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P R O T O C O L S

One of the weaknesses of the original 
Internet Protocol (IP) is that it lacks any 

sort of general-purpose mechanism for 
ensuring the authenticity and privacy of data as 

it is passed over the internetwork. Since IP datagrams 
must usually be routed between two devices over 
unknown networks, any information in them is subject to being intercepted 
and even possibly changed. With the increased use of the Internet for critical 
applications, security enhancements were needed for IP. To this end, a set of 
protocols called IP Security or IPsec was developed.

In this chapter, I provide a brief description of IPsec concepts and proto-
cols. I begin with an overview of IPsec, including a discussion of the history 
of the technology and a definition of the standards. I describe the main 
components and protocols of the IPsec suite and its different architectures 
and methods for implementation. I then move to actually discussing how 
IPsec works, beginning with a description of the two IPsec modes (transport 
and tunnel) and how they differ. I describe security associations and related 
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constructs such as the Security Parameter Index (SPI). The last three topics cover 
the three main IPsec protocols: IPsec Authentication Header (AH), IPsec 
Encapsulating Security Payload (ESP), and the IPsec Internet Key Exchange (IKE).

NOTE IPsec was initially developed with IPv6 in mind, but has been engineered to provide secu-
rity for both IPv4 and IPv6 networks, and operation in both versions is similar. There are some dif-
ferences in the datagram formats used for AH and ESP. These differences depend on whether you 
use IPsec in IPv4 or IPv6, because the two versions have different datagram formats and address-
ing. I highlight these differences where appropriate.

IPsec Overview, History, and Standards

The big problem with the original IP version (IPv4) is the pending exhaustion of its 
address space. This situation arose due to the rapid expansion of the Internet 
beyond anyone’s expectations when IPv4 was developed. This same mismatch 
between how the Internet was when IPv4 was created and how it is now has led to 
another major problem with IP: the lack of a definitive means of ensuring security 
on IP internetworks.

The security problem arose because 25 years ago, the Internet was tiny and 
relatively private. Today it is enormous and truly public. As the Internet has grown, 
the need for security has grown with it. Consider that TCP/IP and the early Internet 
precursors were developed as very small networks used by government researchers 
at the United States Defense Advanced Research Projects Agency (DARPA or ARPA). 
People who were well known and would generally have had security clearance 
controlled all the hardware. In such a network, you don’t need to build security in 
to the protocols—you build it into the building! It’s easier to use locks and guards to 
ensure security than fancy encryption. The easiest way to keep someone from 
snooping or tampering with data on the network is simply to deny them access to 
the hosts that connect to the network.

This worked fine at first when there were only a few dozen machines on the 
Internet. And even when the Internet first started to grow, it was used pretty much 
only to connect together researchers and other networking professionals. New sites 
were added to the network slowly at first, and at least someone knew the identity of 
each new site added to the growing internetwork. However, as the Internet contin-
ued to increase in size and was eventually opened to the public, maintaining security 
of the network as a whole became impossible. Today, the “great unwashed masses” 
are on the Internet. Many routers—owned by “who knows” and administered by 
“who knows”—stand between you and most other devices you want to connect with. 
You cannot assume that the data you send or receive is secure.

A number of methods have evolved over the years to address the need for 
security. Most of these are focused at the higher layers of the OSI protocol stack in 
order to compensate for IP’s lack of security. These solutions are valuable for certain 
situations, but they can’t be generalized easily because they are particular to various 
applications. For example, we can use Secure Sockets Layer (SSL) for certain appli-
cations like World Wide Web access or File Transfer Protocol (FTP), but there are 
dozens of applications that this type of security was never intended to work with.

What was really needed was a solution to allow security at the IP level so all 
higher-layer protocols in TCP/IP could take advantage of it. When the decision was 
made to develop a new version of IP (IPv6), this was the golden opportunity to 
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resolve not just the addressing problems in the older IPv4, but the lack of security 
as well. New security technology was developed with IPv6 in mind, but since IPv6 
has taken years to develop and roll out, and the need for security is now, the 
solution was designed to be usable for both IPv4 and IPv6.

The technology that brings secure communications to the IP is called IP 
Security, commonly abbreviated IPsec. The capitalization of this abbreviation is 
variable, so you’ll see IPSec and IPSEC.

Overview of IPsec Services and Functions

IPsec is not a single protocol, but rather a set of services and protocols that provide 
a complete security solution for an IP network. These services and protocols 
combine to provide various types of protection. Since IPsec works at the IP layer, it 
can provide these protections for any higher-layer TCP/IP application or protocol 
without the need for additional security methods, which is a major strength. Some 
of the kinds of protection services offered by IPsec include the following:

� Encryption of user data for privacy

� Authentication of the integrity of a message to ensure that it is not changed en 
route

� Protection against certain types of security attacks, such as replay attacks

� The ability for devices to negotiate the security algorithms and keys required to 
meet their security needs

� Two security modes, tunnel and transport, to meet different network needs

IPsec Standards

Since IPsec is actually a collection of techniques and protocols, it is not defined in a 
single Internet standard. Instead, a collection of RFCs defines the architecture, 
services, and specific protocols used in IPsec. Some of the most important of these 
are shown in Table 29-1, all of which were published in November 1998.

KEY CONCEPT IPsec is a contraction of IP Security, and it consists of a set of services and 
protocols that provide security to IP networks. It is defined by a sequence of several Internet 
standards.

