
CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

17
Security-Enhanced Linux

Though numerous security tools exist for protecting specific services, as well as user
information and data, no tool has been available for protecting the entire system at
the administrative level. Security-Enhanced Linux is a project to provide built-in

administrative protection for aspects of your Linux system. Instead of relying on users to
protect their files or on a specific network program to control access, security measures are
built into the basic file management system and the network access methods. All controls
can be managed directly by an administrator as part of Linux system administration.

Security-Enhanced Linux (SELinux) is a project developed and maintained by the
National Security Agency (NSA), which chose Linux as its platform for implementing a secure
operating system. Most Linux distributions have embraced SELinux and incorporated it as a
standard feature of its distribution. Detailed documentation is available from resources listed
in Table 17-1, including sites provided by the NSA and SourceForge. Also check your Linux
distribution’s site for any manuals, FAQs, or documentation on SELinux.

Linux and Unix systems normally use a discretionary access control (DAC) method for
restricting access. In this approach, users and the objects they own, such as files, determine
permissions. The user has complete discretion over the objects he or she owns. The weak
point in many Linux/Unix systems has been the user administrative accounts. If an attacker
managed to gain access to an administrative account, they would have complete control
over the service the account managed. Access to the root user would give control over the
entire system, all its users, and any network services it was running. To counter this
weakness, the NSA set up a mandatory access control (MAC) structure. Instead of an all-or-
nothing set of privileges based on accounts, services and administrative tasks are
compartmentalized and separately controlled with policies detailing what can and cannot
be done. Access is granted not just because one is an authenticated user, but when specific
security criteria are met. Users, applications, processes, files, and devices can be given only
the access they need to do their job, and nothing more.

Flask Architecture
The Flask architecture organizes operating system components and data into subjects and
objects. Subjects are processes: applications, drivers, system tasks that are currently running.
Objects are fixed components such as files, directories, sockets, network interfaces, and
devices. For each subject and object, a security context is defined. A security context is a set of

327

CHAPTER

ch17.indd 327 10/24/07 10:02:53 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 328 P a r t V : S e c u r i t y 328 P a r t V : S e c u r i t y

security attributes that determines how a subject or object can be used. This approach
provides very fine-grained control over every element in the operating system as well as all
data on your computer.

The attributes designated for the security contexts and the degree to which they are
enforced are determined by an overall security policy. The policies are enforced by a
security server. Distributions may provide different preconfigured policies from which to
work. For example, Fedora provides three policies, each in its own package: strict, targeted,
and mls, all a variation of a single reference policy.

SELinux uses a combination of the Type Enforcement (TE), Role Based Access Control
(RBAC), and Multi-Level Security (MLS) security models. Type Enforcement focuses on objects
and processes like directories and applications, whereas Role Based Access Enforcement
controls user access. For the Type Enforcement model, the security attributes assigned to an
object are known as either domains or types. Types are used for fixed objects such as files,
and domains are used for processes such as running applications. For user access to
processes and objects, SELinux makes use of the Role Based Access Control model. When
new processes or objects are created, transition rules specify the type or domain they belong
to in their security contexts.

With the RBAC model, users are assigned roles for which permissions are defined. The
roles restrict what objects and processes a user can access. The security context for processes
will include a role attribute, controlling what objects it can assess. The new Multi-Level
Security (MLS) adds a security level, containing both a sensitivity and capability value.

Users are given separate SELinux user identities. Normally these correspond to the user
IDs set up under the standard Linux user creation operations. Though they may have the
same name, they are not the same identifiers. Standard Linux identities can be easily
changed with commands like setuid and su. Changes to the Linux user ID will not affect
the SELinux ID. This means that even if a user changes his or her ID, SELinux will still be
able to track it, maintaining control over that user.

System Administration Access
It is critically important that you make sure you have system administrative access under
SELinux before you enforce its policies. This is especially true if you are using a strict or mls
policy, which imposes restrictions on administrative access. You should always use SELinux

Resource Location

NSA SELinux nsa.gov/selinux

NSA SELinux FAQ nsa.gov/selinux/info/faq.cfm

SELinux at sourceforge.net selinux.sourceforge.net

Writing SELinux Policy HOWTO Accessible from "SELinux resources at sourceforge"
link at selinux.sourceforge.net

NSA SELinux Documentation nsa.gov/selinux/info/docs.cfm

Configuring SELinux Policy Accessible from NSA SELinux Documentation

SELinux Reference Policy Project http://oss.tresys.com/projects/refpolicy

TABLE 17-1 SELinux Resources

ch17.indd 328 10/24/07 10:02:53 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 329

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 329

in permissive mode first and check for any messages denying access. With SELinux
enforced, it may no longer matter whether you can access the root user. What matters is
whether your user, even the root user, has sysadm_r role and sysadm_t object access and an
administrative security level. You may not be able to use the su command to access the root
user and expect to have root user administrative access. Recall that SELinux keeps its own
security identities that are not the same as Linux user IDs. Though you might change your
user ID with su, you still have not changed your security ID.

The targeted policy will set up rules that allow standard system administrator access
using normal Linux procedures. The root user will be able to access the root user account
normally. In the strict policy, however, the root user needs to access its account using the
appropriate security ID. Both are now part of a single reference policy. If you want
administrative access through the su command (from another user), you first use the su
command to log in as the root user. You then have to change your role to that of the
sysadm_r role, and you must already be configured by SELinux policy rules to be allowed
to take on the sysadm_r role. A user can have several allowed possible roles he or she can
assume.

