time, 5, 25);

22: try {

23: Thread.sleep(1000);

24: } catch (InterruptedException e) {

25: // do nothing

26: }

382 Day 14

LisTING 14.1 continued

27: lastTime = time;
28: repaint();

29: }

30: }

After you create this program, you can compile it, but you won’t be able to try it out yet.
The applet overrides the init () method to set the background color of the applet win-
dow to black.

The paint () method is where this applet’s real work occurs. The Graphics object passed
into the paint () method holds the graphics state, which keeps track of the current attrib-
utes of the drawing surface. The state includes details about the current font and color to
use for any drawing operation, for example. By using casting in line 13, a Graphics2D
object is created that contains all this information.

Lines 14—15 set up the font for this graphics state. The Font object is held in the type
instance variable and set up as a bold, monospaced, 20-point font. The call to setFont ()
establishes this font as the one that will be used for subsequent drawing operations.

Lines 16—17 create a new GregorianCalendar object that holds the current date and
time. The getTime () method of this object returns the date and time as a Date object,
another class of the java.util package. Calling toString() on this object returns the
date and time as a string you can display.

Lines 18—19 set the color for drawing operations to black and then calls drawString() to
display the string lastTime in the applet window at the x,y position 5, 25. Because the
background is black, nothing appears. You’ll see soon why this is done.

Lines 20-21 set the color using a Color object called butterscotch and then display the
string time using this color.

Lines 22-26 use a class method of the Thread class to make the program do nothing
for 1,000 milliseconds (one second). Because the sleep() method generates an
InterruptedException error if anything occurs that should interrupt this delay, the call
to sleep () must be enclosed in a try-catch block.

Lines 27-28 make the lastTime variable refer to the same string as the time variable
and then call repaint () to request that the applet window be redrawn.

Calling repaint () causes the applet’s paint () method to be called again. When this
occurs, lastTime is displayed in black text, overwriting the last time string displayed.
This clears the screen so that the new value of time can be shown.

Writing Java Applets and Java Web Start Applications 383 |

CAUTION Calling repaint() within an applet’s paint () method is not the ideal way to
handle animation; it's suitable here primarily because the applet is a simple
one. A better technique is to use threads and devote a thread to the task of
animation.

Including an Applet on a Web Page

After you create the class or classes that compose your applet and compile them into
class files, you must create a Web page on which to place the applet.

Applets are placed on a page by using APPLET, an HTML markup tag used like other
Web page elements. Numerous Web-page development tools, such as Microsoft
FrontPage 2003 and Macromedia Dreamweaver, also can be used to add applets to a
page without using HTML.

The APPLET tag places an applet on a Web page and controls how it looks in relation to
other parts of the page.

Java-capable browsers use the information contained in the tag to find and execute the
applet’s class file.

NOTE The following section assumes that you have at least a passing understand-
ing of HTML or know how to use a Web development tool to create Web
pages. If you need help in this area, one of the co-authors of this book,
Laura Lemay, has written Sams Teach Yourself Web Publishing with HTML
and XHTML in 21 Days with Rafe Colburn (ISBN 0-672-32519-5).

The APPLET Tag

In its simplest form, the APPLET tag uses CODE, WIDTH, and HEIGHT attributes to create a
rectangle of the appropriate size and then loads and runs the applet in that space. The tag
also includes several other attributes that can help you better integrate an applet into a
Web page’s overall design.

NOTE The attributes available for the APPLET tag are almost identical to those for
the IMG tag, which is used to display graphics on a Web page.

384 Day 14

Listing 14.2 contains the HTML markup for a Web page that includes the Watch applet.

LisTING 14.2 The Full Text of Watch.html

<html>

<head>

<title>Watch Applet</title>

</head>

<body>

<applet code="Watch.class" height="50" width="345">
This program requires a Java-enabled browser.
</applet>

</body>

</html>

S ©W O N O WN =

—_

HTML tags are not case-sensitive, so <applet> is the same as <APPLET>.
In Listing 14.2, the APPLET tag is contained in lines 6—8 and includes three attributes:

* CODE—The name of the applet’s main class file
e WIDTH—The width of the applet window on the Web page
e HEIGHT—The height of the applet window

The class file indicated by the CODE attribute must be in the same folder as the Web page
containing the applet unless you use a CODEBASE attribute to specify a different folder.
You will learn how to do that later today.

WIDTH and HEIGHT are required attributes because the Web browser needs to know how
much space to devote to the applet on the page.

The text in Line 7 of Listing 14.2 only will be displayed on a Web browser that doesn’t
support Java programs. Text, graphics, and other Web page elements can be included
between the opening <APPLET> tag and the closing </APPLET> tag. If you don’t specify
anything between the tags, browsers that don’t support Java display nothing in place of
the applet.

TIP The Java Plug-in can be downloaded and installed from the Java Web site at
the address http://www.java.com. For the courtesy of people who view your
Web page without a Java-enabled browser, you can include a link to this site
within the APPLET tag using this HTML markup:

This applet requires the Java Plug-in.

Writing Java Applets and Java Web Start Applications 385 |

Other Attributes

The APPLET tag supports additional attributes that can be used to customize the presenta-
tion of the applet.

The ALIGN attribute defines how the applet will be laid out on a Web page in relation to
other parts of the page. This attribute can have several different values. The most useful
are "Left" to present the applet on the left of adjacent text and graphics, "Right" on the
right, and "Top" to align it with the topmost edge of adjacent items.

