

PHP Hacks™

by Jack D. Herrington

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Brett McLaughlin

Production Editor: Reba Libby

Cover Designer: Marcia Friedman

Interior Designer: David Futato

Printing History:
December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. The Hacks series designations, PHP Hacks, the image of a propeller beanie,
and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies
that technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may
not work, may cause unintended harm to systems on which they are used, or may not be consistent
with applicable user agreements. Your use of these hacks is at your own risk, and O’Reilly Media,
Inc. disclaims responsibility for any damage or expense resulting from their use. In any event, you
should take care that your use of these hacks does not violate any applicable laws, including
copyright laws.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-10139-2
[M]

,COPYRIGHT.4457 Page iv Monday, November 28, 2005 6:03 PM

216

Chapter 6C H A P T E R S I X

Application Design
Hacks 51–66

Sitting on top of the database and below the HTML is application logic.
This chapter concentrates on hacks that will add stability and flexibility to
your application logic. Topics covered include security and roles, password
management, login and session management, and e-commerce.

H A C K

#51
Create Modular Interfaces Hack #51

Use dynamic loading to allow users to write snap-in modules for your
application.

Most of the really popular PHP open source applications have an extension
mechanism that allows for PHP coders to write small fragments of code that
are dynamically loaded into the application. This hack demonstrates an
XML-based drawing script that you can extend simply by placing new PHP
classes into a modules directory; of course, the point is not as much the
drawing code as the way you can extend it easily.

The Code
Save the code in Example 6-1 as modhost.php.

Example 6-1. The code that handles a modular PHP architecture

<?php

class DrawingEnvironment

{

 private $img = null;

 private $x = null;

 private $y = null;

 private $colors = array();

 public function _ _construct($x, $y)

 {

 $this->img = imagecreatetruecolor($x, $y);

Create Modular Interfaces #51

Chapter 6, Application Design | 217

HACK

 $this->addColor('white', 255, 255, 255);

 $this->addColor('black', 0, 0, 0);

 $this->addColor('red', 255, 0, 0);

 $this->addColor('green', 0, 255, 0);

 $this->addColor('blue', 0, 0, 255);

 imagefilledrectangle($this->image(),

 0, 0, $x, $y, $this->color('white'));

 }

 public function image() { return $this->img; }

 public function size_x() { return $this->x; }

 public function size_y() { return $this->y; }

 public function color($c) { return $this->colors[$c]; }

 public function save($file)

 {

 imagepng($this->img, $file);

 }

 protected function addColor($name, $r, $g, $b)

 {

 $col = imagecolorallocate($this->img, $r, $g, $b);

 $this->colors[$name] = $col;

 }

}

interface DrawingObject

{

 function drawObject($env);

 function setParam($name, $value);

}

function loadModules($dir)

{

 $classes = array();

 $dh = new DirectoryIterator($dir);

 foreach($dh as $file)

 {

 if($file->isDir() == 0 && preg_match("/[.]php$/", $file))

 {

 include_once($dir."/".$file);

 $class = preg_replace("/[.]php$/", "", $file);

 $classes []= $class;

 }

 }

 return $classes;

}

Example 6-1. The code that handles a modular PHP architecture (continued)

218 | Chapter 6, Application Design

#51 Create Modular Interfaces
HACK

$classes = loadModules("mods");

$dom = new DOMDocument();

$dom->load($argv[1]);

$nl = $dom->getElementsByTagName("image");

$root = $nl->item(0);

$size_x = $root->getAttribute('x');

$size_y = $root->getAttribute('y');

$file = $root->getAttribute('file');

$de = new DrawingEnvironment($size_x, $size_y);

$obs_spec = array();

$el = $root->firstChild;

while($el != null)

{

 if ($el->tagName != null)

 {

 $params = array();

 for($i = 0; $i < $el->attributes->length; $i++)

 {

 $p = $el->attributes->item($i)->nodeName;

 $v = $el->attributes->item($i)->nodeValue;

 $params[$p] = $v;

 }

 $obs_spec []= array(

 'type' => $el->tagName,

 'params' => $params

);

 }

 $el = $el->nextSibling;

}

foreach($obs_spec as $os)

{

 $ob = null;

 eval('$ob = new '.$os['type'].'();');

 foreach($os['params'] as $key => $value)

 $ob->setParam($key, $value);

 $ob->drawObject($de);

}

$de->save($file);

?>

Example 6-1. The code that handles a modular PHP architecture (continued)

Create Modular Interfaces #51

Chapter 6, Application Design | 219

HACK

Save the code in Example 6-2 as mods/Circle.php.

