
7
Secure Remote Administration
With SSH

7.0 Introduction
In this chapter and the next chapter we'll look at some of the ways Linux offers to
remotely administer a server, or to remotely access your workstation. Linux gives
users great flexibility and functionality. You may have command-line only or a full
graphical desktop, just as though you were physically present at the remote
machine.

OpenSSH is the tool of choice for remote command-line administration. It's secure,
and easy to set up and use. It's also good for running a remote graphical desktop,
because you can tunnel X Windows securely over SSH. This works well over fast
local links. However, it's less satisfactory over a dialup or Internet connection
because you'll experience significant lag.

Rdesktop is a simple Linux client for connecting to Windows Terminal Servers, and
to the Windows XP Professional Remote Desktop. This is useful for some system
administration tasks, and for accessing Windows applications from Linux.

For dialup users who want a remote graphical desktop over dialup, FreeNX is just
the ticket. It is designed to deliver good performance over slow links. Currently you
can use it to access a Linux PC from Linux, Windows, MacOSX, and Solaris.

VNC is the reigning champion of cross-platform remote graphical desktops. With
VNC you may do all sorts of neat things: run several PCs from a single keyboard,
mouse, and monitor, mix and match operating systems, and do remote technical
support.

In this chapter we'll look at how to use OpenSSH. The next chapter is devoted to
Rdesktop, FreeNX, and VNC.

OpenSSH
OpenSSH is the Free Software implementation of the SSH protocol, licensed under a
modified BSD license that pretty much lets you do whatever you want with it,
including modify and re-distribute it, as long as you include the copyright notices.

OpenSSH is used to foil eavesdropping and spoofing on network traffic by

encrypting all traffic during a session, both logins and data transfer. It performs
three tasks: authentication, encryption, and it guarantees the integrity of the data
transfer. If something happens to alter your packets, SSH will tell you.

There are two incompatible SSH protocols: SSH-1 and SSH-2. OpenSSH supports
both of them, but I do not recommend using SSH-1 at all. If you have to log in to
remote systems under someone else's control that are still using SSH-1, consider
exercising some tough love and telling them you are not willing to risk your security
any more, and they must upgrade. SSH-1 was great in its day, but that was then. It
has a number of flaws that are fixed by upgrading to SSH-2. See
"CA-2001-35" (http://www.cert.org/advisories/CA-2001-35.html) for more
information, and don't forget to review the list of references at the end of the article

SSH Tunneling
You may use SSH port forwarding, also called "tunneling", to securely encapsulate
non-secure protocols like wireless and VNC, which you'll see in various recipes in
this book.

OpenSSH supports a number of strong encryption algorithms: 3DES, Blowfish, AES
and arcfour. These are unencumbered by patents; in fact, the OpenSSH team has
gone to great lengths to ensure that no patented or otherwise encumbered code is
inside OpenSSH.

OpenSSH Components
OpenSSH is a suite of remote transfer utilities:

sshd

The OpenSSH server daemon

ssh

Stands for secure shell, though it doesn't really include a shell, but provides a
secure channel to the command shell on the remote system

scp

Secure copy- this provides encrypted file transfer

sftp

Secure file transfer protocol

ssh-copy-id

Nice little program for installing your personal identity key to a remote
machine's authorized_keys file

ssh-keyscan

Finds and collects public host keys on a network, saving you the trouble of
hunting them down manually

ssh-keygen

Generates and manages RSA and DSA authentication keys

ssh-add

Add RSA or DSA identities to the authentication agent, ssh-agent

ssh-agent

Remembers your passphrases over multiple SSH logins for automatic
authentication. ssh-agent binds to a single login session, so logging out, opening
another terminal, or rebooting means starting over. A better utility for this is
keychain, which remembers your passphrases for as long you don't reboot

Using OpenSSH
OpenSSH is very flexible, and supports different types of authentication:

Host-key Authentication

This uses your Linux login and password to authenticate, and your SSH keys
encrypt the session. This is the simplest, since all you need are host keys. An SSH
host key assures you that the machine you are logging into is who it claims to be

Public-key authentication

Instead of using your system login, authenticate with an SSH identity key.
Identity keys authenticate individual users, unlike host keys which authenticate
servers. It's a bit more work to set up, because you need to create and distribute
identity keys in addition to host keys. This is a slick way to login into multiple
hosts with the same login, plus it protects your system login, because the identity
key has its own passphrase. Simply distribute copies of your public key to every
host that you want to access, and always protect your private key- never share it

Passphrase-less Authentication

This works like public-key authentication, except that the key pair is created
without a passphrase. This is useful for automated services, like scripts and cron
jobs. Because anyone who succeeds in thieving the private key can then easily
gain access, you need to be very protective of the private key

Using a passphrase-less key carries a bit more risk, because then anyone who
obtains your private key can masquerade as you. One way to use passphrases with
automated processes is to use ssh-agent or the keychain utility. These remember
your passphrases and authenticate automatically. Their one weakness is they do not
survive a reboot, so every time you reboot you have to re-enter all of your
passphrases. See Chapter 17, "Remote Access", of the Linux Cookbook, for recipes
on how to use these excellent utilities.

