
I don’t have an accent.
—Oh yes you do.

CIFS is a very rich and varied protocol suite, a fact that is evident in the
number of SMB dialects that exist. Five are listed in the X/Open SMB protocol
specification, and the SNIA doc — published ten years later — lists eleven.
That’s a bigbunch, and they probably missed a few. Each new dialect may add
new SMBs, deprecate old ones, or extend existing ones. As if that were not
enough, implementations introduce subtle variations within dialects.

All that in mind, our goal in this section will be to provide an overview
of the available dialects, cover the workings of the NEGOTIATE PROTOCOL
SMB exchange, and take a preliminary peek at some of the concepts that we
have yet to consider (things like virtual circuits and authentication). For the
most part, the examples and discussion will be based on the “NT LM 0.12”
dialect. The majority of the servers currently available support some variation
of NT LM 0.12, and at least one client implementation (jCIFS) has managed
to get by without supporting any others. Server writers should be warned,
however, that there really are a lot of clients still around that use older calls.
Even new clients will use older calls, simply because of the difficulty of acquiring
reliable documentation on the newer stuff.

221

13

Protocol Negotiation

A Smattering of SMB Dialects13.1

In keeping with tradition, the list of dialects is presented as a table with the
dialect name in the left-hand column and a short description in the right, or-
dered from oldest to newest. Most of the references to these dialects seem to
do it this way. Our list is not quite as complete as you might find elsewhere.
The aim here is to highlight some of the better-known examples in order to
provide a bit of context for the examination of the SMB_COM_NEGOTIATE
message.

Where relevant, important differences between dialects will be noted. It
would be very difficult, however, to try to document all of the features of each
dialect and all of the changes between them. If you really, really need to know
more (which is likely, if you are working on server code) see the SNIA doc,
the X/Open doc, the expired IETF drafts, and the other old Microsoft docu-
mentation that is still freely available from their FTP server.1

SMB dialects

NotesDialect Identifier

Also known as the Core Protocol. This is the original stuff, as
documented in COREP.TXT. According to ancient lore, this
dialect is sometimes also identified by the string “PCLAN1.0”.

PC NETWORK
PROGRAM 1.0

This is the Core Plus Protocol. It extends a few Core Protocol
SMB commands, and adds a few new ones.

MICROSOFT
NETWORKS 1.03

Known as the Extended 1.0 Protocol or LAN Manager 1.0. This
dialect was created when IBM and Microsoft were working
together on OS/2. This particular variant was designed for DOS
clients, which understood a narrower set of error codes than OS/2.

MICROSOFT
NETWORKS 3.0

Identical to the MICROSOFT NETWORKS 3.0 dialect except
that it was intended for use with OS/2 clients, so a larger set of
error codes was available. OS/2 and DOS both expect that the
STATUS field will be in the DOS-style ErrorClass /
ErrorCode format. Again, this dialect is also known as LAN
Manager 1.0 or as the Extended 1.0 Protocol.

LANMAN1.0

1. ...or was, last time I checked. Once again, that URL is: ftp://ftp.microsoft.com/
developr/drg/CIFS/. See the References section for links to specific documents.

Part II SMB: The Server Message Block Protocol222

SMB dialects

NotesDialect Identifier

Called the Extended 2.0 Protocol; also known as LAN Manager
2.0. This dialect represents OS/2 LANMAN version 2.0, and it
introduces a few new SMBs. The identifier for the DOS version
of this dialect is “DOS LM1.2X002”. As before, the key difference
between the DOS and OS/2 dialects is simply that the OS/2
version provides a larger set of error codes.

LM1.2X002

Called the LAN Manager 2.1 dialect (no surprise there), this
version is documented in a paper titled Microsoft Networks SMB
File Sharing Protocol Extensions, Document Version 3.4. You can
find it by searching the web for a file named “SMB-LM21.DOC”.
You will likely need a conversion tool of some sort in order to
read the file, as it is encoded in an outdated form of a proprietary
Microsoft format (it’s a word-processing file). The cool thing
about the SMB-LM21.DOC document is that instead of explaining
how LANMAN2.1 works it describes how LANMAN2.1 differs
from its predecessor, LANMAN2.0. That’s useful for people who
want to know how the protocol has evolved.