Table 29-1: Important IP Security (IPsec) Standards

RFC Number Name Description

2401 Security Architecture for 
the Internet Protocol

The main IPsec document, describing the architecture and general operation 
of the technology, and showing how the different components fit together.

2402 IP Authentication Header Defines the IPsec Authentication Header (AH) protocol, which is used for 
ensuring data integrity and origin verification.

2403 The Use of HMAC-MD5-
96 within ESP and AH

Describes a particular encryption algorithm for use by the AH and 
Encapsulation Security Payload (ESP) protocols called Message Digest 5 
(MD5), HMAC variant. 

(continued)
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Deployment of IPsec has only really started to take off in the last few years. A 
major use of the technology is in implementing virtual private networks (VPNs). It 
appears that the future is bright for IPsec, as more and more individuals and 
companies decide that they need to take advantage of the power of the Internet, 
while also protecting the security of the data they transport over it.

IPsec General Operation, Components, and Protocols

IPsec isn’t the only difficult topic in this book, but it is definitely a subject that 
baffles many. Most discussions of it jump straight to describing the mechanisms and 
protocols, without providing a general description of what it does and how the 
pieces fit together. Well, I recognized that IPsec is important, and I don’t shy away 
from a challenge. Thus, here’s my attempt to provide a framework for under-
standing IPsec’s various bits and pieces.

So what exactly does IPsec do, and how does it do it? In general terms, it 
provides security services at the IP layer for other TCP/IP protocols and appli-
cations to use. What this means is that IPsec provides the tools that devices on a 
TCP/IP network need in order to communicate securely. When two devices (either 
end-user hosts or intermediate devices such as routers or firewalls) want to engage 
in secure communications, they set up a secure path between themselves that may 
traverse across many insecure intermediate systems. To accomplish this, they must 
perform (at least) the following tasks:

� They must agree on a set of security protocols to use so that each one sends 
data in a format the other can understand.

� They must decide on a specific encryption algorithm to use in encoding data.

� They must exchange keys that are used to “unlock” data that has been crypto-
graphically encoded.

� Once this background work is completed, each device must use the protocols, 
methods, and keys previously agreed upon to encode data and send it across 
the network.

2404 The Use of HMAC-SHA-
1-96 within ESP and AH

Describes a particular encryption algorithm for use by AH and ESP called 
Secure Hash Algorithm 1 (SHA-1), HMAC variant.

2406 IP Encapsulating Security 
Payload (ESP)

Describes the IPsec ESP protocol, which provides data encryption for 
confidentiality.

2408 Internet Security 
Association and Key 
Management Protocol 
(ISAKMP)

Defines methods for exchanging keys and negotiating security associations.

2409 The Internet Key 
Exchange (IKE)

Describes the IKE protocol that’s used to negotiate security associations and 
exchange keys between devices for secure communications. Based on 
ISAKMP and OAKLEY.

2412 The OAKLEY Key 
Determination Protocol

Describes a generic protocol for key exchange.

Table 29-1: Important IP Security (IPsec) Standards (continued)

RFC Number Name Description
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IPsec Core Protocols

To support these activities, a number of different components make up the total 
package known as IPsec, as shown in Figure 29-1. The two main pieces are a pair of 
technologies sometimes called the core protocols of IPsec, which actually do the work 
of encoding information to ensure security:

IPsec Authentication Header (AH) This protocol provides authentication services 
for IPsec. It allows the recipient of a message to verify that the supposed originator 
of a message was actually fact the one that sent it. It also allows the recipient to ver-
ify that intermediate devices en route haven’t changed any of the data in the data-
gram. It also provides protection against so-called replay attacks, whereby a message 
is captured by an unauthorized user and resent.

Encapsulating Security Payload (ESP) AH ensures the integrity of the data in 
datagram, but not its privacy. When the information in a datagram is “for your eyes 
only,” it can be further protected using ESP, which encrypts the payload of the IP 
datagram.

Figure 29-1: Overview of IPsec protocols and components IPsec consists of two core protocols, AH and 
ESP, and three supporting components.

IPsec Support Components
AH and ESP are commonly called protocols, though this is another case where the 
use of this term is debatable. They are not really distinct protocols but are imple-
mented as headers that are inserted into IP datagrams, as you will see. They thus do 
the “grunt work” of IPsec, and can be used together to provide both authentication 
and privacy. However, they cannot operate on their own. To function properly, 
they need the support of several other protocols and services (see Figure 29-1). The 
most important of these include the following:

Encryption/Hashing Algorithms AH and ESP are generic and do not specify the 
exact mechanism used for encryption. This gives them the flexibility to work with a 
variety of such algorithms and to negotiate which one to use as needed. Two com-
mon ones used with IPsec are Message Digest 5 (MD5) and Secure Hash Algorithm 1 
(SHA-1). These are also called hashing algorithms because they work by computing a 
formula called a hash based on input data and a key.
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Security Policies, Security Associations, and Management Methods Since IPsec 
provides flexibility in letting different devices decide how they want to implement 
security, they require some means to keep track of the security relationships between 
themselves. This is done in IPsec using constructs called security policies and security 
associations, and by providing ways to exchange security association information.

Key Exchange Framework and Mechanism For two devices to exchange encrypted 
information, they need to be able to share keys for unlocking the encryption. They 
also need a way to exchange security association information. In IPsec, a protocol 
called the Internet Key Exchange (IKE) provides these capabilities.

Well, that’s at least a start at providing a framework for understanding what 
IPsec is all about and how the pieces fit together. You’ll examine these components 
and protocols in more detail as you proceed through this chapter.

