
29
I P S E C U R I T Y (I P S E C)

P R O T O C O L S

One of the weaknesses of the original
Internet Protocol (IP) is that it lacks any

sort of general-purpose mechanism for
ensuring the authenticity and privacy of data as

it is passed over the internetwork. Since IP datagrams
must usually be routed between two devices over
unknown networks, any information in them is subject to being intercepted
and even possibly changed. With the increased use of the Internet for critical
applications, security enhancements were needed for IP. To this end, a set of
protocols called IP Security or IPsec was developed.

In this chapter, I provide a brief description of IPsec concepts and proto-
cols. I begin with an overview of IPsec, including a discussion of the history
of the technology and a definition of the standards. I describe the main
components and protocols of the IPsec suite and its different architectures
and methods for implementation. I then move to actually discussing how
IPsec works, beginning with a description of the two IPsec modes (transport
and tunnel) and how they differ. I describe security associations and related

TCPIP_02.book Page 449 Monday, August 22, 2005 2:52 PM

450 Chap te r 29

constructs such as the Security Parameter Index (SPI). The last three topics cover
the three main IPsec protocols: IPsec Authentication Header (AH), IPsec
Encapsulating Security Payload (ESP), and the IPsec Internet Key Exchange (IKE).

NOTE IPsec was initially developed with IPv6 in mind, but has been engineered to provide secu-
rity for both IPv4 and IPv6 networks, and operation in both versions is similar. There are some dif-
ferences in the datagram formats used for AH and ESP. These differences depend on whether you
use IPsec in IPv4 or IPv6, because the two versions have different datagram formats and address-
ing. I highlight these differences where appropriate.

IPsec Overview, History, and Standards

The big problem with the original IP version (IPv4) is the pending exhaustion of its
address space. This situation arose due to the rapid expansion of the Internet
beyond anyone’s expectations when IPv4 was developed. This same mismatch
between how the Internet was when IPv4 was created and how it is now has led to
another major problem with IP: the lack of a definitive means of ensuring security
on IP internetworks.

The security problem arose because 25 years ago, the Internet was tiny and
relatively private. Today it is enormous and truly public. As the Internet has grown,
the need for security has grown with it. Consider that TCP/IP and the early Internet
precursors were developed as very small networks used by government researchers
at the United States Defense Advanced Research Projects Agency (DARPA or ARPA).
People who were well known and would generally have had security clearance
controlled all the hardware. In such a network, you don’t need to build security in
to the protocols—you build it into the building! It’s easier to use locks and guards to
ensure security than fancy encryption. The easiest way to keep someone from
snooping or tampering with data on the network is simply to deny them access to
the hosts that connect to the network.

This worked fine at first when there were only a few dozen machines on the
Internet. And even when the Internet first started to grow, it was used pretty much
only to connect together researchers and other networking professionals. New sites
were added to the network slowly at first, and at least someone knew the identity of
each new site added to the growing internetwork. However, as the Internet contin-
ued to increase in size and was eventually opened to the public, maintaining security
of the network as a whole became impossible. Today, the “great unwashed masses”
are on the Internet. Many routers—owned by “who knows” and administered by
“who knows”—stand between you and most other devices you want to connect with.
You cannot assume that the data you send or receive is secure.

A number of methods have evolved over the years to address the need for
security. Most of these are focused at the higher layers of the OSI protocol stack in
order to compensate for IP’s lack of security. These solutions are valuable for certain
situations, but they can’t be generalized easily because they are particular to various
applications. For example, we can use Secure Sockets Layer (SSL) for certain appli-
cations like World Wide Web access or File Transfer Protocol (FTP), but there are
dozens of applications that this type of security was never intended to work with.

What was really needed was a solution to allow security at the IP level so all
higher-layer protocols in TCP/IP could take advantage of it. When the decision was
made to develop a new version of IP (IPv6), this was the golden opportunity to

TCPIP_02.book Page 450 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 451

resolve not just the addressing problems in the older IPv4, but the lack of security
as well. New security technology was developed with IPv6 in mind, but since IPv6
has taken years to develop and roll out, and the need for security is now, the
solution was designed to be usable for both IPv4 and IPv6.

The technology that brings secure communications to the IP is called IP
Security, commonly abbreviated IPsec. The capitalization of this abbreviation is
variable, so you’ll see IPSec and IPSEC.

Overview of IPsec Services and Functions

IPsec is not a single protocol, but rather a set of services and protocols that provide
a complete security solution for an IP network. These services and protocols
combine to provide various types of protection. Since IPsec works at the IP layer, it
can provide these protections for any higher-layer TCP/IP application or protocol
without the need for additional security methods, which is a major strength. Some
of the kinds of protection services offered by IPsec include the following:

� Encryption of user data for privacy

� Authentication of the integrity of a message to ensure that it is not changed en
route

� Protection against certain types of security attacks, such as replay attacks

� The ability for devices to negotiate the security algorithms and keys required to
meet their security needs

� Two security modes, tunnel and transport, to meet different network needs

IPsec Standards

Since IPsec is actually a collection of techniques and protocols, it is not defined in a
single Internet standard. Instead, a collection of RFCs defines the architecture,
services, and specific protocols used in IPsec. Some of the most important of these
are shown in Table 29-1, all of which were published in November 1998.

KEY CONCEPT IPsec is a contraction of IP Security, and it consists of a set of services and
protocols that provide security to IP networks. It is defined by a sequence of several Internet
standards.