LANMAN2.1

You may see this dialect listed in the protocol negotiation request
coming from a Samba-based client such as smbclient, KDE
Konqueror (which uses Samba’s libsmbclient library), or the
Linux SMBFS implementation. No one from the Samba Team
seems to remember when, or why, this was added. It doesn’t
appear to be used any more (if, indeed, it ever was).

Samba

This dialect, sometimes called NT LANMAN, was developed for
use with Windows NT. All of the Windows 9x clients also claim
to speak it, as do Windows 2000 and XP. As mentioned above,
this is currently the most widely supported dialect. It is, quite
possibly, also the sloppiest with all sorts of variations and differing
implementations.

NT LM 0.12

Following the release of the IETF CIFS protocol drafts, many
people thought that Microsoft would produce a “CIFS” dialect,
and many documents refer to it. No such beast has actually
materialized, however. Maybe that’s a good thing.

CIFS

22313 Protocol Negotiation

Section 3.16 of the SNIA CIFS Technical Reference, V1.0 provides a list
of of SMB message types categorized by the dialect in which they were intro-
duced. There is also a slightly more complete list of dialects in Section 5.4 of
the SNIA doc.

Greetings: The NEGOTIATE PROTOCOL
REQUEST

13.2

We have already provided a detailed breakdown of a NEGOTIATE PROTOCOL
REQUEST SMB (back in Section 11.3 on page 186), so we don’t need to go
to the trouble of fully dissecting it again. The interesting part of the
request is the data section (the parameter section is empty). If we were to
write a client that supported all of the dialects in our chart, the
NEGOTIATE_PROTOCOL_REQUEST.SMB_DATA field would break out
something like this:

SMB_DATA
 {
 ByteCount = 131
 Bytes
 {
 Dialect[0] = "\x02PC NETWORK PROGRAM 1.0"
 Dialect[1] = "\x02MICROSOFT NETWORKS 1.03"
 Dialect[2] = "\x02MICROSOFT NETWORKS 3.0"
 Dialect[3] = "\x02LANMAN1.0"
 Dialect[4] = "\x02LM1.2X002"
 Dialect[5] = "\x02LANMAN2.1"
 Dialect[6] = "\x02Samba"
 Dialect[7] = "\x02NT LM 0.12"
 Dialect[8] = "\x02CIFS"
 }
 }

Each dialect string is preceded by a byte containing the value 0x02. This,
perhaps, was originally intended to make it easier to parse the buffer. In addition
to the 0x02 prefix the dialect strings are nul-terminated, so if you go to the
trouble of counting up the bytes to see if the ByteCount value is correct in
this example don’t forget to add 1 to each string length.

Part II SMB: The Server Message Block Protocol224

Listing 13.1 provides code for creating a NEGOTIATE PROTOCOL
REQUEST message. It also takes care of writing an NBT Session Message
header for us — something we must not forget to do.

Listing 13.1: Negotiate Protocol Request

/* Define the SMB message command code.
 */
#define SMB_COM_NEGOTIATE 0x72

int nbt_SessionHeader(uchar *bufr, ulong size)
 /* -- **
 * This function writes the NBT Session Service header.
 * Note that we use NBT byte order, not SMB.
 * -- **
 */
 {
 if(size > 0x0001FFFF) /* That's the NBT maximum. */
 return(-1);
 bufr[0] = 0;
 bufr[1] = (size >> 16) & 0xFF;
 bufr[2] = (size >> 8) & 0xFF;
 bufr[3] = size & 0xFF;
 return((int)size);
 } /* nbt_SessionHeader */

int smb_NegProtRequest(uchar *bufr,
 int bsize,
 int namec,
 uchar **namev)
 /* -- **
 * Build a Negotiate Protocol Request message.
 * -- **
 */
 {
 uchar *smb_bufr;
 int i;
 int length;
 int offset;
 ushort bytecount;
 uchar flags;
 ushort flags2;

 /* Set aside four bytes for the session header. */
 bsize = bsize - 4;
 smb_bufr = bufr + 4;

22513 Protocol Negotiation

 /* Make sure we have enough room for the header,
 * the WORDCOUNT field, and the BYTECOUNT field.
 * That's the absolute minimum (with no dialects).
 */
 if(bsize < (SMB_HDR_SIZE + 3))
 return(-1);

