
If you looked around the universe before settling on Ubuntu Linux, one of
the things that you were sure to notice is that “billions and billions” of Linux
distributions are available, each with its own installer, favorite desktop envi-

ronment and/or X Window system window manager, set of core applications,
and some way of updating, expanding, and maintaining the software that comes
with the distribution. When you come right down to it, the last item is the most
significant aspect of a Linux distribution aside from the size and involvement
of its user and development communities. There’s actually an interesting loop
between ease-of-use/ease-of-maintenance and the size of the user community. A
Linux distribution that makes it easy to keep existing software up to date, install
new software, and figure out what’s on your system in the first place is a Linux
distribution that more people are apt to use. (This assumes that someone is actu-
ally keeping the distribution up to date.)

As discussed in Chapter 1, I find the Ubuntu Linux community the most excit-
ing, dynamic, and energetic Linux community that I’ve ever encountered. The
Ubuntu community is a committed community of both users and developers.
Updates and bug fixes to existing software are frequent, which is a good thing.
A vast pool of software is available for easy download and installation.

Access to new and updated software is similarly easy. Ubuntu’s Update Manager
automatically lets you know when updates are available to software that’s installed
on your system, and keeping your system up-to-date requires three or four mouse
clicks. Not too shabby! The dpkg, apt-get, aptitude, and synaptic tools
make it almost easy to install new software, and Synaptic Package Manager makes
it easy to search for software that’s relevant to your interests. Who could ask for
anything more?

The key to all of this simplicity and ease-of-use is the excellent DEB (for Debian)
package format, developed for the Debian Linux distribution and therefore used
by Ubuntu. The DEB package format put other software package formats, such as
RPM, to shame — I personally would appreciate some electroshock therapy to

567

IN THIS CHAPTER
Package management overview

Using Ubuntu repositories

Finding things on your system

Using apt-get, aptitude, and
Synaptic

Using the Ubuntu Update
manager

Cleaning up your system

Adding, Removing, and
Updating Software

26_038993 ch20.qxp 11/22/06 9:32 AM Page 567

forget the needless hours I’ve wasted trying to untangle twisty mazes of dependencies and requirements
between various RPM packages. If you don’t know what RPM is, you’re lucky. Let’s keep it that way.

If you’re familiar with RPM-based Linux distributions such as Fedora Core, Mandriva, Red Hat,
or Yellow Dog, you’re probably thinking, “Silly Human, yum solves most RPM problems!”

Although this is probably true in a court of law, I don’t feel that providing additional layers of syntactic sugar
on top of a frustrating package management system such as RPM is the “right thing” or an actual solution.
I prefer using smarter package formats such as DEB and smarter utilities such as the ones discussed in this
chapter that were designed to do the right thing in the first place rather than continually shaving JoJo the
dog-faced boy to make him look more human.

If you must deal with packages that were created for other Linux distributions and are there-
fore in other package formats, see the section entitled “Converting Packages from Other

Package Formats” later in this chapter for information about converting package.

Tools such as dpkg, apt-get, and aptitude are knee-deep in online manual pages and Web sites that
explain every conceivable combination of command-line options, so I’m not going to bore you by repeating
those in this chapter. This chapter explains how to do common tasks using these tools, focusing on helping
you get your work done rather than on duplicating existing reference material. The first section of this
chapter provides an overview of the package management utilities used on Ubuntu systems (and thus dis-
cussed in this chapter) so that you have a clear idea of “what does what” as you read through this chapter.
The next section explains how the Ubuntu software that you can download from the repositories is organ-
ized, and provides some tips about other, unofficial repositories that you might find useful. After this, the
hands-on sections of this chapter begin by explaining how to find out what’s on your system, figure out
what package provided specific files that are already on your system, and how to figure out what package
you might want to install if you’re looking for a specific file. This is most easily done from the command
line, so that’s our focus in this section.

Subsequent sections of this chapter focus on using the apt-get (command-line), aptitude (terminal-
oriented), and synaptic (fancy graphics) tools to locate and install new packages on your system. The last
two sections discuss how to use the Ubuntu Update Manager to keep your system up-to-date and how to
identify and remove packages on your system that are no longer required because they were installed to
satisfy dependency requirements for packages that are no longer installed.

Overview of Ubuntu
Package Management Software
A standard Ubuntu Linux installation provides several different utilities for managing and querying Ubuntu
software packages, ranging from low-level command-line tools to tools with sophisticated graphical inter-
faces. The basic user-level tools provided as part of a standard Ubuntu installation are the following:

n apt-get: A command-line utility that provides subcommands which enable you to install,
remove, and manage packages on your system, both as individual packages and as components
of a distribution.

n aptitude: A terminal-oriented utility that serves as a front end to lower-level utilities such as
apt-get and dpkg. The aptitude utility provides both a quasi-graphical, menu and screen-
oriented user interface and the ability to install, remove, query, and manage packages from the
command-line.

TIPTIP

NOTENOTE

568

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 568

n dpkg: The basic Ubuntu and Debian command-line tool for installing, removing, querying, and
generally managing packages. This utility uses even lower-level utilities, such as dpkg-deb, to
perform package installation, removal, and manipulation, and dpkg-query, to search for pack-
ages, but these lower-level packages are not discussed in this chapter. Although handy to use
directly .0001% of the time, the rest of the time, I find it more convenient to think of the capabili-
ties provided by these low-level utilities as functionality that is provided by the dpkg utility itself.

n dselect: A terminal-oriented front-end to the dpkg utility that provides quasi-graphical menus
and an interactive display within the context of an xterm, GNOME Terminal, or other Ubuntu
command-line environment. The dselect utility also accepts command-line options and argu-
ments that you can use to initiate selected operations without selecting them from menus. This
application isn’t discussed in this chapter, because its functionality is available in other tools.

n synaptic: A graphical, X Window system tool for installing, removing, querying, and managing
software packages on Ubuntu. This is my preferred package management utility for all day-to-day
package installation operations.

n update-manager: A graphical, X Window system tool for identifying and installing updated
versions of packages that are already installed on your Ubuntu Linux system.

The dpkg, apt-get, and aptitude utilities all use different databases to store information
about installed packages, and therefore all use different mechanisms for identifying and resolv-

ing conflicts and dependencies between software packages. The dpkg utility stores its information about
installed and available packages in files and directories under /var/lib/dpkg. The apt-get utility stores
the information that it uses in files and directories under the directory /var/lib/apt. The aptitude utility
stores the information that it uses in files and directories under the directory /var/lib/aptitude. When
using either apt-get or aptitude, it is important that you run either the apt-get update or aptitude
update commands in order to ensure that the package state and availability information used by these appli-
cations is up-to-date. Similarly, if you want to experiment with dselect after having installed packages using
apt-get, aptitude, or synaptic, you must use the dselect update command before using dselect,
to ensure that dselect (and therefore dpkg) is aware of the state of all installed and available software.

The apt-get, aptitude, and Synaptic Package Manager utilities also depend on the information about
available repositories and associated packages maintained in a storage area which is generically known as
the “apt cache”. The apt cache actually consists of several files that, by default, are located in the directory
/var/cache/apt on your Ubuntu Linux system.

This chapter focuses on discussing the apt-get, aptitude, dpkg, synaptic, and update-manager
tools in the context of performing common tasks that each is best suited for, based on my experiences with
them. As a fan of graphical tools that “do the right thing,” most of the examples of installing packages
throughout this book use the Synaptic Package Manager tool, which I find both powerful and easy to use.
In general, however, the mantra for this chapter is “use the right tool for the job.”

Another popular graphical interface for package management on Ubuntu systems is adept,
which is a graphical interface found on the Kubuntu Ubuntu derivative. The adept application

is an excellent, easy to use application that is not discussed in this chapter because this book focuses on the
standard Ubuntu Linux distribution, not variants such as Edubuntu, Kubuntu, or Xubuntu.

All of the automated aspects of the package management utilities available on Ubuntu systems rely on
obtaining packages from Ubuntu software repositories. The next section explains software repositories,
how they are organized, the system configuration file that identifies them, and how to work with this file
to ensure that your system has access to all of the latest and greatest software that is available for it.

NOTENOTE

NOTENOTE

569

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 569

Ubuntu Repositories and Components
A repository is exactly what the name suggests, a storage site for objects of some sort. In the case of the
Ubuntu repositories, the objects stored therein are all of the source and binary packages that make up a
variety of Ubuntu Linux distributions. When you download an ISO image (an image of a CD or DVD that
conforms to the International Standards Organization 9660 standard for CD-ROM filesystem), the CD that
you burn from this image and then use to install Ubuntu Linux provides the CD boot environment (known
as Isolinux), an installer and the applications required to support it, a basic set of packages, and some docu-
mentation. As part of the install process, your system retrieves the majority of the Ubuntu Linux distribu-
tion from the Ubuntu repository over the Internet.

Making ISO images of Linux distributions available over the Internet is nothing new — it’s the standard way
of distributing most Linux distributions nowadays. Putting the Ubuntu repositories directly on the net has
two primary advantages for Ubuntu fans:

n keeping the Ubuntu installation media down to a single CD and ISO image

n making every part of Ubuntu Linux instantly available to any computer that is connected to the
Internet, anywhere, including the latest updates and additions

To organize its repositories along lines that are important to the Ubuntu folks, to many individuals, and to
many corporations, the Ubuntu repositories are organized into four components, which are basically ways
of classifying Linux software along support and licensing guidelines. The Ubuntu repositories contain four
basic components:

n main: The main component contains binary packages (and source packages, in most cases) for Linux
software that is officially supported by Canonical, Ltd., and can be freely redistributed. This does not
mean that everything in the main repository component is GPL — the main repository component
can include software that is distributed in binary format, such as firmware and binary fonts. The main
portion of the repository is designed to provide everything that most people will need for a fully func-
tional Linux desktop or server system that is fully supportable by Canonical, Ltd.

n restricted: The restricted component contains source and binary packages for commonly-used
software that is not available under a completely free license. Packages in the restricted repository
component are not guaranteed to be completely supportable by Canonical, Ltd., but are provided
because they are necessary to use Linux on certain hardware. For this reason, some items from
the “restricted” repository are included on Ubuntu installer CDs in subdirectories of CD/dists/
dist-name/restricted and CD/pool/restricted. With the 6.06 (Dapper) release,
restricted items include drivers for specific network interface cards (NICs) and video cards.

n universe: The universe repository component contains binary and source packages for the rest of
the free and open source software that is commonly associated with Linux systems, but which is
available under a variety of different licenses and is not guaranteed to be supported by Canonical,
Ltd. There’s simply too much software in the universe (pardon the expression) for Canonical to
guarantee support for all of the software that it contains

n multiverse: The multiverse repository component contains binary and source packages for soft-
ware that is not released under a license that meets the Ubuntu guidelines for free and open
source software (www.ubuntu.com/ubuntu/licensing). This software is not supported by
Canonical, Ltd., and it is your responsibility to verify that you satisfy the requirements imposed
by software from the multiverse component.

The official descriptions of the Ubuntu repositories are located at www.ubuntu.com/
ubuntu/components— I’ve tried to distill them down to their essentials, but if you’re

a licensing fan, there’s plenty of good reading there.

NOTENOTE

570

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 570

One additional repository component also exists, known as the backports repository. The backports reposi-
tory component contains updated or bleeding-edge versions of Linux software, including software that may
already have an “official” version in one of the other repository components. Software in this repository
component is not supported by Canonical but is provided because newer versions of existing software
packages often provide some critical feature that users may require.