Table 29-1: Important IP Security (IPsec) Standards

RFC Number Name Description

2401 Security Architecture for
the Internet Protocol

The main IPsec document, describing the architecture and general operation
of the technology, and showing how the different components fit together.

2402 IP Authentication Header Defines the IPsec Authentication Header (AH) protocol, which is used for
ensuring data integrity and origin verification.

2403 The Use of HMAC-MD5-
96 within ESP and AH

Describes a particular encryption algorithm for use by the AH and
Encapsulation Security Payload (ESP) protocols called Message Digest 5
(MD5), HMAC variant.

(continued)

TCPIP_02.book Page 451 Monday, August 22, 2005 2:52 PM

452 Chap te r 29

Deployment of IPsec has only really started to take off in the last few years. A
major use of the technology is in implementing virtual private networks (VPNs). It
appears that the future is bright for IPsec, as more and more individuals and
companies decide that they need to take advantage of the power of the Internet,
while also protecting the security of the data they transport over it.

IPsec General Operation, Components, and Protocols

IPsec isn’t the only difficult topic in this book, but it is definitely a subject that
baffles many. Most discussions of it jump straight to describing the mechanisms and
protocols, without providing a general description of what it does and how the
pieces fit together. Well, I recognized that IPsec is important, and I don’t shy away
from a challenge. Thus, here’s my attempt to provide a framework for under-
standing IPsec’s various bits and pieces.

So what exactly does IPsec do, and how does it do it? In general terms, it
provides security services at the IP layer for other TCP/IP protocols and appli-
cations to use. What this means is that IPsec provides the tools that devices on a
TCP/IP network need in order to communicate securely. When two devices (either
end-user hosts or intermediate devices such as routers or firewalls) want to engage
in secure communications, they set up a secure path between themselves that may
traverse across many insecure intermediate systems. To accomplish this, they must
perform (at least) the following tasks:

� They must agree on a set of security protocols to use so that each one sends
data in a format the other can understand.

� They must decide on a specific encryption algorithm to use in encoding data.

� They must exchange keys that are used to “unlock” data that has been crypto-
graphically encoded.

� Once this background work is completed, each device must use the protocols,
methods, and keys previously agreed upon to encode data and send it across
the network.

2404 The Use of HMAC-SHA-
1-96 within ESP and AH

Describes a particular encryption algorithm for use by AH and ESP called
Secure Hash Algorithm 1 (SHA-1), HMAC variant.

2406 IP Encapsulating Security
Payload (ESP)

Describes the IPsec ESP protocol, which provides data encryption for
confidentiality.

2408 Internet Security
Association and Key
Management Protocol
(ISAKMP)

Defines methods for exchanging keys and negotiating security associations.

2409 The Internet Key
Exchange (IKE)

Describes the IKE protocol that’s used to negotiate security associations and
exchange keys between devices for secure communications. Based on
ISAKMP and OAKLEY.

2412 The OAKLEY Key
Determination Protocol

Describes a generic protocol for key exchange.

Table 29-1: Important IP Security (IPsec) Standards (continued)

RFC Number Name Description

TCPIP_02.book Page 452 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 453

IPsec Core Protocols

To support these activities, a number of different components make up the total
package known as IPsec, as shown in Figure 29-1. The two main pieces are a pair of
technologies sometimes called the core protocols of IPsec, which actually do the work
of encoding information to ensure security:

IPsec Authentication Header (AH) This protocol provides authentication services
for IPsec. It allows the recipient of a message to verify that the supposed originator
of a message was actually fact the one that sent it. It also allows the recipient to ver-
ify that intermediate devices en route haven’t changed any of the data in the data-
gram. It also provides protection against so-called replay attacks, whereby a message
is captured by an unauthorized user and resent.

Encapsulating Security Payload (ESP) AH ensures the integrity of the data in
datagram, but not its privacy. When the information in a datagram is “for your eyes
only,” it can be further protected using ESP, which encrypts the payload of the IP
datagram.

Figure 29-1: Overview of IPsec protocols and components IPsec consists of two core protocols, AH and
ESP, and three supporting components.

IPsec Support Components
AH and ESP are commonly called protocols, though this is another case where the
use of this term is debatable. They are not really distinct protocols but are imple-
mented as headers that are inserted into IP datagrams, as you will see. They thus do
the “grunt work” of IPsec, and can be used together to provide both authentication
and privacy. However, they cannot operate on their own. To function properly,
they need the support of several other protocols and services (see Figure 29-1). The
most important of these include the following:

Encryption/Hashing Algorithms AH and ESP are generic and do not specify the
exact mechanism used for encryption. This gives them the flexibility to work with a
variety of such algorithms and to negotiate which one to use as needed. Two com-
mon ones used with IPsec are Message Digest 5 (MD5) and Secure Hash Algorithm 1
(SHA-1). These are also called hashing algorithms because they work by computing a
formula called a hash based on input data and a key.

TCPIP_02.book Page 453 Monday, August 22, 2005 2:52 PM

454 Chap te r 29

Security Policies, Security Associations, and Management Methods Since IPsec
provides flexibility in letting different devices decide how they want to implement
security, they require some means to keep track of the security relationships between
themselves. This is done in IPsec using constructs called security policies and security
associations, and by providing ways to exchange security association information.

Key Exchange Framework and Mechanism For two devices to exchange encrypted
information, they need to be able to share keys for unlocking the encryption. They
also need a way to exchange security association information. In IPsec, a protocol
called the Internet Key Exchange (IKE) provides these capabilities.

Well, that’s at least a start at providing a framework for understanding what
IPsec is all about and how the pieces fit together. You’ll examine these components
and protocols in more detail as you proceed through this chapter.