To change the role, you use the newrole command with the -r option.

newrole -r sysadm_r

Terminology
SELinux uses several terms that have different meanings in other contexts. The terminology
can be confusing because some of the terms, such as domain, have different meanings in
other, related, areas. For example, a domain in SELinux is a process as opposed to an object,
whereas in networking the term refers to network DNS addresses.

Identity
SELinux creates identities with which to control access. Identities are not the same as
traditional user IDs. At the same time, each user normally has an SELinux identity, though
the two are not linked. Affecting a user does not affect the corresponding SELinux identity.
SELinux can set up a separate corresponding identity for each user, though on the less secure
policies, such as targeted policies, general identities are used. A general user identity is used
for all normal users, restricting users to user-level access, whereas administrators are given
administrative identities. You can further define security identities for particular users.

The identity makes up part of a security context that determines what a user can or
cannot do. Should a user change user IDs, that user’s security identity will not change. A
user will always have the same security identity. In traditional Linux systems, a user can
use commands like su to change his or her user ID, becoming a different user. On SELinux,
even though a user can still change his or her Linux user ID, the user still retains the same
original security ID. You always know what a particular person is doing on your system, no
matter what user ID that person may assume.

The security identity can have limited access. So, even though a user may use the Linux
su command to become the root user, the user’s security identity could prevent him or her
from performing any root user administrative commands. As noted previously, to gain an
administrative access, the role for their security identity would have to change as well.

ch17.indd 329 10/24/07 10:02:53 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 330 P a r t V : S e c u r i t y 330 P a r t V : S e c u r i t y

Use id -Z to see what the security context for your security identity is, what roles you
have, and what kind of objects you can access. This will list the user security context that
starts with the security ID, followed by a colon, and then the roles a user has and the objects
the user can control. Security identities can have roles that control what they can do. A user
role is user_r, and a system administration role is system_r. The general security identity is
user_u, whereas a particular security identity will normally use the username. The following
example shows a standard user with the general security identity:

$ id -Z
 user_u:user_r:user_t

In this example the user has a security identity called george:

$ id -Z
 george:user_r:user_t

You can use the newrole command to change the role a user is allowed. Changing to a
system administrative role, the user can then have equivalent root access.

$ id -Z
 george:sysadm_r:sysadm_t

Domains
Domains are used to identify and control processes. Each process is assigned a domain within
which it can run. A domain sets restrictions on what a process can do. Traditionally, a process
was given a user ID to determine what it could do, and many had to have root user ID to
gain access to the full file system. This also could be used to gain full administrative access
over the entire system. A domain, on the other hand, can be tailored to access some areas but
not others. Attempts to break into another domain, such as the administrative domain,
would be blocked. For example, the administrative domain is sysadm_t, whereas the DNS
server uses only named_t, and users have a user_t domain.

Types
Whereas domains control processes, types control objects like files and directories. Files and
directories are grouped into types that can be used to control who can have access to them.
The type names have the same format as the domain names, ending with a _t suffix. Unlike
domains, types reference objects, including files, devices, and network interfaces.

Roles
Types and domains are assigned to roles. Users (security identities) with a given role can
access types and domains assigned to that role. For example, most users can access user_t
type objects but not sysadm_t objects. The types and domains a user can access are set by
the role entry in configuration files. The following example allows users to access objects
with the user password type:

role user_r types user_passwd_t

ch17.indd 330 10/24/07 10:02:53 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 331

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 331

Security Context
Each object has a security context that set its security attributes. These include identity, role,
domain or type. A file will have a security context listing the kind of identity that can access it,
the role under which it can be accessed, and the security type it belongs to. Each component
adds its own refined level of security. Passive objects are usually assigned a generic role,
object_r, which has no effect, as such objects cannot initiate actions.

A normal file created by users in their own directories will have the following identity,
role, and type. The identity is a user and the role is that of an object. The type is the user’s
home directory. This type is used for all subdirectories and their files created within a user’s
home directory.

user_u:object_r:user_home_t

A file or directory created by that same user in a different part of the file system will have
a different type. For example, the type for files created in the /tmp directory will be tmp_t.

user_u:object_r:tmp_t

Transition: Labeling
A transition, also known as labeling, assigns a security context to a process or file. For a file,
the security context is assigned when it is created, whereas for a process the security context
is determined when the process is run.

Making sure every file has an appropriate security context is called labeling. Adding
another file system requires that you label (add security contexts) to the directories and files
on it. Labeling varies, depending on the policy you use. Each policy may have different
security contexts for objects and processes. Relabeling is carried out using the fixfiles
command in the policy source directory.

fixfiles relabel

Policies
A policy is a set of rules to determine the relationships between users, roles, and types or
domains. These rules state what types a role can access and what roles a user can have.

Multi-Level Security (MLS) and Multi-Category Security (MCS)
Multi-Level Security (MLS) adds a more refined security access method, designed for
servers. MLS adds a security level value to resources. Only users with access to certain
levels can access the corresponding files and applications. Within each level, access can be
further controlled with the use of categories. Categories work much like groups, allowing
access only to users cleared for that category. Access becomes more refined, instead of an
all-or-nothing situation.