IPsec Architectures and Implementation Methods

The main reason that IPsec is so powerful is that it provides security to IP, which is 
the basis for all other TCP/IP protocols. In protecting IP, you are protecting pretty 
much everything else in TCP/IP as well. An important issue, then, is how exactly do 
you get IPsec into IP? There are several implementation methods for deploying 
IPsec. These represent different ways that IPsec may modify the overall layer 
architecture of TCP/IP.

Three different implementation architectures are defined for IPsec in RFC 
2401. The one you use depends on various factors including the version of IP used 
(IPv4 or IPv6), the requirements of the application, and other factors. These, in 
turn, rest on a primary implementation decision: Should IPsec be programmed 
into all hosts on a network, or just into certain routers or other intermediate 
devices? This is a design decision that must be based on the requirements of the 
network:

End-Host Implementation Putting IPsec into all host devices provides the most 
flexibility and security. It enables end-to-end security between any two devices on 
the network. However, there are many hosts on a typical network, so this means far 
more work than just implementing IPsec in routers.

Router Implementation This option is much less work because it means you make 
changes to only a few routers instead of hundreds or thousands of clients. It pro-
vides protection only between pairs of routers that implement IPsec, but this may 
be sufficient for certain applications such as VPNs. The routers can be used to pro-
vide protection for just the portion of the route that datagrams take outside the 
organization, thereby leaving connections between routers and local hosts unse-
cured (or possibly, secured by other means).

KEY CONCEPT IPsec consists of a number of different components that work together to 
provide security services. The two main ones are protocols called the Authentication Header 
(AH) and Encapsulating Security Payload (ESP), which provide authenticity and privacy to IP 
data in the form of special headers added to IP datagrams.
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Three different architectures are defined that describe methods for how to get 
IPsec into the TCP/IP protocol stack: integrated, bump in the stack, and bump in 
the wire.

Integrated Architecture

Under ideal circumstances, we would integrate IPsec’s protocols and capabilities 
directly into IP itself. This is the most elegant solution, because it allows all IPsec 
security modes and capabilities to be provided just as easily as regular IP. No extra 
hardware or architectural layers are needed.

IPv6 was designed to support IPsec. Thus, it’s a viable option for hosts or 
routers. With IPv4, integration would require making changes to the IP imple-
mentation on each device, which is often impractical (to say the least!).

Bump in the Stack (BITS) Architecture

In the bump in the stack (BITS) technique, IPsec is made a separate architectural 
layer between IP and the data link layer. The cute name refers to the fact that IPsec 
is an extra element in the networking protocol stack, as you can see in Figure 29-2. 
IPsec intercepts IP datagrams as they are passed down the protocol stack, provides 
security, and passes them to the data link layer.

Figure 29-2: IPsec bump in the stack (BITS) architecture In this type of IPsec implementation, IPsec 
becomes a separate layer in the TCP/IP stack. It is implemented as software that sits below IP and adds 
security protection to datagrams created by the IP layer.

TCPIP_02.book  Page 455  Monday, August 22, 2005  2:52 PM



456 Chap te r 29

The advantage of this technique is that IPsec can be retrofitted to any IP 
device, since the IPsec functionality is separate from IP. The disadvantage is that 
there is a duplication of effort compared to the integrated architecture. BITS is 
generally used for IPv4 hosts.

Bump in the Wire (BITW) Architecture

In the bump in the wire (BITW) method, we add a hardware device that provides 
IPsec services. For example, suppose we have a company with two sites. Each has a 
network that connects to the Internet using a router that is not capable of IPsec 
functions. We can interpose a special IPsec device between the router and the 
Internet at both sites, as shown in Figure 29-3. These devices will then intercept 
outgoing datagrams, add IPsec protection to them, and strip it off incoming 
datagrams.

Figure 29-3: IPsec bump in the wire (BITW) architecture In this IPsec architecture, IPsec is actually imple-
mented in separate devices that sit between the devices that wish to communicate securely. These repack-
age insecure IP datagrams for transport over the public Internet.

Just as BITS lets you add IPsec to legacy hosts, BITW can retrofit non-IPsec 
routers to provide security benefits. The disadvantages are complexity and cost.

As you will see in the next section, the choice of architecture has an important 
impact on which of the two IPsec modes can be used. Incidentally, even though 
BITS and BITW seem quite different, they are actually do the same thing. In the 
case of BITS, we have an extra software layer that adds security to existing IP data-
grams; in BITW, distinct hardware devices do this same job. In both cases, the result 
is the same, and the implications on the choice of IPsec mode is likewise the same.

KEY CONCEPT Three different architectures or implementation models are defined for IPsec. 
The best is integrated architecture, in which IPsec is built into the IP layer of devices directly. The 
other two are bump in the stack (BITS) and bump in the wire (BITW), which are ways of layering 
IPsec underneath regular IP, using software and hardware solutions, respectively.
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IPsec Modes: Transport and Tunnel

You just saw that three different basic implementation architectures could be used 
to provide IPsec facilities to TCP/IP networks. The choice of which implemen-
tation you use, as well as whether you implement in end hosts or routers, impacts 
the specific way that IPsec functions. Two specific modes of operation that are 
related to these architectures are defined for IPsec. They are called transport mode 
and tunnel mode.

