
1

C H A P T E R 1

Best Practices

Building a monitoring infrastructure is a complex undertaking. The system can potentially
interact with every system in the environment, and its users range from the layman to the
highly technical. Building the monitoring infrastructure well requires not only considerable
systems know-how, but also a global perspective and good people skills.

Most importantly, building monitoring systems also requires a light touch. The most
important distinction between good monitoring systems and bad ones is the amount of
impact they have on the network environment, in areas such as resource utilization, band-
width utilization, and security. This fi rst chapter contains a collection of advice gleaned from
mailing lists such as nagios-users@lists.sourceforge.net, other systems administrators, and
hard-won experience. My hope is that this chapter helps you to make some important design
decisions up front, to avoid some common pitfalls, and to ensure that the monitoring system
you build becomes a huge asset instead of a huge burden.

A Procedural Approach to Systems Monitoring

Good monitoring systems are not built one script at a time by administrators (admins) in
separate silos. Admins create them methodically with the support of their management teams
and a clear understanding of the environment—both procedural and computational—within
which they operate.

Without a clear understanding of which systems are considered critical, the monitoring
initiative is doomed to failure. It’s a simple question of context and usually plays out some-
thing like this:

Manager: “I need to be added to all the monitoring system alerts.”

Admin: “All of them?”

Manager: “Well yes, all of them.”

2 Chapter 1 Best Practices

Admin: “Er, ok.”

The next day:

Manager: “My pager kept me up all night. What does this all mean?”

Admin: “Well, /var fi lled up on Server1, and the VPN tunnel to site5 was up and down.”

Manager: “Can’t you just notify me of the stuff that’s an actual problem?”

Admin: “Those are actual problems.”

Certifi cations such as HIPAA, Sarbanes-Oxley, and SAS70 require institutions such as
universities, hospitals, and corporations to master the procedural aspects of their IT. This has
had good consequences, as most organizations of any size today have contingency plans in
place, in the event that something bad happens. Disaster recovery, business continuity, and
crisis planning ensure that the people in the trenches know what systems are critical to their
business, understand the steps to take to protect those systems in times of crisis, or recover
them should they be destroyed. These certifi cations also ensure that management has done
due diligence to prevent failures to critical systems; for example, by installing redundant sys-
tems or moving tape backups offsite.

For whatever reason, monitoring systems seem to have been left out of this procedural
approach to contingency planning. Most monitoring systems come in to the network as a
pet project of one or two small tech teams who have a very specifi c need for them. Often
many different teams will employ their own monitoring tools independent of, and oblivious
of, other monitoring initiatives going on within the organization. There seems to be no need
to involve anyone else. Although this single-purpose approach to systems monitoring may
solve an individual’s or small group’s immediate need, the organization as a whole suffers,
and fragile monitoring systems always grow from it.

To understand why, consider that in the absence of a procedurally implemented monitor-
ing framework, hundreds of critically important questions are nearly impossible to answer.
For example, consider the following questions.

■ What amount of overall bandwidth is used for systems monitoring?

■ What routers or other systems are the monitoring tools dependent on?

■ Is sensitive information being transmitted in clear text between hosts and the moni-
toring system?

If it was important enough to write a script to monitor a process, then it’s important
enough to consider what happens when the system running the script goes down, or when
the person who wrote the script leaves and his user ID is disabled. The piecemeal approach
is by far the most common way monitoring systems are created, yet the problems that arise
from it are too many to be counted.

The core issue in our previous example is that there are no criteria that coherently defi ne
what a “problem” is, because these criteria don’t exist when the monitoring system has been
installed in a vacuum. Our manager felt that he had no visibility into system problems and

3

when provided with detailed information, still gained nothing of signifi cance. This is why a
procedural approach is so important. Before they do anything at all, the people undertak-
ing the monitoring project should understand which systems in the organization are critical
to the organization’s operational well-being, and what management’s expectation is regard-
ing the uptime of those systems.

Given these two things, policy can be formulated that details support and escalation
plans. Critical systems should be given priority and their requisite pieces defi ned. That’s not
to say that the admin in the example should not be notifi ed when /var is full on Server1;only
that when he is notifi ed of it, he has a clear idea of what it means in an organizational con-
text. Does management expect him to fi x it now or in the morning? Who else was notifi ed
in parallel? What happens if he doesn’t respond? This helps the manager, as well. By clearly
defi ning what constitutes a problem, management has some perspective on what types of
alerts to ask for and more importantly...when they can go back to sleep.