If you are using a Web-development tool that enables you to place Java applets on a
page, you should be able to set the ALIGN attribute by choosing "Left", "Right", or one
of the other values from within the program.

The HSPACE and VSPACE attributes set the amount of space, in pixels, between an applet
and its surrounding text. HSPACE controls the horizontal space to the left and right of the
applet, and VSPACE controls the vertical space above and below the applet. For example,
here’s the HTML markup for an applet with vertical space of 50 and horizontal space
of 10:

<applet code="ShowSmiley.class" width="45" height="42" align="Left"

vspace="50" hspace="10">

This applet requires Java.
</applet>

The CODE and CODEBASE attributes indicate where the applet’s main class file and other
files can be found.

CODE indicates the filename of the applet’s main class file. If CODE is used without an
accompanying CODEBASE attribute, the class file will be loaded from the same folder as
the Web page containing the applet.

You must specify the .class file extension with the CODE attribute. The following exam-
ple loads an applet called Bix.class from the same folder as the Web page:

<applet code="Bix.class" height="40" width="400">

</applet>

The CODEBASE attribute indicates the folder where the applet’s class is stored. The follow-
ing markup loads a class called Bix.class from a folder called Torshire:

<applet code="Bix.class" codebase="Torshire"
height="40" width="400">
</applet>

Loading an Applet

After you have an applet’s class file and a Web page that includes the applet, you can run
the applet by loading the page with a Web browser.

| 386

Day 14

Open the Watch.html page created from Listing 14.2 in a Web browser. One of three
things may happen:

* If the browser is equipped with the Java Plug-in, the applet will be loaded and will
begin running.

« If the browser does not offer any Java support, the following text will be displayed
in place of the applet: “This program requires a Java-enabled browser.”

o If the browser is not equipped with the Java Plug-in, but it does have its own built-
in Java interpreter, the applet will not be loaded. An empty gray box will be dis-
played in its place.

If you installed the Java 2 SDK, it’s likely you saw the applet running. The Java Plug-in
can be installed along with the SDK and configured to replace the built-in Java inter-
preter in Internet Explorer and other Web browsers.

TIP

If you are using the SDK, you also can use the appletviewer tool to view
applets. Unlike a browser, appletviewer displays only the applets included
on a Web page. It does not display the Web page itself.

Figure 14.1 shows the Watch.html page loaded with a copy of Mozilla 1.1 that has been
equipped with the Java Plug-in.

FIGURE 14.1

Running an applet on
a Web page with the
Java Plug-in.

% Watch Applet - Mozilla {Bui...[= [B|X]

File Edit View Go Bookmarks Tools Window Help D

-

.00 0 0 rIEsm

Wed Oct 01 16:59:00 EDT 2003

Try to load this Web page with each of the browsers installed on your computer. To try it
with the SDK’s appletviewer, use the following command:

appletviewer Watch.html

If you can’t get the applet to load in a Web browser, but you can load it with the SDK’s
appletviewer tool, the likeliest reason is because the browser isn’t equipped with the
Java 2 Plug-in yet.

Writing Java Applets and Java Web Start Applications 387 |

This is a circumstance that will be faced by many of the people using your applet. They
must download and install the Java Plug-in before they can view any Java 2 applets, such
as Watch, in their browser.

Putting Applets on the Web

After you have an applet that works successfully when you test it on your computer, you
can make the applet available on the Web.

If you know how to publish Web sites, you don’t have to learn any new skills to publish
Java applets on a site.

Java applets are presented by a Web server in the same way as Web pages, graphics, and
other files. You store the applet in a folder accessible to the Web server—often the same
folder that contains the Web page that features the applet.

When you upload an applet to a Web server, make sure to include each of the following
files:

* The Web page where the applet is presented

» The applet’s main class file

* Any other class files required by the applet—with the exception of the Java 2 class
library

* Any graphics and other files used by the applet

The most common ways to publish on the Web are by sending files through FTP (File
Transfer Protocol) or Web-design software that can publish sites.

Java Archives

The primary way to place a Java applet on a Web page is to use the APPLET tag to indi-
cate the applet’s class file. A Java-enabled browser downloads and runs the applet, load-
ing any classes and any other files needed by the applet from the same Web server.

Every file an applet needs requires a separate connection from a Web browser to the
server containing the file. Because a fair amount of time is needed just to make the con-
nection, this can increase the amount of time it takes to download an applet and every-
thing it needs to run.

The solution to this problem is to package the applet in a Java archive, which is also
called a JAR file. A Java archive is a collection of Java classes and other files packaged
into a single file.

| 388

Day 14

When an archive is used, a Web browser makes only one connection to download the
applet and its associated files and can start running more quickly.

The SDK includes a tool called jar that can add and remove files in Java archives. JAR
files can be compressed using the Zip format or packed without using compression.

Run jar without any arguments to see a list of options that can be used with the pro-
gram. The following command packs all of a folder’s class and GIF graphics files into a
single Java archive called Animate. jar:

jar cf Animate.jar *.class *.gif

The argument cf specifies two command-line options that can be used when running the
jar program. The ¢ option indicates that a Java archive file should be created, and f indi-
cates that the name of the archive file will follow as one of the next arguments.

You also can add specific files to a Java archive with a command, such as
jar cf AudioLoop.jar AudioLoop.class beep.au loop.au

This creates an AudioLoop. jar archive containing three files: AudioLoop.class,
loop.au, and beep.au.