If you are curious about the packages that are installed or available in the Ubuntu repositories
for different Ubuntu releases, see the Web page at http://packages.ubuntu.com. This

page enables you to select the distribution that you are interested in, and then view a list of all of the pack-
ages, organized into various logical categories. It also provides a search capability so that you can search for
specific packages.

Enabling Additional Repository Components
The most common example of a situation in which you will want to access repository components other
than the main and restricted components is when working with audio and video applications. The wide
variety of CODECs (compressors/decompressors) used to encode digital audio and video, the platform-
specific roots of many of these CODECs, and the hoops that many media companies make you jump
through in order to actually play many digital audio and video formats on an Ubuntu Linux system make
it necessary to push the boundaries of free software licensing.

By default, only the main and restricted components of the Ubuntu repositories are enabled when you
install an Ubuntu Linux distribution. “Enabled” means that the online sources of these repository compo-
nents are included in the default /etc/apt/sources.list file, which is the file that all of the package
installation and management utilities discussed in this chapter consult when looking for new and updated
software. This file is a text file that contains entries, which describe the location and name of different
online repositories and the repository components that are available there. The general format of an entry
in the /etc/apt/sources.list file is the following:

deb URI distribution component-or-package(s)

The deb field identifies the package format, the URI is a universal resource identifier for the location where the
repository can be found, and is typically an FTP or HTTP URL. The distribution field is typically the name of
a standard Ubuntu distribution, but can be anything that is used to identify a subdirectory at the URI where
associated packages can be found, and the component-or-package is one (or more) names of repository com-
ponents or packages that are also used to navigate the directory tree at the URI and locate available packages.
If multiple component-or-package names are provided, each identifies a different directory at the URI.

As examples, the entries in the /etc/apt/sources.list file for the main and restricted repository
components of the 6.06 (Dapper) release of Ubuntu Linux are the following:

deb http://archive.ubuntu.com/ubuntu/ dapper main restricted
deb-src http://archive.ubuntu.com/ubuntu/ dapper main restricted

The first of these identifies the source of binary packages, while the second identifies the source of source
packages. A similar pair of entries provides access to updated versions of the packages in these repository
components:

deb http://archive.ubuntu.com/ubuntu/ dapper-updates main restricted
deb-src http://archive.ubuntu.com/ubuntu/ dapper-updates main
restricted

TIPTIP

571

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 571

The examples in this section reflect the /etc/apt/sources.list settings for the Ubuntu
6.06 (Dapper) release. If you are working with another Ubuntu distribution, you should

replace the word “dapper” in these examples with the name of the Ubuntu release that you are using, such
as breezy (the 5.10 release that preceded “dapper”) or “edgy” (the release that follows “dapper”), and so on.
You should not mix repository entries for different Ubuntu releases in an /etc/apt/sources.list file,
because the repositories for a newer release will typically provide the same software as the repositories for
older releases, and will be compiled against a set of system libraries that are found on the newer release. See
the section entitled “Mixing Ubuntu and Debian Repositories” later in this chapter, for information about
some cases in which you may want to have entries in your sources.list file that are not consistent with
the Ubuntu release that you are using.

Finally, a similar pair of entries provides access to security fixes for the packages in these repository
components:

deb http://security.ubuntu.com/ubuntu dapper-security main restricted
deb-src http://security.ubuntu.com/ubuntu dapper-security main
restricted

Lines beginning with a hash mark (#) in the /etc/apt/sources.list file are comments. If you look
through the entries in the default /etc/apt/sources.list file on your Ubuntu system, you will note
that entries for access to the universe repository are already present in this file, but commented out. You can
enable access to this repository by using sudo to edit this file in your favorite text editor. To do this, edit
the /etc/apt/sources.list file using your favorite text editor, using a command like the following:

$ sudo emacs /etc/apt/sources.list

Remove the hash marks at the beginning of the lines that enable the universe repositories, add the word
“multiverse” to the end of these lines, and save the updated file. The updated entries in a sample
sources.list file would look like the following:

deb http://archive.ubuntu.com/ubuntu/ dapper universe multiverse
deb-src http://archive.ubuntu.com/ubuntu/ dapper universe multiverse

You could, of course, simply add these entries to the end of the lines that already provide access to the
main and restricted components of the Ubuntu repositories, but I prefer to keep them separate just for
clarity regarding licensing differences — and because that stays closest to the original format of the default
sources.list file.

Just to be perfectly clear, by suggesting that you may want to add the universe and multiverse
repositories to the places where your system looks for software, I am enabling you to add soft-

ware that may have licensing requirements that you or the company that you work for find odious (such as
MP3-related, or video-related software), for which support is not guaranteed by the Ubuntu folks (even if
you purchase support, there are no commitments to support it), and which may be difficult to get support
for anywhere. If you are configuring systems for enterprise use, you should make sure that your firm is com-
fortable with the licenses provided with non-free software in the universe and multiverse repositories. I use
all of the software discussed in this book, and am therefore my very own test case for everything this book
discusses, but your mileage (and your responsibilities) may vary.

Enabling Additional Repository Sources Using a Text Editor
As you can see from the examples in the previous section, the standard Ubuntu repositories are all hosted on
systems that are in the ubuntu.com domain. This makes perfect sense, because this is the only way that the
Canonical folks can guarantee the integrity of their repository and the adherence of various components and
their contents to the associated licensing guidelines. However, additional repositories of Ubuntu software

NOTENOTE

NOTENOTE

572

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 572

are also available on the Internet (I know that’s a surprise), maintained by various groups and individuals.
These alternate repository sites may simply mirror the contents of the official Ubuntu repositories to “share
the load,” or may provide software that is not found in the official Ubuntu repositories. In the latter case, this
software may provide even newer versions of popular software than is found in the backports repository
component, or may provide up-to-date versions of locally maintained software. As mentioned earlier, if you
are interested in working with audio and video on your Ubuntu system, you may find that these alternate
repository sites provide versions of related software with bleeding-edge features that you need.

Some well-known alternate repositories for Ubuntu and the software that they provided at the time that this
book was written are the following:

n FreeNX: A repository of the latest version of the FreeNX client and server software. FreeNX is an
alternative to the vnc-server, vino, and vnc-viewer software. The /etc/apt/sources.list
entries for this repository are the following:

deb http://mirror3.ubuntulinux.nl/ dapper-seveas freenx
deb-src http://mirror3.ubuntulinux.nl/ dapper-seveas freenx

n Multimedia Support: A repository providing Windows CODECs and other software necessary for
playing various digital audio and video files on your Ubuntu system. The /etc/apt/sources
.list entries for this repository are the following:

deb ftp://cipherfunk.org/pub/packages/ubuntu/ dapper main
deb-src ftp://cipherfunk.org/pub/packages/ubuntu/ dapper main

You will have to import the GPG key for this site to access and install the packages that it pro-
vides. You can retrieve this key from http://subkeys.pgp.net; the fingerprint of the

appropriate GPG key is 33BAC1B3.

n Penguin Liberation Front: This repository builds and provides packages that may be subject
to patents, or other mechanisms for preventing free access to software. The /etc/apt/
sources.list entries for this repository are the following:

deb http://packages.freecontrib.org/ubuntu/plf dapper free non-free
deb-src http://packages.freecontrib.org/ubuntu/plf dapper free non-
free

n Wine: A repository providing the latest versions of WINE, the Windows API support environment
for Linux that enables you to install and run much Windows software directly on your Linux
system. The /etc/apt/sources.list entries for this repository are the following:

deb http://wine.budgetdedicated.com/apt dapper main
deb-src http://wine.budgetdedicated.com/apt dapper main

If you’re interested in exploring other repositories and want to use a truly cool application, see www.ubuntu
linux.nl/source-o-matic. This site provides a Web-based sources application that generates a
sources.list file for you based on your selections of available repositories.

Enabling Additional Repository Sources
Using the Software Properties Tool
Editing a text-format configuration file is pretty old school Linux, and is the sort of thing that you may not want
to mention to your Windows or Mac OS X friends. (You’ll still want to be able to do it, because it’s fast and easy,
but we’ll keep that sort of thing our little Linux secret, OK?) For fans of graphical interfaces, Ubuntu provides a
Software Preferences tool that gives you a graphical view of the entries in your /etc/apt/sources.list file
and makes it easy for your to enable, disable, or add entries with a few mouse clicks.

NOTENOTE

573

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 573

To start the Software preferences utility, select the System ➪ Administration ➪ Software Properties menu
item. After supplying your password to enable access to this administrative tool, the Software Preferences
tool’s main dialog displays, as shown in Figure 20.1.

FIGURE 20.1

The main Software Preferences dialog

As you can see in Figure 20.1, the main software preferences dialog displays all of the entries in your current
/etc/apt/sources.list file, regardless of whether they are commented out or not. Each of these is
identified as a channel. Entries that are commented out, such as the cdrom entry shown in Figure 20.1, are
displayed as inactive — in other words, the checkbox beside their name is not selected. This gives you an
convenient overview of all of the valid repository entries in your /etc/apt/sources.list file.

To add a new repository or repository component to the list of repositories that your system will search for
software packages, click Add. This displays the dialog shown in Figure 20.2.

FIGURE 20.2

Adding a repository in the Software Preferences tool

574

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 574

The drop-down Channel menu shown in Figure 20.2 enables you to select any of the standard Ubuntu
repositories and associated components — by default, only the main and restricted entries for any repository
are enabled, but you can add the universe and multiverse components to any standard repository in which
they are available by selecting the Community Maintained (Universe) or Non-free (Multiverse) checkboxes.

The dialog shown in Figure 20.2 also enables you to add entries for custom repositories by clicking the
Custom button, which displays the dialog shown in Figure 20.3.

FIGURE 20.3

Adding a custom repository in the Software Preferences tool

Though not particularly elegant, this dialog makes it easy for you to cut and paste a repository identification
entry from a mail message or browser session where you found it, and automatically add it to your /etc/
apt/sources.list file. To return to the dialog shown in Figure 20.2 without adding a custom reposi-
tory entry, click Cancel. To save a new entry after typing it in or cutting and pasting, click Add Channel,
which adds the new entry and returns you to the dialog shown in Figure 20.1, which now contains an entry
for the channel that you just added.

The Software Preferences tool provides three tabs that let you manage different aspects of your repositories
and the update process. The first, the Installation Media tab, is the initial tab shown when you start the
Software Preferences tool. The others, the Internet Updates and Authentication tabs, enable you to manage
different aspects of system updates and how your system identifies valid repositories.

Figure 20.4 shows the Software Preferences tool’s Internet Updates tab, which enables you to specify when
your system checks for updates and how it responds to any available updates that it detects.

By default, your system automatically checks for updates on a daily basis, displaying an “Available Updates”
icon in the GNOME panel at the top of your screen when updates are available (see Figure 20.28). If you are
using a laptop or other system that only connects to the Internet infrequently, you may want to decrease the
frequency with which your system checks for updates by selecting another value from the Check for updates
automatically entry’s drop-down menu, or disable this item entirely. If you disable this item, you can always
check for updates manually using Ubuntu’s Update manager, which is discussed later in this chapter in the
section entitled “Using the Ubuntu Update Manager.” If you are performing regular checks for updates and
are using a system that is often (or always) connected to the Internet, you may want to select the Download
updates in the background, but do not install them to make sure that packages are already available on your
local system when you actually execute the update process. Similarly, you may want to select the Install secu-
rity updates without confirmation option if you want to automatically retrieve security updates and install
them so that your system is always secure against any known attacks or software exploits.

575

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 575

FIGURE 20.4

The Internet Updates tab in the Software Preferences tool

Figure 20.5 shows the Software Preferences tool’s Authentication tab, which simplifies the process of
importing identification keys for new repositories into the keyring used by Ubuntu’s package management
utilities.

