
James Turnbull

Pulling Strings with

Puppet
Configuration Management Made Easy

CHAPTER 1 Introducing Puppet 1
CHAPTER 2 Installing and Running Puppet 11
CHAPTER 3 Speaking Puppet 41
CHAPTER 4 Using Puppet 89
CHAPTER 5 Reporting on Puppet 121
CHAPTER 6 Advanced Puppet 131
CHAPTER 7 Extending Puppet 153

Books for professionals By professionals®

Pulling Strings with Puppet:
Configuration Management Made Easy
Dear Reader,

Configuration management and automation of technology have become increasingly
important in IT Environments have become more complex and extensive, keeping
costs low has become critical, and operational errors have increasingly become the
cause of outages New techniques, methodologies, and tools for managing infrastruc-
ture are needed This book details one such tool, Puppet: a Ruby-based open source
configuration management and automation tool for Linux and Unix platforms

With Puppet, a central master host securely manages and configures remote hosts
Puppet uses an abstraction language to describe the configuration of your hosts It
then takes care of implementing that configuration on your hosts You can configure a
particular package to be installed, and Puppet will handle its installation on Linux and
Unix platforms like Debian, Red Hat, Solaris, AIX, OS X, and a number of other plat-
forms without your needing to know how to manage packages on those platforms

This book introduces you to Puppet and how to install and configure it It demonstrates
how Puppet can configure your environment with extensive examples I’ll show you how
Puppet can manage packages, services, users and groups, files, and a wide variety
of other configuration components on your hosts

The book also looks at Facter, Puppet’s system inventory tool, which interrogates
and makes use of data on your hosts to customize per host configuration You’ll learn
how to report on your configuration with Puppet and how to extend it and Facter to
meet the requirements of your environment

By the end of this book, you’ll discover how easy it is to build an efficient, cost-
effective, powerful, and automated configuration management system that will make
administrating your hosts simple and your life easier

James Turnbull

Author of

Pro Nagios 2.0

Hardening Linux

Turnbull
Pulling Strings w

ith Puppet

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

this print for content only—size & color not accurate spine = 0.408" 192 page count

User level:
Beginner–Intermediate

www.apress.com
SOURCE CODE ONLINE

192
PAgeS

Available as a
PDF Electronic Book
or Print On Demand

Pulling Strings with Puppet
Configuration Management
Made Easy

JAMES TURNBULL

Pulling Strings with Puppet: Configuration Management Made Easy

Copyright © 2007 by James Turnbull

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-4302-0622-4

ISBN-10: 1-59059-978-0

eISBN-13: 978-1-59059-978-5

Printed and bound in the United States of America (POD)

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the United
States and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written with-
out endorsement from Sun Microsystems, Inc.

Lead Editors: Jason Gilmore, Joseph Ottinger

Technical Reviewer: Dennis Matotek

Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Ediitor: Ami Knox

Associate Production Director: Kari Brooks-Copony

Compositor: Richard Ables

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA
94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Puppet . 1

What Is Puppet?. 3
What Makes Puppet Different?. 3
How Does Puppet work? . 4

A Declarative Language . 5
A Transactional Layer. 7
A Resource Abstraction Layer . 7

Puppet Performance and Hardware . 7
The Future for Puppet . 8
Resources . 8

Web. 9
Mailing Lists . 9
IRC . 9

■CHAPTER 2 Installing and Running Puppet . 11

Installation Prerequisites . 11
Installing Ruby. 12
Installing Ruby from Source . 12
Installing Ruby and Ruby Libraries from Packages 13
Installing Facter . 15
Installing Facter from Source . 15
Installing Facter from Package. 16
Installing RDoc. 17

Installing Puppet . 18
Installing from Source . 18
Installing Puppet by Package . 20
Installing Puppet from a Ruby Gem . 21

Getting Started with Puppet . 23
Starting the Puppet Master . 23
Starting the Puppet Client . 25

Contents

v

Signing Your Client Certificate . 26
Running the Puppet Daemons . 28
Configuring Puppet . 28

The [main] Configuration Namespace . 32
Configuring puppetmasterd . 33
Configuring puppetd . 35
Configuring puppetca . 38

Resources . 40
Web. 40
Mailing Lists . 40

■CHAPTER 3 Speaking Puppet . 41

Defining Configuration Resources . 42
Resource Titling. 42
Resource Attributes . 44
Resource Style. 45
Resource Defaults . 46
Collections of Resources . 47
Classes and Subclasses. 47
Classes Relationships . 48
Class Inheritance . 49
Definitions . 50
Qualifying Definitions. 53
Variables . 53
Variable Scoping . 54
Variables and Class Inheritance . 55
Qualified Variables . 56
Variables and Metaparameters . 57
Arrays . 58
Conditionals. 59

Creating Nodes . 62
Node Inheritance . 64
Node Inheritance and Variable Scope . 66
Default Nodes . 68
Node Conditionals . 69

Virtual Resources . 69
Realizing with a Collection . 69
Realizing with the realize Function. 70

Facts . 71
Resource Types . 74

Managing Cron Jobs . 75

■CONTENTSvi

Using a Filebucket . 76
Managing Host Files . 77
Managing SSH Host Keys. 78
Tidy Unwanted Files. 78