Multi-Category Security (MCS) extends SELinux to use not only by administrators, but
also by users. Users can set categories that can restrict and control access to their files and
applications. Though based on MLS, it uses only categories, not security levels. Users can
select a category for a file, but only the administrator can create a category and determine

ch17.indd 331 10/24/07 10:02:54 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 332 P a r t V : S e c u r i t y 332 P a r t V : S e c u r i t y

what users can access it. Though similar in concept to an ACL (Access Control List), it
differs in that it makes use of the SELinux security structure, providing user-level control
enforced by SELinux.

Management Operations for SELinux
Certain basic operations, such as checking the SELinux status, checking a user’s or file’s
security context, or disabling SELinux at boot, can be very useful.

Turning Off SELinux
Should you want to turn off SELinux before you even start up your system, you can do so at
the boot prompt. Just add the following parameter to the end of your GRUB boot line:

selinux=0

To turn off SELinux permanently, set the SELINUX variable in the /etc/selinux/config file
to disabled:

SELINUX=disabled

To turn off (permissive mode) SELinux temporarily without rebooting, use the
setenforce command with the 0 option; use 1 to turn it back on (enforcing mode). You can
also use the terms permissive or enforcing at the arguments instead of 0 or 1. You must
first have the sysadm_r role, which you can obtain by logging in as the root user.

setenforce 1

Checking Status and Statistics
To check the current status of your SELinux system, use sestatus. Adding the -v option
will also display process and file contexts, as listed in /etc/sestatus.conf. The contexts will
specify the roles and types assigned to a particular process, file, or directory.

sestatus -v

Use the seinfo command to display your current SELinux statistics:

seinfo
Statistics for policy file: /etc/selinux/targeted/policy/policy.21
Policy Version & Type: v.21 (binary, MLS)

 Classes: 55 Permissions: 206
 Types: 1043 Attributes: 85
 Users: 3 Roles: 6
 Booleans: 135 Cond. Expr.: 138
 Sensitivities: 1 Categories: 256
 Allow: 46050 Neverallow: 0
 Auditallow: 97 Dontaudit: 3465
 Role allow: 5 Role trans: 0
 Type_trans: 987 Type_change: 14

ch17.indd 332 10/24/07 10:02:54 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 333

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 333

 Type_member: 0 Range_trans: 10
 Constraints: 0 Validatetrans: 0
 Fs_use: 12 Genfscon: 52
 Portcon: 190 Netifcon: 0
 Nodecon: 8 Initial SIDs: 0

Checking Security Context
The -Z option used with the ls, id, and ps commands can be used to check the security
context for files, users, and processes respectively. The security context tells you the roles
that users must have to access given processes or objects.

ls -lZ
id -Z
ps -eZ

SELinux Management Tools
SELinux provides a number of tools to let you manage your SELinux configuration and policy
implementation, including semanage to configure your policy. The setools collection provides
SELinux configuration and analysis tools including apol, the Security Policy Analysis tool for
domain transition analysis, sediffx for policy differences, and seaudit to examine the auditd
logs (see Table 17-2). The command line user management tools, useradd, usermod, and
userdel, all have SELinux options that can be applied when SELinux is installed. In addition,
the audit2allow tool will convert SELinux denial messages into policy modules that will
allow access.

Command Description

seinfo Displays policy statistics.

sestatus Checks status of SELinux on your system, including the contexts of
processes and files.

sesearch Searches for Type Enforcement rules in policies.

seaudit Examines SELinux log files.

sediffx Examines SELinux policy differences.

autid2allow Generates policy to allow rules for modules using audit AVC denial messages.

apol The SELinux Policy Analysis tool.

checkpolicy The SELinux policy compiler.

fixfiles Checks file systems and sets security contexts.

restorecon Sets security features for particular files.

newrole Assigns new role.

setfiles Sets security context for files.

chcon Changes context.

chsid Changes security ID.

TABLE 17-2 SELinux Tools

ch17.indd 333 10/24/07 10:02:54 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 334 P a r t V : S e c u r i t y 334 P a r t V : S e c u r i t y

With the modular version of SELinux, policy management is no longer handled by
editing configuration files directly. Instead, you use the SELinux management tools such as
the command line tool semanage. Such tools make use of interface files to generate changed
policies.

semanage
semanage lets you change your SELinux configuration without having to edit SELinux
source files directly. It covers several major categories including users, ports, file contexts,
and logins. Check the Man page for semanage for detailed descriptions. Options let you
modify specific security features such as -s for the username, -R for the role, -t for the type,
and
-r for an MLS security range. The following example adds a user with role user_r.

semanage user -a -R user_r justin

semanage is configured with the /etc/selinux/semanage.conf file, where you can set
semanage to write directly on modules (the default) or work on the source.

The Security Policy Analysis Tool: apol
The SELinux Policy Analysis tool, apol, provides a complex and detailed analysis of a
selected policy. Select the apol entry in the Administration menu to start it.

Checking SELinux Messages: seaudit
SELinux AVC messages are now saved in the /var/log/audit/audit.log file. These are
particularly important if you are using the permissive mode to test a policy you want to
later enforce. You need to find out if you are being denied access when appropriate, and
afforded control when needed. To see only the SELinux messages, you can use the seaudit
tool. Startup messages for the SELinux service are still logged in /var/log/messages.