FIGURE 20.5

The Authentication tab in the Software Preferences tool

576

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 576

Each package in any repository is signed with the key for that repository to verify its authenticity and valid-
ity. The Ubuntu package management tools will not retrieve packages from unauthorized or unidentifiable
repositories. Adding the authentication key that identifies a nonstandard repository as a valid package
source requires several steps from the command line, using hard-to-remember options to the gpg com-
mand in conjunction with the apt-key utility. Clicking the Import Key File button enables you to navigate
to and select any file that contains an ASCII representation of a PGP authentication key and import it for
use by Ubuntu’s package management tools.

After making any changes that you desire to the list of repositories available to your system, the way in
which system updates are performed, or the Authentication keys available to the Ubuntu package manage-
ment utilities, click Close to exit the Software Properties application. If you have made any changes, the
Software Preferences tool will display a dialog informing you that your channel (repository) information is
out of date, as shown in Figure 20.6.

FIGURE 20.6

Change notification when exiting the Software Preferences tool

To automatically update the cache information used by Ubuntu’s package management utilities, click Reload.
To exit without updating the cache, click Close. If you exit without reloading the cache information, you will
need to run apt-get update or use the Check option in Ubuntu’s Update manager or the Synaptic Package
Manager before you are guaranteed that your system is aware of all available packages in all valid repositories.

Problems Adding or Accessing Nonstandard Repositories
After modifying your system’s /etc/apt/sources.list file, you may find that packages from new
repositories that you’ve added aren’t actually showing up in the list of available packages. First, make sure
that you’ve run apt-get update or used Synaptic’s Check button to refresh the list of available reposito-
ries and packages. This should identify any inaccessible repositories and outright syntax errors in the
sources.list file.

Next, when running apt-get update to update your system’s idea of repository contents, seeing messages
like the following means that your system does not have the right authentication keys to add packages from a
specified repository to its cache:

Ign http://ftp.us.debian.org sarge Release
Ign http://ftp.us.debian.org unstable Release

Similarly, you may see messages at the end of the output from apt-get update. These are related to the
previous messages, but are somewhat less subtle, because they explicitly identify missing keys and associ-
ated repositories

577

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 577

W: GPG error: http://ftp.us.debian.org testing Release: \
The following signatures couldn’t be verified because the public
key is not available: \
NO_PUBKEY 010908312D230C5F

W: GPG error: http://ftp.us.debian.org unstable Release: \
The following signatures couldn’t be verified because the public
key is not available: \
NO_PUBKEY 010908312D230C5F

In these cases, the associated entries in /etc/apt/sources.list point to repositories whose keys are
not present in the keyring used by the Ubuntu package management utilities. See the man page for the
apt-key application for information on retrieving and installing keys into this keyring. For an example
of the process of retrieving remote repository keys and integrating them into the keyring used by Ubuntu’s
package management system, see the next section.

Mixing Ubuntu and Debian Repositories
Because the Ubuntu Linux distribution has its conceptual and packaging roots in the Debian project, the
Ubuntu and Debian projects both use the /etc/apt/sources.list file to identify sites where packages
for those distributions are located, and both use the DEB package format for distributing, installing, and
maintaining packages. This makes it tempting to add Debian repositories to the /etc/apt/sources
.list file on your Ubuntu system in order to get access to even more software. The best general rule for
mixing and matching Ubuntu and Debian repositories can be summed up in a very simple rule: DON’T!

That said, the rest of this section explains how to mix Ubuntu and Debian repositories for the people who are
going to ignore my warnings and know what they’re doing (or think that they do). Just in case, here are a few
more warnings: Mixing Ubuntu and Debian repositories may break your Ubuntu system, irritate both your
Debian and Ubuntu friends, create a confused system on which the source of various software packages is
remarkably unclear, and cause cancer in rats. I am not responsible if your once-pretty Ubuntu system turns
into a smoking crater of unbootable software. You’ve been warned (again).

As noted in the previous section, you can add new repositories to your /etc/apt/sources.list file
using Synaptic or by directly modifying the underlying configuration files used by Synaptic, aptitude,
and apt-get. This section explains how to manually modify these files and make other changes necessary
to use selected Debian repositories.

To add Debian repositories to the list of repositories where your system looks for software packages, do the
following:

1. Add the appropriate entries for the repositories that you want to use to your /etc/apt/sources
.list file, Debian repositories use Debian release or branch names and contain different compo-
nents than Ubuntu repositories, named “main,” “non-free,” and “contrib.” When adding Debian
repositories to the repositories used on your Ubuntu system, you will probably want to add the
testing and unstable Debian branches. Entries for these repositories in the form required by the
/etc/apt/sources.list file are the following:

deb http://ftp.us.debian.org/debian testing main contrib non-free
deb-src http://ftp.us.debian.org/debian testing main contrib non-free
deb http://ftp.us.debian.org/debian unstable main contrib non-free
deb-src http://ftp.us.debian.org/debian unstable main contrib non-
free

578

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 578

2. When adding nonstandard repositories, you will want to explicitly set the priorities that the apt
and Synaptic utilities use when checking repositories for new and update packages. This informa-
tion is stored in the file /etc/apt/preferences, which usually does not exist on a standard
Ubuntu system. Create this file using sudo and your favorite text file, and enter the relative prior-
ities of the repositories that are present in your /etc/apt/sources.list file. The values in
mine are the following:

Package: *
Pin: release a=dapper
Pin-Priority: 900
Package: *
Pin: release o=debian a=testing
Pin-Priority: 500
Package: *
Pin: release o=debian a=unstable
Pin-Priority: 400

Priority values below 1000 have special meanings to Ubuntu’s package management utilities.
The sample values shown above assign anything in a Dapper repository the highest priority, assign
packages in Debian’s testing branch a lower priority, and assign the lowest priority to packages
found in Debian’s unstable branch. Different priority ranges have special meanings in the prefer-
ences file. Because my goal is not to rewrite the man page for the preferences file (see man apt_
preferences), the values for the Debian testing and unstable branches in the previous example
prevent packages from these repository components from being installed if there is a version of
the same package in Dapper or the currently installed version is newer.

3. Modify the file /etc/apt/apt.conf to increase the size of the memory-mapped file used for
storing the data structures that hold package information. Adding entire Debian repositories to
the standard Ubuntu repositories requires lots of storage. The default size of this file is 4MB
(4194304 bytes). I’d suggest changing this to 16MB, just to be safe, by adding the following
entry to /etc/apt/apt.conf:

APT::Cache-Limit “16777216”;

4. You’ll have to retrieve and import the PGP key for the Debian repositories into the keyring used by
the Ubuntu package management utilities. Ubuntu will not retrieve packages from unauthorized
repositories. Adding the keys that identify nonstandard repositories as valid repositories requires
several steps. First, list the keys available on the Debian public key server using the gpg com-
mand’s --list-keys option. The appropriate command and its output look like the following:

$ gpg -v --keyserver keyring.debian.org --list-keys
gpg: using classic trust model

[existing key output deleted]
pub 1024D/2D230C5F 2006-01-03 [expires: 2007-02-07]
uid Debian Archive Automatic Signing Key (2006)
<ftpmaster@debian.org>

You can also retrieve the current Debian key in ASCII format using a command like wget
http://ftp-master.debian.org/ziyi_key_year.asc (where year is the current

year, such as 2006), and then import it into your keyring manually, but this isn’t quite as secure as getting
the key directly from a key server.

NOTENOTE

579

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 579

5. Retrieve the specified key by its fingerprint (2D230C5F in the previous example) into your local
keyring using the gpg command’s --recv-keys option. The appropriate command and its
output look like the following:

$ gpg -v --keyserver keyring.debian.org --recv-keys 2D230C5F
gpg: requesting key 2D230C5F from hkp server keyring.debian.org
gpg: armor header: Version: GnuPG v1.4.1 (GNU/Linux)
gpg: armor header: Comment: Key ID: 0x2D230C5F
gpg: pub 1024D/2D230C5F 2006-01-03 Debian Archive Automatic Signing
Key (2006) <ftpmaster@debian.org>
gpg: using classic trust model
gpg: key 2D230C5F: public key “Debian Archive Automatic Signing Key
(2006) <ftpmaster@debian.org>” imported
gpg: 2 keys cached (7 signatures)
gpg: 1 keys processed (1 validity counts cleared)
gpg: 3 marginal(s) needed, 1 complete(s) needed, classic trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: Total number processed: 1
gpg: imported: 1

6. Once you’ve retrieved the key successfully, you can then export it into the keyring used by the
Ubuntu package management utilities using the gpg, sudo, and apt-key commands together,
as in the following example:

$ gpg --armor --export 2D230C5F | sudo apt-key add -
OK

The --armor option wraps the key that you are exporting in the standard ASCII descriptors for
a key file, while the --export option uses the argument that follows this option to identify the
key that you want to export.

You can use the gpg --armor --export command to export any key in your keyring to an
ASCII file, by simply redirecting its output into a text file. You can then use these files with

tools that require ASCII key files, such as Ubuntu’s Software Properties tool, described earlier in this chapter
in the section entitled “Enabling Additional Repository Sources Using the Software Properties Tool.”

At this point, you can now execute the command apt-get update to update the Ubuntu package man-
agement utilities cache of repositories and packages. You can then install any packages that any of these
repositories provide. Good luck!

If you have problems after changing the Preferences file, you can use the apt-cache
policy package-name command to see information about the priority associated with

the specified package from various sources. See the online reference information for the apt-cache com-
mand (using the command man apt-cache) for more information.

Exploring Your System Using dpkg and Friends
Package management software not only simplifies software installation, removal, and updates, but also pro-
vides great opportunities for asking questions about the software that is installed, or could be installed, on
your system. Some of the command-line package management utilities that are installed on your system
make it easy to find out exactly what software is installed on your system, what a specific package contains,
what packages provided certain files, and so on. The next few sections describe how to answer some basic
questions about existing files and available packages on your Ubuntu system.

TIPTIP

TIPTIP

580

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 580

Listing the Packages that are Installed on Your System
The dpkg command’s -l option provides the easiest way of listing the packages that are installed on your
system. (This option can also be specified in verbose option format as --long.) You can execute this com-
mand with no other argument to produce a (long) listing of every package that is installed on your system,
which looks something like the following:

$ dpkg -l
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-
installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:
uppercase=bad)
||/ Name Version Description
+++-=================-=================-
======================================
ii 3dchess 0.8.1-11.1 3D chess for X11
ii acpi 0.09-1 displays information on ACPI
devices
ii acpi-support 0.84 a collection of useful events
for acpi
ii acpid 1.0.4-1ubuntu11 Utilities for using ACPI power
mgmnt
ii adduser 3.80ubuntu2 Add and remove users and groups
[much more output deleted]

The first few lines above the actual package listing identify the meaning of the various fields on each line
and the symbols that they contain. This information is provided in a fairly cryptic fashion that is mandated
by the terminal-oriented output produced by the dpkg utility. The entries for package name, package ver-
sion, and package description are pretty straightforward, but the first field requires some serious explana-
tion. The characters in the first field have the following meaning and possible values:

n The first character in the first field indicates the desired status of the package, which is the state
that the packaging system thinks the package should be in. Available indicators in this position are
h (the package is marked as being on hold, and cannot be updated or removed), i (the package
should be installed), p (the package and all associated configuration information is supposed to be
purged), r (the package is supposed to be removed, but associated configuration files will be pre-
served), and u (the package has never been installed on this system, so its state is unknown).

n The second character in the first field indicates the actual status of the package on your system.
Available indicators in this position are c (the configuration files for the package are installed, but
the package is not), f (the script used to complete the configuration of this package, known as a
post-installation script, failed for some reason, and the package is therefore not guaranteed to be
correctly installed), h (the package is partially installed because the installation process was inter-
rupted), i (the package is correctly installed), n (the package is not installed), and u (the package
was retrieved, unpacked, and is partially installed, but its post-installation script was not executed).

n The third character highlights any errors that are associated with the package. Available indicators
in this position are a space (no errors, which looks remarkably like there is nothing in this posi-
tion), H (the package has been marked as being on hold by a the package management system
itself, which usually means that other packages that this package requires are not installed), R
(reinstallation is required), and X (the package both requires re-installation and has been automat-
ically put on hold by the package management system itself).