Functions. 79
Logging Functions . 81
Checking for Existence with defined . 81
Generating Errors with fail . 82
Adding External Data with file . 82
Using generate . 83
Qualifying Definitions Using search . 84
Using tag and tagged. 85
Using Templating . 86

Resources . 88
Web. 88

■CHAPTER 4 Using Puppet . 89

Our Example Environment . 89
Manifest Organization . 91

Importing Manifests. 91
Managing Manifests with Subversion. 93

Defining Nodes . 95
Our First Classes . 98
Managing Users and Groups . 101
Managing Users. 102
File Serving . 106
Modularizing Our Configuration . 109

MySQL Module . 112
Postfix Module . 113
Apache Module . 115

Resources . 119

■CHAPTER 5 Reporting on Puppet. 121

Getting Started. 121
Configuring Reporting . 124
Report Processors . 125

log. 125
tagmail . 126
rrdgraph . 127

Custom Reporting . 129
Resources . 130

■CONTENTS vii

■CHAPTER 6 Advanced Puppet . 131

External Node Classification . 131
Storing Node Configuration in LDAP . 136
Puppet Scalability . 142

Installing Mongrel . 144
Installing Apache . 145
Configuring Apache As a Proxy. 146
Configuring Puppet for Mongrel . 150
How Far Will Puppet Scale? . 151

Resources . 151

■CHAPTER 7 Extending Puppet . 153

Extending Facter . 153
Configuring Puppet for Custom Facts . 154
Writing Custom Facts. 155
Testing Your Facts . 157

Extending Puppet . 158
Creating the Type. 159
Properties . 161
Parameters . 161
Creating Our Provider . 162
Distributing Our New Type . 165

Resources . 168

■CONTENTSviii

■JAMES TURNBULL works for the National Australia Bank as a Security Architect. He is the author of
Hardening Linux, which focuses on hardening Linux hosts, and Pro Nagios 2.0, which focuses on enter-
prise management using the Nagios open source tool.

James has previously worked as an executive manager for IT security at the Commonwealth Bank
of Australia, the CIO of a medical research foundation, manager of the architecture group of an out-
sourcing company, and in a number of IT roles in gaming, telecommunications, and government. He is
an experienced infrastructure architect with a background in Linux/Unix, AS/400, Windows, and stor-
age systems. He has been involved in security consulting, infrastructure security design, SLA, and
service definition, and has an abiding interest in security metrics and measurement.

About the Author

ix

■DENNIS MATOTEK was born in a small town in Victoria, Australia
called Mildura. Like all small towns, the chronic lack of good strong
coffee drives the young to search further afield. Dennis moved to
Melbourne where good strong coffee flows through the city in a
river called the Yarra. However, it was in Scotland that Dennis was
introduced to Systems Administration.

Scotland, on the technological edge, had 486DX PCs and
a Vax. On arriving back in Melbourne, after staying awake
for 24 hours at an airport minding his bags, Dennis was
given a job interview—jobs in those days fell down like
snowflakes from the sky.

Since that time, Dennis has stayed predominately in
Melbourne working with IBM AS400s (iSeries) for 6 years and Linux for 7 years.

Dennis also wrote and directed some short films and plays. He has a lovely LP (life part-
ner) and a new little boy called Zigfryd whom he misses terribly when at work, which is most
of the time.

About the Technical Reviewer

xi

This book introduces the reader to Puppet––a Ruby-based configuration management and automation
tool for Linux and Unix platforms. The book is a beginning-to-intermediate guide to Puppet. It is aimed
at system administrators, operators, systems engineers, and anyone else who has to manage Linux and
Unix hosts.

This book requires a basic understanding of Linux/Unix systems administration including package
management, user management, using a text editor such as vi, and some basic network and service
management skills. If you wish to extend Puppet, you will need to have an understanding and some
aptitude with the Ruby programming language. But for simple expansion of Puppet, basic Ruby skills
are all that are needed. Additionally, as a programming language, Ruby is very approachable and easy
to pick up.

The book starts with explaining how Puppet works and then moves on to installation and configu-
ration. Each succeeding chapter introduces another facet of Puppet right up to demonstrating how you
can extend Puppet yourself.

Chapter 1: Introduction to Puppet

Chapter 2: Installing and configuring Puppet

Chapter 3: Puppet's configuration language

Chapter 4: Using Puppet, which you learn through practical examples

Chapter 5: Reporting with Puppet

Chapter 6: Advanced Puppet features including integration with LDAP, performance management,
and scalability

Chapter 7: Extending Puppet and Facter including adding your own Facter “facts” and Puppet
configuration types

All of the source code, associated scripts, and configuration examples can be downloaded from the
Apress web site. You can also submit any errata at the site.

If you have any questions and queries about the book, please do not hesitate to e-mail me at
james@hardening-linux.com.

Introduction

mailto:james@hardening-linux.com

CHAPTER 2

Installing and Running

Puppet

This chapter focuses on installing and running Puppet master servers and clients (also
known as nodes). There are a variety of methods you can use to install Puppet masters and
clients: from source, packages, or as a Ruby Gem. This chapter will take you through the
steps required for installation using each of these methods.