In an APPLET tag, the ARCHIVE attribute shows where the archive can be found, as in the
following example:

<applet code="AudioLoop.class" archive="AudioLoop.jar"

width="45" height="42">

</applet>

This tag specifies that an archive called AudioLoop. jar contains files used by the applet.
Browsers and browsing tools that support JAR files will look inside the archive for files
that are needed as the applet runs.

CAUTION Although a Java archive can contain class files, the ARCHIVE attribute does

not remove the need for the CODE attribute. A browser still needs to know
the name of the applet’s main class file to load it.

Passing Parameters to Applets

Java applications support the use of command-line arguments, which are stored in a
String array when the main () method is called to begin execution of the class.

Applets offer a similar feature: They can read parameters that are set up with the HTML
tag PARAM, which has NAME and VALUE attributes.

Writing Java Applets and Java Web Start Applications 389 |

In the Web page that contains the applet, one or more parameters can be specified with
this tag. Each one must be placed within the opening and closing APPLET tags, as in the
following example:
<applet code="QueenMab.class" width="100" height="100">

<param name="font" value="TimesRoman">

<param name="size" value="24">

This applet requires Java.
</applet>

This example defines two parameters to the QueenMab applet: font with a value of
"TimesRoman" and size with a value of "24".

Parameters are passed to an applet when it is loaded. In the init() method for your
applet, you can retrieve a parameter by calling the getParameter (String) method with
its name as the only argument. This method returns a string containing the value of that
parameter or null if no parameter of that name exists.

For example, the following statement retrieves the value of the font parameter from a
Web page:

String fontName = getParameter("font");

Parameter names are case-sensitive, so you must capitalize them exactly as they appear
in an applet’s PARAM tag.

Listing 14.3 contains a modified version of the Watch applet that enables the background
color to be specified as a parameter called background.

LisTING 14.3 The Full Text of NewWatch.java

1: import java.awt.*;

2: import java.util.*;

3:

4: public class NewWatch extends javax.swing.JApplet {
5: private Color butterscotch = new Color(255, 204, 102);
6 private String lastTime = "";

7 Color back;

8:

9: public void init() {

10: String in = getParameter("background");

11: back = Color.black;

12: if (in != null) {

13: try {
14: back = Color.decode(in);
15: } catch (NumberFormatException e) {
16: showStatus("Bad parameter " + in);
17: }

18: }

390 Day 14

LisTING 14.3 continued

19: setBackground(back);

20: }

21:

22: public void paint(Graphics screen) {

23: Graphics2D screen2D = (Graphics2D)screen;
24: Font type = new Font("Monospaced", Font.BOLD, 20);
25: screen2D.setFont(type);

26: GregorianCalendar day = new GregorianCalendar();
27: String time = day.getTime().toString();
28: screen2D.setColor(back);

29: screen2D.drawString(lastTime, 5, 25);

30: screen2D.setColor (butterscotch);

31: screen2D.drawString(time, 5, 25);

32: try {

33: Thread.sleep(1000);

34: } catch (InterruptedException e) {

35: // do nothing

36: }

37: lastTime = time;

38: repaint();

39: }

40: }

The init () method in lines 9-20 has been rewritten to work with a parameter named
"background”.

This parameter should be specified as a hexadecimal string—a pound character (“#”) fol-
lowed by three hexadecimal numbers that represent the red, green, and blue values of a
color. Black is #000000, red is #FF0000, green is #00FF00, blue is #0000FF, white is
#FFFFFF, and so on. If you are familiar with HTML, you have probably used hexadeci-
mal strings before.

The Color class has a decode (String) class method that creates a Color object from a
hexadecimal string. This is called in line 14; the try-catch block handles the
NumberFormatException error that occurs if in does not contain a valid hexadecimal
string.

If no background parameter was specified, the default is black.

Line 19 sets the applet window to the color represented by the back object. To try this
program, create the HTML document in Listing 14.4.

Writing Java Applets and Java Web Start Applications

391 |

LisTING 14.4 The Full Text of Newwatch.html

1: <html>
2: <head>
3: <title>New Watch Applet</title>
4: </head>
5: <body bgcolor="#996633">
6: <applet code="NewWatch.class" height="50" width="345">
7: <param name="background" value="#996633">
8: This program requires Java.
9: </applet>
10: </body>
11: </html>

On this page, the "background" parameter is specified on line 7 with the value #996633.
This string value is the hexadecimal color value for a shade of brown. In Listing 14.4,
line 5 of the applet sets the background color of the page using the same hexadecimal
color value.

Loading this HTML file produces the result shown in Figure 14.2.

FiGURE 14.2 * New Watch Applet - Mozill... g@

Viewing the | File Edit View Go Bookmarks Tools Window Help D
NewWatch.html page in

a browser. .I @ @ @ @ lJ

3

Wed Oct 01 17:33:30 EDT 2003

Because the applet window and Web page have the same background color, the edges of
the applet are not visible in Figure 14.2.

Sun’s HTML Converter

At this point, you have learned how to use the APPLET tag to present applets. Two other
tags also can be used by some Web browsers: OBJECT and EMBED.

Creating a Web page that supports all these options is difficult even for experienced Web
developers.

To make the process easier, Sun offers a Java application called HTMLConverter that
converts an existing Web page so that all its applets are run by the Java Plug-in.

| 392

Day 14

This application is included with the Java 2 SDK and can be run at a command line.

To use the converter, first create a Web page that loads an applet using an APPLET tag.
HTMLConverter can load this page and convert its HTML to use the Java Plug-in.

After you have created a page, run HTMLConverter with the name of the page as an
argument. For example:

HTMLConverter Watch3.html

This command converts all applets contained in Watch3.html to be run by the Java
Plug-in.