IPsec modes are closely related to the function of the two core protocols, AH 
and ESP. Both of these protocols provide protection by adding a header (and pos-
sibly other fields) containing security information to a datagram. The choice of 
mode does not affect the method by which each generates its header, but rather, 
changes what specific parts of the IP datagram are protected and how the headers 
are arranged to accomplish this. In essence, the mode really describes, not pre-
scribes, how AH or ESP do their thing. It is used as the basis for defining other 
constructs, such as security associations (SAs).

Transport Mode
As its name suggests, in transport mode, the protocol protects the message passed 
down to IP from the transport layer. The message is processed by AH and/or ESP, 
and the appropriate header(s) are added in front of the transport (UDP or TCP) 
header. The IP header is then added in front of that by IP.

Another way of looking at this is as follows: Normally, the transport layer 
packages data for transmission and sends it to IP. From IP’s perspective, this trans-
port layer message is the payload of the IP datagram. When IPsec is used in transport 
mode, the IPsec header is applied only over this IP payload, not the IP header. The 
AH and ESP headers appear between the original, single IP header and the IP 
payload. This is illustrated in Figure 29-4.

Tunnel Mode
In tunnel mode, IPsec is used to protect a completely encapsulated IP datagram 
after the IP header has already been applied to it. The IPsec headers appear in 
front of the original IP header, and then a new IP header is added in front of the 
IPsec header. That is to say, the entire original IP datagram is secured and then 
encapsulated within another IP datagram. This is shown in Figure 29-5.

Comparing Transport and Tunnel Modes
The bottom line in understanding the difference between the two IPsec modes is 
this: Tunnel mode protects the original IP datagram as a whole, header and all, 
while transport mode does not. Thus, in general terms, the order of the headers is 
as follows:

Transport Mode IP header, IPsec headers (AH and/or ESP), IP payload (includ-
ing transport header)

Tunnel Mode New IP header, IPsec headers (AH and/or ESP), old IP header, 
IP payload
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Figure 29-4: IPsec transport mode operation When IPsec operates in transport mode, it is integrated 
with IP and used to transport the upper layer (TCP/UDP) message directly. After processing, the data-
gram has just one IP header that contains the AH and ESP IPsec headers. Contrast this to tunnel mode, 
shown in Figure 29-5.

Again, this is a simplified view of how IPsec datagrams are constructed; the 
reality is significantly more complex. The exact way that the headers are arranged 
in an IPsec datagram in both transport and tunnel modes depends on which 
version of IP is being used. IPv6 uses extension headers that must be arranged in a 
particular way when IPsec is used. The header placement also depends on which 
IPsec protocol is being used, AH or ESP. Note that it is also possible to apply both 
AH and ESP to the same datagram; if so, the AH header always appears before the 
ESP header.

There are thus three variables and eight basic combinations of mode (tunnel 
or transport), IP version (IPv4 or IPv6) and protocol (AH or ESP). The coming 
discussions of AH and ESP describe the four format combinations of transport/
tunnel mode and IPv4/IPv6 applicable to each protocol. Note that ESP also 
includes an ESP trailer that goes after the data protected.

You could probably tell by reading these descriptions how the two modes relate 
to the choice of IPsec architecture you looked at earlier. Transport mode requires 
that IPsec be integrated into IP, because AH/ESP must be applied as the original IP 
packaging is performed on the transport layer message. This is often the choice for 
implementations requiring end-to-end security with hosts that run IPsec directly.
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Figure 29-5: IPsec tunnel mode operation IPsec tunnel mode is so named because it represents an 
encapsulation of a complete IP datagram, thereby forming a virtual tunnel between IPsec-capable 
devices. The IP datagram is passed to IPsec, where a new IP header is created with the AH and ESP 
IPsec headers added. Contrast this to transport mode, shown in Figure 29-4.

Tunnel mode represents an encapsulation of IP within the combination of IP 
plus IPsec. Thus, it corresponds with the BITS and BITW implementations, where 
IPsec is applied after IP has processed higher-layer messages and has already added 
its header. Tunnel mode is a common choice for VPN implementations, which are 
based on the tunneling of IP datagrams through an unsecured network such as the 
Internet.

KEY CONCEPT IPsec has two basic modes of operation. In transport mode, IPsec AH and 
ESP headers are added as the original IP datagram is created. Transport mode is associated 
with integrated IPsec architectures. In tunnel mode, the original IP datagram is created normally, 
and then the entire datagram is encapsulated into a new IP datagram containing the AH/ESP 
IPsec headers. Tunnel mode is most commonly used with bump in the stack (BITS) and bump in 
the wire (BITW) implementations.
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IPsec Security Constructs

Important IPsec security constructs include security associations, the security 
association database, security policies, the security policy database, selectors, and 
the security parameter index. These items are all closely related and essential to 
understand before you begin looking at the core IPsec protocols. These constructs 
are used to guide the operation of IPsec in a general way and particularly to guide 
exchanges between devices. The constructs control how IPsec works and ensure 
that each datagram coming into or leaving an IPsec-capable device is treated 
properly.

Security Policies, Security Associations, and Associated Databases

Let’s begin by considering the problem of how to apply security in a device that 
may be handling many different exchanges of datagrams with others. There is 
overhead involved in providing security, so you do not want to do it for every 
message that comes in or out. Some types of messages may need more security; 
others may need less. Also, exchanges with certain devices may require different 
processing than others.

