
this print for content only—size & color not accurate spine = 0.85" 448 page count

Books for professionals by professionals®

Automating Linux and Unix
System Administration, Second Edition
If you are a system administrator, two things are almost certain: you are always
busy, and you need more automation. The problem is that, by the time you
know you really need automation, you usually don’t have time to implement it.
This book shows you how to use the cfengine open source automation software to
save time and reduce problems at your site. We don’t theorize about automation;
we use cfengine to build a real, automated Linux/UNIX site from scratch.

We wrote this book to help you implement an automation framework for your
site at the pace that’s right for you. If you’re in a hurry, you can use this book like a
cookbook and quickly copy the way we did things. If you have more time, you can
study the reasons behind our configuration and use this information to make
decisions about how to implement automation at your site.

Once you have cfengine running on the systems at your site, you’ll be able to
quickly implement improvements across your systems. To see how much easier
automation can make your job, browse through Chapter 7. You’ll find out that it
is simple to automatically configure time synchronization on all your systems
once an automation framework is in place.

We are system administrators—not academics. We know from real-world
experience that systems fail and that various systems and applications can
fail simultaneously for differing causes. During times of crisis, you don’t have
time to figure out how to rebuild an application or operating system that was
deployed long before. Using the automation principles in this book, you can
quickly and reliably restore failed hosts and applications to a good state.

Nate Campi and Kirk Bauer

US $49.99

Shelve in
General Linux

User level:
Intermediate–Advanced

Cam
pi,

Bauer

Second
Edition

The EXPERT’s VOIce® in Linux

Automating
Linux and Unix
System Administration

Second Edition

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

Nate Campi and Kirk Bauer

Companion
eBook Available

THE APRESS ROADMAP

Beginning Fedora

Beginning Ubuntu Linux,
Third Edition

Professional Ubuntu
Server Administration

Automating Linux and Unix
System Administration,

Second Edition
Mac for Linux Geeks

Beginning Portable
Shell Scripting

Beginning Ubuntu LTS
Server Administration,

Second Edition

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Building intelligent networks
with open source tools

ISBN 978-1-4302-1059-7

9 781430 210597

54999

Autom
ating Linux and Unix

System
 Adm

inistration

Nate Campi

Kirk Bauer, author of

Automating Linux and Unix
System Administration

Automating Linux
and Unix System
Administration
Second Edition

Nate Campi and Kirk Bauer

10597fmfinal 1 11/20/08 11:49:36 AM

Automating Linux and Unix System Administration, Second Edition

Copyright © 2009 by Nate Campi, Kirk Bauer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1059-7

ISBN-13 (electronic): 978-1-4302-1060-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Frank Pohlmann
Technical Reviewer: Mark Burgess
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cor-

nell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben
Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editors: Nina Goldschlager, Heather Lang
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Nancy Sixsmith
Indexer: Becky Hornyak
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

10597fmfinal 2 11/20/08 11:49:37 AM

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

v

About the Authors. . xv

About the Technical Reviewer . xvii

Acknowledgments . . xix

Introduction . . xxi

Chapter 1	 Introducing the Basics of Automation . . 1

chapter 2	 Applying Practical Automation. . 19

chapter 3	 Using SSH to Automate System Administration Securely 27

chapter 4	 Configuring Systems with cfengine . . 49

chapter 5	 Bootstrapping a New Infrastructure. . 79

chapter 6	 Setting Up Automated Installation. . 107

chapter 7	 Automating a New System Infrastructure. . 161

chapter 8	 Deploying Your First Application . . 213

Chapter 9	 Generating Reports and Analyzing Logs . . 253

Chapter 10	 Monitoring. . 273

Chapter 11	 Infrastructure Enhancement. . 323

Chapter 12	 Improving System Security . . 353

Appendix a	 Introducing the Basic Tools. . 375

appendix b	 Writing cfengine Modules. 395

 INDEX . . 401

Contents at a Glance

10597fmfinal 5 11/20/08 11:49:37 AM

xv

About the Authors

■Nate Campi is a UNIX and Linux system administrator by trade, cur-
rently working as a UNIX operations manager in San Francisco. His
system administration experience is almost entirely with companies
with large-scale web operations based on open source software. In his
copious free time, he enjoys jogging, watching spaghetti westerns,
experimenting with Linux systems, and spending time with his family.

■Kirk Bauer has been involved in computer programming since
1985. He has been using and administering UNIX systems since 1994.
Although his personal favorite UNIX variant is Linux, he has adminis-
tered and developed on everything from FreeBSD to Solaris, AIX, and
HP-UX. He is the author of various open source solutions such as
Logwatch.

Kirk has been involved with software development and system/
network administration since his first year at the Georgia Institute of

Technology. He has done work for the Georgia Tech Research Institute, Fermi National
Accelerator Laboratory, and DHL. In 2000, Kirk was one of the founders and the chief
technology officer of TogetherWeb, which was purchased in 2003 by Proficient Systems.
Kirk is now a systems engineer with F5 Networks.

Kirk graduated from Georgia Tech in 2001 with a bachelor’s degree in computer engi-
neering and is currently pursuing his MBA at Arizona State University. He lives in Peoria,
Arizona, with his two dogs, and is looking forward to getting married to his lovely fiancée,
Rachel.

10597fmfinal 15 11/20/08 11:49:47 AM

xvii

About the Technical Reviewer

nMark Burgess holds a first class honors degree in physics and a Ph.D. in theoretical
physics from the University of Newcastle upon Tyne. After working as a physicist, he
began to apply the methods of physics to the study of computers and eventually changed
research fields to study the formalization of system administration. His current research
interests include the behavior of computers as dynamic systems and applying ideas from
physics to describe computer behavior. Mark is the author of the popular configuration
management software package cfengine. He has received a number of awards including
the SAGE 2003 Professional Contribution Award “for groundbreaking work in systems
administration theory and individual contributions to the field.” He currently holds the
Professorship in Network and System Administration at Oslo University College.