IPsec Architectures and Implementation Methods

The main reason that IPsec is so powerful is that it provides security to IP, which is
the basis for all other TCP/IP protocols. In protecting IP, you are protecting pretty
much everything else in TCP/IP as well. An important issue, then, is how exactly do
you get IPsec into IP? There are several implementation methods for deploying
IPsec. These represent different ways that IPsec may modify the overall layer
architecture of TCP/IP.

Three different implementation architectures are defined for IPsec in RFC
2401. The one you use depends on various factors including the version of IP used
(IPv4 or IPv6), the requirements of the application, and other factors. These, in
turn, rest on a primary implementation decision: Should IPsec be programmed
into all hosts on a network, or just into certain routers or other intermediate
devices? This is a design decision that must be based on the requirements of the
network:

End-Host Implementation Putting IPsec into all host devices provides the most
flexibility and security. It enables end-to-end security between any two devices on
the network. However, there are many hosts on a typical network, so this means far
more work than just implementing IPsec in routers.

Router Implementation This option is much less work because it means you make
changes to only a few routers instead of hundreds or thousands of clients. It pro-
vides protection only between pairs of routers that implement IPsec, but this may
be sufficient for certain applications such as VPNs. The routers can be used to pro-
vide protection for just the portion of the route that datagrams take outside the
organization, thereby leaving connections between routers and local hosts unse-
cured (or possibly, secured by other means).

KEY CONCEPT IPsec consists of a number of different components that work together to
provide security services. The two main ones are protocols called the Authentication Header
(AH) and Encapsulating Security Payload (ESP), which provide authenticity and privacy to IP
data in the form of special headers added to IP datagrams.

TCPIP_02.book Page 454 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 455

Three different architectures are defined that describe methods for how to get
IPsec into the TCP/IP protocol stack: integrated, bump in the stack, and bump in
the wire.

Integrated Architecture

Under ideal circumstances, we would integrate IPsec’s protocols and capabilities
directly into IP itself. This is the most elegant solution, because it allows all IPsec
security modes and capabilities to be provided just as easily as regular IP. No extra
hardware or architectural layers are needed.

IPv6 was designed to support IPsec. Thus, it’s a viable option for hosts or
routers. With IPv4, integration would require making changes to the IP imple-
mentation on each device, which is often impractical (to say the least!).

Bump in the Stack (BITS) Architecture

In the bump in the stack (BITS) technique, IPsec is made a separate architectural
layer between IP and the data link layer. The cute name refers to the fact that IPsec
is an extra element in the networking protocol stack, as you can see in Figure 29-2.
IPsec intercepts IP datagrams as they are passed down the protocol stack, provides
security, and passes them to the data link layer.

Figure 29-2: IPsec bump in the stack (BITS) architecture In this type of IPsec implementation, IPsec
becomes a separate layer in the TCP/IP stack. It is implemented as software that sits below IP and adds
security protection to datagrams created by the IP layer.

TCPIP_02.book Page 455 Monday, August 22, 2005 2:52 PM

456 Chap te r 29

The advantage of this technique is that IPsec can be retrofitted to any IP
device, since the IPsec functionality is separate from IP. The disadvantage is that
there is a duplication of effort compared to the integrated architecture. BITS is
generally used for IPv4 hosts.

Bump in the Wire (BITW) Architecture

In the bump in the wire (BITW) method, we add a hardware device that provides
IPsec services. For example, suppose we have a company with two sites. Each has a
network that connects to the Internet using a router that is not capable of IPsec
functions. We can interpose a special IPsec device between the router and the
Internet at both sites, as shown in Figure 29-3. These devices will then intercept
outgoing datagrams, add IPsec protection to them, and strip it off incoming
datagrams.

Figure 29-3: IPsec bump in the wire (BITW) architecture In this IPsec architecture, IPsec is actually imple-
mented in separate devices that sit between the devices that wish to communicate securely. These repack-
age insecure IP datagrams for transport over the public Internet.

Just as BITS lets you add IPsec to legacy hosts, BITW can retrofit non-IPsec
routers to provide security benefits. The disadvantages are complexity and cost.

As you will see in the next section, the choice of architecture has an important
impact on which of the two IPsec modes can be used. Incidentally, even though
BITS and BITW seem quite different, they are actually do the same thing. In the
case of BITS, we have an extra software layer that adds security to existing IP data-
grams; in BITW, distinct hardware devices do this same job. In both cases, the result
is the same, and the implications on the choice of IPsec mode is likewise the same.

KEY CONCEPT Three different architectures or implementation models are defined for IPsec.
The best is integrated architecture, in which IPsec is built into the IP layer of devices directly. The
other two are bump in the stack (BITS) and bump in the wire (BITW), which are ways of layering
IPsec underneath regular IP, using software and hardware solutions, respectively.

TCPIP_02.book Page 456 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 457

IPsec Modes: Transport and Tunnel

You just saw that three different basic implementation architectures could be used
to provide IPsec facilities to TCP/IP networks. The choice of which implemen-
tation you use, as well as whether you implement in end hosts or routers, impacts
the specific way that IPsec functions. Two specific modes of operation that are
related to these architectures are defined for IPsec. They are called transport mode
and tunnel mode.

IPsec modes are closely related to the function of the two core protocols, AH
and ESP. Both of these protocols provide protection by adding a header (and pos-
sibly other fields) containing security information to a datagram. The choice of
mode does not affect the method by which each generates its header, but rather,
changes what specific parts of the IP datagram are protected and how the headers
are arranged to accomplish this. In essence, the mode really describes, not pre-
scribes, how AH or ESP do their thing. It is used as the basis for defining other
constructs, such as security associations (SAs).