Smaller organizations, where there may be only a single part-time system administra-
tor (sysadmin), are especially susceptible to piece-meal monitoring pitfalls. Thinking about
operational policy in a four-person organization may seem silly, but in small environments,
critical system awareness is even more important. When building monitoring systems, always
maintain a big-picture outlook. If the monitoring endeavor is successful, it will grow quickly
and the well-being of the organization will come to depend on it.

Ideally, a monitoring system should enforce organizational policy rather than merely
refl ect it. If management expects all problems on Server1 to be looked at within 10 minutes,
then the monitoring system should provide the admin with a clear indicator in the message
(such as a priority number), a mechanism to acknowledge the alert, and an automatic escala-
tion to someone else at the end of the 10-minute window.

So how do we fi nd out what the critical systems are? Senior management is ultimately
responsible for the overall well-being of the organization, so they should be the ones making
the call. This is why management buy-in is so vitally important. If you think this is begin-
ning to sound like disaster recovery planning, you’re ahead of the curve. Disaster recovery
works toward identifying critical systems for the purpose of prioritizing their recovery, and
therefore, it is a methodologically identical process to planning a monitoring infrastructure.
In fact, if a disaster recovery plan already exists, that’s the place to begin. The critical systems
have already been identifi ed.

Critical systems, as outlined by senior management, will not be along the lines of “all
problems with Server1 should be looked at within 10 minutes.” They’ll probably be defi ned
as logical entities. For example “Email is critical.” So after the critical systems have been
identifi ed, the implementers will dissect them one by one, into the parts of which they are
composed. Don’t just stay at the top; be sure to involve all interested parties. Email adminis-
trators will have a good idea of what “email” is composed of and criteria, which, if not met,
will mean them rolling their own monitoring tools.

A Procedural Approach to Systems Monitoring

4 Chapter 1 Best Practices

Work with all interested parties to get a solution that works for everyone. Great monitor-
ing systems are grown from collaboration. Where custom monitoring scripts already exist,
don’t dismiss them; instead, try to incorporate them. Groups tend to trust the tools they’re
already using, so co-opting those tools usually buys you some support. Nagios is excellent at
using external monitoring logic along with its own scheduling and escalation rules.

Processing and Overhead

Monitoring systems necessarily introduce some overhead in the form of network traffi c and
resource utilization on the monitored hosts. Most monitoring systems typically have a few
specifi c modes of operation, so the capabilities of the system, along with implementation
choices, dictate how much, and where, overhead is introduced.

Remote Versus Local Processing

Nagios exports service checking logic into tiny single-purpose programs called plugins. This
makes it possible to add checks for new types of services quickly and easily, as well as co-opt
existing monitoring scripts. This modular approach makes it possible to execute the plugins
themselves, either locally on the monitoring server or remotely on the monitored hosts.

Centralized execution is generally preferable whenever possible because the monitored
hosts bear less of a resource burden. However, remote processing may be unavoidable, or
even preferred, in some situations. For large environments with tens of thousands of hosts,
centralized execution may be too much for a single monitoring server to handle. In this case,
the monitoring system may need to rely on the clients to run their own service checks and
report back the results. Some types of checks may be impossible to run from the central
server. For example, plugins that check the amount of free memory may require remote
execution.

As a third option, several Nagios servers may be combined to form a single distributed
monitoring system. Distributed monitoring enables centralized execution in large environ-
ments by distributing the monitoring load across several Nagios servers. Distributed monitor-
ing is also good for situations in which the network is geographically disperse, or otherwise
inconveniently segmented.

Bandwidth Considerations

Plugins usually generate some IP traffi c. Each network device that this traffi c must traverse
introduces network overhead, as well as a dependency into the system. In Figure 1.1, there is
a router between the Nagios Server and Server1. Because Nagios must traverse the router to
connect to Server1, Server1 is said to be a child of the router. It is always desirable to do as
little layer 3 routing between the monitoring system and its target hosts as possible, especially

5

where devices such as fi rewalls and WAN links are concerned. So the location of the monitor-
ing system within the network topology becomes an important implementation detail.