Key Types

There are two different uses for authentication keys: host keys, which
authenticate computers, and identity keys, which authenticate users. The keys
themselves are the same type of key, either RSA or DSA. Each key has two parts:
the private and the public. The server keeps the private key, and the client uses
the public key. Transmissions are encrypted with the public key, and decrypted
with the private key. This is a brilliantly simple and easy-to-use scheme - you can
safely distribute your public keys as much as you want

"Server" and "client" are defined by the direction of the transaction- the server must
have the SSH daemon running and listening for connection attempts. Client is
anyone logging into this machine.

7.1 Starting and Stopping OpenSSH

Problem
You installed OpenSSH, and you configured it to start or not start at boot, according

to your preference. Now you want to know how to start and stop it manually, and
how to get it to re-read its configure file without restarting.

Solution
The answer, as usual, lies in /etc/init.d.

On Fedora use these commands:

/etc/init.d/sshd {start|stop|restart|condrestart|reload|status}

On Debian systems use these:

/etc/init.d/ssh {start|stop|reload|force-reload|restart}

If you elected to not have the SSH daemon run automatically after installing
OpenSSH on Debian, you will need to rename or delete /etc/ssh/sshd_not_to_be_run
before it will start up. Or you can run dpkg-reconfigure ssh.

The OpenSSH configuration file, sshd.conf, must be present, or OpenSSH will not
start.

Discussion
Port 22, the default SSH port, is a popular target for attack. The Internet is infested
with automated attack kits that pummel away at random hosts. Check your firewall
logs- you'll see all kinds of garbage trying to brute-force port 22. So some admins
prefer to start up the SSH daemon only when they know they'll need it. Some run it
on a non-standard port, which is configurable in /etc/ssh/ssh_config, for example:

Port 2022

Check /etc/services to make sure you don't use an already-used port, and make an
entry for any non-standard ports you are using. Using a non-standard port does not
fool determined portscanners, but it will alleviate the pummeling a lot and lighten
the load on your logfiles. A nice tool for heading off these attacks is the DenyHosts
utility; see Recipe ["Using DenyHosts to Foil SSH Attacks"].

Red Hat's condrestart, or "conditional restart", restarts a service only if it is
already running. If it isn't, it fails silently.

The reload command tells the service to re-read its configuration file, instead of
completely shutting down and starting up again. This is a nice non-disruptive way to
activate changes.

If you like commands like condrestart that are not included with your distribution,
you may copy them from systems that use them and tweak them for your system. Init
scripts are just shell scripts, so they are easy to customize.

See Also
Chapter 7 of the Linux Cookbook, "Starting and Stopping Linux"

Recipe ["Using DenyHosts to Foil SSH Attacks"]

7.2 Creating Strong Passphrases

Problem
You know that you will need to create a strong passphrase every time you create an

SSH key, and you want to define a policy for that spells out what a strong passphrase
is. So, what makes a strong passphrase?

Solution
Use these guidelines for creating your own policy:

• An SSH passphrase must be at least eight characters long

• It must not be a word in any language. The easy way to handle this is to use a
combination of letters, numbers, and mixed cases

• Reversing words does not work- automated dictionary attacks know about this

• A short sentence works well for most folks, like "pnt btt3r l*vz m1 gUmz" (Peanut
butter loves my gums)

• Write it down and keep it in a safe place

Discussion
Whoever convinced hordes of howto authors to teach "Don't write down passwords"
should be sent to bed without dessert. It doesn't work. If you don't want to believe
me, how about a security expert like Bruce Schneier: "Write Down Your
Password" (http://www.schneier.com/blog/archives/2005/06/write_down_your.html)

"I recommend that people write their passwords down on a small piece of paper, and
keep it with their other valuable small pieces of paper: in their wallet."

Easily-remembered passwords are also easily guessed. Don't underestimate the
power and sophistication of automated password-guessers. Difficult-to-remember
passwords are also difficult to crack. Rarely-used passwords are going to evaporate
from all but the stickiest of memories.

I use a hand-written file kept in a locked filing cabinet, in a cunningly-labeled folder
that does not say "Secret Passwords In Here", plus my personal sysadmin notebook
that goes with me everywhere. If any thief actually searches hundreds of files and
can decode my personal shorthand that tells what each login is for, well, I guess she
deserves to succeed at breaking into my stuff!

7.3 Setting Up Host-Keys For Simplest
Authentication

Problem
You want to know how to set up OpenSSH to login to a remote host, using the
simplest method that it supports.

Solution
Using host-key authentication is the simplest way to set up remote SSH access. You
need:

• OpenSSH installed on the machine you want to log into remotely

• The ssh daemon must be running on the remote server, and port 22 not blocked

• SSH client software on the remote client

• A Linux login account on the remote server

• Distribute the public host key to the clients

Your OpenSSH installer should have already created the host keys. If it didn't, see
the next recipe.