Allowing Access: chcon and audit2allow
Whenever SELinux denies access to a file or application, the kernel issues an AVC notice. In
many cases the problem can be fixed simply by renaming the security context of a file to
allow access. You use the chcon command to change a file’s security context. In this rename,
access needs to be granted to the Samba server for a log.richard3 file in the /var/lib/samba
directory.

chcon -R -t samba_share_t log.richard3

More complicated problems, especially ones that are unknown, may require you to create
a new policy module using the AVC messages in the audit log. To do this, you can use the
audit2allow command. This command will take an audit AVC messages and generate
commands to allow SELinux access. The audit log is /var/log/autid/audit.log. This log is
outputted to audit2allow, which then can use its -M option to create a policy module.

cat /var/log/audit/audit.log | audit2allow -M local

You then use the semodule command to load the module:

semodule -i local.pp

ch17.indd 334 10/24/07 10:02:54 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 335

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 335

If you want to first edit the allowable entries, you can use the following to create a .te
file of the local module, local.te, which you can then edit:

audit2allow -m local -i /var/log/audit/audit.log > local.te

Once you have edited the .te file, you can use checkmodule to compile the module, and
then semodule_package to create the policy module, local.pp. Then you can install it with
semodule. You first create a .mod file with checkmodule, and then a .pp file with semodule_
package.

checkmodule -M -m -o local.mod local.te
semodule_package -o local.pp -m local.mod

semodule -i local.pp

In this example the policy module is called local. If you later want to create a new
module with audit2allow, you should either use a different name or append the output to
the .te file using the -o option.

TIP On Red Hat and Fedora distributions, you can use the SELinux Troubleshooter to detect
SELinux access problems.

The SELinux Reference Policy
A system is secured using a policy. SELinux now uses a single policy, the reference policy,
instead of the two separate targeted and strict policies used in previous editions (see
serefpolicy.sourceforge.net). Instead of giving users just two alternatives, strict and
targeted, the SELinux reference policy project aims to provide a basic policy that can be
easily adapted and expanded as needed. The SELinux reference policy configures SELinux
into modules that can be handled separately. You still have strict and targeted policies, but
they are variations on a basic reference policy. In addition, you can have an MLS policy for
Multi-Level Security. The targeted policy is installed by default, and you can install the
strict or MLS policies yourself.

On some distributions, such as Fedora, there may be separate policy configurations
already provided. For example, Fedora currently provides three effective policies : targeted,
strict, and mls. The targeted policy is used to control specific services, like network and
Internet servers such as web, DNS, and FTP servers. It also can control local services with
network connections. The policy will not affect just the daemon itself, but all the resources it
uses on your system.

The strict policy provides complete control over your system. It is under this kind of
policy that your users, and even administrators, can be inadvertently locked out of the
system. A strict policy needs to be carefully tested to make sure access is denied or granted
when appropriate.

There will be targeted, strict, and mls subdirectories in your /etc/selinux directory, but
they now each contain a modules directory. It is here that you will find your SELinux
configurations.

ch17.indd 335 10/24/07 10:02:55 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 336 P a r t V : S e c u r i t y 336 P a r t V : S e c u r i t y

Multi-Level Security (MLS)
Multi-Level Security (MLS) add a more refined security access method. MLS adds a security
level value to resources. Only users with access to certain levels can access the corresponding
files and applications. Within each level, access can be further controlled with the use of
categories. Categories work much like groups, allowing access only to users cleared for that
category. Access becomes more refined, instead of an all-or-nothing situation.

Multi-Category Security (MCS)
Multi-Category Security (MCS) extends SELinux to use not only by administrators, but also by
users. Users can set categories that restrict and control access to their files and applications.
Though based on MLS, MCS uses only categories, not security levels. Users can select a
category for a file, but only the administrator can create a category and determine what users
can access it. Though similar in concept to an ACL (access control list), it differs in that it makes
use of the SELinux security structure, providing user-level control enforced by SELinux.

Policy Methods
Operating system services and components are categorized in SELinux by their type and
their role. Rules controlling these objects can be type based or role based. Policies are
implemented using two different kinds of rules, Type Enforcement (TE) and Role Based
Access Control (RBAC). Multi-Level Security (MLS) is an additional method further
restricting access by security level. Security context now features both the role of an object,
such as a user, and that object’s security level.

Type Enforcement
With a type structure, the operating system resources are partitioned off into types, with
each object assigned a type. Processes are assigned to domains. Users are restricted to
certain domains and allowed to use only objects accessible in those domains.

Role-Based Access Control
A role-based approach focuses on controlling users. Users are assigned roles that define
what resources they can use. In a standard system, file permissions, such as those for
groups, can control user access to files and directories. With roles, permissions become more
flexible and refined. Certain users can have more access to services than others.

SELinux Users
Users will retain the permissions available on a standard system. In addition, SELinux
can set up its own controls for a given user, defining a role for that user. General security
identities created by SELinux include:

• system_u The user for system processes

• user_u To allow normal users to use a service

• root For the root user

ch17.indd 336 10/24/07 10:02:55 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 337

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 337

Policy Files
Policies are implemented in policy files. These are binary files compiled from source files.
For a preconfigured targeted policy file, the policy binary files are in policy subdirectories in
the /etc/selinux configuration directory, /etc/selinux/targeted. For example, the policy file
for the targeted policy is

/etc/selinux/targeted/policy/policy.20

The targeted development files that hold the interface files are installed at /usr/share/selinux.