Processing and Overhead

Nagios

Router 1

Server 1

Host A

Figure 1.1 The router between Nagios and Server1 introduces a dependency and some network overhead
in the form of layer 3 routing decisions.

In addition to minimizing layer 3 routing of traffi c from the monitoring host, you also
want to make sure that the monitoring host is sending as little traffi c as possible. This means
paying attention to things such as polling intervals and plugin redundancy. Plugin redun-
dancy is when two or more plugins effectively monitor the same service.

Redundant plugins may not be obvious. They usually take the form of two plugins that
measure the same service, but at different depths. Take, for example, an imaginary Web ser-
vice running on Server1. The monitoring system may initially be set up to connect to port 80
of the Web service to see if it is available. Then some months later, when the Web site running
on Server1 has some problems with users being able to authenticate, a plugin may be cre-
ated that verifi es authentication works correctly. All that is actually needed in this example
is the second plugin. If it can log in to the Web site, then port 80 is obviously available and
the fi rst plugin does nothing but waste resources. Plugin redundancy may not be a problem
for smaller sites with less than a thousand or so servers. For large sites, however, eliminating
plugin redundancy (or better, ensuring it never occurs in the fi rst place) can greatly reduce the
burden on the monitoring system and the network.

Minimizing the overhead incurred on the environment as a whole means maintaining
a global perspective on its resources. Hosts connected by slow WAN links that are heav-
ily utilized, or are otherwise sensitive to resource utilization, should be grouped logically.
Nagios provides hostgroups for this purpose. These allow confi guration settings to be
optimized to meet the needs of the group. For example, plugins may be set to a higher
timeout for the Remote-Offi ce hostgroup, ensuring that network latency doesn’t cause
a false alarm for hosts on slower networks. Special consideration should be given to the
location of the monitoring system to reduce its impact on the network, as well as to mini-
mize its dependency on other devices. Finally, make sure that your confi guration changes
don’t needlessly increase the burden on the systems and network you monitor, as with
redundant plugins. The last thing a monitoring system should do is cause problems of
its own.

6 Chapter 1 Best Practices

Network Location and Dependencies

The location of the monitoring system within the network topology has wide-ranging archi-
tectural ramifi cations, so you should take some time to consider its placement within your
network. Your implementation goals are threefold.

 1. Maintain existing security measures.

 2. Minimize impact on the network.

 3. Minimize the number of dependencies between the monitoring system and the most
critical systems.

No single ideal solution exists, so these three goals need to be weighed against each other
for each environment. The end result is always a compromise, so it’s important to spend
some time diagramming out a few different architectures and considering the consequences
of each.

The network topology shown in Figure 1.2 is a simple example of a network that should
be familiar to any sysadmin. Today, most private networks that provide Internet-facing ser-
vices have at least three segments: the inside, the outside, and the demilitarized zone (DMZ).
In our example network, the greatest number of hosts exists on the inside segment. Most of
the critically important hosts (they are important because these are Web servers), however,
exist on the DMZ.

Acme Web Hosting Company

SAN

DMZ
Network

WebServers

Firewall

Firewall

Firewall

Core Router

Border Router

Host B
Database

Internal
Network

DHCPServer FileServer Host A Mail Exchanger

Figure 1.2 A typical two-tiered network .

7

Following the implementation rules at the beginning of this section, our fi rst priority is
to maintain the security of the network. Creating a monitoring framework necessitates that
some ports on the fi rewalls be opened, so that, for example, the monitoring host can connect
to port 80 on hosts in other network segments. If the monitoring system were placed in the
DMZ, many more ports on the fi rewalls would need to be opened than if the monitoring
system were placed on the inside segment, simply because there are more hosts on the inter-
nal segment. For most organizations, placing the monitoring server in the DMZ would be
unacceptable for this reason. More information on security is discussed later in this chapter,
but for this example, it’s simple arithmetic.

There are many ways to reduce the impact of the monitoring system on the network. For
example, the use of a modem to send messages via the Public Switched Telephone Network
(PSTN) reduces network traffi c and removes dependencies. The best way to minimize net-
work impact in this example, however, is by placing the monitoring system on the segment
with the largest number of hosts, because this ensures that less traffi c must traverse the fi re-
walls and router. This, once again, points to the internal network.