581

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 581

Now that I’ve explained what each character position in the first field of a package entry means, it’s easy
to see what the ASCII art in the dpkg output heading means. This is not exactly the same thing as being
“intuitive,” but that’s hard to do in the limited number of characters that you can display and easily use
from the command line.

Listing the Packages that are Available for Your System
The previous section explained how to figure out what packages are installed on your system. While that’s
interesting, a more interesting question perhaps is, “What packages are available for my system that I have
not yet installed?” As mentioned in the previous section, the dpkg command’s -l option with no other argu-
ments shows the list of installed packages. You can supply an argument to this command to list available
packages that match that argument, whether installed or un-installed. For example, the dpkg -l emacs
command should list all of the packages that have the string emacs in their package name. Let’s try that:

$ dpkg -l emacs
No packages found matching emacs.

Well, that seems odd, because I’m actually typing this in emacs on my Ubuntu system. The problem is that
any argument that you supply to dpkg is used as a pattern match, and there are apparently no packages
installed on my system whose exact name is “emacs.” Let’s try that again, using a standard Linux wildcard
to say that you want to list any packages with a name that begins with emacs, as in the following example:

$ dpkg -l ‘emacs*’
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-
installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:
uppercase=bad)
||/ Name Version Description
+++-======================-==============-
===================================
ii emacs-chess 2.0b5-1 a client/library for playing
Chess
ii emacs-chess-pieces 2.0b5-1 XPM images of chess pieces
ii emacs-goodies-el 26.4-1 Miscellaneous add-ons for
Emacs
un emacs-goodies-extra-el <none> (no description available)
ii emacs21 21.4a-3ubuntu2 The GNU Emacs editor
ii emacs21-bin-common 21.4a-3ubuntu2 The GNU Emacs editor’s
shared...
ii emacs21-common 21.4a-3ubuntu2 The GNU Emacs editor’s
shared...
un emacs21-el <none> (no description available)
un emacs21-nox <none> (no description available)
un emacsen <none> (no description available)
ii emacsen-common 1.4.17 Common facilities for all
emacsen

That’s more like it! Note that when using wildcards in a dpkg specification, you have to protect them from
expansion on the command line by enclosing your dpkg wildcard specification within quotation marks of
some sort.

582

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 582

The previous output showed some emacs packages, but I could swear that there were others on my Ubuntu
system. Let’s try a more general wildcard that searches for packages that contain the string “emacs” any-
where in their names:

$ dpkg -l ‘*emacs*’
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-
installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:
uppercase=bad)
||/ Name Version Description
+++-=========================-===============-========================
ii emacs-chess 2.0b5-1 a client/library for
Chess ii emacs-chess-pieces 2.0b5-1 XPM images of
chess pieces
ii emacs-goodies-el 26.4-1 Miscellaneous add-ons
un emacs-goodies-extra-el <none> (no description
available)
ii emacs21 21.4a-3ubuntu2 The GNU Emacs editor
ii emacs21-bin-common 21.4a-3ubuntu2 The GNU Emacs shared...
ii emacs21-common 21.4a-3ubuntu2 The GNU Emacs shared...
un emacs21-el <none> (no description
available)
un emacs21-nox <none> (no description
available)
un emacsen <none> (no description
available)
ii emacsen-common 1.4.17 Common facilities for
emacsen
un xemacs <none> (no description
available)
un xemacs-support <none> (no description
available)
un xemacs-widget <none> (no description
available)
ii xemacs21 21.4.18-1ubuntu1 highly customizable text
editor
[additional output deleted]

Even better! Thanks to the explanation of the characters in the first field of your dpkg output (provided in
the previous section of this chapter), it’s clear that I need to install xemacs on this system.

Because this is a Linux system, you can pipe your dpkg output through other commands to answer ques-
tions like, “What packages are not yet installed on my system whose names contain the string emacs any-
where in their names,” which I can do using grep to look for lines that begin with the string “un,” as in the
following example:

$ dpkg -l ‘*emacs*’ | grep ‘^un’
un emacs-goodies-extra-el <none> (no description
available)

583

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 583

un emacs21-el <none> (no description
available)
un emacs21-nox <none> (no description
available)
un emacsen <none> (no description
available)
un xemacs <none> (no description
available)
un xemacs-support <none> (no description
available)
un xemacs-widget <none> (no description
available)
un xemacs21-gnome-mule <none> (no description
available)
un xemacs21-gnome-mule... <none> (no description
available)
un xemacs21-gnome-nomule <none> (no description
available)
un xemacs21-mule-canna-wnn <none> (no description
available)
un xemacs21-nomule <none> (no description
available)
un xemacs21-supportel <none> (no description
available)

Other Ubuntu package management utilities provide similar search features, particularly the aptitude utility.
Though most commonly associated with it’s terminal-oriented, quasi-graphical interface (discussed later in
this chapter in the section entitled “Using aptitude to Add and Remove Software,” aptitude also provide a
command-line mode with many powerful commands. To locate packages, aptitude provides a search key-
word that enables you to specify a substring to search for (no wildcards necessary), and displays informa-
tion about any installed or available package that is present in any repository listed in your /etc/apt/
sources.list file. Some sample output from a search for emacs using aptitude is the following:

$ aptitude search emacs
p acl2-emacs - A Computational Logic for Applicative Comm
p aleph-emacs - The Aleph programming language - emacs mod
p cxref-emacs - Generates latex and HTML documentation for
p emacs - The GNU Emacs editor
i emacs-chess - a client and library for playing Chess fro
i emacs-chess-pieces - XPM images of chess pieces for emacs-chess
p emacs-color-themes - Color themes for Emacs
p emacs-extra - emacs configuration
i emacs-goodies-el - Miscellaneous add-ons for Emacs
i emacs21 - The GNU Emacs editor
i emacs21-bin-common - The GNU Emacs editor’s shared, architectur
i emacs21-common - The GNU Emacs editor’s shared, architectur
[additional output deleted]

You’ll notice that the aptitude utility finds more packages than the dpkg -l search command that was
described earlier.

584

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 584

Another very convenient application for searching for packages is the apt-cache utility, which is a com-
mand-line utility that provides subcommands that enable you to search and manipulate the cache of pack-
ages that are installed or available for installation on your system and the metadata that is associated with
those packages. You must enable the universe repository in order to install the apt-cache utility. The
apt-cache utility can also be used to search the packages in any repository that is active in your
/etc/apt/sources.list file, and find even more matching packages because it searches within the
package name and both the short and long descriptions of all available packages, whether installed or not.
Some sample output from an apt-cache search for our favorite string, emacs, is the following:

$ apt-cache search emacs
acl2-emacs - A Computational Logic for Applicative Common Lisp: emacs
interface
ada-mode - Ada mode for GNU Emacs and XEmacs
af - An Emacs-like mail reader and composer
aleph-emacs - The Aleph programming language - emacs mode
anjsp - A major mode to edit JSP and PSP code with Emacs
anthy-el - A Japanese input method (elisp fronted)
apel - portable library for emacsen
aplus-fsf-el - XEmacs lisp for A+ development
artist - Emacs Lisp drawing package
asn1-mode - Emacs mode for editing ASN.1 specification files
bhl - Emacs mode for converting brut text to HTML and LaTeX
bigloo-ude - Bigloo Unified Development Environment for Emacs
biomode - [Biology] An Emacs mode to edit genetic data
[additional output deleted]

As you can see, the apt-cache and aptitude utilities are easiest to use when searching for packages,
and return the most verbose results.

Listing Information About a Package
Once you’ve found a package that you’re interested in, there are an equivalent number of ways to get more
detailed information about the package and its contents. However, because the apt-cache and aptitude
utilities return the best search results, it makes sense to use them to display information about any packages
that they’ve identified. For example, to find out detailed information about the xemacs21 package that was
listed in the previous section, you could use either the apt-cache show xemacs21 or aptitude show
xemacs21 commands, both of which return almost identical information. The following example shows the
output from the aptitude show xemacs21 command, which is slightly more verbose:

$ aptitude show xemacs21
Package: xemacs21
New: yes
State: installed
Automatically installed: no
Version: 21.4.18-1ubuntu1
Priority: optional
Section: universe/editors
Maintainer: OHURA Makoto <ohura@debian.org>
Uncompressed Size: 49.2k
Depends: xemacs21-mule (= 21.4.18-1ubuntu1) | xemacs21-mule-canna-wnn

(= 21.4.18-1ubuntu1) | xemacs21-nomule (= 21.4.18-1ubuntu1) |

585

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 585

xemacs21-gnome-mule (= 21.4.18-1ubuntu1) |
xemacs21-gnome-mule-canna-wnn (= 21.4.18-1ubuntu1) |
xemacs21-gnome-nomule (= 21.4.18-1ubuntu1)

Conflicts: xemacs, xemacs-widget
Replaces: xemacs, xemacs-widget
Provided by: xemacs21-nomule, xemacs21-mule-canna-wnn, xemacs21-mule,

xemacs21-gnome-nomule, xemacs21-gnome-mule-canna-wnn,
xemacs21-gnome-mule

Description: highly customizable text editor
XEmacs is a full fledged programming language with a mail reader, news
reader, info browser, Web browser, calendar, specialized editor for
more
programming languages and other formats than most people encounter in
a
lifetime, and much much more.
This package exists to cause the installation of the real XEmacs

packages.

This output probably provides more than you want to know about the specified package, but it’s always bet-
ter to err on the side of caution.

Listing the Contents of a Package
In some cases, you may want to list all of the files associated with a package that is installed on your system.
To do this, you can use the dpkg command’s -L option, followed by the name of the package whose con-
tents you want to list. Sample output that lists the contents of the emacs21 package on my Ubuntu system
is the following:

$ dpkg -L emacs21
/.
/usr
/usr/bin
/usr/bin/emacs21-x
/usr/share
/usr/share/emacs
/usr/share/emacs/21.4
/usr/share/emacs/21.4/etc
/usr/share/emacs/21.4/etc/DOC-21.4.1
/usr/share/applications
/usr/share/applications/emacs21.desktop
/usr/share/doc
/usr/share/doc/emacs21
/usr/share/doc/emacs21/README.Debian.gz
/usr/share/doc/emacs21/copyright
/usr/share/doc/emacs21/changelog.Debian.gz
/usr/lib
/usr/lib/emacs
/usr/lib/emacs/21.4
/usr/lib/emacs/21.4/i486-linux-gnu
/usr/lib/emacs/21.4/i486-linux-gnu/fns-21.4.1-x.el
/usr/lib/menu

586

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 586

Being able to identify the packages provided by a package that is installed on your system can be handy if
you are considering removing a package but want to make sure that doing so does not delete a file that you
want to preserve. The next section describes how to find out what package does provide a specific file.

You can list the files that are provided by packages that are not yet installed by using the
apt-file utility with a command such as apt-file list package, where package

is the name of the package that you are interested in. The apt-file utility is described more detail in
“Determining What Package Provides a Missing File” later in this chapter.

