
531531

12Chapter12AWK is a pattern-scanning and processing language that
searches one or more files for records (usually lines) that
match specified patterns. It processes lines by performing
actions, such as writing the record to standard output or
incrementing a counter, each time it finds a match. Unlike
procedural languages, AWK is data driven: You describe the
data you want to work with and tell AWK what to do with
the data once it finds it.

You can use AWK to generate reports or filter text. It works
equally well with numbers and text; when you mix the two,
AWK usually comes up with the right answer. The authors
of AWK (Alfred V. Aho, Peter J. Weinberger, and Brian W.
Kernighan) designed the language to be easy to use. To
achieve this end they sacrificed execution speed in the origi-
nal implementation.

In This Chapter

Syntax . 532

Arguments 532

Options . 533

Patterns . 534

Actions. 535

Variables . 535

Functions . 536

Associative Arrays. 538

Control Structures 539

Examples . 541

getline: Controlling Input 558

Coprocess: Two-Way I/O. 560

Getting Input from a Network. . . . 562

12

The AWK Pattern

Processing Language

000.book.fm Page 531 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

532 Chapter 12 The AWK Pattern Processing Language

AWK takes many of its constructs from the C programming language. It includes
the following features:

• A flexible format

• Conditional execution

• Looping statements

• Numeric variables

• String variables

• Regular expressions

• Relational expressions

• C’s printf

• Coprocess execution (gawk only)

• Network data exchange (gawk only)

Syntax

A gawk command line has the following syntax:

gawk [options] [program] [file-list]
gawk [options] –f program-file [file-list]

The gawk utility takes its input from files you specify on the command line or from
standard input. An advanced command, getline, gives you more choices about
where input comes from and how gawk reads it (page 558). Using a coprocess, gawk
can interact with another program or exchange data over a network (page 560; not
available under awk or mawk). Output from gawk goes to standard output.

Arguments

In the preceding syntax, program is a gawk program that you include on the command
line. The program-file is the name of the file that holds a gawk program. Putting the
program on the command line allows you to write short gawk programs without hav-
ing to create a separate program-file. To prevent the shell from interpreting the gawk
commands as shell commands, enclose the program within single quotation marks.
Putting a long or complex program in a file can reduce errors and retyping.

The file-list contains the pathnames of the ordinary files that gawk processes. These
files are the input files. When you do not specify a file-list, gawk takes input from
standard input or as specified by getline (page 558) or a coprocess (page 560).

000.book.fm Page 532 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Options 533

Options

Options preceded by a double hyphen (––) work under gawk only. They are not
available under awk and mawk.

––field-separator fs
–F fs

Uses fs as the value of the input field separator (FS variable; page 536).

––file program-file
–f program-file

Reads the gawk program from the file named program-file instead of the com-
mand line. You can specify this option more than once on a command line. See
page 545 for examples.

––help –W help
Summarizes how to use gawk (gawk only).

––lint –W lint
Warns about gawk constructs that may not be correct or portable (gawk only).

––posix –W posix
Runs a POSIX-compliant version of gawk. This option introduces some
restrictions; see the gawk man page for details (gawk only).

––traditional –W traditional
Ignores the new GNU features in a gawk program, making the program conform
to UNIX awk (gawk only).

––assign var=value
–v var=value

Assigns value to the variable var. The assignment takes place prior to execu-
tion of the gawk program and is available within the BEGIN pattern
(page 535). You can specify this option more than once on a command line.

AWK has many implementations
tip The AWK language was originally implemented under UNIX as the awk utility. Most Linux distri-

butions provide gawk (the GNU implementation of awk) or mawk (a faster, stripped-down ver-
sion of awk). Mac OS X provides awk. This chapter describes gawk. All the examples in this
chapter work under awk and mawk except as noted; the exceptions make use of coprocesses
(page 560). You can easily install gawk on most Linux distributions. See gawk.darwinports.com
if you are running Mac OS X. For a complete list of gawk extensions, see GNU EXTENSIONS in
the gawk man page or see the gawk info page.

000.book.fm Page 533 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

534 Chapter 12 The AWK Pattern Processing Language

Notes

See the tip on the previous page for information on AWK implementations.

For convenience many Linux systems provide a link from /bin/awk to /bin/gawk or
/bin/mawk. As a result you can run the program using either name.

Language Basics

A gawk program (from program on the command line or from program-file) consists
of one or more lines containing a pattern and/or action in the following format:

pattern { action }

The pattern selects lines from the input. The gawk utility performs the action on all
lines that the pattern selects. The braces surrounding the action enable gawk to dif-
ferentiate it from the pattern. If a program line does not contain a pattern, gawk
selects all lines in the input. If a program line does not contain an action, gawk
copies the selected lines to standard output.

To start, gawk compares the first line of input (from the file-list or standard input)
with each pattern in the program. If a pattern selects the line (if there is a match),
gawk takes the action associated with the pattern. If the line is not selected, gawk
does not take the action. When gawk has completed its comparisons for the first line
of input, it repeats the process for the next line of input. It continues this process of
comparing subsequent lines of input until it has read all of the input.

If several patterns select the same line, gawk takes the actions associated with each
of the patterns in the order in which they appear in the program. It is possible for
gawk to send a single line from the input to standard output more than once.

Patterns

~ and !~ You can use a regular expression (Appendix A), enclosed within slashes, as a pattern.
The ~ operator tests whether a field or variable matches a regular expression (exam-
ples on page 543). The !~ operator tests for no match. You can perform both numeric
and string comparisons using the relational operators listed in Table 12-1. You can
combine any of the patterns using the Boolean operators || (OR) or && (AND).

Table 12-1 Relational operators

Relational operator Meaning

< Less than

<= Less than or equal to

== Equal to

000.book.fm Page 534 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Language Basics 535

BEGIN and END Two unique patterns, BEGIN and END, execute commands before gawk starts pro-
cessing the input and after it finishes processing the input. The gawk utility executes
the actions associated with the BEGIN pattern before, and with the END pattern
after, it processes all the input. See pages 545 and 546 for examples.

, (comma) The comma is the range operator. If you separate two patterns with a comma on a sin-
gle gawk program line, gawk selects a range of lines, beginning with the first line that
matches the first pattern. The last line selected by gawk is the next subsequent line that
matches the second pattern. If no line matches the second pattern, gawk selects every
line through the end of the input. After gawk finds the second pattern, it begins the
process again by looking for the first pattern again. See page 544 for examples.

Actions

The action portion of a gawk command causes gawk to take that action when it
matches a pattern. When you do not specify an action, gawk performs the default
action, which is the print command (explicitly represented as {print}). This action
copies the record (normally a line; see “Record separators” on the next page) from
the input to standard output.