To manage all of this complexity, IPsec is equipped with a flexible, powerful 
way of specifying how different types of datagrams should be handled. To 
understand how this works, you must first define the following two important 
logical concepts:

Security Policies and the Security Policy Database (SPD) A security policy is a rule 
that is programmed into the IPsec implementation. It tells the implementation how 
to process different datagrams received by the device. For example, security poli-
cies decide if a particular packet needs to be processed by IPsec or not. AH and ESP 
entirely bypass those that do not need processing. If security is required, the secu-
rity policy provides general guidelines for how it should be provided, and if neces-
sary, links to more specific detail. Security policies for a device are stored in the 
device’s security policy database (SPD).

Security Associations (SAs) and the Security Association Database (SAD) A secu-
rity association (SA) is a set of security information that describes a particular kind 
of secure connection between one device and another. You can consider it a con-
tract, if you will, that specifies the particular security mechanisms that are used for 
secure communications between the two. A device’s security associations are con-
tained in its security association database (SAD).

It’s often hard to distinguish between the SPD and the SAD, because they are 
similar in concept. The main difference between them is that security policies are 
general, while security associations are more specific. To determine what to do with 
a particular datagram, a device first checks the SPD. The security policies in the 
SPD may reference a particular SA in the SAD. If so, the device will look up that SA 
and use it for processing the datagram.
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Selectors

One issue I haven’t covered yet is how a device determines what security policies or 
SAs to use for a specific datagram. Again here, IPsec defines a very flexible system 
that lets each security association define a set of rules for choosing datagrams that 
the SA applies to. Each of these rule sets is called a selector. For example, you might 
define a selector that says that a particular range of values in the Source Address of 
a datagram, combined with another value in the Destination Address, means that a 
specific SA must be used for the datagram.

Security Association Triples and Security Parameter Index (SPI)

Each secure communication that a device makes to another requires that an SA be 
established. SAs are unidirectional, so each one only handles either inbound or 
outbound traffic for a particular device. This allows the level of security for a flow 
from Device A to Device B to be different than the level for traffic coming from 
Device B to Device A. In a bidirectional communication of this sort, both Device A 
and Device B would have two SAs; Device A would have SAs that you could call 
SAdeviceBin and SAdeviceBout. Device B would have SAs SAdeviceAin and 
SAdeviceAout.

SAs don’t actually have names, however. They are instead defined by a set of 
three parameters, called a triple:

Security Parameter Index (SPI) A 32-bit number that is chosen to uniquely iden-
tify a particular SA for any connected device. The SPI is placed in AH or ESP data-
grams and thus links each secure datagram to the security association. It is used by 
the recipient of a transmission so it knows what SA governs the datagram.

IP Destination Address The address of the device for which the SA is established.

Security Protocol Identifier Specifies whether this association is for AH or ESP. If 
both are in use with this device, they have separate SAs.

As you can see, the two security protocols AH and ESP are dependent on SAs, 
security policies, and the various databases that control the operation of those SAs 
and policies. Management of these databases is important, but it’s another complex 
subject entirely. Generally, SAs can either be set up manually (which is of course 
extra work) or you can deploy an automated system using a protocol like IKE 
(discussed near the end of this chapter).

Confused? I don’t blame you, despite my best efforts, and remember that this is 
all highly simplified. Welcome to the wonderful world of networking security. If you 
are ever besieged by insomnia, I highly recommend RFC 2401!

IPsec Authentication Header (AH)

As I mentioned earlier in this chapter, AH is one of the two core security protocols 
in IPsec. This is another protocol whose name has been well chosen. It provides 
authentication of either all or part of the contents of a datagram through the addition 
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of a header that is calculated based on the values in the datagram. The parts of the 
datagram that are used for the calculation, and the placement of the header, 
depend on the mode (tunnel or transport) and the version of IP (IPv4 or IPv6).

The operation of AH is surprisingly simple, especially for any protocol that 
has anything to do with network security. The simplicity is analogous to the algo-
rithms used to calculate checksums or perform cyclic redundancy (CRC) checks for 
error detection. In those cases, the sender uses a standard algorithm to compute a 
checksum or CRC code based on the contents of a message. This computed result 
is transmitted along with the original data to the destination, which repeats the 
calculation and discards the message if any discrepancy is found between its calcu-
lation and the one done by the source.

This is the same idea behind AH, except that instead of using a simple algo-
rithm known to everyone, it uses a special hashing algorithm and a specific key 
known only to the source and the destination. An SA between two devices specifies 
these particulars, so that the source and destination know how to perform the com-
putation but nobody else can. On the source device, AH performs the computation 
and puts the result (called the integrity check value, or ICV) into a special header with 
other fields for transmission. The destination device does the same calculation using 
the key that the two devices share. This enables the device to see immediately if any 
of the fields in the original datagram were modified (due to either error or malice).

Just as a checksum doesn’t change the original data, neither does the ICV 
calculation change the original data. The presence of the AH header allows us to 
verify the integrity of the message, but doesn’t encrypt it. Thus, AH provides authen-
tication but not privacy (that’s what ESP is for). 

AH Datagram Placement and Linking

The calculation of AH is similar for both IPv4 and IPv6. One difference is in the 
exact mechanism used for placing the header into the datagram and for linking the 
headers together. I’ll describe IPv6 first because it is simpler, and because AH was 
really designed to fit into its mechanism for this.

IPv6 AH Placement and Linking

In IPv6, the AH is inserted into the IP datagram as an extension header, following 
the normal IPv6 rules for extension header linking. It is linked by the previous 
header (extension or main), which puts the assigned value for the AH header (51) 
into its Next Header field. The AH header then links to the next extension header 
or the transport layer header using its Next Header field.