The Puppet server and clients are designed to run on Unix and Linux platforms;
currently there is no port for Windows (although it may be possible to run Puppet under
Cygwin). This book will only cover installation on Unix and Linux platforms. Both the
master server and the clients will run successfully on a variety of BSD flavors, Linux
distributions, Sun Solaris, Mac OS X, and indeed most Unix-like platforms that support
Ruby.

The chapter will also take you through configuring and running both the Puppet master
and client. By the end of this chapter, you should have an introduction to how both the
master and clients can be configured. You will also be able to start and stop the master and
clients on a variety of platforms.

Note ➡ When referring to the Puppet client, we’ll distinguish between the terms client and node. The term

client refers to the Puppet client daemon that connects to the Puppet master and retrieves the configuration.

The term node refers to the underlying host to which configuration is applied.

Installation Prerequisites

The process of installing Puppet’s master and client components is quick and easy, but you
will need to install some prerequisites first. The prerequisites are required for both hosts
that run the Puppet master or client (or both—your Puppet master can also be a Puppet
node). These prerequisites include the Ruby interpreter, select Ruby libraries, and Facter.

Installing and Running Puppet 13

Turnbull

Installing Ruby and Ruby Libraries from Packages

Many Linux distributions and Unix operating systems have Ruby packages available for
them. These include Red Hat Enterprise Linux and Fedora, Debian, Ubuntu, SuSE, and
Mandriva. Some distributions bundle all the required Ruby binaries and libraries in a single
package. Other distributions separate the core development environment and the libraries
into individual packages. In Table 2-1, I have detailed the package and/or port names for
the required packages for a variety of BSD and Linux distributions.

Table 2-1. Package Names for Ruby and Ruby Libraries

OS Ruby Ruby Libraries Additional Package

Debian ruby libruby libopenssl-ruby libxmlrpc-ruby

FreeBSD ruby

Gentoo ruby

Mandriva ruby

NetBSD ruby

OpenBSD ruby

Red Hat ruby ruby-libs

SuSE ruby

Ubuntu ruby libruby libopenssl-ruby libxmlrpc-ruby

So, if we’re installing Ruby and its libraries on a Red Hat Fedora host, we need to use
its package management system to install the ruby and ruby-libs packages like so:
yum install ruby ruby-libs

Installing the Ruby package and libraries may not always install all of the required
libraries. If the following base libraries are not installed as part of your base Ruby
installation, you may need to selectively install the missing libraries.

22 Installing and Running Puppet

Turnbull

Platform RubyGems Package Name

OpenBSD rubygems

Red Hat rubygems

SuSE rubygems

Ubuntu rubygems

If there is not a RubyGems package for your platform, you can also download a source
package and compile it yourself. You can find the RubyGems source package by clicking
the downloads link at http://rubygems.org/.

Download the latest version of RubyGems and unpack it.

wget http://rubyforge.org/frs/download.php/20989/rubygems-0.9.4.tgz
tar zxf rubygems-0.9.4.tgz
cd rubygems-0.9.4

We use the ruby binary to run the setup.rb script to install RubyGems like so:
ruby setup.rb

This will install the gem binary, which we can check is functioning like so:

gem --version
0.9.4

Once you have installed RubyGems, you can use the gem binary to install Gems such as
Puppet. The Puppet Gem is located on the Reductive Labs site, and you can install it like
so:
gem install --remote --source http://reductivelabs.com/downloads puppet

Note ➡ When installing Puppet from a Gem, the Facter Gem will also be installed as a dependency.

At the end of the installation process, both the Puppet server and client will be installed.

Note ➡ You can also install the very latest cutting-edge Puppet from its Subversion source repository using

the instructions you can find at http://www.reductivelabs.com/trac/puppet/wiki/PuppetSource.

http://rubygems.org
http://rubygems.org
http://rubyforge.org/frs/download.php/20989/rubygems-0.9.4.tgz
http://reductivelabs.com/downloads
http://www.reductivelabs.com/trac/puppet/wiki/PuppetSource

Installing and Running Puppet 23

Turnbull

Getting Started with Puppet

Now that we’ve installed Puppet, let’s get the Puppet master daemon up and running and
add our first node. One of the strengths of the Puppet infrastructure is that most of the
functionality will run with default configuration, without any changes required on your
behalf. The only two things we need to get Puppet running are a user and group to run it and
a very basic configuration to apply to our first node. In this section, we will create that user
and group and then look at starting the Puppet master daemon for the first time using our
basic configuration.

First, we need to ensure we have a user and group for the master daemon to run as. If
you’ve installed Puppet from a package, generally a user and group, usually both called
puppet, will already have been created for you. You can check for this user by using the id
command like so:

id puppet
uid=503(puppet) gid=503(puppet) groups=503(puppet)

You could also check the /etc/passwd and /etc/group files directly:

grep 'puppet' /etc/passwd
puppet:x:503:503:puppet user:/home/puppet:/bin/bash

If the puppet user and group does not exist, you need to create them. I recommend
naming both user and group puppet as this is the default Puppet expects. So on a Red Hat
host you would create them like so:

groupadd puppet
useradd –M –g puppet puppet

Starting the Puppet Master

If we’ve got a user and group to run the Puppet master server, we can start it using the
puppetmasterd binary.

puppetmasterd
Manifest /etc/puppet/manifests/site.pp must exist

You can see that trying to start puppetmasterd has resulted in an error message stating that
the manifest, /etc/puppet/manifests/site.pp, must exist. A manifest is Puppet’s term for a

24 Installing and Running Puppet

Turnbull

text document that defines a particular configuration or configurations. These manifests are
then compiled and applied to a Puppet node to set the desired configuration on the node.