CAUTION HTMLConverter overwrites the existing HTML markup on a Web page. If you

also want the non-Java Plug-in version of the page, you should run
HTMLConverter on a copy of the page instead of the original.

Java Web Start

One of the issues you must deal with as a Java programmer is how to make your soft-
ware available to your users.

Java applications require a Java interpreter, so one must either be included with the appli-
cation or previously installed on the computer. Lacking either of those, users must install
an interpreter themselves. The easiest solution (for you) is to require that users download
and install the Java Runtime Environment from Sun’s Web site at http://www.java.com.

Regardless of how you deal with the requirement for an interpreter, you distribute an
application like any other program, making it available on a CD, Web site, or some other
means. A user must run an installation program to set it up, if one is available, or copy
the files and folders manually.

Applets are easier to make available because they can be run by Web browsers. However,
if your program is a Java 2 applet, users must be running browsers equipped with the
Java Plug-in. This, too, can be downloaded from Sun as part of the Java Runtime
Environment.

There are several drawbacks to offering applets instead of applications, as detailed earlier
today. The biggest is the default security policy for applets, which makes it impossible
for them to read and write data on a user’s computer, among other restrictions.

Writing Java Applets and Java Web Start Applications 393 |

Java 2 eases the challenges of software deployment with Java Web Start, a means of run-
ning Java applications presented on a Web page and stored on a Web server. Here’s how
it works:

1. A programmer packages an application and all the files it needs into a JAR archive
along with a file that uses the Java Network Launching Protocol (JNLP), part of
Java Web Start.

2. The file is stored on a Web server with a Web page that links to that file.
3. A user loads the page with a browser and clicks the link.

4. If the user does not have the Java Runtime Environment, a dialog box opens asking
whether it should be downloaded and installed. The full installation is more than
65M in size and could take 30—45 minutes to download on a 56k Internet connec-
tion (or 3—5 minutes on a high-speed connection).

5. The Java Runtime Environment installs and runs the program, opening new frames
and other interface components like any other application. The program is saved in
a cache, so it can be run again later without requiring installation.

To see it in action, visit Sun’s Java Web Start site at http://java.sun.com/products/
javawebstart and click the Code Samples & Apps link. The Web Start Demos page con-
tains pictures of several Java applications, each with a Launch button you can use to run
the application, as shown in Figure 14.3.

FIGURE 14.3 % Java Web Start Demos - Mozilla {Build ID: 2003021008} [Z|E|X]

. File Edit View Go Bookmarks Tools Window Help Debug QA

Presenting Web Start

applications on a Web d @a @O [5 ity s cormforoiv3] ([Cuseaeeh) d§°
»

page.
Military H A Simple
Game NotePad
A simple but Shows how a
non- trivial sandboxed
board game. application
= can save and
- " load files,
Al

access the
clipboard in a safe and secure
manner using the JNLP APIL.

Java 2 SE, v1.2 & v1.3
Java 2 SE, v1.2 & v1.3

mJ;'_l@ Aoslont v
=2 0 =

Click the Launch button of one of the applications. If you don’t have the Java Runtime
Environment yet, a dialog box opens asking whether you want to download and install it.

| 394

Day 14

The runtime environment includes the Java Plug-in, a Java interpreter that adds support
for the current version of the language to browsers such as Internet Explorer and Mozilla.
The environment can also be used to run applications, whether or not they use Java Web
Start.

When an application is run using Java Web Start, a title screen displays on your com-
puter briefly, and the application’s graphical user interface appears.

NOTE If you have installed the Java 2 Software Development Kit, you are likely to

have the Java Runtime Environment on your computer already.

Figure 14.4 shows one of the demo applications offered by Sun, a military strategy game
in which three black dots attempt to keep a red dot from moving into their territory.

FiGure 14.4 £ Military Game (A=
Running a Java Web Actions Help
Start application.

Man vs Machine

Java Web Start Window

As you can see in Figure 14.4, the application looks no different from any other applica-
tion. Unlike applets, which are presented in conjunction with a Web page, applications
launched with Java Web Start run in their own windows, as if they were run from a com-
mand line.

One thing that’s different about a Java Web Start application is the security that can be
offered to users. When an application attempts to do something, such as read or write
files, the user can be asked for permission.

Writing Java Applets and Java Web Start Applications 395 |

For example, another one of the demo programs is a text editor. When you try to save a
file for the first time with this application, the Security Advisory dialog box opens (see
Figure 14.5).

FIGURE 14.5 Security Advisory,

9 This applcation has requested read/wite access to a fie on the
\') local flesystem. Allowing this action will only give the application

Choosing an

access ta the fle(s] selected in the following file dialo box, Do you

application’s security want o allow tis action?
privileges, ["] Do not show this advisory again|

If the user does not permit something, the application cannot function fully. The kinds of
things that trigger a security dialog are the same things not allowed by default in applets:
reading and writing files, loading network resources from servers other than the one host-
ing the program, and the like.

After an application has been run by Java Web Start, it is stored on a user’s computer in a
cache, enabling it to be run again later without installation. The only exception is when a
new version of the application becomes available. In this case, the new version is down-
loaded and installed automatically in place of the existing one.

A Java Web Start application viewer can be run directly to see the applications that have
been cached, run them, and change some of their settings. The application is called
javaws.exe and can be found in the same folder as java and the other command-line
programs in the Java 2 SDK. There also should be a menu item for Java Web Start that
was added during installation.