10597fmfinal 17 11/20/08 11:49:47 AM

1

C h a p t e r 1

Introducing the Basics of
Automation

When one of this book’s authors was in high school, he got his first part-time job keep-
ing some of the school’s computers running. He loved it. He did everything by hand. And
because the school had only two or three computers, doing everything by hand wasn’t
a big issue. But even then, as the number of systems grew to five, six, and finally more
than ten, he realized just how much time you can spend doing the same things over and
over again. This is how his love of automation was born.

This book’s other author found automation through necessity as well, although
later in his career. During the so-called “tech downturn” around the year 2003 in Silicon
Valley, he suddenly found himself the sole member of what had been a three-person
system-administration team. The number of systems and responsibilities were increas-
ing, while staffing levels had dramatically decreased. This is when he found the cfengine
automation framework. Cfengine drastically reduced the amount of time required to
implement system changes, allowing him to focus on improving the infrastructure
instead.

In this chapter you will learn the basics of automating system administration so
that you can begin to make your life easier—as well as the lives of everybody who uses
or depends on your systems. The topics covered in this book apply to a wide variety of
situations. Whether you have thousands of isolated systems (sold to your customers, for
example), a large number of diverse machines (at a large company or university campus),
or just a few servers in your home or small business, the techniques we’ll cover will save
you time and make you a better administrator.

Throughout this book, we will assume the reader has a basic set of UNIX skills and
some prior experience as a system administrator (SA). We will use numerous tools
throughout the book to provide example automation solutions. These tools include the
following:

	 •	 The Bash shell

	 •	 Perl

	 •	 Cfengine

10597ch01final 1 11/20/08 12:07:38 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION2

	 •	 Regular expressions

	 •	 The grep command

	 •	 The sed stream editor

	 •	 AWK

If you are not familiar with one or more of these tools, read their introductions in the
Appendix before you proceed. See Chapter 4 for an introduction to cfengine.

Do You Need Automation?
If you have one Linux system sitting on your desk at home, you don’t need automation.
You can take care of everything manually—and many people do. But you might want
automation anyway because it will ensure your system has the following characteristics:

	 •	 Routine tasks such as performing backups and applying security updates take place
as scheduled: This saves the user time and ensures that important tasks aren’t for-
gotten.

	 •	 The system is consistently set up: You might have one system, but how often is
it replaced due to faulty hardware or upgrades? When the system hardware is
upgraded or replaced, an automation system will configure the software again in
the same manner as before.

	 •	 The system can be expertly configured, even if you’re not an expert: If you use
automation built by someone more experienced with system configuration and
automation, you benefit from his or her expertise. For example, you benefit from
the Red Hat Network (RHN) when using a licensed installation of Red Hat Enter-
prise Linux. RHN regularly supplies automated software updates that are reliable
and timely, resulting in a more secure and stable system. Most users don’t have
the required system configuration and programming skills to implement such
a system, so Red Hat developed a solution that any of their software licensees can
use freely.

	 •	 The system is in compliance with guidelines and standards: You might be respon-
sible for only one system, but if the system belongs to your employer, it might be
subject to regulatory or other legislative requirements around security and config-
uration. If this is the case, an automation system that enforces those requirements
supplies the documentation needed to prove compliance. Even if no laws or credit

10597ch01final 2 11/20/08 12:07:39 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 3

card–company guidelines apply, your employer might require that all systems on
its network meet certain minimal security standards. Usually a one-time manual
configuration isn’t enough to satisfy these standards; an automated solution is
required.

	 •	 The system is reliable: If solutions to occasional problems are automated, the sys-
tem is more reliable. When a disk fills up with temporary files, for example, the
user who employs an automation system can schedule a daily cleanup procedure
to prevent failed writes to disk and system crashes from full disks.

Likewise, you might think you don’t need automation if you have only one server in
your company. However, you might want it because backups and timely security updates
are easy tasks for a busy system administrator to neglect, even in this most basic setup.
In addition, if your company’s server is a file server or mail server, its drives will tend
to fill up and cause problems. In fact, any security or stability problem with this type of
computer will likely result in expenses for the company, and any loss of data could be
disastrous. This is exactly the reason OS vendors rotate the log files for the daemons they
install on the system, because they know the end result of unmaintained log files. An
automation system can also help out your successor or the person covering for you dur-
ing your vacation.

When it comes down to it, the number of machines isn’t an important factor in
the decision to use automation. Think of automation as insurance that the machine is
being monitored. A Red Hat Package Manager (RPM) install or security update can undo
a manual change to a configuration file, for example. If an automation system enforces
the policy that the configuration file contains a particular entry or value, it will reapply
the change if necessary.

In addition to log-file rotation, your OS distributor already automates many tasks on
a stand-alone system. It makes security checks, updates databases with information on
file locations (e.g., slocate), and collects system accounting and performance informa-
tion. All this and more happens quietly and automatically from within a standard UNIX
or Linux system.

Automation is already a core part of UNIX philosophy, and cron jobs have histori-
cally been the de facto method for automating UNIX tasks. In this book we favor cfengine
for task automation, but for now you can think of cfengine as a next-generation cron
daemon.

For the sake of the single system, it’s fine to go the simple route. You can add
more log-rotation settings to already automated systems such as the “logrotate” utility
(standard on all Linux distributions that we can think of). You don’t need something
complex, but you do need automation if you want to ensure important tasks happen
regularly and reliably.

You should do everything you can to prevent problems before they happen. If you
can’t do that, follow the advice of one of our old managers: make sure the same problem

10597ch01final 3 11/20/08 12:07:39 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION4

never happens again. If a disk fills, set up a log-rotation script run from cron that deletes
unneeded temporary files—whatever addresses the root cause. If a process dies, set up
a process monitor to restart it when it exits. In later chapters, we will show you how to
accomplish these tasks using cfengine. The automation systems at most sites grow over
time in response to new issues that arise.