Puppet requires a central manifest file, called the site manifest, before the master
daemon can be started. By default, this site manifest file is called site.pp and is located in
the /etc/puppet/manifests directory (you’ll learn how to reconfigure this location later in
this chapter). This central manifest will ultimately contain all the configuration information
required to configure all your nodes, either directly in the file or by including and importing
other files.

But we’ll discuss your manifest configuration and how to structure it in Chapter 4. For
now, we just want to create a simple site.pp file so we can get Puppet started. First, let’s
create the directory:
mkdir –p /etc/puppet/manifests

Now, in Listing 2-1 you can see an example site.pp file.

Listing 2-1. Your First site.pp File

file { "/etc/passwd":
 owner => "root",
 group => "bin",
 mode => 644,
}

This site.pp file is very simple: it sets the user and group ownership of the /etc/passwd
file as well as its permissions. Indeed, our first site.pp file could do anything, we just need
a syntactically correct file so we can start the daemon; we will add to it further and look at
its syntax in Chapter 3.

Now in Listing 2-2, with our newly created site manifest, let’s try to start the master
daemon again.

Listing 2-2. Starting the Master Daemon

puppetmasterd --verbose --no-daemonize
info: Starting server for Puppet version 0.23.0
info: Parsed manifest in 0.01 seconds
info: Listening on port 8140
notice: Starting Puppet server version 0.23.0

This time we’ve started puppetmasterd with the --verbose and --no-daemonize options.
The --verbose option turns on verbose logging, and the --no-daemonize option forces the
master daemon to run in the foreground. This mode is ideal for troubleshooting your master
daemon.

Installing and Running Puppet 25

Turnbull

Puppet expects to find each node defined in a manifest, either directly in the site.pp file
or in another file and imported into the site manifest. The node definitions tell Puppet about
each host to be configured and exactly what configuration applies to them; for example, you
might have configuration specific to Debian hosts, or to web servers or hosts in a specific
location. When you are using node definitions, only the configuration defined to a particular
node will be applied to that node.

Puppet detects if you have any nodes defined. If you don’t have any defined, as we have
here, Puppet turns off node designation. With node designation turned off, all configuration
resources (excluding configuration in classes and definitions, which we’ll talk about in
Chapter 3) defined will be applied to all nodes that connect to the master. As we don’t have
any nodes, nor any substantive configuration, it’s easiest to turn off nodes until we’re ready
to define our first node. We’ll look at node definition in Chapter 3.

From Listing 2-2, you can see the master daemon has started and is listening on TCP
port 8140. You’ll need to open this port in any firewall you have running on the local host.
If the port is open and the master daemon has started without any error messages, you’re
now ready to connect your first node.

Starting the Puppet Client

Unlike the Puppet master daemon, the Puppet client daemon runs as the root user, allowing
it to perform the required configuration actions on your Puppet node. The first time you
start a node, it will generate a local self-signed certificate, connect to a master server
(which, in addition to distributing configuration to nodes, also acts as a Certificate
Authority) you specify, and request that the certificate be signed.

Tip ➡ Puppet relies on SSL to talk between client and server. You need to ensure that the time on your

server and client is correct and appropriately synchronized to ensure SSL functions correctly.

Once the certificate is signed, the node will request whatever configuration is specified
for that node. The master server will then compile and deliver that configuration. The
configuration is then implemented on the node. The Puppet client will then periodically, by
default every 30 minutes, check the master to see whether the configuration defined there is
unchanged. If it has changed, the client will request a recompilation of the configuration,
and the new configuration will be implemented on the node.

26 Installing and Running Puppet

Turnbull

Tip ➡ If you’re running the Puppet client on the same host as the server, your certificate will be automatically

signed.

Now, let’s start the Puppet client, as demonstrated in Listing 2-3.

Listing 2-3. Starting the Puppet Client

puppetd --server puppetmaster.testing.com --verbose --waitforcert 60
notice: Did not receive certificate

We’ve started the Puppet client daemon with three options, --server, --verbose, and --
waitforcert. The --server option tells the client the name of the server to connect to. You
should specify the server in the form of a fully qualified domain name. The --verbose
option enables verbose output for the client and stops it going into the background and
daemonizing.

The last option, --waitforcert, tells the client to check every 60 seconds to see whether
a signed certificate is returned from the server. This option is generally only used when you
are connecting a new node and tells the client daemon to keep checking the server for a
signed certificate. You can see in Listing 2-3 a log message indicating that the client is still
waiting for the certificate from the server:
notice: Did not receive certificate

If you check on your master daemon, you can see a corresponding log message:
notice: Host node1.testing.com has a waiting certificate request

This message indicates that the client’s request to have a certificate signed has been
received, and now you need to act on it.

Signing Your Client Certificate

So how does our node get a signed certificate, our node authenticated, and the node
configuration delivered? Certificate signing is done on the master server by the puppetca
tool. The puppetca tool controls the Puppet Certificate Authority and allows certificate
requests to be signed or revoked.