Running the Hack
This hack is run on the command line. The first thing to do is to create an
XML test file:

<image x='100' y='100' file='out.png'>

 <Circle x='20' y='40' color='red' radius='15' />

 <Circle x='60' y='30' color='green' radius='30' />

 <Circle x='70' y='75' color='blue' radius='35' />

</image>

This XML file specifies that the image should be 100×100 pixels and named
out.png, and that the image should have three circles, each of varying size
and color.

With the XML in hand, run the script:

% php modhost.php test.xml

Example 6-2. An example module that draws circles

<?php

class Circle implements DrawingObject

{

 private $radius = null;

 private $color = null;

 private $x = null;

 private $y = null;

 function drawObject($env)

 {

 $r2 = $this->radius / 2;

 imagefilledellipse($env->image(),

 $this->x - $r2, $this->y - $r2,

 $this->radius, $this->radius,

 $env->color($this->color)

);

 }

 function setParam($name, $value)

 {

 if ($name == "radius") $this->radius = $value;

 if ($name == "color") $this->color = $value;

 if ($name == "x") $this->x = $value;

 if ($name == "y") $this->y = $value;

 }

}

?>

220 | Chapter 6, Application Design

#51 Create Modular Interfaces
HACK

The first argument to the script is the name of the XML file that contains the
image specifications. The output image file looks like Figure 6-1.

To explain a little about what happened here, let me start with the modhost.
php file. At the start of the file, I’ve defined the DrawingEnvironment class,
which is just a wrapper around an image with a few accessors. This environ-
ment will be passed to any drawing objects so that those objects can paint
into the image. The next point of interest is the DrawingObject interface,
which objects must conform to for drawing.

The real trick comes in the loadModules() function, which loads all of the
modules from the specified directory into the PHP environment. Then the
script reads the XML file supplied to it, and parses it into the $obs_spec

object, which is an array version of the XML file. The next step is to create
the drawing environment and build the drawing objects based on the $obs_

spec values; these values are then rendered into the image. Finally, the image
is stored to a file.

Figure 6-2 shows the relationships between the DrawingEnvironment and the
DrawingObjects, as well as how the dynamically loaded Circle class imple-
ments the DrawingObject interface.

This is a simple illustration of this technique.

Figure 6-1. The output image

Figure 6-2. The structure of the drawing system

DrawingEnvironment
img
x
y
colors

DrawingObject
drawObject(drawingEnv)
setParam(name, value)

Circle
x
y
radius
color
drawObject(drawingEnv)
setParam(name, value)

image()
size_x()
size_y()
color(name)
save(file)
-addColor(name, r, g, b)

Support Wiki Text #52

Chapter 6, Application Design | 221

HACK

The specification of an interface makes this a PHP 5-specific
script, but the include_once() and eval() functions were in
PHP 4; it would take a bit of modification, but there is no
reason that you can’t do something similar to this in PHP 4.

I strongly recommend adding an extension mechanism such as this to any
reasonably sized PHP application, especially when you expect deployment
in multiple environments that you don’t control. This approach gives end
users the ability to customize the program to their requirements, without
you having to go in and alter code directly for every new feature or object
type.

See Also
• “Create Objects with Abstract Factories” [Hack #68]

• “Observe Your Objects” [Hack #67]

• “Abstract Construction Code with a Builder” [Hack #70]

H A C K

#52
Support Wiki Text Hack #52

Make it easier for your customers to enter styled text into your application by
supporting the Wiki syntax.

A new form of content management system for the Web, Wikis are a collec-
tion of pages, each titled with a WikiWord, which is a set of two or more
capitalized words joined together without spaces. The ease with which you
can install and update Wikis has made them extremely popular both on
intranets and on the Internet. Perhaps the most famous Wiki is Wikipedia
(http://www.wikipedia.org/). This is an encyclopedia on the Web that any-
one can contribute content to by using just their web browser.

Another reason wikis are so popular is that formatting a Wiki page is a lot
easier than writing the equivalent HTML code. For example, you specify a
paragraph break by just typing two returns—there is no need to add p tags.
In fact, most of the time tags aren’t used at all. For example, you create a
bulleted list by putting an asterisk at the start of each line; this is far easier
than using the equivalent ul and li tags. This hack demonstrates using the
wiki-formatting PEAR module in a PHP application.

The Code
Save the code in Example 6-3 as index.php.