SAs who respond to all problems with permanent (read: automated) solutions go
a long way toward increasing overall availability of their sites’ applications and services.
Automated solutions also allow them to get some sleep while on call. (The sleep factor
alone is reason enough for most SAs to spend a lot of time on automation.)

So, back to the question—do you need automation? We’ll introduce a variety of situa-
tions that require automation and discuss them further throughout the book.

Large Companies with Many Diverse Systems

The most traditional situation requiring automation involves a large company or orga-
nization with hundreds or even thousands of systems. These systems range from web
servers to file servers to desktop workstations. In such a situation, you tend to have
numerous administrators and thousands of users.

You might treat the systems as several groups of specialized servers (i.e., all work-
stations in one group, all web servers in another) or you might administer all of them
together. Either way, with a large number of different systems, automation is the only
option. Cfengine is especially suited to this type of environment. It uses a high-level con-
figuration file and allows each system to pull its configuration from the configuration
server. One of cfengine’s key strengths: Not only can it configure hundreds or even thou-
sands of systems in exactly the same manner, but it can also configure a single system in
a unique way. We’ll discuss cfengine thoroughly in later chapters.

Medium-Sized Companies Planning for Growth

Any medium-sized or small company is in just about the same situation as the large
companies. You might have only 50 servers now and some basic solutions might work for
you, but you probably hope to expand. Automation systems built on cfengine scale from
a few systems to many thousands of systems. The example cfengine infrastructure dem-
onstrated in Chapter 5 assists scalability by segmenting the configuration into many files.
Sites with more than 25,000 hosts use cfengine.

You might have only one type of a particular system, but if it fails, cfengine can
reproduce the original system quickly and reliably. Normally at that point some user or
application data needs to be restored, but that’s much easier than reproducing a system
from a base install.

10597ch01final 4 11/20/08 12:07:40 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 5

Internet Service Providers

If you work at an Internet Service Provider (ISP), you probably have more computers than
employees. You also (hopefully) have a large number of customers who pay you money
for the service you provide. Your systems might offer a wide variety of services, and you
need to keep them all running. Other types of companies have some critical servers, but
most of their systems are not critical for the companies’ success (e.g., individual work
stations, testing systems, and so on). At an ISP, almost all of your systems are critical, so
you need to create an automation system that promotes system stability and availability.

Application Service Providers

If you’re an application service provider (ASP), you might have hundreds of systems that all
work together or numerous groups of independent systems. Your system-administration
tasks probably include deploying and configuring complex, custom software. You must
synchronize such changes among the various systems and make them happen only on
demand. Stability is very important, and by minimizing changes you can minimize down-
time. You might have a central administration system or a separate administration for each
group of systems (or both). When you create your automation system, be sure to keep an
eye on scalability—how many systems do you have now, and how many will you have in
the future?

Fortunately with cfengine you already have an automation system; what you need
to keep in mind is that in such an environment you often need additional capacity in
a hurry. Being able to boot new hardware off the network and have cfengine configure it
appropriately means that the most time-consuming aspect of adding new systems is the
time required to order, rack, and cable up the new systems. This is the ideal situation for
an ASP, and the SA staff in such shops should aspire to it.

Web Server Farms

Automation within web clusters is common today. If you have only a couple of load bal-
ancers and a farm of web servers behind them, all your systems will be virtually identical.
This makes things easier because you can focus your efforts on scalability and reliability
without needing to support differing types of systems. In a more advanced situation, you
also have database systems, back-end servers, and other systems. In this case, you need
a more flexible automation system, such as cfengine. Regardless of the underlying infra-
structure, web servers will be plentiful. You need a quick and efficient way to install and
configure new systems (for expansion and recovery from failures). Sound familiar? The
core needs and considerations are common across different business types. We’ll return
to these recurring themes at the end of the chapter.

10597ch01final 5 11/20/08 12:07:40 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION6

Beowulf Clusters

Beowulf clusters are large groups of Linux systems that can perform certain tasks on par
with a traditional supercomputer. Regardless of whether you use a Beowulf cluster or
another type of computational cluster, each cluster usually has one control system and
hundreds of computational units. To set up and maintain the cluster efficiently, you need
the ability to install new systems with little or no interaction. You have a set of identical
systems, which makes configuration easy. You also usually have maintenance periods
during which you can do what you want on the systems, which is always nice. But when
the systems are in use, making changes to them might be disastrous. For this reason, you
will usually want to control the times when the systems will accept modifications.

Hosts in such clusters will typically boot off the network and load up a minimal
operating system entirely into memory. Any local storage on the system is probably for
application data and temporary storage. Many of the network boot schemes like this
completely ignore the containment of system drift during the time between boot and
shutdown.

In a worst-case scenario, an attacker might access the system and modify running
processes, access other parts of your network from there, or launch attacks against other
sites. A less extreme problem would be one where certain applications need to be kept
running or be restarted if they consume more than a defined amount of memory. An
automation system that ignores the need to control a running system is at best only half
an automation system. Using a system reboot to restore a known good state is sufficient
if the site administrators don’t wish to do any investigation or improvement. A reboot is
only a temporary solution to a system problem. An attacker will simply come back using
the same mechanism as before, or processes will still die or grow too large after a reboot.
You need a permanent solution.

A cluster designed to network-boot can just as easily run cfengine and use it
to contain system drift. You’ll find helpful cfengine features that can checksum
security-critical files against a known good copy and alert administrators to modifi
cations. Other cfengine features can kill processes that shouldn’t be running or restart
daemons that are functioning incorrectly. Systems that are booted from identical
boot media don’t always have the same runtime behavior, and cfengine allows you to
control the runtime characteristics of your systems.

For some of the best documentation on system drift and ways to control it, check out
the book Principles of Network and System Administration, Second Edition by Mark Bur-
gess (Wiley, 2004). The author approaches the subject from an academic standpoint, but
don’t let that scare you away. He uses real-world examples to illustrate his points, which
can pay off at your site by helping you understand the reasons behind system drift. The
book will help you minimize these negative effects in your system and application design.