/usr/share/selinux/targeted

You can use the development files to create your own policy modules that you can
then load.

SELinux Configuration
Configuration for general SELinux server settings is carried out in the /etc/selinux/config
file. Currently there are only two settings to make: the state and the policy. You set the
SELINUX variable to the state, such as enforcing or permissive, and the SELINUXTYPE
variable to the kind of policy you want. These correspond to the Securitylevel-config
SELinux settings for disabled and enforcing, as well as the policy to use, such as targeted
(the targeted name may be slightly different on different distributions, like refpolicy-targeted
used on Debian). A sample config file is shown here:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - SELinux is fully disabled.
SELINUX=permissive
SELINUXTYPE= type of policy in use. Possible values are:
targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.
SELINUXTYPE=targeted

SELinux Policy Rules
Policy rules can be made up of either type (Type Enforcement, or TE) or RBAC (Role Based
Access Control) statements, along with security levels (Multi-Level Security). A type
statement can be a type or attribute declaration or a transition, change, or assertion rule. The
RBAC statements can be role declarations or dominance, or they can allow roles. A security
level specifies a number corresponding to the level of access permitted. Policy configuration
can be difficult, using extensive and complicated rules. For this reason, many rules are
implemented using M4 macros in fi files that will in turn generate the appropriate rules
(Sendmail uses M4 macros in a similar way). You will find these rules in files in the SELinux
reference policy source code package that you need to download and install.

ch17.indd 337 10/24/07 10:02:55 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 338 P a r t V : S e c u r i t y 338 P a r t V : S e c u r i t y

Type and Role Declarations
A type declaration starts with the keyword type, followed by the type name (identifier) and
any optional attributes or aliases. The type name will have a _t suffix. Standard type
definitions are included for objects such as files. The following is a default type for any file,
with attributes file_type and sysadmfile:

type file_t, file_type, sysadmfile;

The root will have its own type declaration:

type root_t, file_type, sysadmfile;

Specialized directories such as the boot directory will also have their own type:

type boot_t, file_type, sysadmfile;

More specialized rules are set up for specific targets like the Amanda server. The following
example is the general type definition for amanda_t objects, those objects used by the Amanda
backup server, as listed in the targeted policy’s src/program/amanda.te file:

type amanda_t, domain, privlog, auth, nscd_client_domain;

A role declaration determines the roles that can access objects of a certain type. These
rules begin with the keyword role followed by the role and the objects associated with that
role. In this example, the amanda objects (amanda_t) can be accessed by a user or process
with the system role (system_r):

role system_r types amanda_t;

A more specific type declaration is provided for executables, such as the following for
the Amanda server (amanda_exec_t). This defines the Amanda executable as a system
administration–controlled executable file.

type amanda_exec_t, file_type, sysadmfile, exec_type;

Associated configuration files often have their own rules:

type amanda_config_t, file_type, sysadmfile;

In the targeted policy, a general unconfined type is created that user and system roles
can access, giving complete unrestricted access to the system. More specific rules will
restrict access to certain targets like the web server.

type unconfined_t, domain, privuser, privhome, privrole, privowner, admin,
auth_write, fs_domain, privmem;
role system_r types unconfined_t;
role user_r types unconfined_t;
role sysadm_r types unconfined_t;

Types are also set up for the files created in the user home directory:

type user_home_t, file_type, sysadmfile, home_type;
type user_home_dir_t, file_type, sysadmfile, home_dir_type;

ch17.indd 338 10/24/07 10:02:55 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 339

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 339

File Contexts
File contexts associate specific files with security contexts. The file or files are listed first,
with multiple files represented with regular expressions. Then the role, type, and security
level are specified. The following creates a security context for all files in the /etc directory
(configuration files). These are accessible from the system user (system_u) and are objects of
the etc_t type with a security level of 0, s0.

/etc(/.*)? system_u:object_r:etc_t:s0

Certain files can belong to other types; for instance, the resolve.conf configuration file
belongs to the net_conf type:

/etc/resolv\.conf.* -- system_u:object_r:net_conf_t:s0

Certain services will have their own security contexts for their configuration files:

/etc/amanda(/.*)? system_u:object_r:amanda_config_t:s0

File contexts are located in the file_contexts file in the policy’s contexts directory, such
as /etc/selinux/targeted/contexts/files/file_contexts. The version used to create or modify
the policy is located in the policy modules active directory, as in targeted/modules/active/
file_contexts.