When you follow a print command with arguments, gawk displays only the argu-
ments you specify. These arguments can be variables or string constants. You can
send the output from a print command to a file (use > within the gawk program;
page 549), append it to a file (>>), or send it through a pipe to the input of another
program (|). A coprocess (|&) is a two-way pipe that exchanges data with a program
running in the background (available under gawk only; page 560).

Unless you separate items in a print command with commas, gawk catenates them.
Commas cause gawk to separate the items with the output field separator (OFS, nor-
mally a SPACE; page 536).

You can include several actions on one line by separating them with semicolons.

Comments

The gawk utility disregards anything on a program line following a pound sign (#).
You can document a gawk program by preceding comments with this symbol.

Variables

Although you do not need to declare gawk variables prior to their use, you can
assign initial values to them if you like. Unassigned numeric variables are initialized

Relational operator Meaning

!= Not equal to

>= Greater than or equal to

> Greater than

Table 12-1 Relational operators (continued)

000.book.fm Page 535 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

536 Chapter 12 The AWK Pattern Processing Language

to 0; string variables are initialized to the null string. In addition to supporting user
variables, gawk maintains program variables. You can use both user and program
variables in the pattern and action portions of a gawk program. Table 12-2 lists a
few program variables.

In addition to initializing variables within a program, you can use the ––assign (–v)
option to initialize variables on the command line. This feature is useful when the
value of a variable changes from one run of gawk to the next.

Record separators By default the input and output record separators are NEWLINE characters. Thus gawk
takes each line of input to be a separate record and appends a NEWLINE to the end of
each output record. By default the input field separators are SPACEs and TABs; the
default output field separator is a SPACE. You can change the value of any of the sep-
arators at any time by assigning a new value to its associated variable either from
within the program or from the command line by using the ––assign (–v) option.

Functions

Table 12-3 lists a few of the functions gawk provides for manipulating numbers and
strings.

Table 12-2 Variables

Variable Meaning

$0 The current record (as a single variable)

$1–$n Fields in the current record

FILENAME Name of the current input file (null for standard input)

FS Input field separator (default: SPACE or TAB; page 550)

NF Number of fields in the current record (page 554)

NR Record number of the current record (page 546)

OFS Output field separator (default: SPACE; page 547)

ORS Output record separator (default: NEWLINE; page 554)

RS Input record separator (default: NEWLINE)

Table 12-3 Functions

Function Meaning

length(str) Returns the number of characters in str; without an argument, returns the
number of characters in the current record (page 545)

int(num) Returns the integer portion of num

index(str1,str2) Returns the index of str2 in str1 or 0 if str2 is not present

split(str,arr,del) Places elements of str, delimited by del, in the array arr [1]...arr [n]; returns the
number of elements in the array (page 556)

000.book.fm Page 536 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Language Basics 537

Arithmetic Operators

The gawk arithmetic operators listed in Table 12-4 are from the C programming
language.

Function Meaning

sprintf(fmt,args) Formats args according to fmt and returns the formatted string; mimics the C
programming language function of the same name

substr(str,pos,len) Returns the substring of str that begins at pos and is len characters long

tolower(str) Returns a copy of str in which all uppercase letters are replaced with their
lowercase counterparts

toupper(str) Returns a copy of str in which all lowercase letters are replaced with their
uppercase counterparts

Table 12-3 Functions (continued)

Table 12-4 Arithmetic operators

Operator Meaning

** Raises the expression preceding the operator to the power of the expression
following it

* Multiplies the expression preceding the operator by the expression following it

/ Divides the expression preceding the operator by the expression following it

% Takes the remainder after dividing the expression preceding the operator by
the expression following it

+ Adds the expression preceding the operator to the expression following it

– Subtracts the expression following the operator from the expression preceding it

= Assigns the value of the expression following the operator to the variable
preceding it

++ Increments the variable preceding the operator

–– Decrements the variable preceding the operator

+= Adds the expression following the operator to the variable preceding it and
assigns the result to the variable preceding the operator

–= Subtracts the expression following the operator from the variable preceding it
and assigns the result to the variable preceding the operator

*= Multiplies the variable preceding the operator by the expression following it
and assigns the result to the variable preceding the operator

/= Divides the variable preceding the operator by the expression following it and
assigns the result to the variable preceding the operator

%= Assigns the remainder, after dividing the variable preceding the operator by the
expression following it, to the variable preceding the operator

000.book.fm Page 537 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

538 Chapter 12 The AWK Pattern Processing Language

Associative Arrays

The associative array is one of gawk’s most powerful features. These arrays use
strings as indexes. Using an associative array, you can mimic a traditional array by
using numeric strings as indexes. In Perl, an associative array is called a hash
(page 500).

You assign a value to an element of an associative array using the following syntax:

array[string] = value

where array is the name of the array, string is the index of the element of the array
you are assigning a value to, and value is the value you are assigning to that element.

Using the following syntax, you can use a for structure with an associative array:

for (elem in array) action

where elem is a variable that takes on the value of each element of the array as the
for structure loops through them, array is the name of the array, and action is the
action that gawk takes for each element in the array. You can use the elem variable
in this action.

See page 551 for example programs that use associative arrays.

printf
You can use the printf command in place of print to control the format of the output
gawk generates. The gawk version of printf is similar to that found in the C language.
A printf command has the following syntax:

printf "control-string", arg1, arg2, ..., argn

The control-string determines how printf formats arg1, arg2, ..., argn. These argu-
ments can be variables or other expressions. Within the control-string you can use \n to
indicate a NEWLINE and \t to indicate a TAB. The control-string contains conversion specifi-
cations, one for each argument. A conversion specification has the following syntax:

%[–][x[.y]]conv

where – causes printf to left-justify the argument, x is the minimum field width, and
.y is the number of places to the right of a decimal point in a number. The conv indi-
cates the type of numeric conversion and can be selected from the letters in
Table 12-5. See page 548 for example programs that use printf.

Table 12-5 Numeric conversion

conv Type of conversion

d Decimal

e Exponential notation

f Floating-point number

000.book.fm Page 538 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Language Basics 539

Control Structures

Control (flow) statements alter the order of execution of commands within a
gawk program. This section details the if...else, while, and for control structures.
In addition, the break and continue statements work in conjunction with the con-
trol structures to alter the order of execution of commands. See page 398 for
more information on control structures. You do not need to use braces around
commands when you specify a single, simple command.

if...else

The if...else control structure tests the status returned by the condition and transfers
control based on this status. The syntax of an if...else structure is shown below. The
else part is optional.

if (condition)
{commands}

[else
{commands}]

The simple if statement shown here does not use braces:

if ($5 <= 5000) print $0

Next is a gawk program that uses a simple if...else structure. Again, there are no braces.