Transport Mode
As its name suggests, in transport mode, the protocol protects the message passed
down to IP from the transport layer. The message is processed by AH and/or ESP,
and the appropriate header(s) are added in front of the transport (UDP or TCP)
header. The IP header is then added in front of that by IP.

Another way of looking at this is as follows: Normally, the transport layer
packages data for transmission and sends it to IP. From IP’s perspective, this trans-
port layer message is the payload of the IP datagram. When IPsec is used in transport
mode, the IPsec header is applied only over this IP payload, not the IP header. The
AH and ESP headers appear between the original, single IP header and the IP
payload. This is illustrated in Figure 29-4.

Tunnel Mode
In tunnel mode, IPsec is used to protect a completely encapsulated IP datagram
after the IP header has already been applied to it. The IPsec headers appear in
front of the original IP header, and then a new IP header is added in front of the
IPsec header. That is to say, the entire original IP datagram is secured and then
encapsulated within another IP datagram. This is shown in Figure 29-5.

Comparing Transport and Tunnel Modes
The bottom line in understanding the difference between the two IPsec modes is
this: Tunnel mode protects the original IP datagram as a whole, header and all,
while transport mode does not. Thus, in general terms, the order of the headers is
as follows:

Transport Mode IP header, IPsec headers (AH and/or ESP), IP payload (includ-
ing transport header)

Tunnel Mode New IP header, IPsec headers (AH and/or ESP), old IP header,
IP payload

TCPIP_02.book Page 457 Monday, August 22, 2005 2:52 PM

458 Chap te r 29

Figure 29-4: IPsec transport mode operation When IPsec operates in transport mode, it is integrated
with IP and used to transport the upper layer (TCP/UDP) message directly. After processing, the data-
gram has just one IP header that contains the AH and ESP IPsec headers. Contrast this to tunnel mode,
shown in Figure 29-5.

Again, this is a simplified view of how IPsec datagrams are constructed; the
reality is significantly more complex. The exact way that the headers are arranged
in an IPsec datagram in both transport and tunnel modes depends on which
version of IP is being used. IPv6 uses extension headers that must be arranged in a
particular way when IPsec is used. The header placement also depends on which
IPsec protocol is being used, AH or ESP. Note that it is also possible to apply both
AH and ESP to the same datagram; if so, the AH header always appears before the
ESP header.

There are thus three variables and eight basic combinations of mode (tunnel
or transport), IP version (IPv4 or IPv6) and protocol (AH or ESP). The coming
discussions of AH and ESP describe the four format combinations of transport/
tunnel mode and IPv4/IPv6 applicable to each protocol. Note that ESP also
includes an ESP trailer that goes after the data protected.

You could probably tell by reading these descriptions how the two modes relate
to the choice of IPsec architecture you looked at earlier. Transport mode requires
that IPsec be integrated into IP, because AH/ESP must be applied as the original IP
packaging is performed on the transport layer message. This is often the choice for
implementations requiring end-to-end security with hosts that run IPsec directly.

TCPIP_02.book Page 458 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 459

Figure 29-5: IPsec tunnel mode operation IPsec tunnel mode is so named because it represents an
encapsulation of a complete IP datagram, thereby forming a virtual tunnel between IPsec-capable
devices. The IP datagram is passed to IPsec, where a new IP header is created with the AH and ESP
IPsec headers added. Contrast this to transport mode, shown in Figure 29-4.

Tunnel mode represents an encapsulation of IP within the combination of IP
plus IPsec. Thus, it corresponds with the BITS and BITW implementations, where
IPsec is applied after IP has processed higher-layer messages and has already added
its header. Tunnel mode is a common choice for VPN implementations, which are
based on the tunneling of IP datagrams through an unsecured network such as the
Internet.

KEY CONCEPT IPsec has two basic modes of operation. In transport mode, IPsec AH and
ESP headers are added as the original IP datagram is created. Transport mode is associated
with integrated IPsec architectures. In tunnel mode, the original IP datagram is created normally,
and then the entire datagram is encapsulated into a new IP datagram containing the AH/ESP
IPsec headers. Tunnel mode is most commonly used with bump in the stack (BITS) and bump in
the wire (BITW) implementations.

TCPIP_02.book Page 459 Monday, August 22, 2005 2:52 PM

460 Chap te r 29

IPsec Security Constructs

Important IPsec security constructs include security associations, the security
association database, security policies, the security policy database, selectors, and
the security parameter index. These items are all closely related and essential to
understand before you begin looking at the core IPsec protocols. These constructs
are used to guide the operation of IPsec in a general way and particularly to guide
exchanges between devices. The constructs control how IPsec works and ensure
that each datagram coming into or leaving an IPsec-capable device is treated
properly.

Security Policies, Security Associations, and Associated Databases

Let’s begin by considering the problem of how to apply security in a device that
may be handling many different exchanges of datagrams with others. There is
overhead involved in providing security, so you do not want to do it for every
message that comes in or out. Some types of messages may need more security;
others may need less. Also, exchanges with certain devices may require different
processing than others.

To manage all of this complexity, IPsec is equipped with a flexible, powerful
way of specifying how different types of datagrams should be handled. To
understand how this works, you must first define the following two important
logical concepts:

Security Policies and the Security Policy Database (SPD) A security policy is a rule
that is programmed into the IPsec implementation. It tells the implementation how
to process different datagrams received by the device. For example, security poli-
cies decide if a particular packet needs to be processed by IPsec or not. AH and ESP
entirely bypass those that do not need processing. If security is required, the secu-
rity policy provides general guidelines for how it should be provided, and if neces-
sary, links to more specific detail. Security policies for a device are stored in the
device’s security policy database (SPD).