User Roles
User roles define what roles a user can take on. Such a role begins with the keyword user
followed by the username, then the keyword roles, and finally the roles it can use. You will
find these rules in the SELinux reference policy source code files. The following example is a
definition of the system_u user:

user system_u roles system_r;

If a user can have several roles, then they are listed in brackets. The following is the
definition of the standard user role in the targeted policy, which allows users to take on
system administrative roles:

user user_u roles { user_r sysadm_r system_r };

The strict policy lists only the user_r role:

user user_u roles { user_r };

Access Vector Rules: allow
Access vector rules are used to define permissions for objects and processes. The allow
keyword is followed by the object or process type and then the types it can access or be
accessed by and the permissions used. The following allows processes in the amanda_t domain
to search the Amanda configuration directories (any directories of type amanda_config_t):

allow amanda_t amanda_config_t:dir search;

ch17.indd 339 10/24/07 10:02:56 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 340 P a r t V : S e c u r i t y 340 P a r t V : S e c u r i t y

The following example allows Amanda to read the files in a user home directory:

allow amanda_t user_home_type:file { getattr read };

The next example allows Amanda to read, search, and write files in the Amanda data
directories:

allow amanda_t amanda_data_t:dir { read search write };

Role Allow Rules
Roles can also have allow rules. Though they can be used for domains and objects, they are
usually used to control role transitions, specifying whether a role can transition to another
role. These rules are listed in the RBAC configuration file. The following entry allows the
user to transition to a system administrator role:

allow user_r sysadm_r;

Transition and Vector Rule Macros
The type transition rules set the type used for rules to create objects. Transition rules also
require corresponding access vector rules to enable permissions for the objects or processes.
Instead of creating separate rules, macros are used that will generate the needed rules. The
following example sets the transition and access rules for user files in the home directory,
using the file_type_auto_trans macro:

file_type_auto_trans(privhome, user_home_dir_t, user_home_t)

The next example sets the Amanda process transition and acce ss rules for creating
processes:

domain_auto_trans(inetd_t, amanda_inetd_exec_t, amanda_t)

Constraint Rules
Restrictions can be further placed on processes such as transitions to ensure greater security.
These are implemented with constraint definitions in the constraints file. Constraint rules
are often applied to transition operations, such as requiring that, in a process transition, user
identities remain the same, or that process 1 be in a domain that has the privuser attribute
and process 2 be in a domain with the userdomain attribute. The characters u, t, and r refer
to user, type, and role, respectively.

constrain process transition
 (u1 == u2 or (t1 == privuser and t2 == userdomain)

SELinux Policy Configuration Files
Configuration files are normally changed using .te and .fc files. These are missing from the
module headers in /usr/share/selinux. If you are adding a module you will need to create
the .te and .fc files for it. Then you can create a module and add it as described in the next
section. If you want to create or modify your own policy, you will need to download and

ch17.indd 340 10/24/07 10:02:56 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 341

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 341

install the source code files for the SELinux reference policy, as described the section after
“Using SELinux Source Configuration”. The reference policy code holds the complete set
of .te and .fc configuration files.

Compiling SELinux Modules
Instead of compiling the entire source each time you want to make a change, you can just
compile a module for the area you changed. The modules directory holds the different
modules. Each module is built from a corresponding .te file. The checkmodule command
is used to create a .mod module file from the .te file, and then the semodule_package
command is used to create the loadable .pp module file as well as a .fc file context file. As
noted in the SELinux documentation, if you need to change the configuration for syslogd,
you first use the following to create a syslogd.mod file using syslogd.te. The -M option
specifies support for MLS security levels.

checkmodule -M -m syslogd.te -o syslogd.mod

Then use the semodule_package command to create a syslogd.pp file from the syslogd
.mod file. The -f option specifies the file context file.

semodule_package -m syslogd.mod -o syslogd.pp -f syslogd.fc

To add the module you use semodule and the -i option. You can check if a module is
loaded with the -l option.

semodule -i syslogd.pp

Changes to the base policy are made to the policy.conf file, which is compiled into the
base.pp module.

Using SELinux Source Configuration
To perform you own configuration, you will have to download and install the source code
file for the SELinux reference policy. For RPM distributions, this will be an SRPMS file. The
.te files used for configuring SELinux are no longer part of the SELinux binary packages.

NOTE On Red Hat and Fedora distributions, the compressed archive of the source, a tgz file, along
with various policy configuration files, will be installed to /usr/src/redhat/SOURCES. (Be sure
you have already installed rpm-build; it is not installed by default.) You use an rpmbuild
operation with the security-policy.spec file to extract the file to the serefpolicy directory in
/usr/src/redhat/BUILD.

Change to the seref-policy directory and run the following command to install the
SELinux source to /etc/selinux/serefpolicy/src.

make install-src

The rules are held in configuration files located in various subdirectories in a policy’s
src directory. Within this directory you will find a policy/modules subdirectory. There,
organized into several directories, such as admin and apps, you will find the .tc, .fc, and .if
configuration files.

ch17.indd 341 10/24/07 10:02:56 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 342 P a r t V : S e c u r i t y 342 P a r t V : S e c u r i t y

You will have configuration files for both Type Enforcement and security contexts. Type
Enforcement files have the extension .te, whereas security contexts have an .sc extension.

Reflecting the fine-grained control that SELinux provides, you have numerous module
configuration files for the many kinds of objects and processes on your system. The primary
configuration files and directories are listed in Table 17-3, but several expand to detailed
listing of subdirectories and files.

Interface Files
File interface files allow management tools to generate policy modules. They define interface
macros for your current policy. The refpolicy SELinux source file will hold .if files for each
module, along with .te and .fc files. Also, the .if files in the /usr/share/selinux/devel
directory can be used to generate modules.