NOTE Although you run a Java Web Start application for the first time using a
Web browser, that's not a requirement. To see this, run the Java Web Start
application viewer, select a program, and choose Application, Install
Shortcuts. A shortcut to run the application is added to your desktop. You
can use it to run the program without a browser.

The default security restrictions in place for a Java Web Start application can be overrid-
den if it is stored in a digitally signed Java archive. The user is presented with the signed
security certificate, which documents the author of the program and the certificate grant-
ing authority vouching for its identity, and asked whether to accept it or reject it. The
application won’t run unless the certificate has been accepted.

396 Day 14

Using Java Web Start

Any Java application can be run using Java Web Start as long as the Web server that
offers the application is configured to work with the technology and all the class files and
other files it needs have been packaged together.

To prepare an application to use Java Web Start, you must save the application’s files in a
Java archive file, create a special Java Web Start configuration file for the application,
and upload the files to the Web server.

The configuration file that must be created uses Java Network Launching Protocol
(JNLP), an XML file format that specifies the application’s main class file, its JAR
archive, and other things about the program.

NOTE XML, which is short for Extensible Markup Language, is introduced during
Day 20, “Reading and Writing Data Using JDBC and XML.” Because the for-
mat of JNLP files is relatively self-explanatory, you don’t need to know much
about XML to create a JNLP file.

The next project you will undertake is to use Java Web Start to launch and run PageData,
an application that displays information about Web pages. The application requires the
PageData.class file, which can be downloaded from the Day 14 page of the book’s Web
site at http://www. java2idays.com. (You might also want PageData. java in case you
decide to make any changes to the application.)

To get ready, put a copy of that project’s class file in the folder you are using as a work-
space for your Java programming.

Creating a JNLP File

The first thing you must do is package all of an application’s class files into a Java
archive file along with any other files it needs. If you are using the Software
Development Kit, you can create the JAR file with the following command:

jar -cf PageData.jar PageData.class
A JAR file called PageData. jar is created that holds the class file.

Next you should create an icon graphic for the application, which will be displayed when
it is loaded and used as its icon in menus and desktops. The icon can be in either GIF or
JPEG format, and should be 64 pixels wide and 64 pixels tall.

Writing Java Applets and Java Web Start Applications 397 |

For this project, if you don’t want to create a new icon, you can download
pagedataicon.gif from the book’s Web site. Go to http://www.java21days.com and
open the Day 14 page. Right-click the pagedataicon.gif link and save the file to the
same folder as your PageData. jar file.

The final thing you must do is create the JNLP file that describes the application. List-
ing 14.5 contains a JNLP file used to distribute the PageData application. Open your
word processor and enter the text of this listing; then save the file as PageData. jnlp.

LisTiNG 14.5 The Full Text of PageData.jnlp

1: <?xml version="1.0" encoding="utf-8"?>

2: <!-- JNLP File for the PageData Application -->

3: <jnlp

4 codebase="http://www.cadenhead.org/book/java-21-days/java"
5: href="PageData.jnlp">

6: <information>

7 <title>PageData Application</title>

8: <vendor>Rogers Cadenhead</vendor>

9: <homepage href="http://www.java2idays.com"/>

10: <icon href="pagedataicon.gif"/>
11: <offline-allowed/>

12: </information>

13: <resources>

14: <j2se version="1.5"/>

15: <jar href="PageData.jar"/>

16: </resources>

17: <security>

18: <all-permissions/>

19: </security>

20: <application-desc main-class="PageData"/>
21: </jnlp>

The structure of a JNLP file is similar to the HTML markup required to put a Java applet
on a Web page. Everything within < and > marks is a tag, and tags are placed around the
information the tag describes. There’s an opening tag before the information and a clos-
ing tag after it.

For example, Line 7 of Listing 14.5 contains the following text:
<title>PageData Application</title>

In order from left to right, this line contains the opening tag <title>, the text PageData
Application, and the closing tag </title>. The text between the tags, “PageData
Application,” is the title of the application. This title will be displayed by Java Web Start
as the application is being loaded and used in menus and shortcuts.

| 398

Day 14

The difference between opening tags and closing tags is that closing tags begin with a
slash (/) character, and opening tags do not. In Line 8, <vendor> is the opening tag,
</vendor> is the closing tag, and these tags surround the name of the vendor who cre-
ated the application. I’ve used my name here. Delete it and replace it with your own
name, taking care not to alter the <vendor> or </vendor> tags around it.

Some tags have an opening tag only, such as Line 11:
<offline-allowed/>

The offline-allowed tag indicates that the application can be run even if the user is not
connected to the Internet. If it was omitted from the JNLP file, the opposite would be
true, and the user would be forced to go online before running this application.

In XML, all tags that do not have a closing tag end with /> instead of >.

Tags can also have attributes, which are another way to define information in an XML
file. An attribute is a name inside a tag that is followed by an equals sign and some text
within quotes.

For example, consider Line 9 of Listing 14.5:
<homepage href="http://www.java21idays.com"/>

This is the homepage tag, and it has one attribute, href. The text between the quotation
marks is used to set the value of this attribute to http://www.java2idays.com. This
defines the home page of the application—the Web page that users should visit if they
want to read more information about the program and how it works.

The PageData JNLP file defines a simple Java Web Start application that runs with no
security restrictions, as defined in lines 17-19:
<security>

<all-permissions/>
</security>

In addition to the tags that have already been described, Listing 14.5 defines other infor-
mation required by Java Web Start.

Line 1 designates that the file uses XML and the UTF-8 character set. This same line can
be used on any of the JNLP files you create for applications.