Installing and Running Puppet 27

Turnbull

Note ➡ You can also configure Puppet to automatically sign all incoming certificate requests (known as

autosign), either from every node or using coarse-grained authentication to selectively sign node requests

based on hostname or domain. Using both forms of autosign poses a serious security risk as they bypass

Puppet's security controls. I don’t recommend using autosign. But if you do, you can see more details about

autosign and Puppet’s certificate management at

http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity.

You can list all of the waiting certificate signing requests like so:

puppetca --list
node1.testing.com

You can see the --list option has listed our node’s signing request. Now, if we want to
sign it, we can use the puppetca command again like so:

puppetca --sign node1.testing.com
Signed node1.testing.com

We specify the option --sign together with the hostname of the node whose certificate we
wish to sign, in this case node1.testing.com. On the next line, we can see the command has
returned a message indicating that the certificate is now signed. The node is now
authenticated to the server.

If we go back to the client daemon, we will see logging messages indicating that the
certificate has been returned and the client has been started.

notice: Got signed certificate
notice: Starting Puppet client version 0.23.0

Then server will now compile and deliver any configuration for that node to the client
daemon to be applied. In our example site.pp file in Listing 2-1, we’re configuring the
/etc/passwd file and have changed its group ownership, from the default of root to bin. You
should now see the /etc/passwd file has the updated group ownership.

ls -la /etc/passwd
-rw-r--r-- 1 root bin 1579 2007-08-01 19:05 /etc/passwd

Now you’ve got a simple Puppet master daemon running and have your first node
connected. If you want you can now jump ahead to Chapter 3 to look at how to use Puppet
to configure your hosts, or you can continue to read this chapter to learn more about how to
run and configure Puppet.

http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity

28 Installing and Running Puppet

Turnbull

Running the Puppet Daemons

Like most Unix and Linux applications, the Puppet daemons, puppetmasterd and puppetd,
can be started and stopped using your platform’s standard spawn process. Indeed, if you’ve
installed Puppet from a package, you’ll usually find that the package installation process
has added the appropriate links and scripts to start the daemons when your host boots.

If you have manually installed Puppet from source, or your package installation has not
provided a control script, you can find a variety of scripts you can use in the Puppet source
package in the conf directory. Currently, there are scripts and configuration files for
FreeBSD (which can be easily adjusted for other BSD platforms), Gentoo, Red Hat, Solaris,
and SuSE. You can easily modify the files available to suit most platforms capable of
running Puppet.

Tip ➡ The Puppet daemons also do some signal handling. The Puppet master and client daemons both

recognize the SIGHUP signal, which forces the daemons to restart themselves. The SIGINT signal will

terminate both the master and client daemons. The Puppet client also processes the SIGUSR1 signal, which

causes the daemon to initiate a new connection to the server and check for new configuration.

Configuring Puppet

Your Puppet installation comes with a number of binaries that run the various Puppet
functions and daemons. We’ve already touched on the puppetd, puppetmasterd, and puppetca
binaries, but we’ll go into more detail on them in the sections that follow. This is not a
definitive guide to every configuration option but rather focuses on the key options. For a
full reference to every command-line and configuration file option, you can find a guide at
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

Each Puppet binary can be configured via the command line or via a configuration file
or files. In Table 2-6, you can see a list of all the Puppet binaries and their purposes.

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference

Installing and Running Puppet 29

Turnbull

Table 2-6. Puppet Binaries

Binary Description

puppet A local configuration script interpreter and executor

puppetd The Puppet client daemon that runs on the managed host

puppetmasterd The Puppet master daemon that manages the nodes

puppetca The Puppet Certificate Authority server used to authenticate nodes to the master
server

puppetrun A tool that can connect to clients and force them to run their configurations

filebucket A client to send files to a Puppet file bucket

ralsh An interactive Puppet shell for converting current state into Puppet configuration
code

pi Tool to output documentation about Puppet types and providers

puppetdoc Tool that prints Puppet reference documentation (generally only used within other
Puppet tools)

Each binary has a different set of command-line options you can use to run and
configure it. The easiest way to see the configuration options used for each binary is by
executing the binary with the --help option like so:
puppet --help

Note ➡ To get the --help text, you need to have the RDoc library installed as discussed earlier in this

chapter.

Puppet configuration can also be managed via configuration file. Puppet’s configuration
file model is in the style of INI files. Each file is divided into namespace sections, and each
section name is enclosed in parentheses and named for the Puppet function it configures; for
example, the namespace used to configure the Puppet client daemon is called [puppetd].
The use of namespaces means options can be used in multiple namespaces, if the option is

30 Installing and Running Puppet

Turnbull

relevant to the binary being configured. For example, you can specify the same option
twice, with different values, in the [puppetd] and [puppetmasterd] namespaces, and each
binary will use only the configuration option contained in its own namespace.

In Table 2-7, I’ve listed the key namespaces in the configuration file.

Table 2-7. Configuration File Namespaces

Section Description

main General configuration options for multiple elements of Puppet

puppetd Configuration options related to the Puppet client daemon

puppetmasterd Configuration options related to the Puppet master daemon

You can see an example of a Puppet configuration file in Listing 2-4.