Finally, placing our monitoring system in a separate network segment from most of the
critical systems is not ideal, because if one of the network devices becomes unavailable, the
monitoring system loses visibility to the hosts behind it. Nagios refers to this as a network-
blocking outage. The hosts on the DMZ are children of their fi rewall, and when confi gured
as such, Nagios is aware of the dependency. If the fi rewall goes down, Nagios does not have
to send notifi cations for all of the hosts behind it (but it can if you want it to), and the status
of those hosts will be fl agged unknown in availability reports for the amount of time that
they were not visible. Every network will have some amount of dependency, so this needs to
be considered in the context of the other two goals. In the example, despite the dependency,
the inside segment is probably the best place for the monitoring host.

Security

The ease with which large monitoring systems can become large root kits makes it imperative
that security is considered sooner, rather than later.

Because monitoring systems usually need remote execution rights to the hosts it moni-
tors, it’s easy to introduce backdoors and vulnerabilities into otherwise secure systems. Worse,
because they’re installed as part of a legitimate system, these vulnerabilities may be over-
looked by penetration testers and auditing tools. The fi rst, and most important, thing to look
for when building secure monitoring systems is how remote execution is accomplished.

Historically, commercial monitoring tools have included huge monolithic agents, which
must be installed on every client to enable even basic functionality. These agents usually
include remote shell functionality and proprietary byte code interpreters, which allow the
monitoring host carte blanche to execute anything on the client, via its agent. This implemen-
tation makes it diffi cult, at best, to adhere to basic security principles, such as least privilege.

Security

8 Chapter 1 Best Practices

Anyone with control over the monitoring system has complete control over every box it
monitors.

Nagios, by comparison, follows the UNIX adage: “Do one thing and do it well.” It is
really nothing but a task optimized scheduler and notifi cation framework. It doesn’t have an
intrinsic ability to connect to other computers and contains no agent software at all. These
functions exist as separate, single-purpose programs that Nagios must be confi gured to use.
By outsourcing remote execution to external programs, Nagios maintains an off-by-default
policy and doesn’t attempt to reinvent things like encryption protocols, which are critically
important and diffi cult to implement. With Nagios, it’s simple to limit the monitoring server’s
access to its clients, but poor security practices on the part of admin can still create insecure
systems; so in the end, it’s up to you.

The monitoring system should have only the access it needs to remotely execute the
specifi c plugins required. Avoid rexec style plugins that take arbitrary strings and execute
them on the remote host. Ideally, every remotely executed plugin should be a single-purpose
program, which the monitoring system has specifi c access to execute. Some useful plugins
provide lots of functionality in a single binary. NSCLIENT++ for Windows, for example,
can query any perfmon counter. These multipurpose plugins are fi ne, if they limit access to a
small subset of query-only functionality.

The communication channel between the remotely executed plugin and the monitoring
system should be encrypted. Though it’s a common mistake among commercial-monitoring
applications, avoid nonstandard, or proprietary, encryption protocols. Encryption protocols
are notoriously diffi cult to implement, let alone create. The popular remote execution plugins
for Nagios use the industry-standard OpenSSL library, which is peer reviewed constantly by
smart people. Even if none of the information passed is considered sensitive, the implementa-
tion should include encrypted channels from the get-go as an enabling step. If the system is
implemented well, it will grow fast, and it’s far more diffi cult to add encrypted channels after
the fact than it is to include them in the initial build.

Simple Network Management Protocol (SNMP) , a mainstay of systems monitoring that
is supported on nearly every computing device in existence today, should not be used on
public networks, and avoided, if possible, on private ones. For most purposes involving
general-purpose workstations and servers, alternatives to SNMP can be found. If SNMP
must be used for network equipment, try to use SNMPv3, which includes encryption, and no
matter what version you use, be sure it’s confi gured in a read-only capacity and only accepts
connections from specifi c hosts. For whatever reason, sysadmins seem chronically incapable
of changing SNMP community string names. This simple implementation fl aw accounts for
most of SNMP’s bad rap. Look for more information on SNMP in Chapter 6, “Watching.”