 /* Initialize the SMB header.
 * This zero-fills all header fields except for
 * the Protocol field ("\ffSMB").
 * We have already tested the buffer size so
 * we can void the return value.
 */
 (void)smb_hdrInit(smb_bufr, bsize);

 /* Hard-coded flags values...
 */
 flags = SMB_FLAGS_CANONICAL_PATHNAMES;
 flags |= SMB_FLAGS_CASELESS_PATHNAMES;
 flags2 = SMB_FLAGS2_KNOWS_LONG_NAMES;

 /* Fill in the header.
 */
 smb_hdrSetCmd(smb_bufr, SMB_COM_NEGOTIATE);
 smb_hdrSetFlags(smb_bufr, flags);
 smb_hdrSetFlags2(smb_bufr, flags2);

 /* Fill in the (empty) parameter block.
 */
 smb_bufr[SMB_HDR_SIZE] = 0;

 /* Copy the dialect names into the message.
 * Set offset to indicate the start of the
 * BYTES field, skipping BYTECOUNT. We will
 * fill in BYTECOUNT later.
 */
 offset = SMB_HDR_SIZE + 3;
 for(bytecount = i = 0; i < namec; i++)
 {
 length = strlen(namev[i]) + 1; /* includes nul */
 if(bsize < (offset + 1 + length)) /* includes 0x02 */
 return(-1);
 smb_bufr[offset++] = '\x02';
 (void)memcpy(&smb_bufr[offset], namev[i], length);
 offset += length;
 bytecount += length + 1;
 }

Part II SMB: The Server Message Block Protocol226

 /* The offset is now the total size of the SMB message.
 */
 if(nbt_SessionHeader(bufr, (ulong)offset) < offset)
 return(-1);

 /* The BYTECOUNT field starts one byte beyond the end
 * of the header (one byte for the WORDCOUNT field).
 */
 smb_SetShort(smb_bufr, (SMB_HDR_SIZE + 1), bytecount);

 /* Return the total size of the packet.
 */
 return(offset + 4);
 } /* smb_NegProtRequest */

Gesundheit: The NEGOTIATE PROTOCOL
RESPONSE

13.3

The NEGOTIATE PROTOCOL RESPONSE SMB is more complex than the
request. In addition to the dialect selection, it also contains a variety of other
parameters that let the client know the capabilities, limitations, and expectations
of the server. Most of these values are stuffed into the SMB_PARAMETERS
block, but there are a few fields defined in the SMB_DATA block as well.

NegProt Response Parameters13.3.1

The NEGOTIATE_PROTOCOL_RESPONSE.SMB_PARAMETERS.Words
block for the NT LM 0.12 dialect is 17 words (34 bytes) in size, and is struc-
tured as shown below. Earlier dialects use a different structure and, of course,
the server should always match the reply to the dialect it selects.

22713 Protocol Negotiation

typedef struct
 {
 uchar WordCount; /* Always 17 for this struct */
 struct
 {
 ushort DialectIndex; /* Selected dialect index */
 uchar SecurityMode; /* Server security flags */
 ushort MaxMpxCount; /* Maximum Multiplex Count */
 ushort MaxNumberVCs; /* Maximum Virtual Circuits */
 ulong MaxBufferSize; /* Maximum SMB message size */
 ulong MaxRawSize; /* Obsolete */
 ulong SessionKey; /* Unique session ID */
 ulong Capabilities; /* Server capabilities flags */
 ulong SystemTimeLow; /* Server time; low bytes */
 ulong SystemTimeHigh; /* Server time; high bytes */
 short ServerTimeZone; /* Minutes from UTC; signed */
 uchar EncryptionKeyLength; /* 0 or 8 */
 } Words;
 } smb_NegProt_Rsp_Params;

That requires a lot of discussion. Let’s tear it up and take a close look at
the tiny pieces.

DialectIndex

Things start off fairly simply. The DialectIndex field contains the
index of the dialect string that the server has selected, which will be the
highest-level dialect that the server understands. The dialect strings are
numbered starting with zero, so to choose “NT LM 0.12” from the list
in the example request the server would return 7 in the DialectIndex
field.