First, protect your private host key from accidental overwrites:

chmod 400 /etc/ssh/ssh_host_rsa_key

Now the public host key must be distributed to the clients. One way is to log in from
the client, and let OpenSSH transfer the key:

foober@gouda:~$ ssh reggiano
The authenticity of host 'reggiano (192.168.1.10)' can't be established.
RSA key fingerprint is 26:f6:5b:24:49:e6:71:6f:12:76:1c:2b:a5:ee:fe:fe
Are you sure you want to continue connecting (yes/no)?
Warning: Permanently added 'reggiano 192.168.1.10' (RSA) to the list of known hosts.
foober@reggiano's password:
Linux reggiano 2.6.15 #1 Sun June 10 11:03:21 PDT 2007 i686 GNU/Linux
Debian GNU/Linux
Last login: S Sun June 10 03:11:49 PDT 2007 from :0.0
foober@reggiano:~$

Now Foober can work on Reggiano just as if he were physically sitting at the
machine, and all traffic -including the initial login- is encrypted.

The host key exchange happens only once, the first time you login. You should never
be asked again unless the key is replaced with a new one, or you change your
personal ~/.ssh/known_hosts file.

Discussion
The public host key is stored in the ~/.ssh/known_hosts file on the client PC. This file
can contain any number of host keys.

It is a bad idea to log in as root over SSH; it is better to log in as an ordinary user,
then su or sudo as you need after login. You can login as any user that has an
account on the remote machine with the -l (login) switch:

foober@gouda:~$ ssh -l deann reggiano

Or like this:

foober@gouda:~$ ssh deann@reggiano

Don't get too worked up over "client" and "server"- the server is whatever machine
you are logging into, and the client is wherever you are logging in from. The SSH
daemon does not need to be running on the client.

There is a small risk that the host key transmission could be intercepted and a
forged key substituted, which would allow an attacker access to your systems. You
should verify the IP address and public key fingerprint before typing "yes". Primitive
methods of verification, like writing down the fingerprint on a piece of paper, or
verifying it via telephone, are effective and immune to computer network exploits.

For the extremely cautious, manually copying keys is also an option; see Recipe
["Generating and Copying SSH Keys"]

See Also
Chapter 17 of the Linux Cookbook, "Remote Access"

man 1 ssh

man 1 ssh-keygen

man 8 sshd

7.4 Generating and Copying SSH Keys

Problem
Your OpenSSH installation did not automatically create host keys, or you want to
generate new replacement host keys. Additionally, you don't trust the usual
automatic transfer of the host's public key, so you want to manually copy host keys
to the clients.

Solution

Should you create RSA or DSA keys? Short answer: it doesn't matter.
Both are cryptographically strong. The main difference to the end user
is RSA keys can be up to 2048 bits in length, while DSA is limited to
1024 bits, so theoretically RSA keys are more future-proof. The default
for either type of key is 1024 bits.

This example generates a new key pair, using the default host key name from
/etc/ssh/sshd_config. Never create a passphrase on host keys- just hit the return key
when it asks for one:

cd /etc/ssh/
ssh-keygen -t dsa -f ssh_host_dsa_key
Generating public/private dsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.
The key fingerprint is:
26:f6:5b:24:49:e6:71:6f:12:76:1c:2b:a5:ee:fe:fe root@windbag

You may wish to be extra-cautious and copy the public key manually via floppy disk,
USB key, or scp over an existing OpenSSH connection, to avoid any possible
hijacking in transit. You need to modify the key if you're going to copy it manually.
Here is the original public host key:

ssh-dss AAAAB3NzaC1kc3MAAACBALeIrq77k20kUAh8u3RYG1p0iZKAxLQZQzxJ8422d
+uPRwvVAARFnriNajoJaB9L7qu5D0PCSNCOuBMOIkkyHujfXJejQQnMucgkDm8AhMfO8TPyLZ6pG459M
+bfwbsBybyWav7eGvgkkTfZYDEd7HmQK6+Vkd9SYqWd
+Q9HkGCRAAAAFQCrhZsuvIuZq5ERrnf5usmMPXlQkQAAAIAUqi61+T7Aa2UjE40hnO8rSVfFcuHE6BCmm0FMO
oJQbD9xFTztZbDtZcna0db5l
+6AYxtVInHjiYPj76/hYST5o286/28McWBF8+j8Nn/tHVUcWSjOE8EJG8Xh2GRxab6AOjgo/GAQli1qMxlJfC
bOlcljVN8VDDF4XtPzqBPHtQAAAIBn7IOv9oM9dUiDZUNXa8s6UV46N4rqcD+HtgkltxDm
+tRiI68kZsU5weTLnLRdZfv/o2P3S9TF3ncrS0YhgIFdGupI//28gH
+Y4sYvrUSoRYJLiDELGm1+2pI06wXjPpUH2Iajr9TZ9eKWDIE+t2sz6lVqET95SynXq1UbeTsDjQ==
root@windbag