Listing 2-4. Puppet Configuration File

[main]
vardir = /var/lib/puppet
logdir = /var/log/puppet

[puppetd]
localconfig = $vardir/localconfig

You can see we’ve defined two namespaces, [main] and [puppetd], in Listing 2-4 and
specified some configuration options in each. Configuration options are structured as
follows:
option = value

Boolean options are structured like so:
option = true

Or:
option = false

Each Boolean option is either defined as true or false.
When parsing a configuration file, all binaries will set options contained in the [main]

namespace and will then set any options specified in the section named for the binary being
executed; for example, the puppetd binary will set all options in the [puppetd] namespace.

Installing and Running Puppet 31

Turnbull

You can also see in Listing 2-4 that you can reuse previously defined options in other
configuration options by prefixing them with $. For example, we defined the vardir option
in the main section and then reused this value as part of the localconfig option in the
puppetd section.
$vardir/localconfig

You can also use any configuration option from the Puppet configuration file on the
command line by prefixing it with --. So to specify the vardir option on the command line,
we would specify --vardir as an argument. Boolean configuration options are specified on
the command line using an on/off model like so:

puppetd --trace
puppetd --no-trace

In the first line, the trace option is set on, and in the second line, it is disabled by prefixing
the option with no-.

By default, Puppet binaries will look for their configuration in a file located in the
/etc/puppet/ directory. From version 0.23.0 of Puppet, each binary looks for a
configuration file called puppet.conf in /etc/puppet. In previous versions, each Puppet
binary looked for separate files, i.e., the Puppet master daemon looks for the
puppetmasterd.conf file, the client for puppetd.conf, and the Puppet Certificate Authority
for puppetca.conf.

This transition to a single configuration file is aided by the use of the --genconfig
option. You can execute each of the Puppet binaries with this flag and a commented, default
configuration file will be outputted, and the binary will exit. You can pipe this output into a
file to create a configuration file like so:
puppetmasterd --genconfig > /etc/puppet/puppet.conf

The resulting output makes an excellent starting point for an initial Puppet configuration.
In this chapter, we’re going to focus on running and configuring three of the Puppet

binaries; their configuration file options, puppetmasterd, puppetd, and puppetca; and the
options contained in the general [main] section of the configuration file. We’ll touch on the
other binaries and configuration options in later chapters.

Tip ➡ You can see a full list of all configuration options and their functions at

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference

32 Installing and Running Puppet

Turnbull

The [main] Configuration Namespace

Every Puppet binary will check the configuration file and set any configuration options
found in the [main] namespace in your Puppet configuration file. These variables set the
high-level options that control Puppet’s environment, such as the location of the
configuration directory. In Table 2-8, I’ve listed some of the key options you can configure
in the [main] namespace.

Table 2-8. The [main] Configuration File Section

Option Description

confdir Location of the configuration directory. Calculated based on the user
running the binary and defaults to /etc/puppet.

vardir Location of dynamic data directory. Calculated based on the user running
the binary and defaults to /var/puppet.

logdir Log directory, defaults to $vardir/log.

rundir Location of Puppet PID files, defaults to $vardir/run.

statedir State directory, defaults to $vardir/state.

statefile State file, defaults to $statedir/state.yaml.

ssldir Location for Puppet’s SSL certificates, defaults to $confdir/ssl.

trace Whether to print stack traces on error, defaults to false.

filetimeout The frequency in seconds that configuration files are checked for changes.

syslogfacility Specifies the syslog facility to use, defaults to daemon.

The first options in Table 2-8 specify the location of a variety of Puppet resources. The
confdir options tells Puppet where to look for configuration files. The value of this option is
used as a default for other directory locations; for example, the default directory for SSL
certificates, specified using the ssldir option, is $confdir/ssl. The default value for this
option is dependent on the user that is executing Puppet. If the user is root or the user
specified in the user option (in the [puppetmasterd] namespace), it defaults to /etc/puppet;
otherwise, it defaults to ~.

Installing and Running Puppet 33

Turnbull

Other directories that can be specified include the vardir for dynamic Puppet data and
the logdir option that specifies the location of Puppet log files. Also configurable are the
Puppet state directory and state file using the statedir and statefile options, respectively.
The Puppet state directory and file hold the current state of running configuration, and the
state file stores the state in YAML (a recursive acronym for YAML Ain’t Markup
Language—http://yaml.org) format.

The trace option turns on stack tracing for some Puppet errors. It is a Boolean option
and defaults to false. The filetimeout option specifies how often in seconds Puppet will
check for updates in configuration files; it defaults to 15 seconds. The last option in Table
2-8 allows you to set the syslog facility that Puppet will use. It defaults to daemon.

Note ➡ Puppet also has support for multiple environments, for example, production, testing, and

development. There is some documentation available describing multiple environments at

http://reductivelabs.com/trac/puppet/wiki/UsingMultipleEnvironments.

Configuring puppetmasterd

The Puppet master daemon is initiated by the puppermasterd binary. This is the core of the
Puppet client-server model; the server compiles and provides the compiled configuration to
the nodes. In this section, we’ll look at some of the command-line flags and configuration
file options that can be used to configure the Puppet master daemon.