SecurityMode

SecurityMode is a bitfield that provides some information about the
authentication sub-protocol that the server is expecting. Four flag bits are
defined; they are described below. Challenge/Response and Message
Authentication Code (MAC) message signing will be explained later (this
is becoming our mantra), when we cover authentication. It will take a
little while to get there, but keep your eyes open for additional clues along
the way.

Part II SMB: The Server Message Block Protocol228

SecurityMode

DescriptionName / Bitmask / ValuesBit

<Reserved> (must be zero)0xF07–4

If set, this bit indicates that the
server is requiring the use of a
Message Authentication Code
(MAC) in each packet. If the
bit is clear then message
signing is optional.

This bit should be zero
if the next bit (mask 0x04)
is zero.

NEGOTIATE_SECURITY_SIGNATURES_REQUIRED

0x08
0: Message signing is optional
1: Message signing is required

3

If set, the server is indicating
that it is capable of performing
Message Authentication Code
(MAC) message signing.

This bit should be zero
if the next bit (mask 0x02)
is zero.

NEGOTIATE_SECURITY_SIGNATURES_ENABLED

0x04
0: Message signing not supported
1: Server can perform message signing

2

This bit indicates whether or
not the server supports
Challenge/Response
authentication (which will be
covered further on). If the bit
is clear, then plaintext
passwords must be used. If set,
the server may (optionally)
reject plaintext authentication.

If this bit is clear and the
client rejects the use of
plaintext, then there is no way
to perform the logon and the
client will be unable to
connect to the server.

NEGOTIATE_SECURITY_CHALLENGE_RESPONSE

0x02
0: Plaintext Passwords
1: Challenge/Response

1

22913 Protocol Negotiation

SecurityMode

DescriptionName / Bitmask / ValuesBit

Ah! Finally something we’ve
already covered!

This bit indicates
whether the server, as a whole,
is operating under Share Level
or User Level security. Share
and User Level security were
explained along with the TID
and UID header fields, back in
Section 12.4 on page 209.

NEGOTIATE_SECURITY_USER_LEVEL

0x01
0: Share Level
1: User Level

0

MaxMpxCount

Remember the PID and MID fields in the header? They could be used to
multiplex several sessions over a single TCP/IP connection. The thing is,
the server might not be able to handle more than a fixed number of total
outstanding requests.

The MaxMpxCount field lets the server tell the client how many
requests, in total, it can handle concurrently. It is the client’s responsibil-
ity to ensure that there are no more than MaxMpxCount outstanding
requests in the pipe at any time. That may mean that client processes will
block, waiting for their turn to send an SMB.

MaxNumberVCs

The MaxNumberVCs field specifies the maximum number of Virtual
Circuits (VCs) that the server is able to accommodate. VCs are yet another
mechanism by which multiple SMB sessions could, in theory, be multi-
plexed over a single transport-layer session. Note the use of the phrase
“in theory.” The dichotomy between theory and practice is a recurring
theme in the study of CIFS.

MaxBufferSize

MaxBufferSize is the size (in bytes) of the largest message that the
server can receive.

Part II SMB: The Server Message Block Protocol230

Keep in mind that the transport layer will fragment and defragment
packets as necessary. It is, therefore, possible to send very large SMBs and
let the lower layers worry about ensuring safe, fast, reliable delivery.

How big can an SMB message be?
In the NT LM 0.12 dialect, the MaxBufferSize field is an un-

signed longword. As described much earlier on, however, the Length
field in the NBT SESSION MESSAGE is 17 bits wide and the naked
transport header has a 24-bit Length field. So the session headers
place slightly more reasonable limits on the maximum size of a single
SMB message.

MaxRawSize

This is the maximum size of a raw data buffer.
The X/Open doc describes the READ RAW and WRITE RAW SMBs,

which were introduced with the Extended 1.0 version of SMB
(the MICROSOFT NETWORKS 3.0 and LANMAN1.0 dialects). These
were a speed hack. For a large read or write operation, the first message
would be a proper SMB, but subsequent messages would be sent in “raw”
mode, with no SMB or session header. The raw blocks could be as large
as MaxRawSize bytes in length. Once again, the transport layer was
expected to take care of fragmentation/defragmentation as well as resend-
ing of any lost packets.