Delete the hostname at the end of the file, and prefix the key with the fully-qualified
domain name and IP address. Make sure there are no spaces between the FQDN and
address, and there is one space after the IP address:

windbag.carla.com,192.168.1.10 ssh-dss
AAAAB3NzaC1kc3MAAACBALeIrq77k20kUAh8u3RYG1p0iZKAxLQZQzxJ8422d
+uPRwvVAARFnriNajoJaB9L7qu5D0PCSNCOuBMOIkkyHujfXJejQQnMucgkDm8AhMfO8TPyLZ6pG459M
+bfwbsBybyWav7eGvgkkTfZYDEd7HmQK6+Vkd9SYqWd
+Q9HkGCRAAAAFQCrhZsuvIuZq5ERrnf5usmMPXlQkQAAAIAUqi61+T7Aa2UjE40hnO8rSVfFcuHE6BCmm0FMO
oJQbD9xFTztZbDtZcna0db5l
+6AYxtVInHjiYPj76/hYST5o286/28McWBF8+j8Nn/tHVUcWSjOE8EJG8Xh2GRxab6AOjgo/GAQli1qMxlJfC
bOlcljVN8VDDF4XtPzqBPHtQAAAIBn7IOv9oM9dUiDZUNXa8s6UV46N4rqcD+HtgkltxDm
+tRiI68kZsU5weTLnLRdZfv/o2P3S9TF3ncrS0YhgIFdGupI//28gH
+Y4sYvrUSoRYJLiDELGm1+2pI06wXjPpUH2Iajr9TZ9eKWDIE+t2sz6lVqET95SynXq1UbeTsDjQ==

Starting with AAAAB, the file must be one long unbroken line, so be sure to do this in
a proper text editor that does not insert line breaks.

You may also use the hostname, or just the IP address all by itself.

If you manually copy additional host keys into the known_hosts file make sure there
no empty lines between them.

Discussion
How much of a risk is there in an automatic host key transfer? The risk is small; it's
difficult to launch a successful "man-in-the-middle" attack, but not impossible.
Verifying the host IP address and public key fingerprint before accepting the host
key are simple and effective precautions.

It really depends on how determined an attacker is to penetrate your network. The
attacker would first have to intercept your transmission in a way that does not draw
attention. Then possibly spoof the IP address (which is easy) and public key
fingerprint of your trusted server, which is not so easy to do. Since most users do not
bother to verify these, most times it's not even necessary. Then when you type "yes"
to accept the key, you get the attacker's host key. To avoid detection the attacker
passes on all traffic between you and the trusted server, while capturing and reading
everything that passes between you and the trusted server.

How hard is it to hijack Ethernet traffic? On the LAN, it's easy- check out the
arpspoof utility, which is part of the Dsniff suite of network auditing and
penetration-testing tools. How trustworthy are your LAN users? Over the Internet,
the attacker would have to compromise your DNS, which is possible, but not easy,
assuming your DNS is competently managed. Or be in a position of trust and a place
to wreak mischief, such as an employee at your ISP.

In short, it's a small risk, and the decision is yours.

See Also
man 1 ssh-keygen

7.5 Using Public-Key Authentication to
Protect System Passwords

Problem
You are a bit nervous about using system account logins over untrusted networks,
even though they are encrypted with SSH. Or, you have a number of remote servers
to manage, and you would like to use the same login on all of them, but not with
system accounts. In fact you would like your remote logins to be de-coupled from

system logins, plus you would like to have fewer logins and passwords to keep track
of.

Solution
Give yourself a single login for multiple hosts by using public-key authentication,
which is completely separate from local system accounts. Follow these steps:

Install OpenSSH on all participating machines, and set up host keys on all
participating machines. (Host keys always come first.)

Then generate a new identity key pair as an ordinary unprivileged user, and store it
in your ~/.ssh directory on your local workstation. Be sure to create a passphrase:

$ ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/carla/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/carla/.ssh/id_rsa.
Your public key has been saved in /home/carla/.ssh/id_rsa.pub.
The key fingerprint is:
38:ec:04:7d:e9:8f:11:6c:4e:1c:d7:8a:91:84:ac:91 carla@windbag

Protect your private identity key from accidental overwrites:

$ chmod 400 id_rsa

Now copy your new public key (id_rsa.pub) to all of the remote user accounts you'll
be using, into their ~/.ssh/authorized_keys2 files. If this file does not exist, create it.
Using the ssh-copy-id utility is the secure, easy way:

$ ssh-copy-id -i id_rsa.pub danamania@muis.net

Discussion
ssh-copy-id copies identity keys in the correct format, makes sure that file
permissions and ownership are correct, and ensures you do not copy a private key by
mistake.

The authorized_keys2 file may be named something else, like authorized_keys, or
freds_keys, or anything you want; just make sure it agrees with the
"AuthorizedKeysFile" line in /etc/ssh/sshd.conf.

Always put a passphrase on human-user authentication keys- it's cheap insurance. If
someone manages to steal your private key, it won't do them any good without the
passphrase.

Using public-key authentication combined with sudo is a good way to delegate admin
chores to your underlings, while limiting what they can do.

Ordinary users may run SSH, which wise network admins know and have policies to
control, because all manner of forbidden services can be tunneled over SSH, thereby
foiling your well-crafted firewalls and network monitors.