TABLE 17-3 SELinux Policy Configuration Files

Directories and Files Description

assert.te Access vector assertions

config/appconfig-* Application runtime configuration files

policy/booleans.conf Tunable features

file_contexts Security contexts for files and directories

policy/flask Flask configuration

policy/mcs Multi-Category Security (MCS) configuration

doc Policy documentation support

policy/modules Security policy modules

policy/modules.conf Module list and use

policy/modules/admin Administration modules

policy/modules/apps Application modules

policy/modules/kernel Kernel modules

policy/modules/services Services and server modules

policy/modules/system System modules

policy/rolemap User domain types and roles

policy/users General users definition

config/local.users Your own SELinux users

policy/constraints Additional constraints for role transition and object access

policygentool Script to generate policies

policy/global_tunables Policy tunables for customization

policy/mls Multi-Level Security (MLS) configuration

ch17.indd 342 10/24/07 10:02:56 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 343

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 343

Types Files
In the targeted policy, the modules directory that defines types holds a range of files,
including nfs.te and network.te configuration files. Here you will find type declarations for
the different kinds of objects on your system. The .te files are no longer included with your
standard SELinux installation. Instead, you have to download and install the serefpolicy
source package. This is the original source and allows you to completely reconfigure your
SELinux policy, instead of managing modules with management tools like semanage. The
modules directory will hold .te files for each module, listing their TE rules.

Module Files
Module are located among several directories in the policy/modules directory. Here you
will find three corresponding files for each application or service. There will be a .te file that
contains the actual Type Enforcement rules, an .if, for interface (a file that allows other
applications to interact with the module), and the .fc files that define the file contexts.

Security Context Files
Security contexts for different files are detailed in security context files. The file_contexts
file holds security context configurations for different groups, directories, and files. Each
configuration file has an .fc extension. The types.fc file holds security contexts for various
system files and directories, particularly access to configuration files in the /etc directory. In
the SELinux source, each module will have its own .fc file, along with corresponding .te and
.if files. The distros.fc file defines distribution-dependent configurations. The homedir_
template file defines security contexts for dot files that may be set up in a user’s home
directory, such as .mozilla, .gconf, and .java.

A modules directory has file context files for particular applications and services. For
example, apache.fc has the security contexts for all the files and directories used by the
Apache web server, such as /var/www and /etc/httpd.

User Configuration: Roles
Global user configuration is defined in the policy directory’s users file. Here you find the
user definitions and the roles they have for standard users (user_u) and administrators
(admin_u). To add your own users, you use the local.users file. Here you will find examples
for entering your own SELinux users. Both the strict and targeted policies use the general
user_u SELinux identity for users. To set up a separate SELinux identity for a user, you
define that user in the local.users file.

The rbac file defines the allowed roles one role can transition to. For example, can the
user role transition to an system administration role? The targeted policy has several entries
allowing a user to freely transition to an administrator, and vice versa. The strict policy has
no such definitions.

Role transitions are further restricted by rules in the constraints file. Here the change to
other users is controlled, and changing object security contexts (labeling) is restricted.

Policy Module Tools
To create a policy module and load it, you use several policy module tools. First the
checkmodule command is used to create .mod file from a .te file. Then the semodule_
package tool takes the .mod file and any supporting .fc file, and generates a module policy

ch17.indd 343 10/24/07 10:02:56 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 344 P a r t V : S e c u r i t y 344 P a r t V : S e c u r i t y

package file, .pp. Finally, the semodule tool can take the policy package file and install it as
part of your SELinux policy.

Application Configuration: appconfig
Certain services and applications are security aware and will request default security contexts
and types from SELinux (see also the upcoming section "Runtime Security Contexts and Types:
contexts"). The configuration is kept in files located in the policy/config/appconfig-* directory.
The default_types file holds type defaults; default_contexts holds default security contexts.
The initrc_context file has the default security context for running /etc/rc.d scripts. A special
root_default_contexts file details how the root user can be accessed. The removable_context
file holds the security context for removable devices, and media lists media devices, such as
cdrom for CD-ROMs. Runtime values can also be entered in corresponding files in the policy
contexts directory, such as /etc/selinux/targeted/contexts.

Creating an SELinux Policy: make and checkpolicy
If you want to create an entirely new policy, you use the SELinux reference policy source,
/etc/selinux/serefpolicy. Once you have configured your policy, you can create it with the
make policy and checkpolicy commands. The make policy command generates a policy
.conf file for your configuration files, which checkpolicy can then use to generate a policy
binary file. A policy binary file will be created in the policy subdirectory with a numeric
extension for the policy version, such as policy.20.

You will have to generate a new policy.conf file. To do this you enter the following
command in the policy src directory, which will be /etc/selinux/serefpolicy/src/policy.

make policy

Then you can use checkpolicy to create the new policy.
Instead of compiling the entire source each time you want to make a change, you can

just compile a module for the area you changed. (In the previous SELinux version, you
always had to recompile the entire policy every time you made a change.) The modules
directory holds the different modules. Each module is built from a corresponding .te file.
The checkmodule command is used to create a .mod module file from the .te file, and then
the semanage_module command is used to create the loadable policy package .pp module
file. As noted in the SELinux documentation, if you need to just change the configuration
for syslogd, you would first use the following to create a syslogd.mod file using syslogd.te.
The -M option specifies support for MLS security levels.

checkmodule -M -m syslogd.te -o syslogd.mod

Then use the semanage_module command to create a syslogd.pp file from the syslogd
.mod file. The -f option specifies the file context file.

semanage_module -m syslogd.mod -o syslogd.pp -f syslogd.fc

To add the module, you use semodule and the -i option. You can check if a module is
loaded with the -l option.

semodule -i syslogd.pp

ch17.indd 344 10/24/07 10:02:57 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 345

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 345

Changes to the base policy are made to the policy.conf file, which is compiled into the
base.pp module.