Raw mode is not used much any more. Among other things, it
conflicts with message signing because the raw messages have no header
in which to put the MAC Signature. Thus, the MaxRawSize field is
considered obsolete.2

SessionKey

The SessionKey is supposed to be used to identify the session in which
a VC has been opened. Documentation on the use of this field is very

2. There may be a further problem with raw mode. Microsoft has made some obtuse references
to obscure patents which may or may not be related to READ RAW and WRITE RAW. The
patents in question have been around for quite some time, and were not mentioned in any of
the SMB/CIFS documentation that Microsoft released up until March of 2002. Still, the best
bet is to avoid READ RAW and WRITE RAW (since they are not particularly useful anyway)
and/or check with a patent lawyer. The Samba Team released a statement regarding this issue,
see http://us1.samba.org/samba/ms_license.html.

23113 Protocol Negotiation

poor, however, and the commentary in various mailing list archives shows
that there is not much agreement about what to do with it.

In theory, the SessionKey value should be echoed back to the
server whenever the client sends a SESSION SETUP request. Samba’s
smbclient does this, but some versions of jCIFS always reply with zero,
and they don’t seem to have any trouble with it. In testing, it also appears
that Windows 2000 servers do not generate a session key. They send zero
in NEGOTIATE PROTOCOL RESPONSE messages. Hmmm...

It would seem that the use of this field was never clearly defined —
anywhere by anyone — and that most servers really don’t care what goes
there. It is probably safest if the client echoes back the value sent by
the server.

Capabilities

This is a grab-bag bitfield, similar in style to the FLAGS and FLAGS2
fields in the header except, of course, that it is not included in every
message. The bits of the Capabilities field indicate specific server
features of which the client may choose to take advantage.

We are already building up a backlog of unexplained features. We
will also postpone the discussion of the Capabilities field until we
get some of the other stuff out of the way.

SystemTimeLow and SystemTimeHigh
The SystemTime fields are shown as two unsigned longs in the SNIA
doc. We might write it as:

typedef struct
 {
 ulong timeLow;
 ulong timeHigh;
 } smb_Time;

Keeping byte order in mind, the completed time value should be
read as two little-endian 32-bit integers. The result, however, should be
handled as a 64-bit signed value representing the number of tenths of a
microsecond since January 1, 1601, 00:00:00.0 UTC.

WHAT?!?!
Yes, you read that right folks. The time value is based on that un-

wieldy little formula. Read it again five times and see if you don’t get a
headache. Looks as though we need to get out the protractor, the astrolabe,

Part II SMB: The Server Message Block Protocol232

and the didgeridoo and try a little calculating. Let’s start with some
complex scientific equations:

1 microsecond = 10–6 seconds,

1/10 microsecond = 10–7 seconds.

In other words, the server time is given in units of 10–7 seconds.3

Many CIFS implementations handle these units by converting them into
Unix-style measurements. Unix, of course, bases its time measurements
on an equally obscure date: January 1, 1970, 00:00:00.0 UTC.4 Convert-
ing between the two schemes requires knowing the difference (in seconds)
between the two base times.

Email

 From: Andrew Narver
In-Reply-To: A message from Mike Allen sent to Microsoft's CIFS
 mailing list and the Samba-Technical mailing list.

> (what's the number of seconds between 1601 and 1970 again?)

Between Jan 1, 1601 and Jan 1, 1970, you have 369 complete
years, of which 89 are leap years (1700, 1800, and 1900 were
not leap years). That gives you a total of 134774 days or
11644473600 seconds.

So, if you want to convert the SystemTime to a Unix time_t
value, you need to do something like this:

unix_time = (time_t)(((smb_time)/10000000) - 11644473600);

which gives you the server’s system time in seconds since January 1, 1970,
00:00:00.0 UTC.

3. There is no name for 10–7 seconds. Other fractions of seconds have names with prefixes
like deci, centi, milli, micro, nano, pico, even zepto, but there is no prefix that applies to 10–7.
In honor of the fact that this rare measure of time is used in the CIFS protocol suite, I propose
that it be called a bozosecond.