See Also
man 1 ssh-copy-id

man 1 ssh

man 1 ssh-keygen

man 8 sshd

Recipe 8.21, "Granting Limited Rootly Powers With Sudo," the Linux Cookbook

7.6 Managing Multiple Identity Keys

Problem
You want to use different identity keys for different servers. How do you create keys
with different names?

Solution
Use the -f flag of the ssh-keygen command to give keys unique names:

[carla@windbag:~/.ssh]$ ssh-keygen -t rsa -f id_mailserver

Then use the -i flag to select the key you want to use when you log in to the remote
host:

$ ssh -i id_mailserver bart@192.168.1.11
Enter passphrase for key 'id_mailserver':

Discussion
You don't have to name your keys "id_" whatever, you can call them anything you
want.

See Also
man 1 ssh-copy-id

man 1 ssh

man 1 ssh-keygen

man 8 sshd

7.7 Hardening OpenSSH

Problem
You are concerned about security threats, both from the inside and the outside. You
are concerned about brute-force attacks on the root account, and you want to
restrict users to prevent mischief, whether accidental or deliberate. What can do you
to make sure OpenSSH is as hardened as it can be?

Solution
OpenSSH is pretty tight out of the box. There are some refinements you can make;
take a look at the following steps and tweak to suit your needs. First, fine-tune
/etc/sshd_config with these restrictive directives:

ListenAddress 12.34.56.78
PermitRootLogin no
Protocol 2
AllowUsers carla foober@bumble.com lori meflin
AllowGroups admins

You may want the SSH daemon to listen on a different port:

Port 2222

Or, you can configure OpenSSH to disallow password logins, and require all users to
have identity keys with this line in /etc/sshd_config:

PasswordAuthentication no

Finally, configure iptables to filter traffic, blocking all but authorized bits. (See
Chapter ["Building a Linux Firewall"])

Discussion
Specifying the interfaces that the SSH daemon is to listen to, and denying root
logins, are basic, obvious precautions.

Protocol 2 means your server will only allow SSH2 logins, and will reject SSH1.
SSH1 is old enough, and has enough weaknesses, that it really isn't worth the risk of
using it. SSH2 has been around for several years, so there is no reason to continue
using the SSH1 protocol.

AllowUsers denies logins to all but the listed users. You may use just the login names,
or restrict them even further by allowing them to login only from certain hosts, like
foober@bumble.com.

AllowGroups is a quick way to define allowed users by groups. Any groups not named
are denied access. These are normal local Linux groups in /etc/group.

If you prefer, you may use DenyHosts and DenyGroups. These work the opposite of
the Allow directives- anyone not listed is allowed to login. Do not mix Allow and Deny
directives; only use one or the other.

Changing to a non-standard port will foil some of the SSH attacks that only look for
port 22. However, determined portscanners will find out which port your SSH
daemon is listening to, so don't count on it as a meaningful security measure- it's just
a way to keep your logfiles from filling up too quickly.

See Also
man 1 passwd

man 5 sshd_config

Recipe 17.13, "Setting File Permissions on ssh Files", the Linux Cookbook

7.8 Changing a Passphrase

Problem
You want to change the passphrase on one of your private keys.

Solution
Use the -p switch with the ssh-keygen command:

$ ssh-keygen -p -f ~/.ssh/id_dsa
Enter old passphrase:
Key has comment '/home/pinball/.ssh/id_dsa'
Enter new passphrase (empty for no passphrase):
Enter same passphrase again:

Your identification has been saved with the new passphrase.

Discussion
Passphrases are not recoverable. If you lose a passphrase, your only option is to
create a new key with a new passphrase.

See Also
man 1 ssh-keygen

7.9 Retrieving a Key Fingerprint

Problem
You are sending a public host key or identity key to another user, and you want the
user to be able to verify that the key is genuine by confirming the key fingerprint.
You didn't write down the fingerprint when the key was created- how do you find out
what it is?

Solution
Use the ssh-keygen command:

[carla@windbag:~/.ssh]$ ssh-keygen -l
Enter file in which the key is (/home/carla/.ssh/id_rsa): id_mailserver
1024 ce:5e:38:ba:fb:ec:e7:80:83:3e:11:1a:6f:b1:97:8b id_mailserver.pub

Discussion
This is where old-fashioned methods of communication, like telephone and
sneakernet, come in handy. Don't use email, unless you already have encrypted
email set up with its own separate encryption and authentication, because anyone
savvy enough to perpetrate a man-in-the-middle attack will be more than smart
enough to crack your email. Especially since the vast majority of email is still sent in
the clear, so it's trivial to sniff it.

See Also
man 1 ssh-keygen

7.10 Checking Configuration Syntax

Problem
Is there a syntax-checker for sshd_config?

Solution
But of course. After making your changes, run this command:

sshd -t

If there are no syntax errors, it exits silently. If it find mistakes, it tells you:

sshd -t

/etc/ssh/sshd_config: line 9: Bad configuration option: Porotocol
/etc/ssh/sshd_config: terminating, 1 bad configuration options

You can do this while the SSH daemon is running, so you can correct your mistakes
before issuing a reload or restart command.