$ cat if1
BEGIN {

nam="sam"
if (nam == "max")

print "nam is max"
else

print "nam is not max, it is", nam
}

$ gawk -f if1
nam is not max, it is sam

while

The while structure loops through and executes the commands as long as the
condition is true. The syntax of a while structure is

while (condition)
{commands}

conv Type of conversion

g Use f or e, whichever is shorter

o Unsigned octal

s String of characters

x Unsigned hexadecimal

Table 12-5 Numeric conversion (continued)

000.book.fm Page 539 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

540 Chapter 12 The AWK Pattern Processing Language

The next gawk program uses a simple while structure to display powers of 2. This
example uses braces because the while loop contains more than one statement. This
program does not accept input; all processing takes place when gawk executes the
statements associated with the BEGIN pattern.

$ cat while1
BEGIN{

n = 1
while (n <= 5)

{
print "2^" n, 2**n
n++
}

}

$ gawk -f while1
1^2 2
2^2 4
3^2 8
4^2 16
5^2 32

for
The syntax of a for control structure is

for (init; condition; increment)
{commands}

A for structure starts by executing the init statement, which usually sets a counter
to 0 or 1. It then loops through the commands as long as the condition remains
true. After each loop it executes the increment statement. The for1 gawk program
does the same thing as the preceding while1 program except that it uses a for state-
ment, which makes the program simpler:

$ cat for1
BEGIN {
 for (n=1; n <= 5; n++)
 print "2^" n, 2**n
 }

$ gawk -f for1
1^2 2
2^2 4
3^2 8
4^2 16
5^2 32

The gawk utility supports an alternative for syntax for working with associative
arrays:

for (var in array)
{commands}

000.book.fm Page 540 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 541

This for structure loops through elements of the associative array named array,
assigning the value of the index of each element of array to var each time through
the loop. The following line of code (from the program on page 551) demonstrates
a for structure:

END {for (name in manuf) print name, manuf[name]}

break

The break statement transfers control out of a for or while loop, terminating execution
of the innermost loop it appears in.

continue

The continue statement transfers control to the end of a for or while loop, causing
execution of the innermost loop it appears in to continue with the next iteration.

Examples

cars data file Many of the examples in this section work with the cars data file. From left to right,
the columns in the file contain each car’s make, model, year of manufacture, mile-
age in thousands of miles, and price. All whitespace in this file is composed of single
TABs (the file does not contain any SPACEs).

$ cat cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
ford taurus 2004 10 17000
toyota rav4 2002 180 750
chevy impala 1985 85 1550
ford explor 2003 25 9500

Missing pattern A simple gawk program is

{ print }

This program consists of one program line that is an action. Because the pattern is
missing, gawk selects all lines of input. When used without any arguments the print
command displays each selected line in its entirety. This program copies the input to
standard output.

$ gawk '{ print }' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

000.book.fm Page 541 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

542 Chapter 12 The AWK Pattern Processing Language

Missing action The next program has a pattern but no explicit action. The slashes indicate that
chevy is a regular expression.

/chevy/

In this case gawk selects from the input just those lines that contain the string chevy.
When you do not specify an action, gawk assumes the action is print. The following
example copies to standard output all lines from the input that contain the string
chevy:

$ gawk '/chevy/' cars
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
chevy impala 1985 85 1550

Single quotation
marks

Although neither gawk nor shell syntax requires single quotation marks on the com-
mand line, it is still a good idea to use them because they can prevent problems. If
the gawk program you create on the command line includes SPACEs or characters that
are special to the shell, you must quote them. Always enclosing the program in sin-
gle quotation marks is the easiest way to make sure you have quoted any characters
that need to be quoted.

Fields The next example selects all lines from the file (it has no pattern). The braces
enclose the action; you must always use braces to delimit the action so gawk can
distinguish it from the pattern. This example displays the third field ($3), a SPACE

(the output field separator, indicated by the comma), and the first field ($1) of each
selected line:

$ gawk '{print $3, $1}' cars
1970 plym
1999 chevy
1965 ford
1998 volvo
...

The next example, which includes both a pattern and an action, selects all lines that
contain the string chevy and displays the third and first fields from the selected
lines:

$ gawk '/chevy/ {print $3, $1}' cars
1999 chevy
2000 chevy
1985 chevy

In the following example, gawk selects lines that contain a match for the regular
expression h. Because there is no explicit action, gawk displays all the lines it selects.

$ gawk '/h/' cars
chevy malibu 1999 60 3000
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
honda accord 2001 30 6000
chevy impala 1985 85 1550

000.book.fm Page 542 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 543

~ (matches
operator)

The next pattern uses the matches operator (~) to select all lines that contain the letter
h in the first field:

$ gawk '$1 ~ /h/' cars
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
honda accord 2001 30 6000
chevy impala 1985 85 1550

The caret (^) in a regular expression forces a match at the beginning of the line
(page 890) or, in this case, at the beginning of the first field:

$ gawk '$1 ~ /^h/' cars
honda accord 2001 30 6000

Brackets surround a character class definition (page 889). In the next example, gawk
selects lines that have a second field that begins with t or m and displays the third
and second fields, a dollar sign, and the fifth field. Because there is no comma
between the "$" and the $5, gawk does not put a SPACE between them in the output.

$ gawk '$2 ~ /^[tm]/ {print $3, $2, "$" $5}' cars
1999 malibu $3000
1965 mustang $10000
2003 thundbd $10500
2000 malibu $3500
2004 taurus $17000

Dollar signs The next example shows three roles a dollar sign can play in a gawk program. First,
a dollar sign followed by a number names a field. Second, within a regular expres-
sion a dollar sign forces a match at the end of a line or field (5$). Third, within a
string a dollar sign represents itself.

$ gawk '$3 ~ /5$/ {print $3, $1, "$" $5}' cars
1965 ford $10000
1985 bmw $450
1985 chevy $1550

In the next example, the equal-to relational operator (==) causes gawk to perform a
numeric comparison between the third field in each line and the number 1985. The
gawk command takes the default action, print, on each line where the comparison
is true.

$ gawk '$3 == 1985' cars
bmw 325i 1985 115 450
chevy impala 1985 85 1550

The next example finds all cars priced at or less than $3,000.

$ gawk '$5 <= 3000' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
bmw 325i 1985 115 450
toyota rav4 2002 180 750
chevy impala 1985 85 1550

000.book.fm Page 543 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

544 Chapter 12 The AWK Pattern Processing Language

Textual
comparisons

When you use double quotation marks, gawk performs textual comparisons by
using the ASCII (or other local) collating sequence as the basis of the comparison. In
the following example, gawk shows that the strings 450 and 750 fall in the range
that lies between the strings 2000 and 9000, which is probably not the intended
result.