10597ch01final 6 11/20/08 12:07:41 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 7

Network Appliances

Finally, many companies produce what we call “network appliances,” which are sys-
tems that run some UNIX variant (often Linux or FreeBSD) and are sold to customers as
a “drop-in” solution. Some current examples of these products include load balancers
and search engines. The end user administers the systems but might know very little
about UNIX. End users also usually do not have root access to the system. For this reason,
the system must be able to take care of itself, performing maintenance and fixing prob-
lems automatically. It will also need to have a good user interface (usually web-based)
that allows the customer to configure its behavior. Such vendors can leverage cfengine so
that they can focus on their core competency without worrying about writing new code to
keep processes running or file permissions correct.

What Will You Gain?
The day-to-day work of system administration becomes easier with automation. We can
promise the following benefits, based on our own experience.

Saving Time

You can measure the time saved by automation in two ways. The first is in the elapsed
wall-clock time between the start and end of a task. This is important, but not as impor-
tant as the amount of actual SA time required. If the only SA time required is in setting
up the task to be automated in the first place and occasionally updating the automation
from time to time, the benefits are much greater than faster initial completion. This frees
the SA to work on automating more tasks, testing out new software, giving security or
reliability lectures to the in-house programmers, or simply keeping current with recent
technology news.

Reducing Errors

Unfortunately, you’ll see a rather large difference between systems built according
to documentation and systems configured entirely through automated means. If you
were to audit two systems for differences at a site where all systems were configured by
cfengine, the differences should—in theory—arise only from errors outside the auto-
mation system, such as a full disk. We know from firsthand experience that systems
configured according to a written configuration guide invariably differ from one another.
After all, humans are fallible. We make mistakes.

10597ch01final 7 11/20/08 12:07:42 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION8

You can reduce errors at your site by carefully testing automated changes in a non-
production environment first. When the testing environment is configured properly, only
then do you implement the change in your production environment.

For the sake of this book, the term “production” means the systems upon which the
business relies, in any manner. If the company is staffed primarily with nontechnical
people, perhaps only the SA staff understands the differentiation when the term is used.
Trust us, though: the business people understand when particular hosts are important to
the business and will speak out about perceived problems with those systems.

Documenting System Configuration Policies

Whether the automated configuration at a site is done by shell scripts, Perl scripts, or
a tool such as cfengine, the automation serves as documentation. It is in fact some of the
most usable documentation for a fellow SA, simply because it is authoritative.

If new SAs at a site read some internal documentation about installing and configur-
ing some software, they don’t have any assurance that following the documentation will
achieve the desired effect. The SA is much better off using a script that has been used all
the previous times the software needed to be installed and configured.

Either the script will work and the proper results will emerge, or it’ll break because
of some change in the environment. The change should be much easier to find based on
error output from the script. If the steps on a wiki page or a hard copy of the documen-
tation don’t work, on the other hand, the error could be due to typos in the doc, steps
omitted, or updates to the procedure not making it back into the docs. Using automation
instead helps insulate the SA against these scenarios.

Realizing Other Benefits

This book applies to a wide range of people and situations, so not all the material will be
of interest to all readers. If you haven’t yet created an automation system or implemented
an open source framework (such as cfengine) from scratch, this book will show you how
to get started and how to take the system from initial implementation through full site
automation. You will also learn the principles that should guide you in your quest for
automation. As your skills and experience grow, you will become more interested in some
of the more advanced topics the book discusses and find that it points you in the right
direction on related subjects.

If you already have an automation system of some sort, this book will provide you
with ideas on how to expand it. There are so many ways to perform any given task that
you are sure to encounter new possibilities. In many cases, your current system will
be advanced enough to leave as is. In other cases, though, you will find new ways to
automate old tasks and you’ll find new tasks that you might never have considered
automating.

10597ch01final 8 11/20/08 12:07:43 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 9

Don’t write off a complicated manual task as too difficult to automate before care-
fully evaluating the decisions made during the process. You’ll usually find during manual
inspection that the decision process is based on attributes of the system that cfengine or
a script can collect. The act of documenting a change before making it usually forces the
SA to approach the problem in a systematic way. The change process will end up produc-
ing better results when the process is planned this way.

Imagine that you often have to restart a web-server process on one of your servers, in
a sequence of actions such as this:

	 •	 You check a log file for a commonly recurring error message.

	 •	 You check if CPU utilization is high.

	 •	 You test the web server using a command-line utility, looking for a successful
HTTP status message.

You can collect each of these manual checks automatically, and a script or cfengine
can make the decision to restart. If this makes you nervous, write the script’s collection
aspects first, and at the point where a system change would be made, instruct the script
to print a message to the screen about the decision it has reached. Run the script, then
manually go through your decision process independently of the script. Enhance the
script each time its decision differs from yours. You’d be surprised at the complex proce-
dures you can automate this way. You don’t have to enable the automated restart itself
until you’re comfortable that it will do the right thing.

Automating a Difficult Problem/Response Procedure

One of us works at a site where the SA staff used complex manual procedures to fix a distributed
cluster when application errors would occur. The manual process would often take several hours to
completely restore the cluster to a working state.

The staff slowly automated the process, beginning with simple commands in a shell script to avoid
repeatedly typing the same commands. Over time the staff enhanced the script with tests to determine
which errors were occurring and to describe the state of the cluster’s various systems. Based on these
tests, the script could determine and perform the correct fix.

Eventually, the SA staff used the automated process to repair the cluster in as little as a few
minutes. In addition, the script incorporated so many of the decisions previously made by the SA staff
members that it became the foremost authority on how to deal with the situation. Essentially, the script
serves as documentation on how to deal with multiple issues and situations on that particular applica-
tion cluster.

10597ch01final 9 11/20/08 12:07:43 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION10

When it comes to computer systems, every environment is different—each has dif-
ferent requirements and many unique situations. Instead of attempting to provide the
unattainable “one solution fits all,” this book shows how to set up an example environ-
ment. As we configure our example environment, we will explain the decision process
behind the solutions we have chosen. After you have learned these options, you will be
able to make an informed choice about what you should automate in your environment
and how you should do it.