In transport mode, the AH is placed into the main IP header and appears 
before any Destination Options header that contains options intended for the final 
destination, and before an ESP header if present, but after any other extension 
headers. In tunnel mode, it appears as an extension header of the new IP datagram 
that encapsulates the original one being tunneled. This is shown graphically in 
Figure 29-6.
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Figure 29-6: IPv6 datagram format with IPsec Authentication Header (AH) This is an example of an 
IPv6 datagram with two extension headers that are linked using the standard IPv6 mechanism (see Fig-
ure 26-3 in Chapter 26). When AH is applied in transport mode, it is simply added as a new extension 
header (as shown in dark shading) that goes between the Routing extension header and the Destination 
Options header. In tunnel mode, the entire original datagram is encapsulated into a new IPv6 datagram 
that contains the AH header. In both cases, the Next Header fields are used to link each header one to 
the next. Note the use of Next Header value 41 in tunnel mode, which is the value for the encapsulated 
IPv6 datagram.

IPv4 AH Placement and Linking

In IPv4, a method that is similar to the IPv6 header-linking technique is employed. In 
an IPv4 datagram, the Protocol field indicates the identity of the higher-layer proto-
col (typically TCP or UDP) that’s carried in the datagram. As such, this field points 
to the next header, which is at the front of the IP payload. AH takes this value and 
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puts it into its Next Header field, and then places the protocol value for AH itself 
(51 in dotted decimal) into the IP Protocol field. This makes the IP header point to 
the AH, which then points to whatever the IP datagram pointed to before.

Again, in transport mode, the AH header is added after the main IP header 
of the original datagram; in tunnel mode it is added after the new IP header 
that encapsulates the original datagram that’s being tunneled. This is shown in 
Figure 29-7.

Figure 29-7: IPv4 datagram format with IPsec AH Here is an example of an IPv4 datagram; it may or 
may not contain IPv4 options (which are not distinct entities as they are in IPv6). In transport mode, the 
AH header is added between the IP header and the IP data; the Protocol field of the IP header points to 
it, while its Next Header field contains the IP header’s prior protocol value (in this case 6, for TCP). In 
tunnel mode, the IPv4 datagram is encapsulated into a new IPv4 datagram that includes the AH header. 
Note that in tunnel mode, the AH header uses the value 4 (which means IPv4) in its Next Header field.
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AH Format

The format of AH is described in Table 29-2 and illustrated in Figure 29-8.

Figure 29-8: IPsec Authentication Header (AH) format

KEY CONCEPT The IPsec Authentication Header (AH) protocol allows the recipient of a 
datagram to verify its authenticity. It is implemented as a header that’s added to an IP datagram 
that contains an integrity check value (ICV), which is computed based on the values of the fields 
in the datagram. The recipient can use this value to ensure that the data has not been changed 
in transit. AH does not encrypt data and thus does not ensure the privacy of transmissions.

Table 29-2: IPsec Authentication Header (AH) Format

Field Name
Size 
(Bytes) Description

Next Header 1 Contains the protocol number of the next header after the AH. Used to link headers together.

Payload Len 1 Despite its name, this field measures the length of the authentication header itself, not the 
payload. (I wonder what the history is behind that!) It is measured in 32-bit units, with 2 
subtracted for consistency with how header lengths are normally calculated in IPv6.

Reserved 2 Not used; set to zeros.

SPI 4 A 32-bit value that, when combined with the destination address and security protocol type 
(which is obviously the one for AH here), identifies the security association (SA) that will be 
used for this datagram. (SAs are discussed earlier in this chapter.) 

Sequence 
Number

4 A counter field that is initialized to zero when an SA is formed between two devices, and 
then incremented for each datagram sent using that SA. This uniquely identifies each 
datagram on an SA and is used to provide protection against replay attacks by preventing 
the retransmission of captured datagrams.

Authentication 
Data

Variable Contains the result of the hashing algorithm, called the integrity check value (ICV), performed 
by the AH protocol.
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The size of the Authentication Data field is variable to support different 
datagram lengths and hashing algorithms. Its total length must be a multiple of 32 
bits. Also, the entire header must be a multiple of either 32 bits (for IPv4) or 64 bits 
(for IPv6), so additional padding may be added to the Authentication Data field if 
necessary.

You may also notice that no IP addresses appear in the header, which is a 
prerequisite for it being the same for both IPv4 and IPv6.

IPsec Encapsulating Security Payload (ESP)

The IPsec AH provides integrity authentication services to IPsec-capable devices so 
that they can verify that messages are received intact from other devices. For many 
applications, however, this is only one piece of the puzzle. We want to not only 
protect against intermediate devices changing the datagrams, but also to protect 
against them examining their contents as well. For this level of private communi-
cation, AH is not enough; we need to use the ESP protocol.

The main job of ESP is to provide the privacy we seek for IP datagrams by 
encrypting them. An encryption algorithm combines the data in the datagram with 
a key to transform it into an encrypted form. This is then repackaged using a special 
format that you will see shortly, and then transmitted to the destination, which 
decrypts it using the same algorithm. ESP also sports its own authentication scheme 
like the one used in AH, or it can be used in conjunction with AH.

ESP Fields

ESP has several fields that are the same as those used in AH, but it packages its 
fields in a very different way. Instead of having just a header, it divides its fields into 
three components:

ESP Header This contains two fields, SPI and Sequence Number, and comes 
before the encrypted data. Its placement depends on whether ESP is used in trans-
port mode or tunnel mode, as explained earlier in this chapter.