There are a number of command-line flags you can pass to the binary, and you can see a
list of the most useful flags in Table 2-9.

http://yaml.org
http://yaml.org
http://reductivelabs.com/trac/puppet/wiki/UsingMultipleEnvironments

34 Installing and Running Puppet

Turnbull

Table 2-9. puppetmasterd Flags

Flag Description

--daemonize | -D Daemonize the process (default).

--no-daemonize Do not daemonize the process.

--debug | -d Enable debugging (leaves process in the foreground).

--logdest | -l file | console | syslog Specify logging destination (defaults to syslog).

--mkusers Create the initial set of users and directories.

--verbose | -v Enable verbose output (leaves process in the foreground).

--help | -h Print help text.

--version | -v Print the version.

Let’s examine the flags in Table 2-9 in more detail. The --daemonize option tells the
Puppet master daemon to daemonize the process and is the default behavior of the
puppetmasterd binary when executed. The --no-daemonize option flag prevents the process
being daemonized and leaving it running in the foreground. The --debug option causes the
process to output debugging data. This is useful for troubleshooting. The --logdest flag lets
you tell the master daemon where to output logging data; you have the choice of specifying
a file name, syslog output, or the console. It defaults to syslog output.

The --mkusers flag only needs to be run once when you first install Puppet. It creates
the required puppet user and group for Puppet to run as (if they haven’t already been
created).

Lastly, the --verbose option outputs all logging messages to the command line. The --
help and --version options print the help text and version, respectively.

In the Puppet configuration file, there are also some useful options for the
[puppetmasterd] namespace that you can use to configure the Puppet master daemon. You
can see these options in Table 2-10.

Installing and Running Puppet 35

Turnbull

Table 2-10. puppetmasterd Namespace Options

Option Description

user The user who should run the Puppet master daemon

group The group who should run the Puppet master daemon

manifestdir The directory to store configuration manifests, defaults to $confdir/manifests

manifest The name of the site manifest file, defaults to $manifestdir/site.pp

bindaddress The interface to which to bind the daemon

masterport The port to run the Puppet master daemon on

The user and group options tell puppetmasterd what user and group to run as; this
defaults to puppet in both cases. The manifestdir and manifest options specify the directory
for storing manifests and the name of the site manifest file, which default to
/etc/puppet/manifests and /etc/puppet/manifests/site.pp, respectively. The bindaddress
and masterport options allow you to control what interface and port to bind the daemon to;
these default to binding to all interfaces and to port 8140.

Configuring puppetd

The command-line operation of the Puppet client daemon is very similar to the operation of
the master daemon. It can be configured both from the command line and via a
configuration file, and in this section we’ll look at the options that are typically specified for
the daemon. In Table 2-11, you can see some of the common command-line flags you can
use with puppetd.

36 Installing and Running Puppet

Turnbull

Table 2-11. puppetd Flags

Flag Description

--daemonize | -D Daemonize the process (default).

--no-daemonize Do not daemonize the process.

--server name Name of the Puppet master server to connect to.

--waitforcert | -w seconds Time in seconds between certificate signing requests.

--onetime | -o Connect and pull down the configuration once and then
exit.

--noop Run in NOOP or dry-run mode.

--disable Temporarily disable the Puppet client.

--enable If disabled, reenable the Puppet client.

--test | -t Enable some common testing options.

--debug | -d Enable debugging (leaves process in the foreground).

--verbose | -v Enable verbose output (leaves process in the foreground).

--logdest | -l file | console | syslog Specify logging destination (defaults to syslog).

--help | -h Print help text.

--version | -v Print the version.

The --daemonize option is the default action for the puppetd process; if executed without
options, it will run in the background as a daemon. The --no-daemonize option flag prevents
the process being daemonized and leaving it running in the foreground. The --server option
is used to specify the name of the Puppet master to connect to; it should be specified as a
fully qualified domain name. The --waitforcert option only applies, as discussed in the
“Starting the Puppet Client” section, for Puppet nodes without a certificate. It indicates the
time in seconds in between certificate signing requests to a Puppet master. Once the node
has a signed certificate, this option does nothing.

Installing and Running Puppet 37

Turnbull

The --onetime option connects the client to the master, requests the node configuration,
applies it, and then exits. The --noop option allows dry runs of configuration without
actually applying the configuration. This allows you to see what new configuration will do
without actually making any changes to the node. Using this with the --verbose option will
output logging messages with the proposed changes that you can verify for correctness. On
the following line, you can see an example of typical noop output:
notice: //File[/etc/group]/mode: is 644, should be 640 (noop)

You can see that the notice indicates that the /etc/group file’s permissions are 644, but the
configuration would change that to 640. The (noop) at the end of the message indicates that
no change has been made.

The --disable and --enable options allow you to turn on and off the Puppet client. The
--disable option sets a lock file that prevents the Puppet client from running. The same
lock file is set by the Puppet client when running as a daemon to prevent the client from
running twice. The --enable option removes the lock file and allows the client to run again
on its normal schedule, by default checking half-hourly.

The --test option applies a number of common testing options including verbose
logging, running in the foreground, and exits after running the configuration once (the --
onetime option). The --debug and --verbose options enable debug and verbose output from
the daemon, and the --logdest option allows you to specify where log data will be
outputted: console, file, or syslog. The option defaults to syslog output. The last two
options, --help and --version, print the help text and the version information, respectively.