Security Associations (SAs) and the Security Association Database (SAD) A secu-
rity association (SA) is a set of security information that describes a particular kind
of secure connection between one device and another. You can consider it a con-
tract, if you will, that specifies the particular security mechanisms that are used for
secure communications between the two. A device’s security associations are con-
tained in its security association database (SAD).

It’s often hard to distinguish between the SPD and the SAD, because they are
similar in concept. The main difference between them is that security policies are
general, while security associations are more specific. To determine what to do with
a particular datagram, a device first checks the SPD. The security policies in the
SPD may reference a particular SA in the SAD. If so, the device will look up that SA
and use it for processing the datagram.

TCPIP_02.book Page 460 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 461

Selectors

One issue I haven’t covered yet is how a device determines what security policies or
SAs to use for a specific datagram. Again here, IPsec defines a very flexible system
that lets each security association define a set of rules for choosing datagrams that
the SA applies to. Each of these rule sets is called a selector. For example, you might
define a selector that says that a particular range of values in the Source Address of
a datagram, combined with another value in the Destination Address, means that a
specific SA must be used for the datagram.

Security Association Triples and Security Parameter Index (SPI)

Each secure communication that a device makes to another requires that an SA be
established. SAs are unidirectional, so each one only handles either inbound or
outbound traffic for a particular device. This allows the level of security for a flow
from Device A to Device B to be different than the level for traffic coming from
Device B to Device A. In a bidirectional communication of this sort, both Device A
and Device B would have two SAs; Device A would have SAs that you could call
SAdeviceBin and SAdeviceBout. Device B would have SAs SAdeviceAin and
SAdeviceAout.

SAs don’t actually have names, however. They are instead defined by a set of
three parameters, called a triple:

Security Parameter Index (SPI) A 32-bit number that is chosen to uniquely iden-
tify a particular SA for any connected device. The SPI is placed in AH or ESP data-
grams and thus links each secure datagram to the security association. It is used by
the recipient of a transmission so it knows what SA governs the datagram.

IP Destination Address The address of the device for which the SA is established.

Security Protocol Identifier Specifies whether this association is for AH or ESP. If
both are in use with this device, they have separate SAs.

As you can see, the two security protocols AH and ESP are dependent on SAs,
security policies, and the various databases that control the operation of those SAs
and policies. Management of these databases is important, but it’s another complex
subject entirely. Generally, SAs can either be set up manually (which is of course
extra work) or you can deploy an automated system using a protocol like IKE
(discussed near the end of this chapter).

Confused? I don’t blame you, despite my best efforts, and remember that this is
all highly simplified. Welcome to the wonderful world of networking security. If you
are ever besieged by insomnia, I highly recommend RFC 2401!

IPsec Authentication Header (AH)

As I mentioned earlier in this chapter, AH is one of the two core security protocols
in IPsec. This is another protocol whose name has been well chosen. It provides
authentication of either all or part of the contents of a datagram through the addition

TCPIP_02.book Page 461 Monday, August 22, 2005 2:52 PM

462 Chap te r 29

of a header that is calculated based on the values in the datagram. The parts of the
datagram that are used for the calculation, and the placement of the header,
depend on the mode (tunnel or transport) and the version of IP (IPv4 or IPv6).

The operation of AH is surprisingly simple, especially for any protocol that
has anything to do with network security. The simplicity is analogous to the algo-
rithms used to calculate checksums or perform cyclic redundancy (CRC) checks for
error detection. In those cases, the sender uses a standard algorithm to compute a
checksum or CRC code based on the contents of a message. This computed result
is transmitted along with the original data to the destination, which repeats the
calculation and discards the message if any discrepancy is found between its calcu-
lation and the one done by the source.

This is the same idea behind AH, except that instead of using a simple algo-
rithm known to everyone, it uses a special hashing algorithm and a specific key
known only to the source and the destination. An SA between two devices specifies
these particulars, so that the source and destination know how to perform the com-
putation but nobody else can. On the source device, AH performs the computation
and puts the result (called the integrity check value, or ICV) into a special header with
other fields for transmission. The destination device does the same calculation using
the key that the two devices share. This enables the device to see immediately if any
of the fields in the original datagram were modified (due to either error or malice).

Just as a checksum doesn’t change the original data, neither does the ICV
calculation change the original data. The presence of the AH header allows us to
verify the integrity of the message, but doesn’t encrypt it. Thus, AH provides authen-
tication but not privacy (that’s what ESP is for).

AH Datagram Placement and Linking

The calculation of AH is similar for both IPv4 and IPv6. One difference is in the
exact mechanism used for placing the header into the datagram and for linking the
headers together. I’ll describe IPv6 first because it is simpler, and because AH was
really designed to fit into its mechanism for this.

IPv6 AH Placement and Linking

In IPv6, the AH is inserted into the IP datagram as an extension header, following
the normal IPv6 rules for extension header linking. It is linked by the previous
header (extension or main), which puts the assigned value for the AH header (51)
into its Next Header field. The AH header then links to the next extension header
or the transport layer header using its Next Header field.

In transport mode, the AH is placed into the main IP header and appears
before any Destination Options header that contains options intended for the final
destination, and before an ESP header if present, but after any other extension
headers. In tunnel mode, it appears as an extension header of the new IP datagram
that encapsulates the original one being tunneled. This is shown graphically in
Figure 29-6.