222 | Chapter 6, Application Design

#52 Support Wiki Text
HACK

Then save the code in Example 6-4 as render.php.

Running the Hack
This code requires the Text_Wiki PEAR module [Hack #2]. After installing the
module and creating the PHP files, navigate the browser to the index.php
page shown in Figure 6-3.

Type some Wiki text into the form and click the Submit button. With the
text shown in the example, the output looks like Figure 6-4.

Example 6-3. The page that allows you to edit Wiki text

<html>

<body>

<form method="post" action="render.php">

<textarea name="text" cols="80" rows="20">

+ Header Level 1

Here's a paragraph and a link to AnotherPage.

* list item 1

* list item 2

Link to a NewPage like this.

</textarea>

<input type="submit" />

</form>

</body>

</html>

Example 6-4. The PHP that renders the Wiki text

<html>

<body>

<?php

// Include the Wiki Text Pear library

require_once("Text/Wiki.php");

// Create the Wiki object

$wiki = new Text_Wiki();

// Render the text field sent to us in the form

echo($wiki->transform($_POST["text"], 'Xhtml'));
?>

</body>

</html>

Support Wiki Text #52

Chapter 6, Application Design | 223

HACK

A complete list of the wiki formatting rules is on the Text_
Wiki PEAR component home page at http://wiki.ciaweb.net/
yawiki/index.php?area=Text_Wiki&page=WikiRules.

Hacking the Hack
The Text_Wiki module is very well architected and written. New text format-
ting rules can be added, and the default formatting rules can be enabled and

Figure 6-3. The text input page for the Wiki text renderer

Figure 6-4. The rendered Wiki text

224 | Chapter 6, Application Design

#53 Turn Any Object into an Array
HACK

disabled to suit the application. The enableRule() and disableRule() meth-
ods enable and disable the built-in text formatting rules. The addRule()

method adds new rules to the formatting engine.

H A C K

#53
Turn Any Object into an Array Hack #53

Use the Iterator interface in PHP 5 to turn any object into an array.

If you have ever used the DOM interface to read or write XML in PHP,
you’re already familiar with the DOMNodeList interface. Many methods in the
DOM return an array of nodes. That array is implemented by the
DOMNodeList object. To read the node list, you have to write code like this:

$dl = $doc->getElementsByTagName("foo");

for($i = 0; $i < $dl->length; $i++)

{

 $n = $dl->item($i);

 ...

}

That’s kind of unfortunate, isn’t it, since PHP has that beautiful foreach

operator that gives access to arrays with almost no potential for messing
things up. Wouldn’t it be great if the interface to DOM looked more like
this?

foreach($doc->getElementsByTagName("foo") as $n) {

 ...

}

That is a lot cleaner and far less error prone.

Thanks to the additions in PHP 5, we can now allow foreach to work on any
object, simply by having that class implement the Iterator interface. In this
hack, I’ll show how to implement an Observer pattern [Hack #67] using the
Iterator interface.

The Code
Save the code in Example 6-5 as iterator.php.

Example 6-5. A class that uses PHP 5’s new Iterator interface

<?php

interface Listener

{

 public function invoke($caller, $data);

}

class ListenerList implements Iterator

{

 private $listeners = array();

Turn Any Object into an Array #53

Chapter 6, Application Design | 225

HACK

 public function _ _construct()

 {

 }

 public function add($listener)

 {

 $this->listeners []= $listener;

 }

 public function invoke($caller, $data)

 {

 foreach($this as $listener)

 {

 $listener->invoke($caller, $data);

 }

 }

 public function rewind()

 {

 reset($this->listeners);

 }

 public function current()

 {

 return current($this->listeners);

 }

 public function key()

 {

 return key($this->listeners);

 }

 public function next()

 {

 return next($this->listeners);

 }

 public function valid()

 {

 return ($this->current() !== false);

 }

}

class SimpleListener implements Listener

{

 private $v;

 public function _ _construct($v) { $this->v = $v; }

 public function invoke($caller, $data)

 {

 echo($this->v." invoked with with '$data'\n");

 }

Example 6-5. A class that uses PHP 5’s new Iterator interface (continued)

226 | Chapter 6, Application Design

#53 Turn Any Object into an Array
HACK

The first section of the code defines a Listener interface for objects that are
to be registered with ListenerList. The second part defines ListenerList,
which is just a wrapper around an array with the addition of the add() and
invoke() methods. The other methods all implement the Iterator interface.
SimpleListener is just an implementation of the listener that prints when
called.