Line 2 is a comment. Like other comments in Java, it’s placed in the file solely for the
benefit of humans. Java Web Start ignores it.

The jnlp element, which begins on Line 3 and ends on Line 18, must surround all the
other tags that configure Web Start.

Writing Java Applets and Java Web Start Applications 399 |

This tag has two attributes, codebase and href, which indicate where the JNLP file for
this application can be found. The codebase attribute is the URL of the folder that con-
tains the JNLP file. The href attribute is the name of the file or a relative URL that
includes a folder and the name (such as "pub/PageData.jnlp").

In Listing 14.5, the attributes indicate that the application’s JNLP file is at the following
Web address:

http://www.cadenhead.org/book/java-21-days/java/PageData.jnlp

The information element (lines 6-12) defines information about the application.
Elements can contain other elements in XML, and in Listing 14.5, the information ele-
ment contains title, vendor, homepage, icon, and offline-allowed tags.

The title, vendor, homepage, and offline-allowed elements were described earlier.

The icon element (line 10) contains an href attribute that indicates the name (or folder
location and name) of the program’s icon. Like all file references in a JNLP file, this ele-
ment uses the codebase attribute to determine the full URL of the resource. In this exam-
ple, the icon element’s href attribute is pagedataicon.gif, and the codebase is
http://www.cadenhead.org/book/java2idays/java, so the icon file is at the following
Web address:

http://www.cadenhead.org/book/java2idays/java/pagedataicon.gif

The resources element (lines 13—16) defines resources used by the application when
it runs.

The j2se element has a version attribute that indicates the version of the Java inter-
preter that should run the application. This attribute can specify a general version (such
as "1.3", "1.4",or "1.5"), a specific version (such as "1.5.1-beta"), or a reference to
multiple versions—follow a general version number with a plus sign. The tag <j2se
version="1.3+"> sets up an application to be run by any Java interpreter from ver-
sion 1.3 upward.

NOTE When you're using the j2se element to specify multiple versions, Java Web
Start will not use a beta version to run an application. The only way to run
an application with a beta release is to indicate that release specifically.

The jar element has an href attribute that specifies the application’s JAR file. This
attribute can be a filename or a reference to a folder and filename, and it uses codebase.
In the PageData example, the JAR file is in http://www.cadenhead.org/book/
java2idays/java/PageData.jar.

| 400

Day 14

The application-desc element indicates the application’s main class file and any argu-
ments that should be used when that class is executed.

The main-class attribute identifies the name of the class file, which is specified without
the .class file extension.

If the class should be run with one or more arguments, place argument elements within
an opening <application-desc> tag and a closing </application-desc> tag.

The following XML specifies that the PageData class should be run with two arguments:

http://java.sun.com and yes:

<application-desc main-class="PageData">
<argument>http://java.sun.com</argument>

<argument>yes</argument>
</application-desc>

After you have created the PageData. jnlp file, change Line 4 of Listing 14.5 so that it
refers to the folder on a Web server where your application’s JAR file, icon file, and
JNLP file will be stored.

Upload all three of the project’s files to this folder; then run your browser and load the
JNLP file using its full Web address. If your Web server is configured to support Java
Web Start, the application will be loaded and begin running, as in Figure 14.6.

FsuRe 14.6

Runmng PageData URL: |http:J‘Mww.cadenhead.org!\uvorkbench |
using Java Web Start.

| Read Page || Clear Fields || Quit Loading |

Content-Length: 55435 |

Content.Type: [textrhtrl |

Date: [ed, 01 Oct 2003 21:41:38 GMT |

Public: | |

Expires: | |

Last-Modified: [Wed, 01 Oct 2003 17:46:02 GMT |

Server: |Apacher1.3.2? (Uni) (Red-Hat/Linux) mud_{

Done

Java Web Start Window

For this application to be run without restriction, the PageData. jar file must be digitally
signed. For real-world applications, this requires the services of a certificate-granting
authority such as Thawte or Verisign and can cost $1,000 or more per year.

Writing Java Applets and Java Web Start Applications 401 |

For testing purposes, the keystore and jarsigner tools in the Java 2 SDK can be used
to create a key and use it to digitally sign a JAR file.

The first step is to use keytool to create a key and assign it an alias and password:
keytool -genkey -alias examplekey -keypass swordfish

The -genkey argument generates a new key—which in this example is named
examplekey and has the password swordfish. If this is the first time keytool has been
used, you’ll be prompted for a password that protects access to the key database, which
is called a keystore.

After a key is placed in the keystore, it can be used with the jarsigner tool to sign an
archive file. This tool requires the keystore and key passwords and the alias of the key.
Here’s how the PageData. jar archive could be signed with the examplekey key:

jarsigner -storepass secret -keypass swordfish PageData.jar examplekey

The keystore password in this example is secret. The security certificate used to sign
the archive lasts 90 days and is described as an “untrusted source” when the Java Web
Start application is run.

NOTE There’s no easy way to avoid being described as “untrusted.” The only way
to establish your trustworthiness is to go through one of the professional
certificate-granting companies.

Java developer Roedy Green offers a guide to Java security certification
that lists several companies and their prices. Visit the Web page
http://mindprod.com/jgloss/certificate.html.

Supporting Web Start on a Server

If your server does not support Java Web Start, which is more likely than not because it
is a relatively new technology, you may see the text of your JNLP file loaded in a page,
and the application will not open.