To perform your own configuration, you will now have to download the source code
files. The .te files used for configuring SELinux are no longer part of the SELinux binary
packages. Once installed, the source will be in the sefepolicy directory in /etc/selinux.

SELinux: Administrative Operations
There are several tasks you can perform on your SELinux system without having to recompile
your entire configuration. Security contexts for certain files and directories can be changed as
needed. For example, when you add a new file system, you will need to label it with the
appropriate security contexts. Also, when you add users, you may need to have a user be
given special attention by the system.

Using Security Contexts: fixfiles, setfiles, restorecon, and chcon
Several tools are available for changing your objects’ security contexts. The fixfiles
command can set the security context for file systems. You use the relabel option to set
security contexts and the check option to see what should be changed. The fixfiles tool
is a script that uses setfiles and restorecon to make actual changes.

The restorecon command will let you restore the security context for files and
directories, but setfiles is the basic tool for setting security contexts. It can be applied to
individual files or directories. It is used to label the file when a policy is first installed.

With chcon, you can change the permissions of individual files and directories, much as
chmod does for general permissions.

Adding New Users
If a new user needs no special access, you can generally just use the generic SELinux user_u
identity. If, however, you need to allow the user to take on roles that would otherwise be
restricted, such as a system administrator role in the strict policy, you need to configure the
user accordingly. To do this, you add the user to the local.users file in the policy users
directory, as in /etc/selinux/targeted/policy/users/local.users. Note that this is different
from the local.users file in the src directory, which is compiled directly into the policy. The
user rules have the syntax

user username roles { rolelist };

The following example adds the sysadm role to the george user:

user george roles { user_r sysadm_r };

Once the role is added, you have to reload the policy.

make reload

You can also manage users with the semanage command with the user option. To see
what users are currently active, you can list them with the semanage user command and
the -l option.

ch17.indd 345 10/24/07 10:02:57 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

 346 P a r t V : S e c u r i t y 346 P a r t V : S e c u r i t y

semanage user -l
system_u: system_r
user_u: user_r sysadm_r system_r
root: user_r sysadm_r system_r

The semanage user command has a, d, m, options for adding, removing, or changing
users, respectively. The a and m options let you specify roles to add to a user, whereas the d
option will remove the user.

Runtime Security Contexts and Types: contexts
Several applications and services are security aware, and will need default security
configuration information such as security contexts. Runtime configurations for default
security contexts and types are kept in files located in the policy context directory, such as
/etc/selinux/targeted/contexts. Types files will have the suffix _types, and security context
files will use _context. For example, the default security context for removable files is
located in the removable_context file. The contents of that file are shown here:

system_u:object_r:removable_t

The default_context file is used to assign a default security context for applications. In
the strict policy it is used to control system admin access, providing it where needed, for
instance, during the login process.

The following example sets the default roles for users in the login process:

system_r:local_login_t user_r:user_t

This allows users to log in either as administrators or as regular users.

system_r:local_login_t sysadm_r:sysadm_t user_r:user_t

This next example is for remote user logins, for which system administration is not included:

system_r:remote_login_t user_r:user_t staff_r:staff_t

The default_types file defines default types for roles. This files has role/type entries,
and when a transition takes place to a new role, the default type specified here is used. For
example, the default type for the sysadm_r role is sysadm_t.

sysadm_r:sysadm_t
user_r:user_t

Of particular interest is the initrc_context file, which sets the context for running the
system scripts in the /etc/rc.d directory. In the targeted policy these are open to all users.

user_u:system_r:unconfined_t

In the strict policy these are limited to the system user.

system_u:system_r:initrc_t

ch17.indd 346 10/24/07 10:02:57 AM

 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 347

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X

PART V
 C h a p t e r 1 7 : S e c u r i t y - E n h a n c e d L i n u x 347

users
Default security contexts may also need to be set up for particular users such as the root
user. In the sesusers file you will find a root entry that lists roles, types, and security levels
the root user can take on, such as the following example for the su operation (on some
distributions this may be a users directory with separate files for different users):

sysadm_r:sysadm_su_t sysadm_r:sysadm_t staff_r:staff_t user_r:user_t

context/files
Default security contexts for your files and directories are located in the contexts/files
directory. The file_contexts directory lists the default security contexts for all your files and
directories, as set up by your policy. The file_context.homedirs directory sets the file
contexts for user home directory files as well as the root directory, including dot
configuration files like .mozilla and .gconf. The media file sets the default context for media
devices such as CD-ROMs and disks.

cdrom system_u:object_r:removable_device_t
floppy system_u:object_r:removable_device_t
disk system_u:object_r:fixed_disk_device_t

ch17.indd 347 10/24/07 10:02:57 AM

CompRef8 / Linux: The Complete Reference / Richard Petersen / 247-X
blind folio : 348

ch17.indd 348 10/24/07 10:02:57 AM