Figure 6-5 shows the model for the code in this hack. ListenerList contains
zero or more objects that implement the Listener interface. SimpleListener
implements the Listener interface and just prints out a message whenever
it’s invoked.

Running the Hack
You run this hack on the command line using the command-line interpreter:

% php iterator.php

Listeners:

 public function _ _tostring() { return "Listener ".$this->v; }

}

$ll = new ListenerList();

$ll->add(new SimpleListener("a"));

$ll->add(new SimpleListener("b"));

$ll->add(new SimpleListener("c"));

print("Listeners:\n\n");

foreach($ll as $listener)

{

 print($listener);

 print("\n");

}

print("\nInvoking Listeners:\n\n");

$ll->invoke(null, "Some data");

?>

Figure 6-5. The UML for ListenerList

Example 6-5. A class that uses PHP 5’s new Iterator interface (continued)

ListenerList
Listeners

Listener
invoke(caller, data)

SimpleListener
invoke(caller, data)

add(listener)
invoke(caller, data)
rewind()
current()
key()
next()
value()

Create XML the Right Way #54

Chapter 6, Application Design | 227

HACK

Listener a

Listener b

Listener c

Invoking Listeners:

a invoked with with 'Some data'

b invoked with with 'Some data'

c invoked with with 'Some data'

%

If you look at the end of the code from Example 6-5, you will see the tests
that output here. The first test iterates through the list with a foreach state-
ment. You see the result of this at the top of the run. The second section
shows the result of the invoke() method being called on the ListenerList

object.

The great thing about the Iterator interface is that you can now pass
around complex interfaces in any case where you could only previously use
arrays. Those array interfaces will still work, but now you can have addi-
tional methods as well.

See Also
• “Observe Your Objects” [Hack #67]

H A C K

#54
Create XML the Right Way Hack #54

Use the XML DOM to create XML without errors.

Creating XML from your PHP web application is easy to get wrong. You can
screw up the encoding so that special characters are not formatted properly,
and you can miss start or end tags. Both of these problems, which are com-
mon in even simple PHP applications, will result in invalid XML and will
keep the XML from being read properly by other XML consumers. Almost
all of the problems result from working with XML as streams of characters
instead of using an XML API such as DOM.

This hack will show you how to create XML DOMs in memory and then
export them as text. This method of creating XML avoids all of these encod-
ing and formatting issues, so your XML will be well-formed every time.

228 | Chapter 6, Application Design

#54 Create XML the Right Way
HACK

Figure 6-6 shows the in-memory XML tree that we will create in this hack.
Each element is an object. The base of the system is DOMDocument, which
points to the root node of the tree. From there, each DOMElement node can
contain one or more child nodes and attribute nodes.

The Code
Save the code in Example 6-6 as xmldom.php.

Figure 6-6. The in-memory XML tree

Example 6-6. Sample code that builds XML the right way

<?php

$books = array(

 array (

 id => 1,

 author => "Jack Herrington",

 name => "Code Generation in Action"

),

 array (

 id => 2,

 author => "Jack Herrington",

 name => "Podcasting Hacks"

),

 array (

 id => 3,

 author => "Jack Herrington",

 name => "PHP Hacks"

DOMAttribute
id=1

DOMAttribute
<author>

DOMAttribute
<name>

DOMAttribute
Jack Herrington

DOMAttribute
Code Generation...

DOMAttribute
<book>

DOMAttribute
<book>

DOMAttribute
<book>

DOMAttribute
<books>

DOMAttribute
root

. . .

. . .

Create XML the Right Way #54

Chapter 6, Application Design | 229

HACK

Running the Hack
Upload this file to your server and surf to the xmldom.php page. You should
see something like Figure 6-7.

This is nicely formatted and well-formed XML, and I didn’t have to manu-
ally output a single tag name or attribute value. Instead, the DOM handles
object creation and ties the objects together via the appendChild() method.
Finally, saveXML() is used to export the XML as text. This is the easy and
object-oriented way to create XML that is valid every time.