$ gawk '"2000" <= $5 && $5 < "9000"' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
toyota rav4 2002 180 750

When you need to perform a numeric comparison, do not use quotation marks. The
next example gives the intended result. It is the same as the previous example except
it omits the double quotation marks.

$ gawk '2000 <= $5 && $5 < 9000' cars
plym fury 1970 73 2500
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
honda accord 2001 30 6000

, (range operator) The range operator (,) selects a group of lines. The first line it selects is the one
specified by the pattern before the comma. The last line is the one selected by
the pattern after the comma. If no line matches the pattern after the comma,
gawk selects every line through the end of the input. The next example selects
all lines, starting with the line that contains volvo and ending with the line that
contains bmw.

$ gawk '/volvo/ , /bmw/' cars
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevy malibu 2000 50 3500
bmw 325i 1985 115 450

After the range operator finds its first group of lines, it begins the process again,
looking for a line that matches the pattern before the comma. In the following
example, gawk finds three groups of lines that fall between chevy and ford.
Although the fifth line of input contains ford, gawk does not select it because at the
time it is processing the fifth line, it is searching for chevy.

$ gawk '/chevy/ , /ford/' cars
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
chevy malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000

000.book.fm Page 544 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 545

ford taurus 2004 10 17000
chevy impala 1985 85 1550
ford explor 2003 25 9500

––file option When you are writing a longer gawk program, it is convenient to put the program in
a file and reference the file on the command line. Use the –f (––file) option followed
by the name of the file containing the gawk program.

BEGIN The following gawk program, which is stored in a file named pr_header, has two
actions and uses the BEGIN pattern. The gawk utility performs the action associ-
ated with BEGIN before processing any lines of the data file: It displays a header.
The second action, {print}, has no pattern part and displays all lines from the input.

$ cat pr_header
BEGIN {print "Make Model Year Miles Price"}
 {print}

$ gawk -f pr_header cars
Make Model Year Miles Price
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

The next example expands the action associated with the BEGIN pattern. In the
previous and the following examples, the whitespace in the headers is composed of
single TABs, so the titles line up with the columns of data.

$ cat pr_header2
BEGIN {
print "Make Model Year Miles Price"
print "--"
}
 {print}

$ gawk -f pr_header2 cars
Make Model Year Miles Price
--
plym fury 1970 73 2500
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
...

length function When you call the length function without an argument, it returns the number of
characters in the current line, including field separators. The $0 variable always
contains the value of the current line. In the next example, gawk prepends the line
length to each line and then a pipe sends the output from gawk to sort (the –n option
specifies a numeric sort; page 817). As a result, the lines of the cars file appear in
order of line length.

000.book.fm Page 545 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

546 Chapter 12 The AWK Pattern Processing Language

$ gawk '{print length, $0}' cars | sort -n
21 bmw 325i 1985 115 450
22 plym fury 1970 73 2500
23 volvo s80 1998 102 9850
24 ford explor 2003 25 9500
24 toyota rav4 2002 180 750
25 chevy impala 1985 85 1550
25 chevy malibu 1999 60 3000
25 chevy malibu 2000 50 3500
25 ford taurus 2004 10 17000
25 honda accord 2001 30 6000
26 ford mustang 1965 45 10000
26 ford thundbd 2003 15 10500

The formatting of this report depends on TABs for horizontal alignment. The three
extra characters at the beginning of each line throw off the format of several lines; a
remedy for this situation is covered shortly.

NR (record number) The NR variable contains the record (line) number of the current line. The following
pattern selects all lines that contain more than 24 characters. The action displays the
line number of each of the selected lines.

$ gawk 'length > 24 {print NR}' cars
2
3
5
6
8
9
11

You can combine the range operator (,) and the NR variable to display a group of
lines of a file based on their line numbers. The next example displays lines 2
through 4:

$ gawk 'NR == 2 , NR == 4' cars
chevy malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850

END The END pattern works in a manner similar to the BEGIN pattern, except gawk
takes the actions associated with this pattern after processing the last line of input.
The following report displays information only after it has processed all the input.
The NR variable retains its value after gawk finishes processing the data file, so an
action associated with an END pattern can use it.

$ gawk 'END {print NR, "cars for sale." }' cars
12 cars for sale.

The next example uses if control structures to expand the abbreviations used in
some of the first fields. As long as gawk does not change a record, it leaves the entire

000.book.fm Page 546 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 547

record—including any separators—intact. Once it makes a change to a record, gawk
changes all separators in that record to the value of the output field separator. The
default output field separator is a SPACE.

$ cat separ_demo
 {
 if ($1 ~ /ply/) $1 = "plymouth"
 if ($1 ~ /chev/) $1 = "chevrolet"
 print
 }

$ gawk -f separ_demo cars
plymouth fury 1970 73 2500
chevrolet malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevrolet malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
ford taurus 2004 10 17000
toyota rav4 2002 180 750
chevrolet impala 1985 85 1550
ford explor 2003 25 9500

Stand-alone script Instead of calling gawk from the command line with the –f option and the name of
the program you want to run, you can write a script that calls gawk with the com-
mands you want to run. The next example is a stand-alone script that runs the same
program as the previous example. The #!/bin/gawk –f command (page 280) runs
the gawk utility directly. To execute it, you need both read and execute permission to
the file holding the script (page 278).

$ chmod u+rx separ_demo2
$ cat separ_demo2
#!/bin/gawk -f
 {
 if ($1 ~ /ply/) $1 = "plymouth"
 if ($1 ~ /chev/) $1 = "chevrolet"
 print
 }

$./separ_demo2 cars
plymouth fury 1970 73 2500
chevrolet malibu 1999 60 3000
ford mustang 1965 45 10000
...

OFS variable You can change the value of the output field separator by assigning a value to the
OFS variable. The following example assigns a TAB character to OFS, using the
backslash escape sequence \t. This fix improves the appearance of the report but
does not line up the columns properly.

000.book.fm Page 547 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

548 Chapter 12 The AWK Pattern Processing Language

$ cat ofs_demo
BEGIN {OFS = "\t"}

{
if ($1 ~ /ply/) $1 = "plymouth"
if ($1 ~ /chev/) $1 = "chevrolet"
print
}

$ gawk -f ofs_demo cars
plymouth fury 1970 73 2500
chevrolet malibu 1999 60 3000
ford mustang 1965 45 10000
volvo s80 1998 102 9850
ford thundbd 2003 15 10500
chevrolet malibu 2000 50 3500
bmw 325i 1985 115 450
honda accord 2001 30 6000
ford taurus 2004 10 17000
toyota rav4 2002 180 750
chevrolet impala 1985 85 1550
ford explor 2003 25 9500

printf You can use printf (page 538) to refine the output format. The following example
uses a backslash at the end of two program lines to quote the following NEWLINE. You
can use this technique to continue a long line over one or more lines without affect-
ing the outcome of the program.