What Do System Administrators Do?
Life as a system administrator usually falls into three categories:

	 •	 Tedious, repetitive tasks (a.k.a. boring tasks)

	 •	 New, innovative tasks (a.k.a. why you love the job)

	 •	 Answering users’ questions, or otherwise dealing with monitoring alarms, issues
or emergencies (a.k.a. pulling your hair out)

The goal of this book is to help you create new and innovative solutions to eliminate
those tedious and repetitive tasks. And if you find a way to automate the task of answer-
ing users’ questions, please let us know! But even if you can’t, you can at least create
a system that detects and even fixes many problems before they come to the attention
of the users, or more important, your monitoring systems. Also, any task you have auto-
mated is a task the users could potentially perform on their own.

System administrators spend time on other tasks, of course, but we won’t address
them here because they aren’t pertinent to this discussion. (These might include brows-
ing the Slashdot web site, checking on reservations for the next science-fiction conven-
tion, or discussing a ham-radio setup with other geeks around the office.) Suffice it to
say that following the guidelines in this book will allow you to spend more time on these
other tasks and less time on the tedious tasks and emergencies.

You can classify the tedious tasks into the following categories:

	 •	 Preinstallation: Assigning an IP address, configuring existing servers and network
services, and so on

	 •	 Installation: Installing a new operating system and preparing it for automation

	 •	 Configuration: Performing initial configuration and reconfiguration tasks

	 •	 Managing data: Duplicating or sharing data (users’ home directories, common
scripts, web content, etc.), backups, and restores

10597ch01final 10 11/20/08 12:07:44 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 11

	 •	 Maintenance and changes: Rotating logs, adding accounts, and so on

	 •	 Installing/upgrading software: Using package management and/or custom distri-
bution methods

	 •	 System monitoring and security: Performing log analysis and security scans; moni-
toring system load, disk space, drive failures, and so on

Methodology: Get It Right from the Start!
Automating tasks proves much more useful when you apply a consistent methodology.
Not only will you have less direct work (by having code that is easier to maintain and
reuse), but you will also save yourself and others time in the future. Whenever possible,
we’ll include techniques in this book that support these basic methodologies:

	 •	 Activities you have performed must be reproducible.

	 •	 Any system’s state must be verifiable.

	 •	 Problems should be detected as they occur.

	 •	 Problems should be repaired automatically, if possible.

	 •	 The automation methods must be secure.

	 •	 The system should be documented and easy to understand.

	 •	 Changes should be testable in a safe environment.

	 •	 Every system change should be examined for side effects that also must be han-
dled automatically.

Perhaps the most important aspect of any automated system is reproducibility. If
you have two machines configured just the way you like them, you should be able to add
an identically configured third machine to the group with minimal effort. If somebody
makes an incorrect change or loses a file, restoring the system to full functionality should
be relatively easy. These nice capabilities all require that you can quickly and perfectly
reproduce what you have done in the past or to other systems. Even if you don’t plan to
add more systems, you can bet that at some point one of your systems will fail. It might
be the CPU or disk(s), or you might have a fire in your server room. (You do have a disas-
ter recovery plan, right?) The experienced SA protects his systems against their inevitable
failure, and automation is a big part of the solution.

10597ch01final 11 11/20/08 12:07:44 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION12

You also need to be able to verify a system’s status. Does it have the latest security
updates? Is it configured correctly? Are the drives being monitored? Is it using your new-
est automation scripts, or old ones? These are all important questions, and you should be
able to easily determine the answers if your automation system is implemented properly.

In many cases, detecting problems is a great step forward in your automation
process. But how about automatically fixing problems? This too can be a powerful tech-
nique. If systems fix their own problems, you will get more full nights of sleep. But if your
auto-repair methods are overzealous, you might end up causing more problems than you
solve. We will definitely explore self-repair whenever appropriate.

An administrator always has to consider security. With every solution you imple-
ment, you must be certain you are not introducing any new security issues. Ideally, you
want to create solutions that minimize or even eliminate existing security concerns. For
example, you might find it convenient to set up Secure Shell (SSH) so that it uses private
keys without a passphrase, but doing so usually opens up serious security holes.

There will always be people who follow in your footsteps. If you ask them, the most
important component of your work is good documentation. We already mentioned that
in many cases automation techniques provide automatic documentation. You should
take full advantage of this easy documentation whenever possible. Consider, as an exam-
ple, a web server under your control. You can manually configure the web server and
document the process for yourself and others in the future, or you can write a script to
configure the web server for you. With a script, you can’t neglect anything—if you forget
to do something, the web server does not run properly.

As obvious as it might sound, it is important to test out your automation before
you deploy it on production servers. One or more staging machines are a must. We will
discuss techniques for propagating code across machines and explain how you can use
these techniques for pushing code to your staging server(s).

Whenever you automate a task, you must consider dependencies. If you automated
the installation of software updates and Apache is automatically upgraded on your sys-
tems, that’s great. But if the configuration files are replaced in the process, will they be
regenerated automatically? You need to ask yourself these kinds of questions when you
automate a task.

What do you do about these dependencies? They should be your next project. If you
can automatically upgrade but can’t automatically configure Apache, you might want to
address that task next. Even if you have already automated this task, you need to make
sure the automation event is triggered after the software is updated. You might also need
to update a binary checksum database or services on your systems. Whether or not these
tasks are automated, you need to be sure they will not be forgotten.

10597ch01final 12 11/20/08 12:07:45 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 13

Homogenizing Your Systems

Most people reading this book will have a variety of UNIX systems within their network. If
you’re lucky, they will all run the exact same operating system. In most cases, though, you
will have different systems because there are a wide variety of commercial UNIX systems
as well as FreeBSD and Linux. Even with one type of UNIX, you might have different vari-
eties (called “distributions” in Linux). Even if all your systems run the same UNIX system,
some might run older versions than others.