There are also some options that you can specify in the configuration file to configure
the puppetd daemon. You can see some of the available options in Table 2-12.

Table 2-12. puppetd Namespace Option

Option Description

server puppet The Puppet master server to connect to, defaults to puppet

runinterval seconds The interval between Puppet applying configuration in seconds, defaults to
1800 seconds, or a half-hour

puppetdlockfile file The location of the Puppet lock file

puppetport port The port that the client daemon listens on, defaults to 8139

The server option is the configuration file equivalent of the command-line --server
option and allows you to specify the Puppet master server to connect to; it defaults to
puppet. The runinterval option controls how often configuration is applied to the Puppet

38 Installing and Running Puppet

Turnbull

node. It is from this option that Puppet gets the default half-hourly application of
configuration. The option is in seconds and defaults to 1800 seconds.

The puppetdlockfile option specifies the location of the lock file used by the --disable
option to control the running of the Puppet client. The option defaults to
$statedir/puppetdlock. The puppetdport option controls what port the client daemon binds
to; by default this is 8139.

Configuring puppetca

The puppetca binary’s primary purpose is to control and interact with the puppetmasterd’s
built-in Certificate Authority. Its principal purpose, if you don’t use the automatic signing
of certificates (which is turned off by default), is to sign incoming requests from Puppet
clients to authenticate new nodes.

Caution ➡ As discussed, autosigning of certificates is dangerous, as anyone can authenticate to your Puppet

master. If you want to autosign certificates, use per-host authentication to only authenticate those hosts you

identify. See http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity for

more details.

We’ve already seen puppetca’s primary function when we connected our first node to
Puppet, listing and signing the certificate requests of new nodes using the --list and --sign
options.
puppetca --sign node1.testing.com

You can specify more than one node on the command line, and you can also sign all
outstanding certificate requests by specifying the all keyword like so:
puppetca --sign all

You can also see some other useful command-line flags in Table 2-13.

http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity

Installing and Running Puppet 39

Turnbull

Table 2-13. puppetca Flags

Flag Description

--revoke | -r host Revoke a node’s certificate.

--clean | -c host Remove a node’s certificate from the master.

--generate | -g host Generate a client key/certificate pair.

--debug | -d Enable debugging (leaves process in the foreground).

--verbose | -v Enable verbose output (leaves process in the foreground).

--help | -h Print help text.

--version | -v Print the version.

The --revoke option revokes a client’s certificate. You can specify a decimal number,
the certificate’s hexadecimal code, or the hostname of the client node. The certificate is
added to Puppet’s Certificate Revocation List (CRL). You can specify the CRL using the
cacrl option in the puppetmasterd namespace. The master daemon needs to be restarted to
update the CRL with the revoked certificate.

The --clean option removes all files related to a particular node from the Puppet
Certificate Authority. The option is most useful for rebuilding nodes. It removes traces of
the old certificate and allows you to submit a new certificate signing request from the client.

The --generate option generates a certificate and key pair for the node or nodes
specified on the command line.

You can also control a variety of certificate and SSL-related configuration options such
as the key, the naming and location of certificates on both the master and the node, and a
variety of other options. You can see these options at
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

Tip ➡ In the future, you may also be able to have multiple master servers use a single certificate authority. At

the moment this isn’t fully supported, but you can read about it at

http://reductivelabs.com/trac/puppet/wiki/MultipleCertificateAuthorities.

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://reductivelabs.com/trac/puppet/wiki/MultipleCertificateAuthorities

40 Installing and Running Puppet

Turnbull

Resources

We’ve looked at installing and configuration Puppet in this chapter, and there are a number
of useful resources and documentation online that can also help with this process.

You can also log tickets and bug reports at Puppet’s trac site by registering at
http://reductivelabs.com/trac/puppet/register.

Web

 • Puppet support:

 http://reductivelabs.com/trac/puppet/wiki/GettingHelp

 • Puppet installation guide:

 http://reductivelabs.com/trac/puppet/wiki/InstallationGuide

 • Puppet configuration reference:

 http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference

Mailing Lists

 • Puppet user mailing list:

 http://mail.madstop.com/mailman/listinfo/puppet-users

http://reductivelabs.com/trac/puppet/register
http://reductivelabs.com/trac/puppet/register
http://reductivelabs.com/trac/puppet/wiki/GettingHelp
http://reductivelabs.com/trac/puppet/wiki/InstallationGuide
http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://mail.madstop.com/mailman/listinfo/puppet-users

	Prelims
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Installing and RunningPuppet
	Installation Prerequisites
	Installing Ruby
	Installing Ruby from Source
	Installing Ruby and Ruby Libraries from Packages

	Installing Facter
	Installing Facter from Source
	Installing Facter from Package

	Installing RDoc

	Installing Puppet
	Installing from Source
	Installing Puppet by Package
	Installing Puppet from a Ruby Gem

	Getting Started with Puppet
	Starting the Puppet Master
	Starting the Puppet Client
	Signing Your Client Certificate

	Running the Puppet Daemons
	Configuring Puppet
	The [main] Configuration Namespace
	Configuring puppetmasterd
	Configuring puppetd
	Configuring puppetca

	Resources
	Web
	Mailing Lists