ESP Trailer This section is placed after the encrypted data. It contains padding 
that is used to align the encrypted data through a Padding and Pad Length field. 
Interestingly, it also contains the Next Header field for ESP. 

ESP Authentication Data This field contains an ICV that’s computed in a manner 
that’s similar to how the AH protocol works. The field is used when ESP’s optional 
authentication feature is employed.

There are two reasons why these fields are broken into pieces like this. The first 
is that some encryption algorithms require the data to be encrypted to have a 
certain block size, and so padding must appear after the data and not before it. 
That’s why padding appears in the ESP Trailer field. The second is that the ESP 
Authentication Data appears separately because it is used to authenticate the rest of 
the encrypted datagram after encryption. This means that it cannot appear in the 
ESP Header or ESP Trailer.
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ESP Operations and Field Use

This is still a bit boggling so I’m going to try to explain this procedurally by consider-
ing three basic steps performed by ESP: calculating the header, then the trailer, 
and then the Authentication field.

Header Calculation and Placement

The first thing to consider is how the ESP header is placed. This is similar to how 
AH works and depends on the IP version, as follows:

IPv6 The ESP Header field is inserted into the IP datagram as an extension header, 
following the normal IPv6 rules for extension-header linking. In transport mode, it 
appears before a Destination Options header that contains options intended for 
the final destination, but after any other extension headers, if present. In tunnel 
mode, it appears as an extension header of the new IP datagram that encapsulates 
the original one being tunneled. This is shown in Figure 29-9.

IPv4 As with AH, the ESP Header field is placed after the normal IPv4 header. In 
transport mode, it appears after the IP header of the original datagram; in tunnel 
mode, it appears after the IP header of the new IP datagram that’s encapsulating 
the original one. You can see this in Figure 29-10.

Trailer Calculation and Placement

The ESP Trailer field is appended to the data that will be encrypted. ESP then 
performs the encryption. The payload (TCP/UDP message or encapsulated IP data-
gram) and the ESP trailer are both encrypted, but the ESP header is not. Note again 
that any other IP headers that appear between the ESP header and the payload are 
also encrypted. In IPv6, this can include a Destination Options extension header.

Normally, the Next Header field would appear in the ESP Header and would 
be used to link the ESP Header to the header that comes after it. However, the Next 
Header field in ESP appears in the trailer and not the header, which makes the 
linking seem a bit strange in ESP. The method is basically the same as what’s used 
in AH and in IPv6 in general, with the Next Header and Protocol fields being 
used to tie everything together. However, in ESP the Next Header field appears 
after the encrypted data, and so it points back to one of the following: a Destination 
Options extension header (if present), a TCP/UDP header (in transport mode), or 
an IPv4/IPv6 header (in tunnel mode). This is also shown in Figures 29-9 and 29-10.

ESP Authentication Field Calculation and Placement

If the optional ESP authentication feature is being used, it is computed over the 
entire ESP datagram (except the Authentication Data field itself, of course). This 
includes the ESP header, payload, and trailer.

KEY CONCEPT The IPsec ESP protocol allows the contents of a datagram to be encrypted, 
which ensures that only the intended recipient is able to see the data. ESP is implemented using 
three components: an ESP Header that’s added to the front of a protected datagram, an ESP 
Trailer that follows the protected data, and an optional ESP Authentication Data field that 
provides authentication services similar to those provided by AH.
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Figure 29-9: IPv6 datagram format with IPsec ESP Here is the same example of an IPv6 datagram with 
two extension headers that you saw in Figure 29-6. When ESP is applied in transport mode, the ESP 
Header field is added to the existing datagram as in AH, and the ESP Trailer and ESP Authentication 
Data fields are placed at the end. In tunnel mode, the ESP Header and Trailer fields bracket the entire 
encapsulated IPv6 datagram. Note the encryption and authentication coverage in each case, and also 
how the Next Header field points back into the datagram since it appears in the ESP Trailer.
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Figure 29-10: IPv4 datagram format with IPsec ESP Here is the same sample IPv4 datagram that you 
saw in Figure 29-7. When ESP processes this datagram in transport mode, the ESP Header field is 
placed between the IPv4 header and data, with the ESP Trailer and ESP Authentication Data fields fol-
lowing. In tunnel mode, the entire original IPv4 datagram is surrounded by these ESP components, rather 
than just the IPv4 data. Again, as in Figure 29-9, note the encryption and authentication coverage, and 
how the Next Header field points back to specify the identity of the encrypted data or datagram.
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ESP Format

The format of the ESP sections and fields is described in Table 29-3 and illustrated 
in Figure 29-11. In both the figure and the table, I have shown the encryption and 
authentication coverage of the fields explicitly, to clarify how it all works.

Table 29-3: IPsec Encapsulating Security Payload (ESP) Format

Section
Field 
Name

Size 
(Bytes) Description

Encryption 
Coverage

Authentication 
Coverage

ESP Header

SPI 4 A 32-bit value that is 
combined with the destination 
address and security protocol 
type to identify the SA that will 
be used for this datagram. 
(SAs are discussed earlier in 
this chapter.) 

Sequence 
Number

4 A counter field initialized to 
zero when an SA is formed 
between two devices, and then 
incremented for each 
datagram that’s sent using that 
SA. This is used to provide 
protection against replay 
attacks.