The more similar your systems, the better. Sure, you can have a script that behaves
differently on each type of system. You can also use classes in cfengine to perform differ-
ent actions on different systems (discussed throughout the book). These approaches will
be necessary to some degree, but your first and best option is to minimize these differ-
ences among your systems.

Your first step: Provide a certain base set of commands that operate the same way on
all systems. The GNU Project (http://www.gnu.org) is helpful because the GNU developers
have created open source versions of most standard UNIX commands. You can compile
these to run on any system, but most of them are binary programs, so you’ll need to com-
pile each program for each platform or find prebuilt packages. You can then distribute
these programs using the methods discussed in Chapter 8. Once they reside on all your
systems in a standard location (such as /usr/local/), you should use them in all your
scripts.

Some operating systems will provide other helpful commands that you might want
to have on all your systems. If you’re lucky, these commands will be shell or Perl scripts
that you can modify to operate on other systems. Even if they are binary commands, they
might be open source and therefore usable on commercial UNIX systems.

In addition to consistent commands, a consistent filesystem layout can be helpful.
As we already mentioned, placing custom commands in the same location on all systems
is a must. But what else is different? Do some of your systems place logs in /var/adm/ and
others in /var/log/? If so, you can easily fix this with symbolic links.

We recommend that you consider each difference separately. If it is easy to modify
your systems to make them similar, then do so. Otherwise, you might be able to work
around the differences, which is what you should do. Finally, if it isn’t too difficult to add
a specific set of consistent commands to all your systems, try that approach. In most
cases, you will have to use some combination of all three of these approaches in your
environment.

Deciding on Push vs. Pull

You can take one of two main approaches when configuring, maintaining, and modifying
systems: the “push” method or the “pull” method. The “push” method is when you have
one or more systems contact the rest of the systems and perform the necessary tasks.

10597ch01final 13 11/20/08 12:07:45 PM

http://www.gnu.org

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION14

You implement the “pull” method by having the systems contact one or more servers
on a regular basis to receive configuration instructions and configure themselves. Both
methods have their advantages and disadvantages. As usual, the one you should choose
depends on your situation. We personally have a favorite, but read on as we present the
options.

The push method gives the SA the feeling of control, because changes are triggered
actively by one or more systems. This scenario allows you to automatically configure,
update, or modify your systems, but only when you (or some other trigger) cause it to
happen.

The push method sounds great, right? Well, not exactly—there are plenty of draw-
backs. For instance, what if you have more than 1,000 systems? How long would it take
to contact every system when you need to make a change? What happens if some sys-
tems are currently unavailable? Are they just forgotten?

This is where the pull method really shines. If you make a change to one or more con-
figuration servers, all your systems will pick up those changes when they can. If a system
is a laptop at somebody’s home, it might not get the changes until the next day. If a sys-
tem has hardware problems, it might not get the changes until the next week. But all your
systems will eventually have the changes applied—and most almost immediately.

So, does your environment consist of several systems that are intricately related? Do
these systems need to be updated and modified together at all times? Does the update
process unavoidably cause some amount of service outage? If so, you probably want to
push any changes to these systems. If these aren’t issues for you, and especially if you
have a large number of systems, then the pull method is generally preferable.

Regardless of the method you choose, you still must be aware of the loads that will be
placed on your systems, your network, and especially your servers. If you push in series
(one system at a time), you are probably okay. But if you push in parallel (all systems
at once), the server might suffer. If your clients pull from a server, be sure they don’t all
pull at the same time. Consider adding a random delay before the task begins. Cfengine,
which uses the pull method, provides the SplayTime option that does just this.

Dealing with Users and Administrators
Everyone who uses your systems is either a user or an administrator (where an admin-
istrator is usually a user as well). At an ISP, most employees are administrators but the
customers are actually the users. At a traditional company, a small number of people are
administrators and all other employees are users.

Your more technical users might also be administrators of their own desktop systems.
These systems can still be security risks, so you should include them in your automation
system. You have to be aware of conflicts that might arise between your automation sys-
tem and the user’s own actions. The user might destroy something your system did, in

10597ch01final 14 11/20/08 12:07:45 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 15

which case the system should do it again automatically. Similarly, your automation might
destroy changes the user wanted to make on his or her system—you would have to work
with the user to find a different way to make the change.

What you have to worry about the most are any interactions that might cause prob-
lems with the system. If, for example, your automation system assumes that a certain
account resides on the system, it might not operate without it. This isn’t a problem—
unless, of course, somebody manually deletes that user.

Ideally, you would have a list of every assumption your automation system makes
about every system. You would then enhance your automation system to check all these
assumptions and repair any problems. Realistically, you would have a hard time reach-
ing this ideal, but the more hands you have in the pot (i.e., the more administrators), the
harder you should try.

Another concern, if you have more than one or two administrators for a system, is an
audit trail. Who has been accessing each system and what have they been doing? Most
systems provide process accounting—a log of every executed process, the user who exe-
cuted it, and the amount of time it was running. You usually have to enable this logging
because it can consume quite a bit of drive space.

The problem is that when you see that root executed the command rm -rf /home/*,
how do you know who did it? You know that the root user ran it, but who was logged in as
root at that time? Did you make an unfortunate typo, or did the pissed-off employee who
quit yesterday do it on purpose?

The easiest solution when you have multiple administrators is to give the root pass-
word to everybody, but this provides no audit trail at all. A better option is to specify
which SSH keys should provide access to the root account. Each user has his or her own
private SSH key and, assuming the logging is turned up slightly, the SSH server records
the key used for each login. This allows you to determine who was logged in as root at any
given time. You can find information on this approach in Chapter 3.

There is still a chance that multiple people will be logged in as root when a problem
has occurred. The only way to know exactly who ran which commands is to use Sudo.
Sudo is a program that allows specified users (or any user, really) to execute specified
commands as root. Using it is easy:

kirk % sudo /etc/init.d/httpd start

Password:

Starting httpd: [OK]

Note that Sudo prompts you for a password. It wants you to enter the password for
your user account, not the root account. This request helps verify that the person using
the kirk account is still Kirk. The authentication will last for some period of time (usually
five minutes) or until the command sudo -k is executed.