$ cat printf_demo
BEGIN {

print " Miles"
print "Make Model Year (000) Price"
print \
"--"
}
{
if ($1 ~ /ply/) $1 = "plymouth"
if ($1 ~ /chev/) $1 = "chevrolet"
printf "%-10s %-8s %2d %5d $ %8.2f\n",\

$1, $2, $3, $4, $5
}

$ gawk -f printf_demo cars
 Miles
Make Model Year (000) Price
--
plymouth fury 1970 73 $ 2500.00
chevrolet malibu 1999 60 $ 3000.00
ford mustang 1965 45 $ 10000.00
volvo s80 1998 102 $ 9850.00
ford thundbd 2003 15 $ 10500.00
chevrolet malibu 2000 50 $ 3500.00
bmw 325i 1985 115 $ 450.00

000.book.fm Page 548 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 549

honda accord 2001 30 $ 6000.00
ford taurus 2004 10 $ 17000.00
toyota rav4 2002 180 $ 750.00
chevrolet impala 1985 85 $ 1550.00
ford explor 2003 25 $ 9500.00

Redirecting output The next example creates two files: one with the lines that contain chevy and one
with the lines that contain ford.

$ cat redirect_out
/chevy/ {print > "chevfile"}
/ford/ {print > "fordfile"}
END {print "done."}

$ gawk -f redirect_out cars
done.

$ cat chevfile
chevy malibu 1999 60 3000
chevy malibu 2000 50 3500
chevy impala 1985 85 1550

The summary program produces a summary report on all cars and newer cars.
Although they are not required, the initializations at the beginning of the program
represent good programming practice; gawk automatically declares and initializes
variables as you use them. After reading all the input data, gawk computes and dis-
plays the averages.

$ cat summary
BEGIN {

yearsum = 0 ; costsum = 0
newcostsum = 0 ; newcount = 0
}
{
yearsum += $3
costsum += $5
}

$3 > 2000 {newcostsum += $5 ; newcount ++}
END {

printf "Average age of cars is %4.1f years\n",\
2006 - (yearsum/NR)

printf "Average cost of cars is $%7.2f\n",\
costsum/NR
printf "Average cost of newer cars is $%7.2f\n",\

newcostsum/newcount
}

$ gawk -f summary cars
Average age of cars is 13.1 years
Average cost of cars is $6216.67
Average cost of newer cars is $8750.00

000.book.fm Page 549 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

550 Chapter 12 The AWK Pattern Processing Language

The following gawk command shows the format of a line from a Linux passwd file
that the next example uses:

$ awk '/mark/ {print}' /etc/passwd
mark:x:107:100:ext 112:/home/mark:/bin/tcsh

FS variable The next example demonstrates a technique for finding the largest number in a
field. Because it works with a Linux passwd file, which delimits fields with colons
(:), the example changes the input field separator (FS) before reading any data. It
reads the passwd file and determines the next available user ID number (field 3).
The numbers do not have to be in order in the passwd file for this program to work.

The pattern ($3 > saveit) causes gawk to select records that contain a user ID num-
ber greater than any previous user ID number it has processed. Each time it selects a
record, gawk assigns the value of the new user ID number to the saveit variable.
Then gawk uses the new value of saveit to test the user IDs of all subsequent records.
Finally gawk adds 1 to the value of saveit and displays the result.

$ cat find_uid
BEGIN {FS = ":"

saveit = 0}
$3 > saveit {saveit = $3}
END {print "Next available UID is " saveit + 1}

$ gawk -f find_uid /etc/passwd
Next available UID is 1092

The next example produces another report based on the cars file. This report uses
nested if...else control structures to substitute values based on the contents of the
price field. The program has no pattern part; it processes every record.

$ cat price_range
 {
 if ($5 <= 5000) $5 = "inexpensive"
 else if (5000 < $5 && $5 < 10000) $5 = "please ask"
 else if (10000 <= $5) $5 = "expensive"
 #
 printf "%-10s %-8s %2d %5d %-12s\n",\
 $1, $2, $3, $4, $5
 }

$ gawk -f price_range cars
plym fury 1970 73 inexpensive
chevy malibu 1999 60 inexpensive
ford mustang 1965 45 expensive
volvo s80 1998 102 please ask
ford thundbd 2003 15 expensive
chevy malibu 2000 50 inexpensive
bmw 325i 1985 115 inexpensive
honda accord 2001 30 please ask
ford taurus 2004 10 expensive
toyota rav4 2002 180 inexpensive
chevy impala 1985 85 inexpensive
ford explor 2003 25 please ask

000.book.fm Page 550 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 551

Associative arrays Next the manuf associative array uses the contents of the first field of each record in
the cars file as an index. The array consists of the elements manuf[plym],
manuf[chevy], manuf[ford], and so on. Each new element is initialized to 0 (zero) as
it is created. The ++ operator increments the variable it follows.

for structure The action following the END pattern is a for structure, which loops through the
elements of an associative array. A pipe sends the output through sort to produce an
alphabetical list of cars and the quantities in stock. Because it is a shell script and
not a gawk program file, you must have both read and execute permission to the
manuf file to execute it as a command.

$ cat manuf
gawk ' {manuf[$1]++}
END {for (name in manuf) print name, manuf[name]}
' cars |
sort

$./manuf
bmw 1
chevy 3
ford 4
honda 1
plym 1
toyota 1
volvo 1

The next program, manuf.sh, is a more general shell script that includes error
checking. This script lists and counts the contents of a column in a file, with both
the column number and the name of the file specified on the command line.

The first action (the one that starts with {count) uses the shell variable $1 in the
middle of the gawk program to specify an array index. Because of the way the single
quotation marks are paired, the $1 that appears to be within single quotation marks
is actually not quoted: The two quoted strings in the gawk program surround, but
do not include, the $1. Because the $1 is not quoted, and because this is a shell
script, the shell substitutes the value of the first command-line argument in place of
$1 (page 441). As a result, the $1 is interpreted before the gawk command is
invoked. The leading dollar sign (the one before the first single quotation mark on
that line) causes gawk to interpret what the shell substitutes as a field number.