Discussion
The -t stands for "test." It does not affect the SSH daemon, it only checks
/etc/sshd_config for syntax errors, so you can use it anytime.

See Also
man 5 sshd_config

man 8 sshd

7.11 Using OpenSSH Client Configuration
Files For Easier Logins

Problem
You or your users have a collection of different keys for authenticating on different
servers and accounts, and different ssh command options for each one. Typing all
those long command strings is a bit tedious and error-prone- how do you make it
easier and better?

Solution
Put individual configuration files for each server in ~/.ssh/, and select the one you
want with the -F flag. This example uses the configuration file mailserver to set the
connection options for the server jarlsberg.

[carla@windbag:~/.ssh]$ ssh -F mailserver jarlsberg

If you are logging in over the Internet, you'll need the fully-qualified domain name of
the server:

[carla@windbag:~/.ssh]$ ssh -F mailserver jarlsberg.carla.net

IP addresses work too.

Discussion
Using custom configuration files lets you manage a lot of different logins sanely. For
example, ~/.ssh/mailserver contains these options:

IdentityFile ~/.ssh/id_mailserver
Port 2222
User mail_admin

It's easier and less error-prone to type ssh -F mailserver jarlsberg than ssh -i
id_mailserver -p 2222 -l mail_admin jarlsberg.

Don't forget to configure your firewall for your alternate SSH ports, and check
/etc/services to find unused ports.

You may open up as many alternate ports as you want on a single OpenSSH server.
Use netstat to keep an eye on activities:

netstat -a --tcp -p | grep ssh
tcp6 0 0 *:2222 *:* LISTEN 7329/sshd
tcp6 0 0 *:ssh *:* LISTEN 7329/sshd
tcp6 0 0 ::ffff:192.168.1.1:2222 windbag.localdoma:35474
ESTABLISHED7334/sshd: carla
tcp6 0 0 ::ffff:192.168.1.11:ssh windbag.localdoma:56374
ESTABLISHED7352/sshd: carla

Remember, /etc/sshd_config controls the SSH daemon. /etc/ssh_config contains the
global SSH client settings.

You may have any number of different SSH client configuration files in your ~/.ssh/
directory.

The SSH daemon follows this precedence:

• command-line options

• user's configuration file ($HOME/.ssh/config)

• system-wide configuration file (/etc/ssh/ssh_config)

User's configuration files will not override global security settings, which is
fortunate for your sanity and your security policies.

See Also
man 1 ssh

man 5 ssh_config

7.12 Tunneling X Windows Securely Over
SSH

Problem
OK, all of this command-line stuff is slick and easy, but you still want a nice
graphical environment. Maybe you use graphical utilities to manage your headless
servers. Maybe you want to access a remote workstation and have access to all of its
applications. You know that X Windows has built-in networking abilities, but it sends
all traffic in cleartext, which of course is unacceptably insecure, plus it's a pain to set
up. What else can you do?

Solution
Tunneling X over SSH is simple and requires no additional software.

First, make sure this line is in /etc/ssh/sshd_config on the remote machine:

X11Forwarding yes

Then connect to the server using the -X flag:

[carla@windbag:~/.ssh]$ ssh -X stilton
Enter passphrase for key '/home/carla/.ssh/id_rsa':
Linux stilton 2.6.15-26-k7 #1 SMP PREEMPT Sun Jun 3 03:40:32 UTC 2007 i686 GNU/Linux
Last login: Sat June 2 14:55:10 2007
carla@stilton:~$

Now you can run any of the X applications installed on the remote PC by starting
them from the command line:

carla@stilton:~$ ppracer

SSH sets up an X proxy on the SSH server, which you can see with this command:

carla@stilton:~$ echo $DISPLAY
localhost:10.0

Discussion
The X server runs with the offset specified in /etc/sshd.conf:

X11DisplayOffset 10

This needs to be configured to avoid colliding with existing X sessions. Your regular
local X session is :0.0.

The remote system only needs to be powered on. You don't need any local users to
be logged in, and you don't even need X to be running. X needs to be running only on
the client PC.

Starting with version 3.8, OpenSSH introduced the -Y option for remote X sessions.
Using the -Y option treats the remote X client as trusted. The old-fashioned way to
do this was to configure ssh_config with ForwardX11Trusted yes. (The
ForwardX11Trusted default is no.) Using the -Y flag lets you keep the default as no,
and to enable trusted X forwarding as you need. Theoretically you could find that
some functions don't work on an untrusted client, but I have yet to see any.

The risk of running a remote X session as trusted matters only if the remote machine
has been compromised, and an attacker knows how to sniff your input operations,
like keystrokes, mouse movements, and copy-and-paste. Also, anyone sitting at the
remote machine can do the same thing. Oldtimers from the pre-SSH days like to
reminisce about their fun days of messing with other user's X sessions and causing
mischief.

It is possible to tunnel an entire X session over SSH, and run your favorite desktop
or windows manager, like Gnome, KDE, IceWM, and so forth. However, I don't
recommend it, because there are easier and better ways to do this, as you will see in
the next chapter.