10597ch01final 15 11/20/08 12:07:46 PM

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION16

Executing that command as kirk results in the following log entry (sent through sys-
log, which ends up in /var/log/secure on our system):

kirk : TTY=pts/13 ; PWD=/tmp ; USER=root ; COMMAND=/etc/init.d/httpd start.

nNote  You can find the code samples for this chapter in the Downloads section of the Apress web site
(http://www.apress.com).

None of this will work, however, without the proper permissions in the Sudo con-
figuration file: /etc/sudoers. You can edit this file manually, but if more than one person
might edit the file at the same time, you should use the visudo command. This command
also checks the file for valid syntax on exit.

Here is the entry that allows kirk to start the web server:

kirk ALL = /etc/init.d/httpd start

This line says that the user kirk is allowed, on any host (ALL), to run the command
/etc/init.d/httpd start. You could also allow the web server to be stopped and restarted
by allowing any parameter to be specified to this script:

kirk ALL = /etc/init.d/httpd

You can also limit this command so that it can be executed only on the web server:

kirk www = /etc/init.d/httpd

This would allow the same /etc/sudoers file to be used on all of your systems (if this
is the way you want it). You can even allow certain users to execute commands as other
specific users:

kirk www = (nobody) ls

This allows kirk to list directories as the user nobody. You might find this useful for
verifying permissions within web content. If you can list directories with this command,
the web server can also get into the directory. You could also apply this rule to all users in
a specific group:

%users www = (nobody) ls

10597ch01final 16 11/20/08 12:07:47 PM

http://www.apress.com

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION 17

This command allows anybody in the group users to execute the command ls (with
any arguments) as the user nobody on the host www. You could even remove the password
prompt as well:

%users www = (nobody) NOPASSWD: ls

Now the users won’t have to enter their passwords at all when they run this com-
mand. Because this command isn’t that dangerous in most cases, removing the password
requirement is a nice option.

With Sudo, you can run certain commands without a password to allow scripts that
are running as a user other than root to execute system commands. This is the most ben-
eficial way to use Sudo when it comes to automation.

nWarning  It might be tempting to provide unlimited root access to certain users through Sudo. Although
this will allow the users to execute commands as root with full logging enabled, it is not usually the most
secure thing to do. Because each user can run commands as root with his or her user password, you
effectively have several root passwords for the system.

Many more options are available to you within the /etc/sudoers file. We’re not going
to attempt to cover them here, but you can view the sudo and sudoers man pages as well
as the http://www.courtesan.com/sudo/ web site for more information.

Who Owns the Systems?
The systems and services on your network aren’t yours to change at will. Normally your
company has established people empowered to make business decisions about when
a service can and should go down for maintenance. These staff members understand the
established requirements for advance notifications to customers, partners, and users.
They usually also understand internal or external factors that would affect whether
a scheduled time is a good fit for the business.

You can’t decide on your own to make changes in an unannounced window, or per-
form maintenance that takes down some functionality of your applications or systems
without prior approval. You need to schedule downtime and/or changes that affect or
might affect production services with your stakeholders. The SA might very well be the
person empowered to make the decision, but then the SA needs to communicate the
activity with enough advance notice to satisfy any internal or external SLAs (Service Level
Agreements).

10597ch01final 17 11/20/08 12:07:47 PM

http://www.You
http://www.courtesan.com/sudo

Chapter 1  ■﻿   INTRODUCING THE BASICS OF AUTOMATION18

This information is probably well known to most readers, but a reminder is useful
even to advanced SAs. SAs often get very close to their systems and applications, so they
might forget that the decisions about what’s best for their systems don’t start and stop
with them.

Defining Policy
We keep mentioning “policy,” which might sound like a big document handed down
from on high, bound in leather and signed in blood by all executives at your company.
This isn’t what we mean. The configuration policy is highly technical, and although it’s
influenced by factors outside the technology team (i.e., legislation, credit card–security
guidelines, site security policy, and so on), it is purely a statement of how the SA team
believes the systems should be configured.

The problem with most sites (whether running UNIX-like operating systems, Win-
dows, or other OSs) is that many machines will at best only partially comply with policy.
All systems might be imaged exactly the same way, but over time user and SA activities
make enough changes to each host that the system drifts from the desired state.

Sites that use automation for all aspects of system configuration will still suffer from
some drift associated with users and networked applications. Examples of this drift
include varying disk utilization based on log files from daemons or files left on the sys-
tem by users, or stray processes left around by users. This should be the extent of the
drift, because the automation system should install and configure all configuration files
and programs, as well as keep them in conformance with policy. In addition, as drift is
observed, you can update the automation system to rein in its effects.

You already have a system configuration policy, but there’s a good chance that it’s
documented incompletely. There’s an even better chance that some or all of it exists only
in your head. This book exists so that you can move it from wetware into software.

10597ch01final 18 11/20/08 12:07:47 PM

	Prelims
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Introducing the Basics of automation
	Unknown
	Large Companies with Many Diverse Systems
	Medium-Sized Companies Planning for Growth
	Internet Service Providers
	Application Service Providers
	Web Server Farms
	Beowulf Clusters
	Network Appliances
	Saving Time
	Reducing Errors
	Documenting System Configuration Policies
	Realizing Other Benefits
	Homogenizing Your Systems
	Deciding on Push vs. Pull

	Applying Practical Automation
	Unknown
	Scripting a Working Procedure
	Prototyping Before You Polish
	Turning the Script into a Robust Automation
	Attempting to Repair, Then Failing Noisily
	Focusing on Results

	Using SSH to Automate System Administration Securely
	Unknown
	Generating the Key Pair
	Specifying Authorized Keys
	Knowing ssh-agent Basics
	Getting Advanced with sshagent
	Forwarding Keys
	Dealing with Untrusted Hosts
	Allowing Limited Command Execution
	Forwarding a Port
	accessing a Server Behind Nat
	encrypting Mail traffic
	configuring authorized_keys