Determining What Package Provides an Existing File
After working with Ubuntu for a while and installing, updating, and removing some number of packages,
you may be curious about which package provides a certain file on your system. This is easy enough to
determine using the dpkg command’s --search option, as in the following example, where I’m curious
about which package provides the /usr/bin/ar archiving utility:

$ dpkg --search /usr/bin/ar
binutils: /usr/bin/ar

If you know that a utility that you’re looking for is in your path but you don’t want to have to determine the
directory in which it is physically located, you can use the cool shell trick of using the output of an existing
command as the input to another one, in this case combining the which command, to determine the full
pathname of an application and the dpkg --search command, which produces exactly the same output:

$ dpkg --search `which ar`
binutils: /usr/bin/ar

When searching for files, the dpkg --search command can’t find symbolic links that are created by pack-
age post-installation scripts. If you are trying to find a file that you know exists but cannot locate it, make
sure that the file is not a symbolic link and, if it is, search for the file that it actually points to. This can
sometimes require a few tries, as in the following example:

$ dpkg --search /usr/bin/emacs
dpkg: /usr/bin/emacs not found.

$ ls -l /usr/bin/emacs
/usr/bin/emacs -> /etc/alternatives/emacs

$ dpkg --search /etc/alternatives/emacs
dpkg: /etc/alternatives/emacs not found.

$ ls -l /etc/alternatives/emacs
/etc/alternatives/emacs -> /usr/bin/emacs21-x

$ dpkg --search /usr/bin/emacs21-x
emacs21: /usr/bin/emacs21-x

Though sometimes tedious, symbolic links are usually not an actual part of a package and you must there-
fore ferret out a file that actually is part of a package.

Another handy package management utility that you may want to use when determining what
package provides a specific file is the dlocate utility. This utility is not installed on Ubuntu

systems by default, but can easily be installed using apt-get, aptitude, or Synaptic Package Manager.
TIPTIP

TIPTIP

587

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 587

After installing this command, you can search for the package that provides a file using the dlocate -S
command, as in the following example:

$ dlocate -S /usr/bin/emacs
emacs21-bin-common: /usr/bin/emacsclient.emacs21
emacs21: /usr/bin/emacs21-x
emacs21: /usr/bin/emacs21

The dlocate utility’s -S option uses the string that you specify as a substring to search for, and can there-
fore be a bit more helpful when looking for files on your system.

Determining What Package Provides a Missing File
Identifying the package that provides a file that is not installed on your system is somewhat tricky, but is a
common question when you are trying to build software whose source code requires an include file that is
not present on your system, or you are trying to link software that requires a missing library. Unfortunately,
the utility that performs this type of search, the apt-file utility, is not installed on Ubuntu systems by
default, but can easily be installed using apt-get, aptitude, or Synaptic Package Manager. After installing
this command, you must first update its idea of the available packages in the repositories that you are using
by running the command sudo apt-file update.

Once this command completes, you can search for the package that provides a file, even if that file is not
installed on your system, using the apt-file search command, as in the following example, which
looks for the package associated with the libpowersave library:

$ ls -l /usr/lib/*power*
ls: /usr/lib/*power*: No such file or directory
$ apt-file search libpowersave.so
libpowersave-dev: usr/lib/libpowersave.so
libpowersave10: usr/lib/libpowersave.so.10
libpowersave10: usr/lib/libpowersave.so.10.0.3

Installing the apt-file utility can save you a tremendous amount of hair-pulling and general frustration
when you are trying to build software and have no idea what package provides the missing include file or
“the missing link.” (Sorry, but I couldn’t resist.)

You can also use the apt-file utility to list the contents of packages that are not yet
installed by using the apt-file list package command, where package is the name of the pack-

age that you are interested in.

Using apt-get to Add and Remove Software
The apt-get command is the fundamental user-level command provided as part of the Ubuntu package
management suite. The apt-get command is a command-line tool that is fast and easy to use.

As with any system administrative utility on your Ubuntu system, running the apt-get com-
mand requires the use of the sudo command or an equivalent, such as running apt-get

under a shell that itself has been executed using the sudo command. To simplify examples and the readabil-
ity of the text, the examples and discussion of using the apt-get command throughout this section do not
include the sudo command.

NOTENOTE

TIPTIP

588

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 588

Much of the basic functionality provided by the apt-get command is quite straightforward. For example,
you can install a package and any other packages that it requires using the apt-get install package
command. Similarly, you can remove a package by using the apt-get remove package command,
specifying the --purge option if you also want to remove any configuration files or other data associated
with the package that you’re removing. Before using apt-get to install new software or new versions of
existing software, you should always first execute the apt-get update command to ensure that apt-get
is aware of the latest software packages and versions of that software from all of the repositories listed in
your /etc/apt/sources.list file.

When using the apt-get utility to install software, you may occasionally have to provide additional infor-
mation during the installation process. In these cases, the apt-get utility displays a quasi-graphical screen
in the terminal application from which you were running the apt-get utility, an example of which is
shown in Figure 20.7.

FIGURE 20.7

Supplying configuration information during package installation

Whenever you see this sort of screen, you must answer any questions that it asks and supply any required
information before the installation of your package can complete.

If you are using apt-get to install new software and the apt-get utility informs you that
other packages are recommended or suggested for installation, you may want to consider using

aptitude’s command-line interface to install these packages rather than apt-get. As explained later in
this chapter in the section entitled “Using aptitude to Install Recommended Software” aptitude provides
options that can automate installing recommended software when installing a new software package.

As mentioned throughout this book, I prefer to use the graphical Synaptic tool to search for, install, and
remove packages whenever possible. The apt-get tool provides these same capabilities, but also provides
some powerful capabilities that are not duplicated in the Synaptic tool, or are at least much more easily
done using apt-get from the command line. Even if you’re a Synaptic fan, the next few sections explain
how and when you still may want to use apt-get to perform these advanced functions.

TIPTIP

589

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 589

Upgrading Your System Using apt-get
The apt-get upgrade command searches all of the repositories in your /etc/apt/sources.list file
for new versions of packages that are currently installed on your system, and downloads and installs those
new versions. Before using this command, you should always first execute the apt-get update command
to ensure that apt-get is aware of the latest software packages and versions of that software from all of the
repositories listed in your /etc/apt/sources.list file.

During the upgrade process, the apt-get upgrade command will not change the installation status of any
other packages on your system. This is the installation status of a package, not the version of a package. If a
new version of a package requires a newer version of another package that is already installed on your sys-
tem, the apt-get upgrade command will also install the updated version of that other package. However,
if a newer version of an existing package requires that new packages be installed or that existing packages be
removed, the apt-get upgrade command will not install the newer version of the existing package. To do
this, you will need to use the apt-get dist-upgrade command, as described in the next section.

Smart System Upgrades Using apt-get
The apt-get dist-upgrade command searches all of the repositories in your /etc/apt/sources
.list file for new versions of packages that are currently installed on your system, and downloads and
installs those new versions. Before running this command, you should always first execute the apt-get
update command to ensure that apt-get is aware of the latest software packages and versions of that
software from all of the repositories listed in your /etc/apt/sources.list file.

The difference between the apt-get upgrade and apt-get dist-upgrade commands is that the
apt-get dist-upgrade command will do what is known as a “smart upgrade.” This means that it will
do its best to handle any new package requirements or the removal of any existing packages that mandated
in order to install the latest versions of all of the software on your system. For example, if a new version of a
package requires that a new package be installed on your system, the apt-get dist-upgrade command will
install both of these, while the apt-get upgrade command would not have updated the original software
package. Similarly, if installing a new version of an existing package requires the removal of any other pack-
age(s) that are currently installed on your system, the apt-get dist-upgrade command will remove
those packages in order to install the new version of the existing package.

Even if you are a Synaptic fan, you will occasionally need to execute the apt-get dist-upgrade
command in order to completely upgrade all of the packages on your system. Synaptic provides a “smart
upgrade” preference that tries to do this sort of thing for you whenever possible, but the apt-get dist-
upgrade command is still occasionally required. When using Synaptic, symptoms of the need to use the
apt-get dist-upgrade command are packages that are mysteriously identified as being held back and
not updated — and, of course, the occasional pop-up message that explicitly tells you to run the apt-get
dist-upgrade command.

Retrieving Package Source Code Using apt-get
Even in the wonderful world of constantly updated repositories with a rich collection of software, you
may occasionally want to build your own versions of software packages for your system. The most common
situation in which you’ll want to do this is when you find patches to an existing software package that fix
problems you’re experiencing or add enhancements, and you just can’t wait for them to appear in the offi-
cial or backports repositories. You may also have your own ideas about changes that should be made to a
package and want to test and work through your ideas. Linux and its ecosystem of utilities and other appli-
cations are open source, after all!

590

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 590

The apt-get command makes it remarkably easy to retrieve the source code for an installed package. The
only requirement for this capability is that your /etc/apt/sources.list file includes a deb-src
entry for the repository from which you retrieved the binary version of that software. For example, if you
want to retrieve the source for a package in which the binary version is located in the multiverse repository
component, you must have entries like the following (or equivalent entries) in your
/etc/apt/sources.list file:

deb http://archive.ubuntu.com/ubuntu/ dapper multiverse
deb-src http://archive.ubuntu.com/ubuntu/ dapper multiverse

Assuming that the right entries are present in your /etc/apt/sources.list file, retrieving the source
code for a specified package is easy using the apt-get source command. The following example shows
the retrieval of the source code for one of my favorite packages, the MythTV personal video recorder package:

$ apt-get source mythtv
Reading package lists... Done
Building dependency tree... Done
Need to get 9836kB of source archives.
Get: 1 http://.../multiverse mythtv 0.18.1-5ubuntu3 (dsc) [1084B]
Get: 2 http://... dapper/multiverse mythtv 0.18.1-5ubuntu3 (tar)
[9817kB]
Get: 3 http://... dapper/multiverse mythtv 0.18.1-5ubuntu3 (diff)
[17.3kB]
Fetched 9836kB in 1m31s (107kB/s)
dpkg-source: extracting mythtv in mythtv-0.18.1
dpkg-source: unpacking mythtv_0.18.1.orig.tar.gz
dpkg-source: applying ./mythtv_0.18.1-5ubuntu3.diff.gz

When retrieving the source code for a package, the apt-get source utility actually retrieves multiple files.
The extensions of these files are the following:

n diff.gz: a compressed file containing any available patches to the standard source archive for
the package

n DSC: a description file for the Ubuntu package that identifies the contents of the package, associ-
ated binary packages, any package dependencies for that package, and so on

n tar.gz: a compressed archive file containing the source code for the official version of this package

After retrieving these files, the apt-get source command unpacks the compressed source archive, creat-
ing a working directory for your development efforts, and automatically applies any patches that are avail-
able in the (optional) compressed patch file.

Chapter 18 discussed how to install the basic packages required for software development on an Ubuntu
system. If you are writing your own code or simply compiling existing applications on an Ubuntu system,
that may be sufficient — except when you are building complex graphical software or when you are build-
ing your own DEB packages from the downloaded source for an Ubuntu package. In these cases, you will
quickly encounter frustration such as the fact that today’s graphical software has dependencies on libraries,
include files, and utilities that you may not be familiar with or even have heard of before. Similarly, building
DEB packages requires the use of billions and billions of utilities that may be new to you. Not to worry —
you’re not the first person to have encountered these issues, and the apt-get command provides a handy
solution, as explained in the next section.