Don't use compression over fast networks, because it will slow down data transfer.

See Also
man 1 ssh

man 5 ssh_config

7.13 Executing Commands Without
Opening a Remote Shell

Problem
You have a single command to run on the remote machine, and you think it would be
nice to be able to just run it without logging in and opening a remote shell, running
the command, and then logging out. After all, is it not true that laziness is a virtue
for network admins?

Solution
And you shall have what you want, because OpenSSH can do this. This example
shows how to restart Postfix:

$ ssh mailadmin@limberger.alrac.net sudo /etc/init.d/postfix restart

This shows how to open a quick game of Kpoker, which requires X Windows:

$ ssh -X 192.168.1.10 /usr/games/kpoker

You'll be asked for a password, but you'll still save one whole step.

Discussion
You have to use sudo when you need root privileges with this command, not su,
because you can't use su without first opening a remote shell. This is also a handy
way to script remote commands.

And yes, laziness is a virtue, if it leads to increased efficiency and streamlined
methods of getting jobs done.

See Also
man 1 ssh

7.14 Using Comments to Label Keys

Problem
You have a lot of SSH keys, and you would like a simple way to identify the public
keys after they are transferred to your known_hosts and authorized_keys2 files.

Solution
Use the comment option when you create a key to give it a descriptive label:

$ ssh-keygen -t rsa -C "mailserver on jarlsberg"

The key looks like this:

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEAoK8bYXg195hp+y1oeMWdwlBKdGkSG8UqrwKpwNU9Sbo
+uGPpNxU3iAjRaLYTniwnoS0j+Nwj+POU5s9KKBf5hx
+EJT/8wl70KyoyslPghsQAUdODoEwCzNFdIME8nm0vxzlAxS
+SO45RxdXB08j8WMdC92PcMOxIB1wPCIntji0= mailserver on jarlsberg

This is helpful when you have a lot of keys in known_hosts and authorized_keys2,
because even though you can give the keys unique names, the keynames are not
stored in these files.

Discussion
OpenSSH ignores the comment field; it's a convenience for human users.

See Also
man 1 ssh-keygen

7.15 Using DenyHosts to Foil SSH Attacks

Problem
The Internet is full of twits who have nothing better to do than to release automated
SSH attacks on the world. You have taken all the sensible security precautions, and
feel like your security measures are adequate, but your logfiles are overflowing with
this junk. Isn't there some way to head these morons off at the pass?

Solution
Indeed yes. The excellent DenyHosts utility will take care of you. DenyHosts parses
your auth log, and writes entries to /etc/hosts.deny to block future intrusion
attempts.

DenyHosts is a Python script, so you need Python 2.3 or newer. Find your Python
version this way:

$ python -V
Python 2.4.2

DenyHosts can be installed with Aptitude or Yum. To install from sources, simply
unpack the tarball in the directory where you want to store DenyHosts. This comes
with denyhosts.cfg.dist, which is a model configuration file. Edit it, then save it as
/etc/denyhosts.conf. (See the next recipe to learn how to configure a startup script.)

Next, create a whitelist in /etc/hosts.allow; in other words, add all the important
hosts that you never want blocked.

This sample configuration is moderately stern. Make sure the filepaths are correct
for your system:

WORK_DIR = /var/denyhosts/data
SECURE_LOG = /var/log/auth.log
HOSTS_DENY = /etc/hosts.deny
BLOCK_SERVICE = sshd
DENY_THRESHOLD_INVALID = 3
DENY_THRESHOLD_VALID = 5
DENY_THRESHOLD_ROOT = 1
LOCK_FILE = /tmp/denyhosts.lock
HOSTNAME_LOOKUP=NO
SUSPICIOUS_LOGIN_REPORT_ALLOWED_HOSTS=YES
AGE_RESET_VALID=1d
AGE_RESET_ROOT=25d
AGE_RESET_INVALID=
DAEMON_PURGE = 1h
DAEMON_SLEEP = 30s
DAEMON_LOG_TIME_FORMAT = %b %d %H:%M:%S
ADMIN_EMAIL = carla@kielbasa.net

The default configuration file tells you the required options, optional settings, and
other useful information.

Discussion
DenyHosts can be run manually, as a cron job, or as a daemon. I prefer daemon
mode- set it and forget it. To run it manually for testing, simply run the DenyHosts
script:

python denyhosts.py

Read the denyhosts.py script to see the available command options.