4. January 1, 1970, 00:00:00.0 UTC, known as “the Epoch,” is sometimes excused as being
the approximate birthdate of Unix.

23313 Protocol Negotiation

ServerTimeZone

ServerTimeZone, of course, is the timezone in which the server believes
it resides. It is represented as an offset relative to UTC, in minutes. Min-
utes, that is. Multiply by 60 in order to get seconds, or 600,000,000 to
get tenths of a microsecond.

The available documentation (the SNIA doc and the Leach/Naik
IETF draft) states that this field is an unsigned short integer. They’re
wrong. The field is a signed value which is subtracted from the
SystemTime to give local time.

If, for example, your server is located in the beautiful city of Saint
Paul, Minnesota, it would be in the US Central timezone5 which is six
hours west of UTC. The value in the ServerTimeZone field would,
therefore be 360 minutes. (Except, of course, during the summer when
Daylight Savings Time is in effect, in which case it would be 300 minutes.)
On the other hand, if your server is in Moscow in the winter, the
ServerTimeZone value would be –180.

The basic rule of thumb:

LocalTime = SystemTime - (ServerTimeZone × 600000000)

...which returns local time in units of 10–7 seconds, based on January
1601 as described above.

If you found all of that to be complicated, you will be relieved to
know that this is only one of many different time formats used in SMB.
Time And Date Encoding is covered in Section 3.7 of the SNIA doc.

EncryptionKeyLength

This is the last field in the NEGOTIATE_PROTOCOL_RESPONSE.
SMB_PARAMETERS block. It provides the length, in bytes, of the Chal-
lenge used in Challenge/Response authentication. SMB Challenges, if
present, are always 8 bytes long, so the EncryptionKeyLength will
have a value of either 8 or 0 — the latter if Challenge/Response authenti-
cation is not in use.

5. This is probably because Saint Paul is at the center of the universe. The biomagnetic center
of the universe used to be located across the river in Minneapolis until they closed it down. It
was a little out of whack in the same way that the magnetic poles are not quite where they
should be. The magnetic north pole, for instance, is on or near an island in northern Canada
instead of at the center of the Arctic Ocean where it belongs.

Part II SMB: The Server Message Block Protocol234

The name of this field is probably a hold-over from some previous
enhancement to the protocol — still in use for “historical reasons.”

Wow... a lot of stuff there. No time to sit and chat about it right
now, though. We still need to finish out the examination of the
NEGOTIATE_PROTOCOL_RESPONSE.SMB_DATA block.

NegProt Response Data13.3.2

SMB_DATA, of course, is handed to us as an array of bytes with the length
provided in the ByteCount field. The parsing of those bytes depends upon
the values in the SMB_PARAMETER block that we just examined. The structure
is completely different depending upon whether Extended Security has
been negotiated.

Here is what it looks like, more or less, in the NT LM 0.12 dialect:

typedef struct
 {
 ushort ByteCount; /* Number of bytes to follow */
 union
 {
 struct
 {
 uchar GUID[16]; /* 16-byte Globally Unique ID */
 uchar SecurityBlob[]; /* Auth-system dependent */
 } ext_sec; /* Extended Security */
 struct
 {
 uchar EncryptionKey[]; /* 0 or 8 bytes long */
 uchar DomainName[]; /* nul-terminated string */
 } non_ext_sec; /* Non-Extended Security */
 } Bytes;
 } smb_NegProt_Rsp_Data;

The first thing to note is that this SMB_DATA.Bytes block structure is
the union of two smaller structures:

ext_sec is used if Extended Security has been negotiated,

non_ext_sec is used otherwise.

The second thing to note is that this is pseudo-code, not valid C code.
Some of the array lengths are unspecified because we don’t know the byte-
length of the fields ahead of time. In real code, you will probably need to use

23513 Protocol Negotiation

pointers or some other mechanism to extract the variable-length data from
the buffer.

Okay, let’s chop that structure into little bits...

GUID

GUID stands for Globally Unique IDentifier. The GUID field is always 16
bytes long.

As of this writing, research by Samba Team members shows that
this value is probably the same as the GUID identifier used by Active Di-
rectory to keep track of servers in the database. Standalone servers (which
are not listed in any Active Directory) also generate and use a GUID.
Go figure.