591

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 591

Satisfying Build Dependencies Using apt-get
Many of the software packages available for Linux have dependencies on other packages, which makes
perfect sense — why reinvent the wheel when you can just link your code with it? However, if you decide
to work on an existing Linux package, build-time dependencies can be frustrating. They’re rarely well-
documented, so you tend to encounter them as an iterative set of errors when you try to compile and
link the application you’re trying to build. This is also true when you begin to work with software packages
in the formats used by different package management systems. The DEB packages used on Ubuntu and
Debian systems (and derivatives) eliminate the dependency mumbo-jumbo that you often encounter with
other package formats (such as RPM), but require the presence of an entire ecosystem of related utilities in
order to build and package them successfully. Getting started with these can be tricky — you don’t know
what you’re missing until your build process goes up in flames.

The apt-get tool provides a great, automated solution for these sorts of problems through its build-dep
command-line option. Using this command-line option, followed by the name of the package that you want
to build automatically identifies, retrieves, and installs all of the include files, libraries, and tools required to
build the specified package. An example of the output from this command when retrieving build dependen-
cies for the MythTV package used as an example in the previous section is the following:

$ sudo apt-get build-dep mythtv
Reading package lists... Done
Building dependency tree... Done
The following NEW packages will be installed
build-essential g++ g++-3.4 g++-4.0 libartsc0-dev libasound2-dev
libaudio-dev libdvb-dev libgl1-mesa-dev libglu1-mesa-dev
libjpeg62-dev liblame-dev liblcms1-dev liblircclient-dev
libmng-dev libmysqlclient14-dev libogg-dev libqt3-headers
libqt3-mt-dev libstdc++6-4.0-dev libstdc++6-dev libvorbis-dev
libxmu-dev libxmu-headers libxt-dev libxv-dev libxvmc-dev
libxxf86vm-dev mesa-common-dev qt3-dev-tools x11proto-video-dev
x11proto-xf86vidmode-dev

0 upgraded, 32 newly installed, 0 to remove and 0 not upgraded.
Need to get 14.2MB/17.9MB of archives.
After unpacking 63.4MB of additional disk space will be used.
Do you want to continue [Y/n]? Y
[much output deleted]

As you can see from this example, it would have taken me many, many iterative compilation attempts to
retrieve all of the packages required to build MythTV. Identifying the packages that provide missing include
files and libraries can also be time-consuming, even with the help of the apt-file application discussed
earlier in this chapter in the section entitled “Determining What Package Provides a Missing File.” The
apt-get build-dep command eliminates these sorts of hassles, letting you focus on the software, not
the infrastructure required for building it.

Using aptitude to Add and Remove Software
As mentioned earlier in this chapter, the dpkg utility provides the conceptual underpinnings of much of the
package management software provided on Ubuntu (and Debian) systems. However powerful it may be, it is a
command-line utility, and therefore doesn’t provide any sort of graphical interface, so the dselect utility was
developed in order to at least provide a quasi-graphical interface using terminal-oriented cursor-movement

592

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 592

libraries such as curses (now ncurses, for new curses). However, dselect couldn’t quite let go of its
command-line roots, and therefore also provides a command-line interface.

The apt-get application discussed earlier in this chapter provides a simpler, higher-level interface than
that provided by the dpkg utility. However, apt-get is YACLU (Yet Another Command-Line utility),
and therefore doesn’t provide any sort of graphical interface either. The aptitude application was devel-
oped to solve this problem, but couldn’t quite let go of the command line either. Thus aptitude (like
deselect before it) provides both a powerful command-line interface and a terminal-oriented, quasi-
graphical interface.

Personally, I find terminal-oriented graphical interfaces quaint, at best. I prefer not to use them unless
absolutely necessary, especially when they’ve been replaced by actual graphical user interfaces such as that
provided by the Synaptic Package Manager.

When using the aptitude utility to install software, you may occasionally have to provide
additional, configuration-related information during the installation process. In these cases,

the aptitude utility displays the same sort of information requests as those displayed by the apt-get util-
ity and shown earlier in Figure 20.7. Whenever you see this sort of screen, you must answer any questions
that it asks and supply any requested information before the installation of your package can complete.

Software can easily be installed by aptitude using the command-line aptitude install command,
and removed using the aptitude remove command. As discussed later in the section entitled “Using
aptitude to Install Recommended Software,” aptitude provides some convenient options that make it
attractive to use aptitude from the command line in certain cases. Many people are also fans of the apti-
tude interface, primarily those who understand it. The next section discusses the absolute basics of the
aptitude user interface, focusing on how to make it readable by mere mortals.

Tips and Tricks for Using the aptitude User Interface
Figure 20.8 shows the default aptitude interface that you see the first time that you start aptitude with
no arguments in a GNOME Terminal.

FIGURE 20.8

The default aptitude interface in the GNOME Terminal

NOTENOTE

593

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 593

This interface looks essentially the same in an X Window system xterm or any other terminal application
that supports color. (It’s slightly more psychedelic in an xterm, but I won’t bore you with a screen shot.)

If you insist on using this interface but are having problems seeing the text or dealing with the color
scheme, you’re somewhat out of luck, because the aptitude application doesn’t offer command-line
options for changing the color scheme. However, all is not lost — you can make the interface easier to read
by changing your terminal application’s underlying notion of the type of terminal in which you are running
aptitude. A good choice for this is the value vt100, which is a classic terminal from the late Digital
Equipment Corporation that only supported black and white. To make this change, exit aptitude by
pressing Q and using the tab key to emphasize that you do actually want to exit from aptitude. Next,
type the following command in your terminal application:

$ export TERM=vt100

After executing this command, you can then restart aptitude, which will look like the screen shown in
Figure 20.9.

FIGURE 20.9

The aptitude interface in black and white

Changing the color scheme doesn’t make the aptitude interface any more attractive, but (for me) it does
at least make it more usable.

Once running aptitude, my favorite commands are the following:

n Q: Enables you to exit aptitude.

n ?: Displays a panel containing summary information about using the aptitude interface.

n Control-t: Holding down the control key and pressing T displays aptitude’s menus, which
you can navigate through using the arrow keys or by pressing the highlighted key shortcut to exe-
cute a specific command.

Figure 20.10 displays a menu in aptitude using aptitude’s default color scheme. Need I say more? This is
the sort of thing that gives Linux applications a bad name.

594

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 594

FIGURE 20.10

A menu in the default aptitude interface

For more detailed (and less opinionated) information about using the aptitude user interface, see the
online reference information for aptitude (man aptitude) or search the Web for relevant information.

Using aptitude to Install Recommended Software
If you have been using apt-get to install new software and the apt-get utility informs you that other
packages are recommended or suggested for installation, you may want to consider using aptitude’s
command-line interface rather than apt-get. The DEB packages used by Ubuntu identify various depen-
dences, divided into five different classes:

n Conflicts: packages (or package versions) with which a package conflicts, and which cannot
therefore be installed on a system when a specified package is being installed

n Depends: packages that are mandatory for the correct operation of a package, and which there-
fore must also be installed when a given package is installed

n Enhances: packages whose operation is improved or simplified as a result of installing a package,
but between which there is no direct relationship

n Pre-Depends: packages that must be completely installed on your system before you can install a
given package

n Recommends: packages that you should probably have, but which are not absolutely required for
the correct operation of a given package

n Suggests: packages that may be useful, and which are normally installed on systems where a
given package is installed

Requirements marked as Pre-Depends (which are rarely used or necessary) must be satisfied before you can
install a given package. Requirements marked as Depends are automatically installed along with a given
package. The aptitude utility enables you to automatically install packages that are recommended for
installation by including the --with-recommends command-line option on your aptitude install
command line.

595

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 595

The aptitude utility is the only command-line package installation utility that enables you to automati-
cally install recommended packages along with required packages. Specifying the --with-recommends
command-line option when installing packages from the command line can be quite convenient and can
save you search time in the future if you discover that you want to use a recommended packages. A similar
option to aptitude’s --with-recommends option for apt-get, --recommends, and a related on for
installing suggested packages, --suggests, have been “suggested” for apt-get for a long time, but are
not available in any version of apt-get that I’ve ever seen. As I’ll discuss in the section of this chapter on
Synaptic, the Synaptic tool provides configuration options for considering recommended packages to be
dependencies and automatically installing them; similarly, its interface provides a run-time option for manu-
ally selecting suggested packages and including them as part of the package installation process.

Advantages of Using aptitude to Install and Remove Software
Though I am not such a fan of the aptitude user interface, aptitude itself does provide some signifi-
cantly useful capabilities. Its search capabilities, discussed earlier in this chapter in the section entitled
“Listing the Packages that are Available for Your System,” are easy to use and quite powerful — exactly what
you want in a utility. Similarly, the current version of aptitude has some other advantages when installing
and, specifically, when removing packages. The most significant of these are the fact that aptitude
remembers dependency information when installing packages. Every Ubuntu package management utility
understand requirements when installing packages, but aptitude remember this information and can
therefore use that information should you decide to remove packages.

As an example, the following sample output shows an attempt to remove the PostgreSQL database system
from one of my Ubuntu systems using apt-get:

$ sudo apt-get remove postgresql
Password:
Reading package lists... Done
Building dependency tree... Done
The following packages will be REMOVED
postgresql

0 upgraded, 0 newly installed, 1 to remove and 0 not upgraded.
Need to get 0B of archives.
After unpacking 45.1kB disk space will be freed.
Do you want to continue [Y/n]? n
Abort.

Using aptitude to remove the same package is much more useful, because it also offers to remove pack-
ages that were installed along with the postgresql package, but which are not longer needed on that
system if the postgresql package itself is removed, as in the following example:

$ sudo aptitude remove postgresql
Reading package lists... Done
Building dependency tree... Done
Reading extended state information
Initializing package states... Done
Building tag database... Done
The following packages are unused and will be REMOVED:
postgresql-plperl-7.4 postgresql-plpython-7.4 postgresql-pltcl-7.4

596

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 596

The following packages will be REMOVED:
postgresql

0 packages upgraded, 0 newly installed, 4 to remove and 0 not upgraded.
Need to get 0B of archives. After unpacking 651kB will be freed.
Do you want to continue? [Y/n/?] Y
[much output deleted]

For me, this makes aptitude a much more attractive command-line package installation solution than
apt-get. Note that aptitude only remembers dependency information for packages that it has installed,
so I tend to use aptitude from the command-line for both package installation and removal. Otherwise, if
you actively install and remove large numbers of packages, your system tends to accumulate packages that
you no longer need, but which you’re not aware of. For information about ways of checking for unneeded
packages and removing them, see the last section of this chapter, “Keeping your System Lean, Mean, and
Pristine.”

Using Synaptic to Add and Remove Software
The Synaptic Package Manager is a graphical, GNOME application for installing, removing, and generally
managing Ubuntu software packages. In the unlikely event that this is only the second sentence you have
read in this book, you may not know that I recommend using the Synaptic package management utility for
almost all package management tasks on Ubuntu systems. It’s true. Synaptic is the type of administrative
application that users of other Linux distributions and other personal computer operating systems wish
they had.

Synaptic was originally developed by the folks at Connectiva Linux, a Latin American Linux distribution
that was eventually acquired by Mandrake Linux, which then changed its name to Mandriva to highlight
that it wasn’t your father’s Mandrake Linux distribution anymore. Synaptic was originally written using the
WINGS toolkit used by the Window Maker X Window system window manager (www.windowmaker
.info), which attempted to provide a look and feel familiar to users of NeXT computer systems. Today,
Synaptic is now built with the standard GTK+ toolkit used by GNOME. Interestingly, Connectiva was an
RPM-based distribution, but Synaptic is now more commonly associated with the DEB packages used by
distributions such as Ubuntu and Debian.