A Web server must be configured to recognize that JNLP files are a new type of data that
should cause a Java application to run. This is usually accomplished by setting the
MIME type associated with files of the extension JNLP.

MIME, which is an acronym for Multipurpose Internet Mail Extensions, is a protocol for
defining Internet content such as email messages, attached files, and any file that can be
delivered by a Web server.

| 402

Day 14

On an Apache Web server, the server administrator can support JNLP by adding the fol-
lowing line to the server’s mime.types (or .mime.types) file:

application/x-java-jnlp-file JNLP

If you can’t get Java Web Start working on your server, you can test this project on
the book’s official site. Load the Web page http://www.cadenhead.org/book/
java-21-days/java/PageData. jnlp, or visit the Web address http://

www. java2idays.com and open the Day 14 page.

CAUTION Java Web Start applications should look exactly like the applications do

when run by other means. However, there appear to be a few bugs in how
much space is allocated to components on a graphical user interface. On a
Windows system, you might need to add 50 pixels to the height of an appli-
cation before employing it in Java Web Start. Otherwise, the text fields are
not tall enough to display numbers.

Additional JNLP Elements

The JNLP format has other elements that can affect the performance of Java Web Start.

It can be used to change the title graphic that appears when the application is launched,
run signed applications that have different security privileges, run an application using
different versions of the Java interpreter, and other options.

Security

By default, all Java Web Start applications will not have access to some features of a
user’s computer unless the user has given permission. This is similar to how the function-
ality of applets is limited.

If your application’s JAR file has been digitally signed to verify its authenticity, it can be
run without these security restrictions by using the security element.

This element is placed inside the jnlp element, and it contains one element of its own:
all-permissions. To remove security restrictions for an application, add this to a
JNLP file:

<security>

<all-permissions/>
</security>

Writing Java Applets and Java Web Start Applications 403 |

Descriptions

If you want to provide more information about your application for users of Java Web
Start, one or more description elements can be placed inside the information element.

Four kinds of descriptions can be provided using the kind attribute of the description
element:

* kind="one-line"—A succinct one-line description, used in lists of Web Start
applications

* kind="short"—A paragraph-long description, used when space is available
* kind="tooltip"—A tooltip description

* No kind attribute—A default description, used for any other descriptions not
specified

All these are optional. Here’s an example that provides descriptions for the PageData
application:

<description>The PageData application.</description>

<description kind="one-line">An application to learn more about Web

servers and pages.</description>

<description kind="tooltip">Learn about Web servers and

pages.</description>

<description kind="short">PageData, a simple Java application that

takes a URL and displays information about that URL and the Web

server that delivered it.</description>

Icons
The PageData JNLP file included a 64x64 icon, pagedataicon.gif, used in two differ-
ent ways:
* When the PageData application is being loaded by Java Web Start, the icon is dis-
played on a window next to the program’s name and author.
 If a PageData icon is added to a user’s desktop, the icon will be used at a different

size: 32x32.

When an application is loading, you can use a second icon element to specify a graphic
that will be displayed in place of the icon, title, and author. This graphic is called the
application’s “splash screen,” and it is specified with the kind="splash" attribute, as in
this example:

<icon kind="splash" href="pagedatasplash.gif"/ width="300" height="200">

The width and height attributes, which also can be used with the other kind of icon
graphic, specify the image’s display size in pixels.

This second icon element should be placed inside the information element.

| 404

Day 14

Running Applets

Although all the text up to this point has covered applications, Java Web Start also can be
used to run applets.

An applet is run differently by Web Start than it would be run by a browser. The applet
uses the same default security as an application, asking users for permission to undertake
some tasks, and it is not displayed in a Web page. The applet runs in its own window,
making it appear to be an application.

To run an applet with Web Start, use the applet-desc element instead of the
application-desc element.

The applet-desc element, which must be contained within the resources element, has
five attributes:
e name—The name of the applet.
* main-class—The name of the applet’s main class, which will be executed when
the applet is run.
e width—The width of the applet window.
* height—The height of the applet window.

e documentBase—The base URL of the document. When the applet is run by a
browser, the document base is a folder that holds the page containing the applet.
Java Web Start does not run applets inside a page, so there is no way to automati-
cally determine the document base. Because some applets call getDocumentBase ()
to use this URL, it must be explicitly specified as an attribute.

If an applet is run with parameters, these are specified with the param element, which is
contained within applet-desc. This takes the same form in a JNLP file that it does on an
HTML page:

<param name="somename" value="somevalue">
Today’s final project is the conversion of the NewWatch applet to use Java Web Start.

To get ready for the project, copy the Newwatch.class file to a folder and add it to a new
JAR archive using the following command:

jar -cf NewWatch NewWatch.class

A JAR archive called Newwatch. jar is created. This file is used by Java Web Start to run
the applet. To accomplish this, enter the text of Listing 14.6, saving the JNLP file as
NewWatch.jnlp.

Writing Java Applets and Java Web Start Applications

405 |

LisTING 14.6 The Full Text of Newwatch.jnlp

0N O~ WN =

<?xml version="1.0" encoding="utf-8"?>
<!-- JNLP File for the NewWatch Applet -->
<jnlp
codebase="http://www.cadenhead.org/book/java-21-days/java"
href="NewWatch.jnlp">
<information>
<title>New Watch Applet</title>
<vendor>Rogers Cadenhead</vendor>
<homepage href="http://www.java2idays.com"/>
<description kind="one-line">An applet that displays

: the current time.</description>

<offline-allowed/>

</information>

<resources>
<j2se version="1.2+"/>
<jar href="NewWatch.jar"/>

</resources>

<applet-desc
name="NewWatch applet"
main-class="NewWatch"
documentBase="http://www.cadenhead.org/book/java2idays"
width="345"
height="50">
<param name="background" value="#996633">

</applet-desc>

1 </jnlp>

Figure 14.7 shows the applet.