Though this field is only present when Extended Security is enabled,
it is not, strictly speaking, a security field. The value is well known and
easily forged. It is not clear (yet) why this field is even sent to the client.
In testing, a Samba server was configured to fill the GUID field with its
own 16-byte Server Service NetBIOS name... and that worked just fine.

SecurityBlob

The SecurityBlob is — as the name says — a blob of security infor-
mation. In other words, it is a block of data that contains authentication
information particular to the Extended Security mechanism being used.
Obviously, this field will need to be covered in the Authentication section.

The SecurityBlob is variable in length. Fortunately, the GUID
field is always 16 bytes, so the length of the SecurityBlob is
(ByteCount - 16) bytes.

EncryptionKey

This field should be called Challenge because that’s what it actually
contains — the Challenge used in Challenge/Response authentication.
The SMB Challenge, if present, is always eight bytes long. If plaintext
passwords are in use then there is no Challenge, the EncryptionKey
will be empty, and the SMB_PARAMETERS.EncryptionKeyLength
field will contain 0.

DomainName

This field sometimes contains the NetBIOS name of the Workgroup or
NT Domain to which the server belongs. (We have talked a bit, in previ-
ous sections, about Workgroups and NT Domains so the terms should

Part II SMB: The Server Message Block Protocol236

be somewhat familiar.) In testing, Samba servers always provided a name
in the DomainName field; Windows systems less reliably so. Windows
98, for example, would sometimes provide a value and sometimes not.6

The SNIA doc calls this field the OEMDomainName and claims that
the characters will be eight-bit values using the OEM character set of the
server (that’s the 7-bit ASCII character set augmented by an extended
DOS code page which defines characters for the upper 128 octet values).
In fact, this field may contain either a string of 8-bit OEM
characters or a Unicode string with 16-bit characters. The value of
SMB_HEADER.FLAGS2.SMB_FLAGS2_UNICODE_STRINGS will let
you know how to read the DomainName field.

Are We There Yet?13.4

Okay, let’s be honest... Ripping apart that NEGOTIATE PROTOCOL
RESPONSE SMB was about as exciting as the epic saga of undercooked toast.
It doesn’t get any better than that, though, and there’s a lot more of it. Imple-
menting SMB is a game of patience and persistence. It also helps if you get a
cheap thrill from fiddly little details. (Just don’t go parsing your packets in
public or people will look at you funny.)

It seems, too, that our overview of the SMB Header and the NEGOTIATE
PROTOCOL exchange has left a bit of a mess on the floor. We have pulled a
lot of concepts off of the shelves and out of the closets, and we will need to do
some sorting and organizing before we can put them back. Let’s see what
we’ve got:

Opportunistic Locks (OpLocks), which were taking up space in the
SMB_HEADER.FLAGS field,

Virtual Circuits (we found these in the box labeled MaxNumberVCs),

6. A lot of time was wasted trying to figure out which configuration options would change the
behavior. The results were inconclusive. At first it seemed as though the DomainName was
included if the Windows 98 system was running in User Level security mode and passing logins
through to an NT Domain Controller. Further testing, however, showed that this was not a
hard-and-fast rule. It should also be mentioned that if the systems are running naked transport
there may not be an NT Domain or Workgroup name. SMB can be mightily inconsistent —
but not all the time.

23713 Protocol Negotiation

The Capabilities bits (and pieces),

Distributed File System (DFS), which spilled out when FLAGS2 fell
open,

Character Encoding — which seems to get into everything, sort of like
cat hair and dust,

Extended vs. DOS Attributes,

Long vs. short names, and...

Authentication, including plaintext passwords, Challenge/Response, Ex-
tended Security, and Packet Signing.

The only way to approach all of these topics is one-at-a-time. ...but first,
take another break. Every now and then, it is a good idea to stop and think
about what has been covered so far. This is one of those times. We have finished
tearing apart SMB headers and the body of a NEGOTIATE PROTOCOL mes-
sage. That should provide some familiarity with the overall structure of SMBs.
Try doing some packet captures, or skim through the SNIA CIFS Technical
Reference. It should all begin to make a little more sense now than it did when
we started.

Part II SMB: The Server Message Block Protocol238