$ cat manuf.sh
if [$# != 2]

then
echo "Usage: manuf.sh field file"
exit 1

fi
gawk < $2 '

{count[$'$1']++}
END {for (item in count) printf "%-20s%-20s\n",\

item, count[item]}' |
sort

000.book.fm Page 551 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

552 Chapter 12 The AWK Pattern Processing Language

$./manuf.sh
Usage: manuf.sh field file

$./manuf.sh 1 cars
bmw 1
chevy 3
ford 4
honda 1
plym 1
toyota 1
volvo 1

$./manuf.sh 3 cars
1965 1
1970 1
1985 2
1998 1
1999 1
2000 1
2001 1
2002 1
2003 2
2004 1

A way around the tricky use of quotation marks that allow parameter expansion
within the gawk program is to use the –v option on the command line to pass the
field number to gawk as a variable. This change makes it easier for someone else to
read and debug the script. You call the manuf2.sh script the same way you call
manuf.sh:

$ cat manuf2.sh
if [$# != 2]
 then
 echo "Usage: manuf.sh field file"
 exit 1
fi
gawk -v "field=$1" < $2 '
 {count[$field]++}
END {for (item in count) printf "%-20s%-20s\n",\
 item, count[item]}' |
sort

The word_usage script displays a word usage list for a file you specify on the com-
mand line. The tr utility (page 864) lists the words from standard input, one to a line.
The sort utility orders the file, putting the most frequently used words first. The script
sorts groups of words that are used the same number of times in alphabetical order.

$ cat word_usage
tr -cs 'a-zA-Z' '[\n*]' < $1 |
gawk '

{count[$1]++}
END {for (item in count) printf "%-15s%3s\n", item, count[item]}' |
sort +1nr +0f -1

000.book.fm Page 552 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 553

$./word_usage textfile
the 42
file 29
fsck 27
system 22
you 22
to 21
it 17
SIZE 14
and 13
MODE 13
...

Following is a similar program in a different format. The style mimics that of a
C program and may be easier to read and work with for more complex gawk
programs.

$ cat word_count
tr -cs 'a-zA-Z' '[\n*]' < $1 |
gawk ' {

count[$1]++
}
END {

for (item in count)
{
if (count[item] > 4)

{
printf "%-15s%3s\n", item, count[item]
}

}
} ' |
sort +1nr +0f -1

The tail utility displays the last ten lines of output, illustrating that words occurring
fewer than five times are not listed:

$./word_count textfile | tail
directories 5
if 5
information 5
INODE 5
more 5
no 5
on 5
response 5
this 5
will 5

The next example shows one way to put a date on a report. The first line of input to
the gawk program comes from date. The program reads this line as record number 1
(NR == 1), processes it accordingly, and processes all subsequent lines with the
action associated with the next pattern (NR > 1).

000.book.fm Page 553 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

554 Chapter 12 The AWK Pattern Processing Language

$ cat report
if (test $# = 0) then

echo "You must supply a filename."
exit 1

fi
(date; cat $1) |
gawk '
NR == 1 {print "Report for", $1, $2, $3 ", " $6}
NR > 1 {print $5 "\t" $1}'

$./report cars
Report for Mon Jan 31, 2010
2500 plym
3000 chevy
10000 ford
9850 volvo
10500 ford
3500 chevy
450 bmw
6000 honda
17000 ford
750 toyota
1550 chevy
9500 ford

The next example sums each of the columns in a file you specify on the command
line; it takes its input from the numbers file. The program performs error checking,
reporting on and discarding rows that contain nonnumeric entries. It uses the next
command (with the comment skip bad records) to skip the rest of the commands for
the current record if the record contains a nonnumeric entry. At the end of the pro-
gram, gawk displays a grand total for the file.

$ cat numbers
10 20 30.3 40.5
20 30 45.7 66.1
30 xyz 50 70
40 75 107.2 55.6
50 20 30.3 40.5
60 30 45.O 66.1
70 1134.7 50 70
80 75 107.2 55.6
90 176 30.3 40.5
100 1027.45 45.7 66.1
110 123 50 57a.5
120 75 107.2 55.6

$ cat tally
gawk ' BEGIN {

ORS = ""
}

NR == 1 { # first record only
nfields = NF # set nfields to number of
} # fields in the record (NF)
{

000.book.fm Page 554 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 555

if ($0 ~ /[^0-9. \t]/) # check each record to see if it contains
{ # any characters that are not numbers,
print "\nRecord " NR " skipped:\n\t" # periods, spaces, or TABs
print $0 "\n"
next # skip bad records
}

else
{
for (count = 1; count <= nfields; count++) # for good records loop through fields

{
printf "%10.2f", $count > "tally.out"
sum[count] += $count
gtotal += $count
}

print "\n" > "tally.out"
}

}

END { # after processing last record
for (count = 1; count <= nfields; count++) # print summary

{
print " -------" > "tally.out"
}

print "\n" > "tally.out"
for (count = 1; count <= nfields; count++)

{
printf "%10.2f", sum[count] > "tally.out"
}

print "\n\n Grand Total " gtotal "\n" > "tally.out"
} ' < numbers

$./tally
Record 3 skipped:
 30 xyz 50 70

Record 6 skipped:
 60 30 45.O 66.1

Record 11 skipped:
 110 123 50 57a.5

$ cat tally.out
 10.00 20.00 30.30 40.50
 20.00 30.00 45.70 66.10
 40.00 75.00 107.20 55.60
 50.00 20.00 30.30 40.50
 70.00 1134.70 50.00 70.00
 80.00 75.00 107.20 55.60
 90.00 176.00 30.30 40.50
 100.00 1027.45 45.70 66.10
 120.00 75.00 107.20 55.60
 ------- ------- ------- -------
 580.00 2633.15 553.90 490.50

 Grand Total 4257.55

000.book.fm Page 555 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

556 Chapter 12 The AWK Pattern Processing Language

The next example reads the passwd file, listing users who do not have passwords
and users who have duplicate user ID numbers. (The pwck utility [Linux only] per-
forms similar checks.) Because Mac OS X uses Open Directory (page 926) and not
the passwd file, this example will not work under OS X.

$ cat /etc/passwd
bill::102:100:ext 123:/home/bill:/bin/bash
roy:x:104:100:ext 475:/home/roy:/bin/bash
tom:x:105:100:ext 476:/home/tom:/bin/bash
lynn:x:166:100:ext 500:/home/lynn:/bin/bash
mark:x:107:100:ext 112:/home/mark:/bin/bash
sales:x:108:100:ext 102:/m/market:/bin/bash
anne:x:109:100:ext 355:/home/anne:/bin/bash
toni::164:100:ext 357:/home/toni:/bin/bash
ginny:x:115:100:ext 109:/home/ginny:/bin/bash
chuck:x:116:100:ext 146:/home/chuck:/bin/bash
neil:x:164:100:ext 159:/home/neil:/bin/bash
rmi:x:118:100:ext 178:/home/rmi:/bin/bash
vern:x:119:100:ext 201:/home/vern:/bin/bash
bob:x:120:100:ext 227:/home/bob:/bin/bash
janet:x:122:100:ext 229:/home/janet:/bin/bash
maggie:x:124:100:ext 244:/home/maggie:/bin/bash
dan::126:100::/home/dan:/bin/bash
dave:x:108:100:ext 427:/home/dave:/bin/bash
mary:x:129:100:ext 303:/home/mary:/bin/bash