FiGure 14.7 £ New Watch Applet =T
WL R e | Oct 01 18:33:26 EDT 2003

Java Web Start.

The applet-desc element runs the NewWatch applet in a window 345 pixels wide and 50
pixels high. One parameter is specified using a param-name element in line 25: the back-

Applet running...

ground color to display underneath the current date and time.

NOTE

visit Sun’s Java Web Start site at the following address:

http://java.sun.com/products/javawebstart

For more information on using the technology with your own applications,

| 406 Day 14

Summary

Although applets are no longer the focus of Java development, they are still the element
of Java technology that reaches the most people, appearing on thousands of World Wide
Web sites.

Because they are executed and displayed within Web pages, applets can use the graphics,
user interface, and event structure provided by the Web browser. This capability provides
the applet programmer with a lot of functionality without a lot of extra toil.

Another Web-based way to present Java programs is to use Java Web Start, a new tech-
nology that blurs the distinction between applications and applets.

With Web Start, users no longer need to run an installation program to set up a Java
application and the interpreter that executes the class. Web Start takes care of this auto-
matically, after the user’s browser has been equipped to use the Java 2 Runtime
Environment.

Support for Web Start is offered through the Java Network Launching Protocol (JNLP),
an XML file format used to define and set up Java Web Start.

Q&A

Q I have an applet that takes parameters and an HTML file that passes it those
parameters, but when my applet runs, all I get are null values. What’s going
on here?

A Do the names of your parameters (in the NAME attribute) exactly match the names
you’re testing for in getParameter()? They must be exact, including case, for the
match to be made. Also make sure that your PARAM tags are inside the opening and
closing APPLET tags and that you haven’t misspelled anything.

Q Because applets don’t have a command line or a standard output stream, how
can I do simple debugging output such as System.out.println() in an applet?

A Depending on your browser or other Java-enabled environment, you might have a
console window in which debugging output (the result of System.out.println())
appears, or it might be saved to a log file. (Netscape has a Java Console under the
Options menu; Internet Explorer uses a Java log file that you must enable by
choosing Options, Advanced.)

You can continue to print messages using System.out.println() in your

applets—just remember to remove them after you’re finished so that they don’t
confuse your users.

Writing Java Applets and Java Web Start Applications 407 |

Q

A

Quiz

An applet I am trying to run doesn’t work—all I see is a gray box. Is there a
place I can view any error messages generated by this applet?

If you’re using the Java Plug-in to run applets, you can view error messages and
other information by opening the Java Console. To see it in Windows, double-click
the Java cup icon in the System Tray. Current versions of Mozilla and Netscape
Navigator make the Java output window available as a pull-down menu: Choose
Tools, Web Development, Java Console.

I have written an applet that I want to make available using Java Web Start.
Should I convert it to an application or go ahead and run it as-is?

If you would be converting your program to an application simply to run it with
Web Start, that’s probably not necessary. The purpose of the applet-desc tag is to
make it possible to run applets without modification in Java Web Start. The only
reason to undertake the conversion is if there are other things you want to change
about your program, such as the switch from init() to a constructor method.

Review today’s material by taking this three-question quiz.

Questions

1.

Which class should an applet inherit from if Swing features will be used in the
program?

a. java.applet.Applet
b. javax.swing.JApplet

c. Either one

. Which XML element is used to identify the name, author, and other details about a

Java Web Start-run application?
a. jnlp
b. information

C. resources

. What happens if you put a Java 2 applet on a Web page using the APPLET tag and it

is loaded by a copy of Internet Explorer 6 that does not include the Java Plug-in?
a. It runs correctly.
b. It doesn’t run, and an empty gray box is displayed.

c. The user is offered a chance to download and install the Java Plug-in.

| 408 Day 14

Answers

1. b. If you’re going to use Swing’s improved interface and event-handling capabili-
ties, the applet must be a subclass of JApplet.

2. b. The application is described using elements contained within an opening
<information> tag and a closing <information> tag.

3. b. The applet won’t run because Internet Explorer doesn’t offer a Java interpreter.
The user won’t be given a chance to download and install the Java Plug-in unless
you use a Web page converted by HTMLConverter.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given the following,

import java.awt.*;
import javax.swing.*;

public class SliderFrame extends JFrame {
public SliderFrame() {
super();
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container pane = getContentPane();
JSlider value = new JSlider (0, 255, 100);
setContentPane(pane);
setSize (325, 150);
setVisible(true);

}

public static void main(String[] arguments) {
new SliderFrame();
}
}

What will happen when you attempt to compile and run this source code?

It compiles without error and runs correctly.

a.
b. It compiles without error but does not display anything in the frame.

e

It does not compile because the content pane is empty.

d. It does not compile because of the new AskFrame() statement.

The answer is available on the book’s Web site at http://www.java2idays.com. Visit the
Day 14 page and click the Certification Practice link.

Writing Java Applets and Java Web Start Applications 409 |

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Enhance the NewWatch applet so that you can set the color of the text with a
parameter.

2. Create a new JNLP file that runs the PageData application using version 1.3 of the
Java interpreter and force users to be connected to the Internet when it is run.

Where applicable, exercise solutions are offered on the book’s Web site at
http://www.java2idays.com.