Payload Payload 
Data

Variable The encrypted payload data, 
which consists of a higher-
layer message or encapsulated 
IP datagram. It may also 
include support information 
such as an initialization vector 
that’s required by certain 
encryption methods.

ESP Trailer

Padding Variable 
(0 to 255)

Additional padding bytes are 
included as needed for 
encryption or for alignment.

Pad Length 1 The number of bytes in the 
preceding Padding field.

Next 
Header

1 Contains the protocol number 
of the next header in the 
datagram. Used to chain 
together headers.

ESP Authentication Data Variable Contains the ICV resulting from 
the application of the optional 
ESP authentication algorithm.
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Figure 29-11: IPsec ESP format Note that most of the fields and sections in this format are variable 
length. The exceptions are the SPI and Sequence Number fields, which are four bytes long, and the Pad 
Length and Next Header fields, which are one byte each.

The Padding field is used when encryption algorithms require it. Padding is 
also used to make sure that the ESP Trailer field ends on a 32-bit boundary. That is, 
the size of the ESP Header field plus the Payload field, plus the ESP Trailer field 
must be a multiple of 32 bits. The ESP Authentication Data field must also be a 
multiple of 32 bits.

IPsec Internet Key Exchange (IKE)

IPsec, like many secure networking protocol sets, is based on the concept of a 
shared secret. Two devices that want to send information securely encode and 
decode it using a piece of information that only the devices know. Anyone who isn’t 
in on the secret is able to intercept the information but is prevented either from 
reading it (if ESP is used to encrypt the payload) or from tampering with it 
undetected (if AH is used). Before either AH or ESP can be used, however, it is 
necessary for the two devices to exchange the secret that the security protocols 
themselves will use. The primary support protocol used for this purpose in IPsec is 
called Internet Key Exchange (IKE).

IKE is defined in RFC 2409, and it is one of the more complicated of the IPsec 
protocols to comprehend. In fact, it is simply impossible to truly understand more 
than a real simplification of its operation without significant background in crypto-
graphy. I don’t have a background in cryptography, and I must assume that you, my 
reader, do not either. So rather than fill this topic with baffling acronyms and 
unexplained concepts, I will just provide a brief outline of IKE and how it is used.
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IKE Overview

The purpose of IKE is to allow devices to exchange information that’s required for 
secure communication. As the title suggests, this includes cryptographic keys that 
are used for encoding authentication information and performing payload 
encryption. IKE works by allowing IPsec-capable devices to exchange SAs, which 
populate their SADs. These SADs are then used for the actual exchange of secured 
datagrams with the AH and ESP protocols.

IKE is considered a hybrid protocol because it combines (and supplements) 
the functions of three other protocols. The first of these is the Internet Security 
Association and Key Management Protocol (ISAKMP). This protocol provides a 
framework for exchanging encryption keys and security association information. 
It operates by allowing security associations to be negotiated through a series of 
phases.

ISAKMP is a generic protocol that supports many different key exchange 
methods. In IKE, the ISAKMP framework is used as the basis for a specific key 
exchange method that combines features from two key exchange protocols:

OAKLEY Describes a specific mechanism for exchanging keys through the defini-
tion of various key exchange modes. Most of the IKE key exchange process is based 
on OAKLEY.

SKEME Describes a different key exchange mechanism than OAKLEY. IKE uses 
some features from SKEME, including its method of public key encryption and its 
fast rekeying feature.

IKE Operation

IKE doesn’t strictly implement either OAKLEY or SKEME but takes bits of each to 
form its own method of using ISAKMP. Clear as mud, I know. Because IKE func-
tions within the framework of ISAKMP, its operation is based on the ISAKMP 
phased-negotiation process. There are two phases, as follows:

ISAKMP Phase 1 The first phase is a setup stage where two devices agree on how 
to exchange further information securely. This negotiation between the two units 
creates an SA for ISAKMP itself: an ISAKMP SA. This security association is then 
used for securely exchanging more detailed information in Phase 2.

ISAKMP Phase 2 In this phase, the ISAKMP SA established in Phase 1 is used to 
create SAs for other security protocols. Normally, this is where the parameters for 
the “real” SAs for the AH and ESP protocols would be negotiated.

An obvious question is why IKE bothers with this two-phased approach. Why 
not just negotiate the SA for AH or ESP in the first place? Well, even though the 
extra phase adds overhead, multiple Phase 2 negotiations can be conducted after 
one Phase 1, which amortizes the extra cost of the two-phase approach. It is also 
possible to use a simpler exchange method for Phase 2 once the ISAKMP SA has 
been established in Phase 1.
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The ISAKMP SA negotiated during Phase 1 includes the negotiation of the 
following attributes used for subsequent negotiations:

� An encryption algorithm, such as the Data Encryption Standard (DES)

� A hash algorithm (MD5 or SHA, as used by AH or ESP)

� An authentication method, such as authentication using previously shared keys

� A Diffie-Hellman group

NOTE Diffie and Hellman were two pioneers in the industry who invented public-key cryptogra-
phy. In this method, instead of encrypting and decrypting with the same key, data is encrypted 
using a public key that anyone can know, and decrypted using a private key that is kept secret. 
A Diffie-Hellman group defines the attributes of how to perform this type of cryptography. Four 
predefined groups derived from OAKLEY are specified in IKE, and provision is allowed for 
defining new groups as well.

Note that even though SAs in general are unidirectional, the ISAKMP SA is 
established bidirectionally. Once Phase 1 is complete, either device can set up a 
subsequent SA for AH or ESP using the ISAKMP SA.
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