This is what the options mean:

BLOCK_SERVICE = sshd

You may use DenyHosts to protect SSH, or all services with BLOCK_SERVICE =
ALL

DENY_THRESHOLD_INVALID = 2

Login attempts on non-existent accounts get two chances before they are
blocked. Since the accounts do not exist, blocking them won't hurt anything

DENY_THRESHOLD_VALID = 5

Login attempts on legitimate accounts get five chances. Adjust as needed for fat-
fingered users

DENY_THRESHOLD_ROOT = 1

Root logins get one chance. You should login as an unprivileged user anyway,
then su or sudo if you need rootly powers

HOSTNAME_LOOKUP = Yes

DenyHosts will look up hostnames of blocked IP addresses. This can be disabled
if it slows things down too much with HOSTNAME_LOOKUP = NO

SUSPICIOUS_LOGIN_REPORT_ALLOWED_HOSTS

Set this to YES, then monitor your DenyHosts reports to see if this is useful. It
tattles about suspicious behavior perpetrated by hosts in /etc/hosts.allow, which
may or may not be useful

AGE_RESET_VALID=1d

Allowed users are unblocked after one day, if they went all fat-fingered and got
locked out

AGE_RESET_INVALID=

Invalid blocked users are never unblocked

DAEMON_PURGE = 3d

Delete all blocked addresses after three days. Your /etc/hosts.deny file can grow
very large, so old entries should be purged periodically

DAEMON_SLEEP = 5m

How often should the DenyHosts daemon run? It's a low-stress script, so running
it a lot shouldn't affect system performance. Adjust this to suit your situation- if
you are getting hammered, you can step up the frequency

Time values look like this:

s: seconds

m: minutes

h: hours

d: days

w: weeks

y: years

See Also
"The DenyHosts FAQ" (http://denyhosts.sourceforge.net/faq.html)

7.16 Creating a DenyHosts Startup File

Problem
You installed DenyHosts from the source tarball, so you need to know how to set up
an init script to start it automatically at boot, and for starting and stopping it
manually.

Solution
daemon-control-dist is the model startup file; you'll need to edit it for your particular
Linux distribution. Only the first section needs to be edited:

###
Edit these to suit your configuration
###

DENYHOSTS_BIN = "/usr/bin/denyhosts.py"
DENYHOSTS_LOCK = "/var/lock/subsys/denyhosts"
DENYHOSTS_CFG = "/etc/denyhosts.cfg"

Make sure the filepaths and filenames are correct for your system. Then give the file
a name you can type reasonably, like /etc/init.d/denyhosts.

Configuring DenyHosts to start at boot is done in the usual manner, using chkconfig
on Red Hat and Fedora, and update-rc.d on Debian:

chkconfig denyhosts --add
chkconfig denyhosts on

update-rc.d start 85 2 3 4 5 . stop 30 0 1 6 .

Manually stopping and starting DenyHosts is done in the usual manner:

/etc/init.d/denyhosts {start|stop|restart|status|debug}

Fedora users also have this option:

/etc/init.d/denyhosts condrestart

This restarts DenyHosts only if it already running; otherwise it fails silently.

Discussion
When you create a new init script on Fedora, you must first add it to the control of
chkconfig with the chkconfig --add command. Then you can use the chkconfig
foo on/off command to start or stop it at boot.

See Also
"The DenyHosts FAQ: (http://denyhosts.sourceforge.net/faq.html)

Chapter 7 of the Linux Cookbook, "Starting and Stopping Linux"

7.17 Mounting Entire Remote Filesystems
With sshfs

Problem
OpenSSH is pretty fast and efficient, and even tunneling X Windows over OpenSSH
isn't too laggy. But sometimes you want a faster way to edit a number of remote
files- something more convenient than scp, and kinder to bandwidth than running a
graphical file manager over SSH.

Solution
sshfs is just the tool for you. sshfs lets you mount an entire remote filesystem and
then access it just like a local filesystem.

Install sshfs, which should also install fuse. Then you need a local directory for your
mountpoint:

carla@xena:~$ mkdir /sshfs

Then make sure the fuse kernel module is loaded:

$ lsmod|grep fuse
fuse 46612 1

If it isn't, run modprobe fuse.

Next, add yourself to the fuse group.

Then log into the remote PC and go to work:

carla@xena:~$ sshfs uberpc: sshfs/
carla@uberpc's password:
carla@xena:~$

Now the remote filesystem should be mounted in ~/sshfs and just as accessible as
your local filesystems.

When you're finished, unmount the remote filesystem:

$ fusermount -u sshfs/

Discussion
Users who are new to sshfs always ask these questions: why not just run X over SSH,
or why not just use NFS?

It's faster than running X over SSH, it's a heck of a lot easier to set up than NFS, and
a zillion times more secure than NFS, is why.

See Also
man 1 sshfs

	7.0 Introduction
	7.1 Starting and Stopping OpenSSH
	7.2 Creating Strong Passphrases
	7.3 Setting Up Host-Keys For Simplest Authentication
	7.4 Generating and Copying SSH Keys
	7.5 Using Public-Key Authentication to Protect System Passwords
	7.6 Managing Multiple Identity Keys
	7.7 Hardening OpenSSH
	7.8 Changing a Passphrase
	7.9 Retrieving a Key Fingerprint
	7.10 Checking Configuration Syntax
	7.11 Using OpenSSH Client Configuration Files For Easier Logins
	7.12 Tunneling X Windows Securely Over SSH
	7.13 Executing Commands Without Opening a Remote Shell
	7.14 Using Comments to Label Keys
	7.15 Using DenyHosts to Foil SSH Attacks
	7.16 Creating a DenyHosts Startup File
	7.17 Mounting Entire Remote Filesystems With sshfs