The Synaptic package management utility is installed by default as part of any Ubuntu installation. Select
the System ➪ Administration ➪ Synaptic Package Manager menu item to start the Synaptic tool. As when
trying to run any graphical administrative application on Ubuntu, you will be prompted for your adminis-
trative password before Synaptic actually starts. Figure 20.11 shows the dialog displayed when you first
start Synaptic.

The left pane of the Synaptic dialog shown in Figure 20.11 shows the conceptual categories into which soft-
ware is organized based on the default repositories enabled when you first install Ubuntu. Figure 20.12
shows an initial Synaptic dialog when additional repositories have been enabled.

597

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 597

FIGURE 20.11

The startup dialog for the Synaptic utility

FIGURE 20.12

The startup dialog for the Synaptic utility

Note that the software listed in the left pane of the main Synaptic dialog is still organized into the same
basic categories, but that entries for those categories from each available repository component are also
listed. This enables you to identify the software packages that are associated with the various licensing
requirements explained in “Ubuntu Repositories and Components” earlier in this chapter.

598

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 598

The basic package-related areas of Synaptic’s main dialog are the following:

n left pane: Lists available software organized into various conceptual categories based on the
repositories listed in /etc/apt/sources.list.

n upper-right pane: Lists the software packages that are available in the category that is currently
selected in the left pane. By default, the All category is selected in Synaptic’s left-pane, so that all
available software packages are listed, As I’ll discuss later in this chapter, performing a search in
Synaptic creates a new category with the name of your search term(s) and hides all other default
categories with the exception of the All category.

n bottom-right pane: Displays the description of any package that is currently selected in the
upper-right pane.

Synaptic provides an excellent online manual, shown in Figure 20.13, that you can access by selecting the
Help menu’s Contents item.

FIGURE 20.13

The online manual for Synaptic

Because Synaptic includes thorough and up-to-date online help, I’m not going to bore you by repeating all
of that. The next few sections focus on how to do common tasks in Synaptic, explaining how to configure
Synaptic and how to perform basic package management tasks such as searching for and installing packages
using Synaptic.

Configuring Synaptic Preferences
The entries on Synaptic’s Settings menu enable you to set default values for using Synaptic, identify the
repositories available to Synaptic, configure how searches work in Synaptic, configure how the icons are
displayed in the Synaptic toolbar, and set internal variables used by Synaptic. Most of the settings that you
will want to change are located on the Preferences dialog, which you can display by selecting the Settings
menu’s Preferences option. Figure 20.14 shows Synaptic’s Preferences dialog.

599

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 599

FIGURE 20.14

The Synaptic Preferences dialog

The Synaptic preferences that you will most commonly want to change are all located on the general tab of
Synaptic’s Preferences dialog. These are the following:

n Consider recommended packages as dependencies: Selecting this check box causes Synaptic to
always install any packages that are associated with a package that you are installing, but which
are identified as recommended, but not required, for package installation. As discussed in more
detail in this chapter in the section entitled “Using aptitude to Install Recommended Software,”
such recommended packages are ones that you will probably want to use with the package that
you are installing.

n System upgrade: This item should always be set to “Smart Upgrade,” which tries to identify other
packages that must be installed, updated, or removed when installing or upgrading any package.
Synaptic is much more conservative about this than other utilities such as apt-get (where the
apt-get dist-upgrade command is a more powerful equivalent for this Synaptic option. Even
if you are a Synaptic fan, you will occasionally need to execute the apt-get dist-upgrade
command in order to completely upgrade all of the packages on your system. When using Synaptic,
symptoms of the need to use the apt-get dist-upgrade command are packages that are mys-
teriously identified as being held back and not updated — and, of course, the occasional pop-up
message that explicitly tells you to run the apt-get dist-upgrade command.

n Apply changes in a terminal window: Selecting this option causes Synaptic to always display
package installation/update status messages and results in a separate terminal window. As men-
tioned when discussing installing software using the apt-get and aptitude utilities, you may
occasionally have to provide additional, configuration-related information during the installation
process. In these cases, the Synaptic utility displays the same sort of information requests as those

600

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 600

displayed by the apt-get and aptitude utilities, as shown earlier in Figure 20.7. Whenever
you see this sort of screen, you must answer any questions that it asks and supply any requested
information before the installation of your package can complete. The Synaptic utility displays
this information in the dialog that you see only when you expand the software installation status
window, so it’s a good idea to always monitor this window. If you choose not to and notice that
Synaptic seems to have stopped installing things, expand this window to see if Synaptic is waiting
for additional information.

Once you have change any setting on any of the tabs in Synaptic’s Preferences dialog, click Apply to make
sure that your changes are saved, and then click OK to close the Preferences dialog and return to the main
Synaptic dialog.

Searching for Software in Synaptic
One of Synaptic’s most powerful capabilities is providing a powerful and usable package search capability
that doesn’t involve a command line. To locate packages that are relevant to one or more keywords, click
the Search button in the Synaptic toolbar. The search dialog displays, as shown in Figure 20.15.

FIGURE 20.15

Synaptic’s Find dialog

Most examples of installing software throughout this book have relied on Synaptic’s search capabilities. To
locate matching, available packages, you have to make sure that you’re searching the right portion of the
information that Synaptic has about packages. In almost all cases, you will want to make sure that the Look
in value in Synaptic’s search dialog is set to Description and Name so that the search looks for matches for
your keyword(s) in both package descriptions and package names. However, you may occasionally want to
search other portions of the package information that is available via Synaptic. Other search possibilities are
the following:

n Name: searches only package names for your keyword

n Maintainer: looks for a package maintained by one your favorite Ubuntu rock star

n Version: finds specific versions, which can be useful when looking for all packages that take their
version number from higher-level packages, such as GNOME versions

n Dependencies: identifies packages that depend on a given package

n Provided Packages: identifies packages based on other packages that they also install.

To search for packages in Synaptic, enter one or more keywords in Synaptic’s search dialog and click Search
(or press Return). Synaptic will create new category in the left pane with the name of your search term(s)
and hides all other default categories with the exception of the All category. Once the search completes, the
new category is selected and any matching packages display in the upper-right pane. Figure 20.16 shows
the results of a search for “window manager.”

601

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 601

FIGURE 20.16

Search results in Synaptic

To select a package for installation, scroll down in the upper-right pane until you see the name of the package
that you want to install. You can select the name of any package in the upper-right pane to see the descrip-
tion of that package, and can also click the Properties button in Synaptic’s toolbar (or select the properties
item from the pop-up menu after right-clicking its name) to display a Properties dialog that shows detailed
information about the selected item. Figure 20.17 shows the Properties dialog for the package that provides
the fluxbox window manager, a lightweight window manager that I like to use on laptops.

FIGURE 20.17

A package Properties dialog in Synaptic

602

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 602

The Common tab, shown by default when you display a package properties dialog, provides general informa-
tion about the package. The Dependencies tab provides useful information about required, recommended,
suggested, and conflicting packages. The Installed Files tab is also very useful, but only contains information
on packages that are already installed. (To see information about the files that are included in a package that
is not installed, you can use the apt-file application, which is discussed earlier in this chapter in the section
entitled “Determining What Package Provides a Missing File.”)

After examining any properties of a selected package, click Close to close the properties dialog and return to
the main Synaptic dialog.

Installing Packages in Synaptic
After locating a package that you want to install, right-click on its name in the upper-right pane and select
Mark for installation from the pop-up menu, as shown in Figure 20.18.

FIGURE 20.18

Marking a package for installation in Synaptic

If installing the selected package requires that other packages be installed, Synaptic displays a dialog like
that shown in Figure 20.19.

This dialog lists all packages whose installation is required by the package that you have selected. If you
checked the Consider recommended packages as dependencies item in Synaptic’s Preferences dialog, this
list will also include any packages that are recommended, but not required, for installation. Click mark to
accept the installation of these other packages and close this dialog.

Next, right-click the package name again and check whether any packages are listed on a sub-menu of
the Mark Suggested for Installation command at the bottom of Synaptic’s pop-up menu, as shown in
Figure 20.20.

603

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 603

FIGURE 20.19

Identifying other packages required for installation

FIGURE 20.20

Marking suggested packages for installation in Synaptic

This sub-menu identifies packages that are normally installed with the primary package that you have
selected for installation, but which are not required or expected. You can select any of the additional pack-
ages listed on this menu (one by one) to also schedule them for installation.

Once you have selected any suggested packages that you want to install with the primary package that you
have selected for installation, click Apply in the Synaptic toolbar to begin the actual installation process.
This displays the dialog shown in Figure 20.21, which summarizes all of the activities associated with
installing the selected package(s).

604

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 604

FIGURE 20.21

A package installation summary in Synaptic

To proceed, click Apply. At this point, Synaptic begins retrieving the selected packages from the repository
where they are located, displaying the progress dialog shown in Figure 20.22.

FIGURE 20.22

The download status dialog during Synaptic package installation

Once the download process completes, Synaptic begins installing and configuring the downloaded pack-
ages. If you did not select the Apply changes in a terminal window item in Synaptic’s Preferences dialog,
Synaptic displays a simple status dialog, as shown in Figure 20.23.

You can display a small terminal window that lists the status of Synaptic’s installation and configuration
processes by clicking the arrow to the right of the Terminal option on this dialog. When the installation and
configuration of your packages completes, the dialog shown in Figure 20.24 displays.

605

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 605

FIGURE 20.23

A simple installation and configuration status dialog in Synaptic

FIGURE 20.24

A simple completion dialog in Synaptic

When using the Synaptic utility to install software, without having configured Synaptic to
always display configuration status in a Terminal window, it is useful to display a Terminal to

see information about the status of software installation on your system. You may occasionally have to pro-
vide additional, configuration-related information during the installation process. In this case, the Synaptic
utility displays the same sort of information requests as those displayed by the apt-get and aptitude
utilities, as shown earlier in Figure 20.7. Whenever you see this sort of screen, you must answer any ques-
tions that it asks and supply any requested information before the installation of your package can complete.
The Synaptic utility displays this information in the dialog that you see only when you expand the software
installation Terminal window, so it’s a good idea to always monitor this window. If you choose not to and
notice that Synaptic seems to have stopped installing things, expand this window to see if Synaptic is waiting
for additional information.

If you selected the Apply changes in a terminal window item in Synaptic’s Preferences dialog, Synaptic dis-
plays a single large terminal window during its installation and configuration phases, shown in Figure 20.25,
instead of the dialogs shown in Figures 20.23 and 20.24.

TIPTIP

606

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 606

FIGURE 20.25

A terminal window showing installation and configuration status

Regardless of which of the dialogs you see when package installation and configuration completes, click
Close to close that dialog and return to Synaptic’s main dialog.

Once you have finished installing any packages that you are interested in, you can exit from Synaptic by
selecting the File menu’s Quit command (or pressing the Control-q key sequence).

Removing Packages in Synaptic
Removing software in Synaptic is very similar to the installation process. You must first locate the package(s)
that you want to remove by selecting the appropriate category from Synaptic’s left pane and scrolling through
the package lists in the upper-right pane, or by searching for that package and then selecting it from the
upper-right pane. Either way, once you have located the package that you want to remove, right-click on its
name to display the pop-up menu shown in Figure 20.26.

Marking a package for complete removal removes the package and any configuration files for the applica-
tion that you may have modified, while Mark for Removal removes the package but leaves the configuration
files on your system.

Unfortunately, Synaptic does not automatically remove other packages that were required by
a package that you are selecting for removal, or which you installed as a result of their being

suggested for installation. You must select all of these packages manually in order to remove them. You can
also not worry about them and use the process described in the last section of this chapter, “Keeping your
System Lean, Mean, and Pristine” to remove them at some point in the future.