See Also
• “Design Better SQL Schemas” [Hack #34]

• “Create Bulletproof Database Access” [Hack #35]

)

);

$dom = new DomDocument();

$dom->formatOutput = true;

$root = $dom->createElement("books");

$dom->appendChild($root);

foreach($books as $book)

{

 $bn = $dom->createElement("book");

 $bn->setAttribute('id', $book['id']);

 $author = $dom->createElement("author");

 $author->appendChild($dom->createTextNode($book['author']));

 $bn->appendChild($author);

 $name = $dom->createElement("name");

 $name->appendChild($dom->createTextNode($book['name']));

 $bn->appendChild($name);

 $root->appendChild($bn);

}

header("Content-type: text/xml");

echo $dom->saveXML();

?>

Example 6-6. Sample code that builds XML the right way (continued)

230 | Chapter 6, Application Design

#55 Fix the Double Submit Problem
HACK

H A C K

#55
Fix the Double Submit Problem Hack #55

Use a transaction table in your database to fix the classic double submit
problem.

I have a couple of pet peeves when it comes to bad web application design.
One of the biggest is the wealth of bad code written to fix “double submits.”
How often have you seen an e-commerce site that implores you, “Do not hit
the submit button twice”?

This class problem results when a browser posts the contents of a web form
to the server twice. However, if the user hits “submit” twice, this is exactly
what the browser should do; it’s the server that needs to determine whether
this is an error.

Figure 6-8 shows the double submit problem graphically. The browser sends
two requests because the user clicks twice. The first submit is accepted, and
before the HTML is returned, the second submit goes out. Then the first
response comes in, followed by the second response.

Figure 6-9 illustrates a fix to the double submit problem; the first request
stores a unique ID in the page being processed. That way, when the second
request comes in with the same ID, the redundant transaction is denied.

Figure 6-7. The book XML shown in the Firefox browser

Fix the Double Submit Problem #55

Chapter 6, Application Design | 231

HACK

The Code
Save the code in Example 6-7 as db.sql.

Save the code in Example 6-8 as index.php.

Figure 6-8. The double submit problem sequence diagram

Figure 6-9. The double submit solution requires denying the second request

Example 6-7. The database code for the transaction checker

DROP TABLE IF EXISTS transcheck;

CREATE TABLE transcheck (

 transid TEXT,

 posted TIMESTAMP

);

Example 6-8. The HTML form that has the transaction ID

<? require_once("trans.php"); ?>

<html>

<body>

<form action="handler.php" method="post">

<input type="hidden" name="transid" value="<?php echo(get_transid()); ?>" />

Browser trans.php

First submit

Second submit

First response

Second response

Accepted

Accepted

Browser trans.php

First submit

Second submit

First response

Second response

Accepted

Accepted

232 | Chapter 6, Application Design

#55 Fix the Double Submit Problem
HACK

Save the code in Example 6-9 as handler.php.

Save the code in Example 6-10 as trans.php.

Name: <input type="text" />

Amount: <input type="text" size="5" />

<input type="submit" />

</format>

Example 6-9. The code that receives the form data and checks the transaction

<? require_once("trans.php"); ?>

<html>

<body>

<?php if (check_transid($_POST["transid"])) { ?>

This form has already been submitted.

<?php } else {

add_transid($_POST["transid"]);

?>

Ok, you bought our marvelous product. Thanks!

<?php } ?>

</body>

</html>

Example 6-10. The transaction checking library

<?php

require_once("DB.php");

$dsn = 'mysql://root:password@localhost/transtest';

$db =& DB::Connect($dsn, array());

if (PEAR::isError($db)) {

 die($db->getMessage());

}

function check_transid($id)

{

 global $db;

 $res = $db->query("SELECT COUNT(transid) FROM transcheck WHERE transid=?",

 array($id));

 $res->fetchInto($row);

 return $row[0];

}

function add_transid($id)

{

 global $db;

 $sth = $db->prepare("INSERT INTO transcheck VALUES(?, now())");

 $db->execute($sth, array($id));

}

Example 6-8. The HTML form that has the transaction ID (continued)

Fix the Double Submit Problem #55

Chapter 6, Application Design | 233

HACK

Running the Hack
Upload the files to the server, and then use the mysql command to load the
db.sql schema into your database:

mysql --user=myuser --password=mypassword mydb < db.sql

Next, navigate to the index.php page with your browser, and you will see the
simple e-commerce form shown in Figure 6-10.

Fill in some bogus data and click Submit. You should see the result shown
in Figure 6-11, which shows a successful transaction. This is a good start, as
it shows that we can successfully complete a transaction. Now we’ll move
on to denying redundant transactions.

function get_transid()

{

 $id = mt_rand();

 while(check_transid($id)) { $id = mt_rand(); }

 return $id;

}

?>

Figure 6-10. The e-commerce form

Figure 6-11. A successful purchase

Example 6-10. The transaction checking library (continued)

234 | Chapter 6, Application Design

#56 Create User-Customizable Reports
HACK

Click the Back button and click Submit again. You should see the result in
Figure 6-12.