TCPIP_02.book Page 462 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 463

Figure 29-6: IPv6 datagram format with IPsec Authentication Header (AH) This is an example of an
IPv6 datagram with two extension headers that are linked using the standard IPv6 mechanism (see Fig-
ure 26-3 in Chapter 26). When AH is applied in transport mode, it is simply added as a new extension
header (as shown in dark shading) that goes between the Routing extension header and the Destination
Options header. In tunnel mode, the entire original datagram is encapsulated into a new IPv6 datagram
that contains the AH header. In both cases, the Next Header fields are used to link each header one to
the next. Note the use of Next Header value 41 in tunnel mode, which is the value for the encapsulated
IPv6 datagram.

IPv4 AH Placement and Linking

In IPv4, a method that is similar to the IPv6 header-linking technique is employed. In
an IPv4 datagram, the Protocol field indicates the identity of the higher-layer proto-
col (typically TCP or UDP) that’s carried in the datagram. As such, this field points
to the next header, which is at the front of the IP payload. AH takes this value and

TCPIP_02.book Page 463 Monday, August 22, 2005 2:52 PM

464 Chap te r 29

puts it into its Next Header field, and then places the protocol value for AH itself
(51 in dotted decimal) into the IP Protocol field. This makes the IP header point to
the AH, which then points to whatever the IP datagram pointed to before.

Again, in transport mode, the AH header is added after the main IP header
of the original datagram; in tunnel mode it is added after the new IP header
that encapsulates the original datagram that’s being tunneled. This is shown in
Figure 29-7.

Figure 29-7: IPv4 datagram format with IPsec AH Here is an example of an IPv4 datagram; it may or
may not contain IPv4 options (which are not distinct entities as they are in IPv6). In transport mode, the
AH header is added between the IP header and the IP data; the Protocol field of the IP header points to
it, while its Next Header field contains the IP header’s prior protocol value (in this case 6, for TCP). In
tunnel mode, the IPv4 datagram is encapsulated into a new IPv4 datagram that includes the AH header.
Note that in tunnel mode, the AH header uses the value 4 (which means IPv4) in its Next Header field.

TCPIP_02.book Page 464 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 465

AH Format

The format of AH is described in Table 29-2 and illustrated in Figure 29-8.

Figure 29-8: IPsec Authentication Header (AH) format

KEY CONCEPT The IPsec Authentication Header (AH) protocol allows the recipient of a
datagram to verify its authenticity. It is implemented as a header that’s added to an IP datagram
that contains an integrity check value (ICV), which is computed based on the values of the fields
in the datagram. The recipient can use this value to ensure that the data has not been changed
in transit. AH does not encrypt data and thus does not ensure the privacy of transmissions.

Table 29-2: IPsec Authentication Header (AH) Format

Field Name
Size
(Bytes) Description

Next Header 1 Contains the protocol number of the next header after the AH. Used to link headers together.

Payload Len 1 Despite its name, this field measures the length of the authentication header itself, not the
payload. (I wonder what the history is behind that!) It is measured in 32-bit units, with 2
subtracted for consistency with how header lengths are normally calculated in IPv6.

Reserved 2 Not used; set to zeros.

SPI 4 A 32-bit value that, when combined with the destination address and security protocol type
(which is obviously the one for AH here), identifies the security association (SA) that will be
used for this datagram. (SAs are discussed earlier in this chapter.)

Sequence
Number

4 A counter field that is initialized to zero when an SA is formed between two devices, and
then incremented for each datagram sent using that SA. This uniquely identifies each
datagram on an SA and is used to provide protection against replay attacks by preventing
the retransmission of captured datagrams.

Authentication
Data

Variable Contains the result of the hashing algorithm, called the integrity check value (ICV), performed
by the AH protocol.

TCPIP_02.book Page 465 Monday, August 22, 2005 2:52 PM

466 Chap te r 29

The size of the Authentication Data field is variable to support different
datagram lengths and hashing algorithms. Its total length must be a multiple of 32
bits. Also, the entire header must be a multiple of either 32 bits (for IPv4) or 64 bits
(for IPv6), so additional padding may be added to the Authentication Data field if
necessary.

You may also notice that no IP addresses appear in the header, which is a
prerequisite for it being the same for both IPv4 and IPv6.

IPsec Encapsulating Security Payload (ESP)

The IPsec AH provides integrity authentication services to IPsec-capable devices so
that they can verify that messages are received intact from other devices. For many
applications, however, this is only one piece of the puzzle. We want to not only
protect against intermediate devices changing the datagrams, but also to protect
against them examining their contents as well. For this level of private communi-
cation, AH is not enough; we need to use the ESP protocol.

The main job of ESP is to provide the privacy we seek for IP datagrams by
encrypting them. An encryption algorithm combines the data in the datagram with
a key to transform it into an encrypted form. This is then repackaged using a special
format that you will see shortly, and then transmitted to the destination, which
decrypts it using the same algorithm. ESP also sports its own authentication scheme
like the one used in AH, or it can be used in conjunction with AH.

ESP Fields

ESP has several fields that are the same as those used in AH, but it packages its
fields in a very different way. Instead of having just a header, it divides its fields into
three components:

ESP Header This contains two fields, SPI and Sequence Number, and comes
before the encrypted data. Its placement depends on whether ESP is used in trans-
port mode or tunnel mode, as explained earlier in this chapter.