TIPTIP

607

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 607

FIGURE 20.26

Marking a package for complete removal in Synaptic

Once you have selected any packages that you want to remove and marked them for removal, click Apply
to proceed with the installation process. This displays the confirmation dialog shown in Figure 20.27.

FIGURE 20.27

The confirmation dialog for package removal in Synaptic

608

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 608

Click Apply to proceed. As the removal process proceeds, Synaptic dialog displays status dialogs similar to
those shown during the package installation process, as described in the previous section. Once package
removal completes, click Close to close the final status dialog and return to Synaptic’s primary dialog.

Once you have finished removing packages from your system, you can exit from Synaptic by selecting the
File menu’s Quit command (or pressing the Control+q key sequence).

Using the Ubuntu Update Manager
Ubuntu’s Update Manager checks the active repositories listed in your /etc/apt/sources.list file and
notifies you if updated to any installed packages are available. The Update Manager uses an associated panel
applet to let you know when updates are available by displaying a small orange icon and a pop-up dialog
when updates are found. Figure 20.28 shows this pop-up and the icon that is associated with the availabil-
ity of system updates.

FIGURE 20.28

The icon and dialog that notify you of available updates

Clicking on this icon starts the Update Manager itself, which is shown in Figure 20.29.

Using the Update manager is simple — just click Install Updates. The Update manager then automatically
retrieves, installs and configures all available updated packages, displaying progress and status dialogs that
are very similar to those used by the Synaptic Package Manager. When the update process completes, click
Close to terminate the Update Manager and begin doing real work.

As when using the Synaptic utility, you should watch for configuration questions or requests
for additional information that are required during the package update process. If the update

process seems to have halted or is taking a long time, click the Terminal button in the Update manager’s sta-
tus dialogs to see if any configuration questions are pending.

TIPTIP

609

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 609

FIGURE 20.29

The Ubuntu Update Manager

Converting Packages from
Other Package Formats
Though the Ubuntu repositories contain most of the add-on software packages that anyone could ever want,
there are cases when you must deal with pre-packed software that is provided in the package formats used
by distributions other than Ubuntu. This is often the case with commercial software whose Linux releases are
distributed in formats such as RPM and LSB. Luckily, an easy solution to this sort of problem is provided by
the alien application (www.kitenet.net/~joey/code/alien.html), which is a Perl script that can
covert between different package formats. Most importantly, alien can convert most package formats to the
DEB package format that is used by the Ubuntu and Debian installation and update tools that are discussed
in this chapter. Depending on the format of the package that you are converting from, alien may need
some additional software to be installed on your Ubuntu system — more about that in a second.

You must run alien as root (preferably using the sudo program) so that it can correctly set
ownership and file permissions on the files in the converted package.TIPTIP

610

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 610

The alien application can convert packages to and from the following formats:

n DEB: When converting packages to DEB format, the debhelper, dpkg, dpkg-dev, gcc, and
make packages must be installed on your system. (The gcc, make, and dpkg-dev packages are
installed as requirements for the build-essential package, as discussed in Chapter 18. Installing
alien installs the debhelper package.) If you’re stuck with using some distribution other
than Ubuntu on one or more of your systems, you can use alien to convert DEB packages to
the appropriate format for your other distribution(s) until you can replace them.

n LSB: The package format used to distribute applications and entire distributions that are compliant
with the Linux Standard Base specification (www.freestandards.org/en/LSB). Because the
LSB specification mandates RPM packages, LSB packages are a superset of RPM packages, the RPM
Package Manager software must be installed on your Ubuntu system in order to convert LSB pack-
ages. (The rpm software is automatically installed for you when you install alien, because it is
listed as a requirement for the alien package.) If you are converting an LSB package that depends
on other packages, the conversion process will correctly translate those dependencies, but will also
introduce a new dependency on the lsb package, which is available in the Ubuntu repositories.
You should also install the lsb-rpm package, which is suggested but not required by the alien
package, if you are converting from LSB packages.

n PKG: The package format used by Solaris. Converting PKG files into other package formats
requires Solaris-only tools such as pkginfo and pkgtrans. If you also install the rpm software
from one of the Sun Free Software CDs, you can then use alien on your Solaris system to con-
vert PKG packages into RPMs. This is probably only useful for packages composed of scripts,
source code, or command files, since you can’t execute Solaris binaries on a Linux system.

n RPM: The package format used by distributions such as Red Hat, Fedora Core, Mandrake, Yellow
Dog, and so on. To convert packages from the RPM format, the RPM Package Manager, formerly
known as the Red Hat Package Manager, software must be installed on your Ubuntu system. (The
rpm software is automatically installed for you when you install alien, because it is listed as a
requirement for the alien package.)

n SLP: The package format used by the extinct Stampede Linux distribution, which ceased develop-
ment in 2002. I can’t believe that this option is still actively supported, but since Stampede Linux
is dead, I don’t suppose much is changing in its package format.

n TGZ: The software distribution format used by most open source software projects and the
Slackware Linux distribution, a TGZ file is a tar archive that has been compressed using the gzip
compression tool, whether from the command line or by tar itself when creating the archive.
Compressed tar archives are often simply referred to as compressed tarballs. Package files that are
generated from TGZ files simply contain the same files as the compressed tarball, plus the package
database information for the target package format.

For more information about Linux package formats and a general comparison of their capabili-
ties, see http://kitenet.net/~joey/pkg-comp.

Using alien to convert from one package format to another is easy. The alien application provides
options such as --to-deb, --to-lsb, --to-rpm, and --to-tgz to specify the target output format.
The following is an example of converting the RPM package for Adobe Acrobat Reader, which some of you
may have heard of, to DEB format:

$ sudo alien --scripts --to-deb AdobeReader_enu-7.0.0-2.i386.rpm
Password:
adobereader-enu_7.0.0-3_i386.deb generated

TIPTIP

611

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 611

Not much to see there, actually. The --scripts option tells alien to convert any pre- or post-installation
scripts found in the package, though the validity of the converted scripts can’t be guaranteed — you should
watch carefully to make sure that nothing goes amiss when you install the converted package. The --to-
deb option tells alien to generate a Debian package from the input package. If you want to see detailed
output, you can add the -v option to the alien command line, but you’re likely to see way more output
than you actually care about.

Before installing a converted package, you can verify its integrity using dpkg, as in the following example:

$ dpkg --info adobereader-enu_7.0.0-3_i386.deb
new debian package, version 2.0.
size 37932742 bytes: control archive= 7436 bytes.

484 bytes, 11 lines control
20061 bytes, 207 lines md5sums
1340 bytes, 60 lines * postinst #!/bin/sh
980 bytes, 45 lines * postrm #!/bin/sh
211 bytes, 7 lines shlibs

Package: adobereader-enu
Version: 7.0.0-3
Section: alien
Priority: extra
Architecture: i386
Installed-Size: 92316
Maintainer: root <root@vmdesktop>
Description: Adobe Reader for Linux. An application that reads a PDF
document.
Adobe Reader 7.0.0 can read documents in PDF format. Adobe Reader

also allows you to search within PDF files, search for PDF files on the
internet and participate in collaborative document reviews.
.
(Converted from a rpm package by alien version 8.64.)

This matches quite nicely with information about the original RPM package that was produced on one of
my other systems:

$ rpm -q --info -v -p AdobeReader_enu-7.0.0-2.i386.rpm
Name : AdobeReader_enu Relocations:
/usr/local/Adobe/Acrobat7.0
Version : 7.0.0 Vendor: Adobe Systems,
Incorporated
Release : 2 Build Date: Mon 28 Mar 2005 06:34:42
AM EST
Install date: (not installed) Build Host:
acrolinux2.corp.adobe.com
Group : Applications/Publishing Source RPM: AdobeReader_enu-
7.0.0-2.src.rpm
Size : 97613446 License: Commercial
Signature : (none)
Packager : Adobe Systems, Incorporated
URL : www.adobe.com

612

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 612

Summary : Adobe Reader for Linux. An application that reads a PDF document.
Description :

Adobe Reader 7.0.0 can read documents in PDF format. Adobe Reader also
allows you to search within PDF files, search for PDF files on the
internet and participate in collaborative document reviews.
Distribution: (none)

For more information about the alien package, see its online reference information, which is available by
typing the man alien command (after installing the package, of course).

You should never use alien in order to install packages containing low-level system utilities
or system libraries. Though they may convert and install successfully, these packages will prob-

ably not work correctly on your Ubuntu system and you risk reducing your Ubuntu system to a dysfunctional
heap of slag that will not boot correctly.

Keeping your System Lean, Mean, and Pristine
If you like to play with different software packages as much as I do, you’ll find yourself installing lots of ran-
dom packages on your system, playing with them for a while, and then forgetting about them unless they
solve some major problem for you. You may occasionally even be thoughtful enough to remove packages
that you aren’t planning on using anymore. Unfortunately, this doesn’t remove packages that were required,
recommended, or suggested by the packages that you’ve removed (unless you use aptitude to both install
and remove those package).

Every now and then, it is therefore useful to run a utility that scans all of the packages that are installed on
your system and looks for packages that are not used or required by any other package on your system, and
which are also not a part of some system installation process. Good examples of programs that you can use
to check your system in this way are the deborphan and debfoster packages. Neither of these packages
is installed by default on an Ubuntu system, but you can easily install either of them using your favorite
package installation utility.

The core difference between these two packages is that the deborphan utility simply produces a list of pack-
ages that are not used or referred to by any system package on your system, while the debfoster package
builds its own database of which packages are required, tries to be smart about things that you may not need,
and also asks lots of questions the first time you run it. For all of these reasons, I prefer the deborphan pack-
age, but I suggest that you investigate both and see which utility best suits your needs and modus operandi.

As mentioned previously, the deborphan utility simply lists packages that are no longer required by or
associated with any other package. To do something useful with this list, you can either redirect it into a
file and use that file as the basis for a shell script that will remove the packages that you actually want to
remove. Another solution, much more wizardly, is to feed this list to the apt-get remove command
using the Linux xargs command, as in the following example:

$ sudo deborphan | xargs apt-get remove --purge -y

Before running this sort of command, you should examine the deborphan output to make sure that it isn’t
removing anything that you still want.

Running either the deborphan or debfoster commands periodically will help you reduce the amount of
software package detritus that tends to accumulate on any running system. Keeping your system as free of

WARNING WARNING

613

Adding, Removing, and Updating Software 20

26_038993 ch20.qxp 11/22/06 9:32 AM Page 613

unneeded packages as possible can help guarantee that the maximum amount of free disk space is available
on your system, which you can then devote to “real work” such as your online music archives or collection
of artistic digital photographs.

Summary
Package management is a wonderful thing, enabling your system to identify installed packages and, with
the help of excellent package formats such as DEB, identify and satisfy any requirements for successfully
installing a completely functional software package. This chapter discussed Ubuntu’s four primary package
management utilities (dpkg, apt-get, aptitude, and synaptic), and discussed how you can use these
and related utilities to install and query packages, figure out other packages that you need, and many more
interesting package management tricks.

Chapter 21 continues with system-related topics, discussing how to create and manage users and groups on
your Ubuntu system, and why this is important. It also discusses advanced topics related to file and directory
protection, such as Access Control Lists, that are above and beyond the traditional user/group protection
model but give you even finer control over who can access your data (and don’t require system administration
privileges to do so).

614

Ubuntu for System AdministratorsPart III

26_038993 ch20.qxp 11/22/06 9:32 AM Page 614