What happened is that index.php has requested a unique ID from the
trans.php script. The handler.php script, which receives the form variables,
first checks the ID to see whether it has been used already by calling the
check_transid() function. If the ID has been used, the code should return
the result shown in Figure 6-12.

If the ID is not in the database, we use the add_transid() function to add
the ID to the database, and tell the user that the processing has been suc-
cessful, as shown in Figure 6-11.

The astute reader will note the race condition here. If another form submit
comes in between the use of the check_transid() function and the call to
the add_transid() function, you could get a double submit that is appropri-
ate to process. If your database supports stored procedures, you can write a
single transaction that will check to see whether the transaction has com-
pleted and then add the transaction to the completed list. This will avoid the
race condition and ensure that you cannot have double submits.

At the time of this writing, MySQL did not support stored
procedures, though it is in the feature request line for later
releases.

H A C K

#56
Create User-Customizable Reports Hack #56

Use a PHP reporting engine that takes an XML definition file and creates a
custom report.

Reporting engines allow end users to customize the reports generated in
their applications. This is extremely valuable in enterprise applications
because these systems rarely are exactly what the customer wants. The abil-
ity to tweak the reports, notifications, or other front-facing features is criti-
cal for a satisfying user experience.

Figure 6-12. The result of a double submit

Create User-Customizable Reports #56

Chapter 6, Application Design | 235

HACK

A reporting engine gives the user a declarative method for specifying a
report. The host page sets up the query, gets the data, and then runs the
report engine to format the data. Some reporting engines, like RLIB (http://
rlib.sf.net/), can export not only to HTML, but also to PDF, XML, and other
formats. In this hack, I use the PHPReports system (http://phpreports.sf.net/)
to implement a simple book report.

The Code
Save the code in Example 6-11 as index.php.

Save the code in Example 6-12 as bookreport.xml.

Example 6-11. The PHP that runs the report generator

<?php

require_once("PHPReportMaker.php");

$rep = new PHPReportMaker();

$rep->setUser("root");

$rep->setPassword("");

$rep->setDatabaseInterface("mysql");

$rep->setConnection("localhost");

$rep->setDatabase("books");

$rep->setSQL("SELECT NAME,AUTHOR FROM BOOK ORDER BY NAME");

$rep->setXML("bookreport.xml");

$rep->run();

?>

Example 6-12. The report’s XML specification

<REPORT MARGINWIDTH="5" MARGINHEIGHT="5">

<TITLE>Book Report</TITLE>

<CSS>report.css</CSS>

<PAGE BORDER="0" SIZE="10" CELLSPACING="0" CELLPADDING="5">

</PAGE>

<GROUPS>

<GROUP NAME="author" EXPRESSION="AUTHOR">

<HEADER>

<ROW>

<COL CELLCLASS="header"><XHTML><i>Name</i></XHTML></COL>

<COL CELLCLASS="header">Author</COL>

</ROW>

</HEADER>

<FIELDS>

<ROW>

<COL TYPE="FIELD">NAME</COL>

<COL TYPE="FIELD">AUTHOR</COL>

236 | Chapter 6, Application Design

#56 Create User-Customizable Reports
HACK

Save the code in Example 6-13 as report.css.

Running the Hack
Download and install the PHPReports system per the instructions included
with the download. Upload the files to the server and navigate to the
index.php page in your browser. The result should look like Figure 6-13.

Changing the look of the report is as easy as tweaking the XML in the
bookreport.xml file. The PHPReports system provides for control over the
color, fonts, and layout of the report through both HTML and CSS. It also
allows for data grouping through the inclusion of dynamic HTML elements
like anchor tags and scripts.

PHPReports also has a flexible back end, allowing you to render to a single
page of HTML, text, or even a multipage HTML report (the HTML is bro-
ken into multiple pages, and the generated markup has navigation at the
bottom of each page). You can also create your own output plug-in, allow-
ing you to create whatever output form you need.

</ROW>

</FIELDS>

<FOOTER>

</FOOTER>

</GROUP>

</GROUPS>

</REPORT>

Example 6-13. The CSS for the report

.header { font-weight: bold; }

Figure 6-13. The formatted book report

Example 6-12. The report’s XML specification (continued)

Create User-Customizable Reports #56

Chapter 6, Application Design | 237

HACK

See Also
• “Give Your Customers Formatting Control with XSL” [Hack #7]