ESP Trailer This section is placed after the encrypted data. It contains padding
that is used to align the encrypted data through a Padding and Pad Length field.
Interestingly, it also contains the Next Header field for ESP.

ESP Authentication Data This field contains an ICV that’s computed in a manner
that’s similar to how the AH protocol works. The field is used when ESP’s optional
authentication feature is employed.

There are two reasons why these fields are broken into pieces like this. The first
is that some encryption algorithms require the data to be encrypted to have a
certain block size, and so padding must appear after the data and not before it.
That’s why padding appears in the ESP Trailer field. The second is that the ESP
Authentication Data appears separately because it is used to authenticate the rest of
the encrypted datagram after encryption. This means that it cannot appear in the
ESP Header or ESP Trailer.

TCPIP_02.book Page 466 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 467

ESP Operations and Field Use

This is still a bit boggling so I’m going to try to explain this procedurally by consider-
ing three basic steps performed by ESP: calculating the header, then the trailer,
and then the Authentication field.

Header Calculation and Placement

The first thing to consider is how the ESP header is placed. This is similar to how
AH works and depends on the IP version, as follows:

IPv6 The ESP Header field is inserted into the IP datagram as an extension header,
following the normal IPv6 rules for extension-header linking. In transport mode, it
appears before a Destination Options header that contains options intended for
the final destination, but after any other extension headers, if present. In tunnel
mode, it appears as an extension header of the new IP datagram that encapsulates
the original one being tunneled. This is shown in Figure 29-9.

IPv4 As with AH, the ESP Header field is placed after the normal IPv4 header. In
transport mode, it appears after the IP header of the original datagram; in tunnel
mode, it appears after the IP header of the new IP datagram that’s encapsulating
the original one. You can see this in Figure 29-10.

Trailer Calculation and Placement

The ESP Trailer field is appended to the data that will be encrypted. ESP then
performs the encryption. The payload (TCP/UDP message or encapsulated IP data-
gram) and the ESP trailer are both encrypted, but the ESP header is not. Note again
that any other IP headers that appear between the ESP header and the payload are
also encrypted. In IPv6, this can include a Destination Options extension header.

Normally, the Next Header field would appear in the ESP Header and would
be used to link the ESP Header to the header that comes after it. However, the Next
Header field in ESP appears in the trailer and not the header, which makes the
linking seem a bit strange in ESP. The method is basically the same as what’s used
in AH and in IPv6 in general, with the Next Header and Protocol fields being
used to tie everything together. However, in ESP the Next Header field appears
after the encrypted data, and so it points back to one of the following: a Destination
Options extension header (if present), a TCP/UDP header (in transport mode), or
an IPv4/IPv6 header (in tunnel mode). This is also shown in Figures 29-9 and 29-10.

ESP Authentication Field Calculation and Placement

If the optional ESP authentication feature is being used, it is computed over the
entire ESP datagram (except the Authentication Data field itself, of course). This
includes the ESP header, payload, and trailer.

KEY CONCEPT The IPsec ESP protocol allows the contents of a datagram to be encrypted,
which ensures that only the intended recipient is able to see the data. ESP is implemented using
three components: an ESP Header that’s added to the front of a protected datagram, an ESP
Trailer that follows the protected data, and an optional ESP Authentication Data field that
provides authentication services similar to those provided by AH.

TCPIP_02.book Page 467 Monday, August 22, 2005 2:52 PM

468 Chap te r 29

Figure 29-9: IPv6 datagram format with IPsec ESP Here is the same example of an IPv6 datagram with
two extension headers that you saw in Figure 29-6. When ESP is applied in transport mode, the ESP
Header field is added to the existing datagram as in AH, and the ESP Trailer and ESP Authentication
Data fields are placed at the end. In tunnel mode, the ESP Header and Trailer fields bracket the entire
encapsulated IPv6 datagram. Note the encryption and authentication coverage in each case, and also
how the Next Header field points back into the datagram since it appears in the ESP Trailer.

TCPIP_02.book Page 468 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 469

Figure 29-10: IPv4 datagram format with IPsec ESP Here is the same sample IPv4 datagram that you
saw in Figure 29-7. When ESP processes this datagram in transport mode, the ESP Header field is
placed between the IPv4 header and data, with the ESP Trailer and ESP Authentication Data fields fol-
lowing. In tunnel mode, the entire original IPv4 datagram is surrounded by these ESP components, rather
than just the IPv4 data. Again, as in Figure 29-9, note the encryption and authentication coverage, and
how the Next Header field points back to specify the identity of the encrypted data or datagram.

TCPIP_02.book Page 469 Monday, August 22, 2005 2:52 PM

470 Chap te r 29

ESP Format

The format of the ESP sections and fields is described in Table 29-3 and illustrated
in Figure 29-11. In both the figure and the table, I have shown the encryption and
authentication coverage of the fields explicitly, to clarify how it all works.

Table 29-3: IPsec Encapsulating Security Payload (ESP) Format

Section
Field
Name

Size
(Bytes) Description

Encryption
Coverage

Authentication
Coverage

ESP Header

SPI 4 A 32-bit value that is
combined with the destination
address and security protocol
type to identify the SA that will
be used for this datagram.
(SAs are discussed earlier in
this chapter.)

Sequence
Number

4 A counter field initialized to
zero when an SA is formed
between two devices, and then
incremented for each
datagram that’s sent using that
SA. This is used to provide
protection against replay
attacks.

Payload Payload
Data

Variable The encrypted payload data,
which consists of a higher-
layer message or encapsulated
IP datagram. It may also
include support information
such as an initialization vector
that’s required by certain
encryption methods.