$ cat passwd_check
gawk < /etc/passwd ' BEGIN {

uid[void] = "" # tell gawk that uid is an array
}
{ # no pattern indicates process all records
dup = 0 # initialize duplicate flag
split($0, field, ":") # split into fields delimited by ":"
if (field[2] == "") # check for null password field

{
if (field[5] == "") # check for null info field

{
print field[1] " has no password."
}

else
{
print field[1] " ("field[5]") has no password."
}

}
for (name in uid) # loop through uid array

{
if (uid[name] == field[3]) # check for second use of UID

{
print field[1] " has the same UID as " name " : UID = " uid[name]
dup = 1 # set duplicate flag
}

}

000.book.fm Page 556 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Examples 557

if (!dup) # same as if (dup == 0)
assign UID and login name to uid array

{
uid[field[1]] = field[3]
}

}'

$./passwd_check
bill (ext 123) has no password.
toni (ext 357) has no password.
neil has the same UID as toni : UID = 164
dan has no password.
dave has the same UID as sales : UID = 108

The next example shows a complete interactive shell script that uses gawk to generate
a report on the cars file based on price ranges:

$ cat list_cars
trap 'rm -f $$.tem > /dev/null;echo $0 aborted.;exit 1' 1 2 15
echo -n "Price range (for example, 5000 7500):"
read lowrange hirange

echo '
 Miles
Make Model Year (000) Price
--' > $$.tem
gawk < cars '
$5 >= '$lowrange' && $5 <= '$hirange' {
 if ($1 ~ /ply/) $1 = "plymouth"
 if ($1 ~ /chev/) $1 = "chevrolet"
 printf "%-10s %-8s %2d %5d $ %8.2f\n", $1, $2, $3, $4,
$5
 }' | sort -n +5 >> $$.tem
cat $$.tem
rm $$.tem

$./list_cars
Price range (for example, 5000 7500):3000 8000

 Miles
Make Model Year (000) Price
--
chevrolet malibu 1999 60 $ 3000.00
chevrolet malibu 2000 50 $ 3500.00
honda accord 2001 30 $ 6000.00

$./list_cars
Price range (for example, 5000 7500):0 2000

 Miles
Make Model Year (000) Price
--
bmw 325i 1985 115 $ 450.00
toyota rav4 2002 180 $ 750.00
chevrolet impala 1985 85 $ 1550.00

000.book.fm Page 557 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

558 Chapter 12 The AWK Pattern Processing Language

$./list_cars
Price range (for example, 5000 7500):15000 100000

 Miles
Make Model Year (000) Price
--
ford taurus 2004 10 $ 17000.00

optional

Advanced gawk Programming

This section discusses some of the advanced features of AWK. It covers how to
control input using the getline statement, how to use a coprocess to exchange
information between gawk and a program running in the background, and how to
use a coprocess to exchange data over a network. Coprocesses are available under
gawk only; they are not available under awk and mawk.

getline: Controlling Input

Using the getline statement gives you more control over the data gawk reads than
other methods of input do. When you provide a variable name as an argument to
getline, getline reads data into that variable. The BEGIN block of the g1 program
uses getline to read one line into the variable aa from standard input:

$ cat g1
BEGIN {
 getline aa
 print aa
 }
$ echo aaaa | gawk -f g1
aaaa

The next few examples use the alpha file:

$ cat alpha
aaaaaaaaa
bbbbbbbbb
ccccccccc
ddddddddd

Even when g1 is given more than one line of input, it processes only the first line:

$ gawk -f g1 < alpha
aaaaaaaaa

When getline is not given an argument, it reads input into $0 and modifies the field
variables ($1, $2, . . .):

$ gawk 'BEGIN {getline;print $1}' < alpha
aaaaaaaaa

000.book.fm Page 558 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Advanced gawk Programming 559

The g2 program uses a while loop in the BEGIN block to loop over the lines in stan-
dard input. The getline statement reads each line into holdme and print outputs
each value of holdme.

$ cat g2
BEGIN {

while (getline holdme)
print holdme

}
$ gawk -f g2 < alpha
aaaaaaaaa
bbbbbbbbb
ccccccccc
ddddddddd

The g3 program demonstrates that gawk automatically reads each line of input into
$0 when it has statements in its body (and not just a BEGIN block). This program
outputs the record number (NR), the string $0:, and the value of $0 (the current
record) for each line of input.

$ cat g3
 {print NR, "$0:", $0}

$ gawk -f g3 < alpha
1 $0: aaaaaaaaa
2 $0: bbbbbbbbb
3 $0: ccccccccc
4 $0: ddddddddd

Next g4 demonstrates that getline works independently of gawk’s automatic reads
and $0. When getline reads data into a variable, it does not modify either $0 or any
of the fields in the current record ($1, $2, . . .). The first statement in g4, which is
the same as the statement in g3, outputs the line that gawk has automatically read.
The getline statement reads the next line of input into the variable named aa. The
third statement outputs the record number, the string aa:, and the value of aa. The
output from g4 shows that getline processes records independently of gawk’s auto-
matic reads.

$ cat g4
 {
 print NR, "$0:", $0
 getline aa
 print NR, "aa:", aa
 }

$ gawk -f g4 < alpha
1 $0: aaaaaaaaa
2 aa: bbbbbbbbb
3 $0: ccccccccc
4 aa: ddddddddd

000.book.fm Page 559 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

560 Chapter 12 The AWK Pattern Processing Language

The g5 program outputs each line of input except for those lines that begin with the
letter b. The first print statement outputs each line that gawk reads automatically.
Next the /^b/ pattern selects all lines that begin with b for special processing. The
action uses getline to read the next line of input into the variable hold, outputs the
string skip this line: followed by the value of hold, and outputs the value of $1. The
$1 holds the value of the first field of the record that gawk read automatically, not
the record read by getline. The final statement displays a string and the value of
NR, the current record number. Even though getline does not change $0 when it
reads data into a variable, gawk increments NR.

$ cat g5
 # print all lines except those read with getline
 {print "line #", NR, $0}

if line begins with "b" process it specially
/^b/ {
 # use getline to read the next line into variable named hold
 getline hold

 # print value of hold
 print "skip this line:", hold

 # $0 is not affected when getline reads data into a variable
 # $1 still holds previous value
 print "previous line began with:", $1
 }

 {
 print ">>>> finished processing line #", NR
 print ""
 }

$ gawk -f g5 < alpha
line # 1 aaaaaaaaa
>>>> finished processing line # 1

line # 2 bbbbbbbbb
skip this line: ccccccccc
previous line began with: bbbbbbbbb
>>>> finished processing line # 3

line # 4 ddddddddd
>>>> finished processing line # 4

Coprocess: Two-Way I/O

A coprocess is a process that runs in parallel with another process. Starting with
version 3.1, gawk can invoke a coprocess to exchange information directly with a
background process. A coprocess can be useful when you are working in a cli-
ent/server environment, setting up an SQL (page 980) front end/back end, or
exchanging data with a remote system over a network. The gawk syntax identifies a
coprocess by preceding the name of the program that starts the background process
with a |& operator.