Many organizations have network segments that are physically separated, or otherwise
inaccessible, from the rest of the network. In this case, monitoring hosts on the isolated sub-
net means adding a Network Interface Card (NIC) to the monitoring server and connecting
it to the private segment. Isolated network segments are usually isolated for a reason, so at
a minimum, the monitoring system should be confi gured with strict local fi rewall rules so
that they don’t forward traffi c from one subnet to the other. Consideration should be paid to
building separate monitoring systems for nonaccessible networks.

9

When holes must be opened in the fi rewall for the monitoring server to check the status
of hosts on a different segment, consider using remote execution to minimize the number of
ports required. For example, the Nagios Box in Figure 1.3 must monitor the Web server and
SMTP daemon on Server1. Instead of opening three ports on the fi rewall, the same outcome
may be reached by running a service checker plugin remotely on Server1 to check that the
apache and qmail daemons are running. By opening only one port instead of three, there is
less opportunity for abuse by a malicious party.

Silence Is Golden

Figure 1.3 When used correctly, remote execution can enhance security by minimizing fi rewall ACLs.

A good monitoring system does its job without creating fl aws for intruders to exploit;
Nagios makes it simple to build secure monitoring systems if the implementers are commit-
ted to building them that way.

Silence Is Golden

With any monitoring system, a balance must be struck between too much granularity
and too little. Technical folks, such as sysadmins, usually err on the side of offering too much.
Given 20 services on 5 boxes, many sysadmins monitor everything and get notifi ed on every-
thing, whether the notifi cations might represent a problem.

For sysadmins, this is not a big deal; they generally develop an organic understanding
of their environments, and the notifi cations serve as an additional point of visibility or as an
event correlation aid. For example, a notifi cation from workstation1 that its network traf-
fi c is high, combined with a CPU spike on router 12, and abnormal disk usage on Server3,
may indicate to a sysadmin that Ted from accounting has come back early from vacation. A

Nagios

Nagios

Run_remote_checks

Firewall

Firewall

Server 1

Server 1

Check_qmail
Check_apache

Check Port 25

Check Port 443

Check Port 80

Scenario 2: Nagios uses remote execution to check if
the services are running. One firewall rule is required.

Scenario 1: Nagios runs local plugins to check port
availability. Three firewall rules are required.

10 Chapter 1 Best Practices

diligent sysadmin might follow up on that hunch to verify that it really is Ted and not a teen-
ager at the University of Hackgrandistan owning Ted’s workstation. It happens more often
than you’d think. For the non-sysadmin, however, the most accurate phrase to describe these
notifi cations is false alarm.

Typically, monitoring systems use static thresholds to determine the state of a service. The
CPU on Server1, for example, may have a threshold of 95 percent. When the CPU goes above
that, the monitoring system sends notifi cations or performs an automatic break/fi x. One of
the biggest mistakes an implementer can make when introducing a monitoring system into an
environment is simply not taking the time to fi nd out what the normal operating parameters
on the servers are. If Server1 typically has 98 percent CPU utilization from 12 a.m. to 2 a.m.
because it does batch processing during these hours, then a false alarm is sent.

False alarms should be methodically hunted down and eradicated. Nothing can under-
mine the credibility of, and erode the support for, a fl edgling monitoring system such as
people getting notifi cations that they think are silly or useless. Before the monitoring system
is confi gured to send notifi cations, it should be run for a few weeks to collect data on at least
the critical hosts to determine what their normal operational parameters are. This data, col-
lectively referred to as a baseline, is the only reasonably responsible way to determine static
thresholds for your servers.

That’s not to say our sysadmin should be prevented from getting the most out of his
cell phone’s unlimited data plan. I’m merely suggesting that some fi ltering be put in place to
ensure no one else need share his unfortunate fascination. One great thing about following
the procedural approach outlined earlier in this chapter is that it makes it possible to think
about the organization’s requirements for a particular service on a specifi c host before the
thresholds and contacts are confi gured. If Alice, the DBA, doesn’t need to react to high CPU
on Server1, then she should not get paged about it.

Nagios provides plenty of functionality to enable sysadmins to be notifi ed of “interest-
ing events” without alerting management or other noninterested parties. With two threshold
levels (warning and critical) and a myriad of escalation and polling options, it is relatively
simple to get early-and-often style notifi cations for control freaks, while keeping others
abreast of just the problems. It is highly recommended that a layered approach to notifi ca-
tion be a design goal of the system from the beginning.