ESP Trailer

Padding Variable
(0 to 255)

Additional padding bytes are
included as needed for
encryption or for alignment.

Pad Length 1 The number of bytes in the
preceding Padding field.

Next
Header

1 Contains the protocol number
of the next header in the
datagram. Used to chain
together headers.

ESP Authentication Data Variable Contains the ICV resulting from
the application of the optional
ESP authentication algorithm.

TCPIP_02.book Page 470 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 471

Figure 29-11: IPsec ESP format Note that most of the fields and sections in this format are variable
length. The exceptions are the SPI and Sequence Number fields, which are four bytes long, and the Pad
Length and Next Header fields, which are one byte each.

The Padding field is used when encryption algorithms require it. Padding is
also used to make sure that the ESP Trailer field ends on a 32-bit boundary. That is,
the size of the ESP Header field plus the Payload field, plus the ESP Trailer field
must be a multiple of 32 bits. The ESP Authentication Data field must also be a
multiple of 32 bits.

IPsec Internet Key Exchange (IKE)

IPsec, like many secure networking protocol sets, is based on the concept of a
shared secret. Two devices that want to send information securely encode and
decode it using a piece of information that only the devices know. Anyone who isn’t
in on the secret is able to intercept the information but is prevented either from
reading it (if ESP is used to encrypt the payload) or from tampering with it
undetected (if AH is used). Before either AH or ESP can be used, however, it is
necessary for the two devices to exchange the secret that the security protocols
themselves will use. The primary support protocol used for this purpose in IPsec is
called Internet Key Exchange (IKE).

IKE is defined in RFC 2409, and it is one of the more complicated of the IPsec
protocols to comprehend. In fact, it is simply impossible to truly understand more
than a real simplification of its operation without significant background in crypto-
graphy. I don’t have a background in cryptography, and I must assume that you, my
reader, do not either. So rather than fill this topic with baffling acronyms and
unexplained concepts, I will just provide a brief outline of IKE and how it is used.

TCPIP_02.book Page 471 Monday, August 22, 2005 2:52 PM

472 Chap te r 29

IKE Overview

The purpose of IKE is to allow devices to exchange information that’s required for
secure communication. As the title suggests, this includes cryptographic keys that
are used for encoding authentication information and performing payload
encryption. IKE works by allowing IPsec-capable devices to exchange SAs, which
populate their SADs. These SADs are then used for the actual exchange of secured
datagrams with the AH and ESP protocols.

IKE is considered a hybrid protocol because it combines (and supplements)
the functions of three other protocols. The first of these is the Internet Security
Association and Key Management Protocol (ISAKMP). This protocol provides a
framework for exchanging encryption keys and security association information.
It operates by allowing security associations to be negotiated through a series of
phases.

ISAKMP is a generic protocol that supports many different key exchange
methods. In IKE, the ISAKMP framework is used as the basis for a specific key
exchange method that combines features from two key exchange protocols:

OAKLEY Describes a specific mechanism for exchanging keys through the defini-
tion of various key exchange modes. Most of the IKE key exchange process is based
on OAKLEY.

SKEME Describes a different key exchange mechanism than OAKLEY. IKE uses
some features from SKEME, including its method of public key encryption and its
fast rekeying feature.

IKE Operation

IKE doesn’t strictly implement either OAKLEY or SKEME but takes bits of each to
form its own method of using ISAKMP. Clear as mud, I know. Because IKE func-
tions within the framework of ISAKMP, its operation is based on the ISAKMP
phased-negotiation process. There are two phases, as follows:

ISAKMP Phase 1 The first phase is a setup stage where two devices agree on how
to exchange further information securely. This negotiation between the two units
creates an SA for ISAKMP itself: an ISAKMP SA. This security association is then
used for securely exchanging more detailed information in Phase 2.

ISAKMP Phase 2 In this phase, the ISAKMP SA established in Phase 1 is used to
create SAs for other security protocols. Normally, this is where the parameters for
the “real” SAs for the AH and ESP protocols would be negotiated.

An obvious question is why IKE bothers with this two-phased approach. Why
not just negotiate the SA for AH or ESP in the first place? Well, even though the
extra phase adds overhead, multiple Phase 2 negotiations can be conducted after
one Phase 1, which amortizes the extra cost of the two-phase approach. It is also
possible to use a simpler exchange method for Phase 2 once the ISAKMP SA has
been established in Phase 1.

TCPIP_02.book Page 472 Monday, August 22, 2005 2:52 PM

I P Securi ty (I Psec) P rotocols 473

The ISAKMP SA negotiated during Phase 1 includes the negotiation of the
following attributes used for subsequent negotiations:

� An encryption algorithm, such as the Data Encryption Standard (DES)

� A hash algorithm (MD5 or SHA, as used by AH or ESP)

� An authentication method, such as authentication using previously shared keys

� A Diffie-Hellman group

NOTE Diffie and Hellman were two pioneers in the industry who invented public-key cryptogra-
phy. In this method, instead of encrypting and decrypting with the same key, data is encrypted
using a public key that anyone can know, and decrypted using a private key that is kept secret.
A Diffie-Hellman group defines the attributes of how to perform this type of cryptography. Four
predefined groups derived from OAKLEY are specified in IKE, and provision is allowed for
defining new groups as well.

Note that even though SAs in general are unidirectional, the ISAKMP SA is
established bidirectionally. Once Phase 1 is complete, either device can set up a
subsequent SA for AH or ESP using the ISAKMP SA.

TCPIP_02.book Page 473 Monday, August 22, 2005 2:52 PM