000.book.fm Page 560 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Advanced gawk Programming 561

The coprocess command must be a filter (i.e., it reads from standard input and
writes to standard output) and must flush its output whenever it has a complete line
rather than accumulating lines for subsequent output. When a command is invoked
as a coprocess, it is connected via a two-way pipe to a gawk program so you can
read from and write to the coprocess.

to_upper When used alone the tr utility (page 864) does not flush its output after each line.
The to_upper shell script is a wrapper for tr that does flush its output; this filter can
be run as a coprocess. For each line read, to_upper writes the line, translated to
uppercase, to standard output. Remove the # before set –x if you want to_upper to
display debugging output.

$ cat to_upper
#!/bin/bash
#set -x
while read arg
do

echo "$arg" | tr '[a-z]' '[A-Z]'
done

$ echo abcdef | ./to_upper
ABCDEF

The g6 program invokes to_upper as a coprocess. This gawk program reads stan-
dard input or a file specified on the command line, translates the input to uppercase,
and writes the translated data to standard output.

$ cat g6
{
print $0 |& "to_upper"
"to_upper" |& getline hold
print hold
}

$ gawk -f g6 < alpha
AAAAAAAAA
BBBBBBBBB
CCCCCCCCC
DDDDDDDDD

The g6 program has one compound statement, enclosed within braces, comprising
three statements. Because there is no pattern, gawk executes the compound state-
ment once for each line of input.

In the first statement, print $0 sends the current record to standard output. The |&
operator redirects standard output to the program named to_upper, which is run-
ning as a coprocess. The quotation marks around the name of the program are
required. The second statement redirects standard output from to_upper to a getline
statement, which copies its standard input to the variable named hold. The third
statement, print hold, sends the contents of the hold variable to standard output.

Only gawk supports coprocesses
tip The awk and mawk utilities do not support coprocesses. Only gawk supports coprocesses.

000.book.fm Page 561 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

562 Chapter 12 The AWK Pattern Processing Language

Getting Input from a Network

Building on the concept of a coprocess, gawk can exchange information with a pro-
cess on another system via an IP network connection. When you specify one of the
special filenames that begins with /inet/, gawk processes the request using a network
connection. The format of these special filenames is

/inet/protocol/local-port/remote-host/remote-port

where protocol is usually tcp but can be udp, local-port is 0 (zero) if you want gawk
to pick a port (otherwise it is the number of the port you want to use), remote-host
is the IP address (page 960) or fully qualified domain name (page 955) of the
remote host, and remote-port is the port number on the remote host. Instead of a
port number in local-port and remote-port, you can specify a service name such as
http or ftp.

The g7 program reads the rfc-retrieval.txt file from the server at www.rfc-edi-
tor.org. On www.rfc-editor.org the file is located at /rfc/rfc-retrieval.txt. The first
statement in g7 assigns the special filename to the server variable. The filename
specifies a TCP connection, allows the local system to select an appropriate port,
and connects to www.rfc-editor.org on port 80. You can use http in place of 80 to
specify the standard HTTP port.

The second statement uses a coprocess to send a GET request to the remote server.
This request includes the pathname of the file gawk is requesting. A while loop
uses a coprocess to redirect lines from the server to getline. Because getline has no
variable name as an argument, it saves its input in the current record buffer $0.
The final print statement sends each record to standard output. Experiment with
this script, replacing the final print statement with gawk statements that process
the file.

$ cat g7
BEGIN {

set variable named server
to special networking filename
server = "/inet/tcp/0/www.rfc-editor.org/80"

use coprocess to send GET request to remote server
print "GET /rfc/rfc-retrieval.txt" |& server

while loop uses coprocess to redirect
output from server to getline
while (server |& getline)

print $0
}

000.book.fm Page 562 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

Exercises 563

$ gawk -f g7

 Where and how to get new RFCs
 =============================

RFCs may be obtained via FTP or HTTP or email from many RFC repositories.
The official repository for RFCs is:

 http://www.rfc-editor.org/
...

Chapter Summary

AWK is a pattern-scanning and processing language that searches one or more files
for records (usually lines) that match specified patterns. It processes lines by per-
forming actions, such as writing the record to standard output or incrementing a
counter, each time it finds a match. AWK has several implementations, including
awk, gawk, and mawk.

An AWK program consists of one or more lines containing a pattern and/or action
in the following format:

pattern { action }

The pattern selects lines from the input. An AWK program performs the action on
all lines that the pattern selects. If a program line does not contain a pattern, AWK
selects all lines in the input. If a program line does not contain an action, AWK
copies the selected lines to standard output.

An AWK program can use variables, functions, arithmetic operators, associative
arrays, control statements, and C’s printf statement. Advanced AWK programming
takes advantage of getline statements to fine-tune input, coprocesses to enable gawk
to exchange data with other programs (gawk only), and network connections to
exchange data with programs running on remote systems on a network (gawk only).

Exercises

1. Write an AWK program that numbers each line in a file and sends its output
to standard output.

2. Write an AWK program that displays the number of characters in the first
field followed by the first field and sends its output to standard output.

000.book.fm Page 563 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

564 Chapter 12 The AWK Pattern Processing Language

3. Write an AWK program that uses the cars file (page 541), displays all cars
priced at more than $5,000, and sends its output to standard output.

4. Use AWK to determine how many lines in /usr/share/dict/words contain
the string abul. Verify your answer using grep.

Advanced Exercises

5. Experiment with pgawk (available only with gawk). What does it do? How
can it be useful?

6. Write a gawk (not awk or mawk) program named net_list that reads from
the rfc-retrieval.txt file on www.rfc-editor.org (see “Getting Input from a
Network” on page 562) and displays a the last word on each line in all
uppercase letters.

7. Expand the net_list program developed in Exercise 6 to use to_upper
(page 561) as a coprocess to display the list of cars with only the make of
the cars in uppercase. The model and subsequent fields on each line should
appear as they do in the cars file.

8. How can you get gawk (not awk or mawk) to neatly format—that is,
“pretty print”—a gawk program file? (Hint: See the gawk man page.)

000.book.fm Page 564 Wednesday, September 30, 2009 10:13 AM

Copyright © 2010 Mark G. Sobell