Good monitoring systems tend to be focused, rather than chatty. They may monitor
many services for the purpose of historical trending, but they send fewer notifi cations than
one would expect, and when they do, it’s to the group of people who want to know. For the
intellectually curious, who don’t want their pager going off at all hours of the day and night,
consider sending summary reports every 24 hours or so. Nagios has some excellent reporting
built in.

11

Watching Ports Versus Watching Applications

In the “Processing and Overhead” section, earlier in the chapter, we briefl y discussed redun-
dant plugins that monitored a Web server. One plugin simply connected to port 80 on the
Web server, while the other attempted to login to the Web site hosted by the server. The latter
plugin is an example of what is increasingly being referred to as End to End (E2E) Monitor-
ing, which makes use of the monitored services in the same way a user might. Instead of
monitoring port 25 on a mail server, the E2E approach would be to send an email through
the system. Instead of monitoring the processes required for CIFS, an E2E plugin would
attempt to mount a shared drive, and so on.

While introducing more overhead individually, E2E plugins can actually lighten the load
when used to replace several of their conventional counterparts. A set of plugins that moni-
tors a Web application by checking the Web ports, database services, and application server
availability might be replaced by a single plugin that logs into the Web site and makes a
query. E2E plugins tend to be “smarter.” That is, they catch more problems by virtue of
detecting the outcome of an attempted use of a service, rather than watching single points of
likely failure. For example, an E2E plugin that parses the content of a Web site can fi nd and
alert on a permissions problem, where a simple port watcher cannot.

Sometimes that’s a good thing and sometimes it isn’t. What E2E gains in rate of detec-
tion, it loses in resolution. What I mean by that is, with E2E, you often know that there is
a problem but not where the problem actually resides, which can be bad when the problem
is actually in a completely unrelated system. For example, an E2E plugin that watches an
email system can detect failure and send notifi cations in the event of a DNS outage, because
the mail servers cannot perform MX lookups and, therefore, cannot send mail. This makes
E2E plugins susceptible to what some may consider false alarms, so they should be used
sparingly.

A problem in some unrelated infrastructure, which affects a system responsible for trans-
ferring funds, is something bank management needs to know about, regardless of the root
cause. E2E is great at catching failures in unexpected places and can be a real lifesaver when
used on systems for which problem detection is absolutely critical.

Adoption of E2E is slow among the commercial monitoring systems, because it’s diffi cult
to predict what customers’ needs are, which makes it hard to write agent software. On the
other hand, Nagios excels at this sort of application-layer monitoring because it makes no
assumptions about how you want to monitor stuff, so extending Nagios’ functionality is usu-
ally trivial. More on plugins and how they work is in Chapter 2, “Theory of Operations.”

Who’s Watching the Watchers?

If there is a fatal fl aw in the concept of systems monitoring, it is the use of untrustworthy
systems to watch other untrustworthy systems. If your monitoring system fails, it’s important
you are at least informed of it. A failover system to pick up where the failed system left off
is even better.

Who’s Watching the Watchers?

12 Chapter 1 Best Practices

The specifi cs of your network dictate what needs to happen when the monitoring system
fails. If you are bound by strict SLAs, then uptime reports are a critical part of your business,
and a failover system should be implemented. Often, it’s enough to simply know that the
monitoring system is down.

Failure-proofi ng monitoring systems is a messy business. Unless you work at a tier1 ISP,
you’ll always hit some upstream dependency that you have no control over, if you go high
enough into the topology of your network. This does not negate the necessity of a plan.

Small shops should at least have a secondary system, such as a syslog box, or some other
piece of infrastructure that can heartbeat the monitoring system and send an alert if things go
wrong. Large shops may want to consider global monitoring infrastructure, either provided
by a company that sells such solutions or by maintaining a mesh topology of hosted Nagios
boxes in geographically dispersed locations.

Nagios makes it easy to mirror state and confi guration information across separate boxes.
Confi guration and state are stored as terse, clear text fi les by default. Confi guration syntax
hooks make event mirroring a snap, and Nagios can be confi gured in distributed monitoring
scenarios with multiple Nagios servers. The monitoring system may be the system most in
need of monitoring; don’t forget to include it in the list of critical systems.