	Preparing for Common Accounts
	Monitoring the Common Accounts

	Configuring Systems with cfengine
	Unknown
	Defining cfengine Concepts
	Evaluating Push vs. Pull
	Delving into the Components of cfengine
	Mapping the cfengine Directory Structure
	Managing cfengine Configuration Files
	Identifying Systems with Classes
	categorizing predefined classes
	Defining custom classes

	Finding More Information About Cfengine
	Setting Up the Network
	Running Necessary Processes
	the cfexecd Daemon
	the cfservd Daemon

	Creating Basic Configuration Files
	example cfservd.conf
	Basic update.conf
	Framework for cfagent.conf

	Creating the Configuration Server
	Preparing the Client Systems
	Using Classes in cfagent.conf
	The copy Section
	The directories Section
	The disable Section
	The editfiles Section
	The files Section
	The links Section
	The processes Section
	The shellcommands Section

	Bootstrapping a New Infrastructure
	Unknown
	The cf.preconf Script
	The update.conf file
	The cfagent.conf file
	The cf.motd Task
	The cf.cfengine_cron_entries Task
	cfservd.conf

	Setting Up Automated Installation
	Unknown
	FAI for Debian
	Installing and configuring the FaI packages
	configuring Network Booting
	customizing the Install client
	Installing Your First Debian host

	Employing JumpStart for Solaris
	Setting Up the Install Server
	Setting Up the profile Server
	adding an Installation client

	Kickstart for Red Hat
	performing a pXe-Boot Kickstart Installation
	Getting the Kickstart host
	creating the Kickstart File
	creating the Installation tree and Making It available
	Setting Up Network Boot
	Installing a host Using Kickstart

	Automating a New System Infrastructure
	Unknown
	External NTP Synchronization
	Internal NTP Masters
	Configuring the NTP Clients
	Solaris 10 Ntp client
	red hat and Debian Ntp client

	Copying the Configuration Files with cfengine
	An Alternate Approach to Time Synchronization
	Choosing a DNS Architecture
	Setting Up Private DNS
	BIND configuration
	automating the BIND configuration

	Standardizing the Local Account Files
	Distributing the Files with cfengine
	Adding New User Accounts
	Using Scripts to create User accounts
	NFS-automounted home Directories

	Deploying Your First Application
	Unknown
	The Apache Package from Red Hat
	Building Apache from Source
	Synchronizing Data with rsync
	possible Uses of rsync
	Deciding Which rsync transport protocol to Use
	Basic Use of rsync
	Synchronizing Web content with rsync and cfengine
	Synchronizing apache and php with rsync

	Sharing Data with NFS
	configuring the NFS Server
	configuring the NFS client

	Sharing Program Binaries with NFS
	Server Setup
	client Setup

	Sharing Data with cfengine
	Sharing Data with Subversion
	automating Deployment of Your Subversion Server
	Using Subversion

	Generating reports and analyzing Logs
	Unknown
	Configuring the syslog Server
	Outputting Summary Log Reports
	Doing RealTime Log Reporting

	Monitoring
	Unknown
	Nagios Components
	Nagios Overview
	Deploying Nagios with cfengine
	Steps in Deploying Our Nagios Framework
	Step 1: Creating User accounts
	Step 2: Building Nagios
	Step 3: Building the Nagios plug-ins
	Step 4: Copying the Nagios Start-up Script on the cfengine Master
	Step 5: Separating the Nagios Configuration Directory from the program Directory

	Create the Nagios Web Interface Configuration Files
	Step 6: Generating an SSL Certificate for the Nagios Web Interface
	Step 7: Creating the apache Virtualhost Configuration for the Nagios Web Interface
	Step 8: Create the Nagios Web Interface authentication File
	Step 9: Copying the Nagios Daemon and Configuration Files with cfengine
	Step 10: Configuring a Nagios Monitoring host role in cfengine
	Step 11: Creating a hostgroup File for the Monitoring host role in cfengine
	Step 12: Copying the Nagios plug-ins with cfengine
	Step 13: Creating a DNS entry for the Monitoring host
	Step 14: Modifying the Nagios Localhost-Only Monitoring to Check httpS

	NRPE
	Step 15: Building Nrpe
	Step 16: Creating an Nrpe Configuration File
	Step 17: Creating an Nrpe Start-up Script
	Step 18: Copying Nrpe Using cfengine
	Step 19: Configuring the red hat Local Firewall to allow Nrpe

	Monitoring Remote Systems
	Step 20: Configuring Nagios to Monitor all hosts at Our example Site
	Step 21: party!

	What Nagios Alerts Really Mean
	Building and Distributing the Ganglia Programs
	Configuring the Ganglia Web Interface

	Infrastructure Enhancement
	Unknown
	Importing the masterfiles Directory Tree
	Using Subversion to Implement a Testing Environment
	Jumpstart
	Kickstart
	FAI
	Subversion Backups
	Copying the Subversion Backups to another host

	Improving System Security
	Unknown
	Removing the SUID Bit
	Protecting System Accounts
	Applying Patches and Vendor Updates
	Shutting Down Unneeded Daemons
	Removing Unsafe Files
	File Checksum Monitoring
	Using TCP Wrappers
	Using Host-Based Packet Filtering
	Iptables on Debian

	Introducing the Basic Tools
	Unknown
	Compatibility Issues with Bash
	Creating Simple Bash Shell Scripts
	Debugging Bash Scripts
	Other Shells
	Bash Resources
	Basic Usage
	Other Scripting Languages
	Perl Resources
	Characters
	Matching Repeating Characters
	Other Special Characters
	Marking and Back Referencing
	Modifying a File
	Modifying stdin
	Isolating Data
	Other Tools
	sed Resources
	Very Basic Usage
	Not-Quite-As-Basic Usage
	AWK Resources

	Writing cfengine Modules
	Index

