
Software Security for
Financial Services

Meeting the New PCI Application Security
Requirements

Compliance, PCI, and Beyond
Diana Kelley
SecurityCurve

Agenda

• Software Security Matters
• Software Security and PCI
• The PA-DSS
• Building Security In
• Testing Tools

What do These have in Common?

2005 Toyota Prius

Therac-25 Radiation
Therapy Machine

Miele G885 SC Dishwasher

Software

• The dishwasher . . . was rendered useless
after a power outage. Its software got
knocked out.”

http://www.baselinemag.com/print_article/0,3668,a=35839,00.asp

• “Prius hybrids dogged by software. . . stall
or shut down at highway speeds”
http://money.cnn.com/2005/05/16/Autos/prius_computer/index.htm?cnn=yes

• Six known accidents involved massive
overdoses by the Therac-25 -- with
resultant deaths and serious injuries.”

http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html

Financial Services Software

• Chemical Bank ATM Incident
• “…a single line in an updated computer program . .

. caused the bank to process every withdrawal and
transfer at its automated teller machines twice.
Thus a person who took $100 from a cash machine
had $200 deducted, although the receipt only
indicated a withdrawal of $100.”

http://query.nytimes.com/gst/fullpage.html?res=9B00E7D7173BF93BA25751C0A9
62958260

Financial Services Software

• Royal Bank of Canada Software Error
• “After a software upgrade went badly awry last week,

the holders of some 10 million accounts at the bank
had to wait days in some cases for deposits to be
credited or prearranged payments to be completed.”

• …”the problems started with a routine programming
update by the information technology staff. . . . the
new software was written in-house”

http://query.nytimes.com/gst/fullpage.html?res=9A06E4D81131F934A35755C0A9629C8B63

Financial Services Compliance

• FFIEC
• Authentication Guidance

• GLBA
• Third party access to data

• SEC 17a-4
• Record keeping and archiving for trades

• SOX
• For FIs that are publicly traded

• ….and PCI

Software Security and PCI

• Requirement 6 – “Develop and maintain secure
systems and applications”
• Patching
• Configuration
• Development lifecycle
• Testing
• Production

Sub-requirement 6.3
• Develop software applications based on industry best practices and

incorporate information security throughout the software development
life cycle.

• 6.3.1 Testing of all security patches
• 6.3.2 Separate development, test, and production environments
• 6.3.3 Separation of duties between development, test, and production
• 6.3.4 Live PANs are not used for testing or development
• 6.3.5 Removal of test data and accounts before production
• 6.3.6 Removal of custom application accounts, usernames, and passwords
• 6.3.7 Review of custom code prior to release to production or customers

Text edited from original source: PCI Data Security Standard,
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

Sub-requirement 6.3
• Develop software applications based on industry best practices and

incorporate information security throughout the software development
life cycle.

• 6.3.1 Testing of all security patches
• 6.3.2 Separate development, test, and production environments
• 6.3.3 Separation of duties between development, test, and production
• 6.3.4 Live PANs are not used for testing or development
• 6.3.5 Removal of test data and accounts before production
• 6.3.6 Removal of custom application accounts, usernames, and passwords
• 6.3.7 Review of custom code prior to release to production or customers

Text edited from original source: PCI Data Security Standard,
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

Sub-requirement 6.3
• Develop software applications based on industry best practices and

incorporate information security throughout the software development
life cycle.

• 6.3.1 Testing of all security patches
• 6.3.2 Separate development, test, and production environments
• 6.3.3 Separation of duties between development, test, and production
• 6.3.4 Live PANs are not used for testing or development
• 6.3.5 Removal of test data and accounts before production
• 6.3.6 Removal of custom application accounts, usernames, and passwords
• 6.3.7 Review of custom code prior to release to production or customers

Text edited from original source: PCI Data Security Standard,
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

Sub-requirement 6.5
• Develop all web applications based on secure coding

guidelines such as the Open Web Application Security
Project (OWASP) guidelines. Review custom application
code to identify coding vulnerabilities.

• 6.5.1 Unvalidated input
• 6.5.2 Broken access control (for example, malicious use of user IDs)
• 6.5.3 Broken authentication and session management (use of

account credentials and session
• cookies)
• 6.5.4 Cross-site scripting (XSS) attacks
• 6.5.5 Buffer overflows
• 6.5.6 Injection flaws (for example, structured query language (SQL)

injection)
• 6.5.7 Improper error handling
• 6.5.8 Insecure storage
• 6.5.9 Denial of service
• 6.5.10 Insecure configuration management

Text edited from original source: PCI Data Security Standard,
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

Sub-requirement 6.5
• Develop all web applications based on secure coding guidelines

such as the Open Web Application Security Project (OWASP)
guidelines. Review custom application code to identify coding
vulnerabilities.

• 6.5.1 Unvalidated input
• 6.5.2 Broken access control (for example, malicious use of user IDs)
• 6.5.3 Broken authentication and session management (use of account credentials and

session
• cookies)
• 6.5.4 Cross-site scripting (XSS) attacks
• 6.5.5 Buffer overflows
• 6.5.6 Injection flaws (for example, structured query language (SQL) injection)
• 6.5.7 Improper error handling
• 6.5.8 Insecure storage
• 6.5.9 Denial of service
• 6.5.10 Insecure configuration management

Text edited from original source: PCI Data Security Standard,
https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

Quick Example – SQL Injection

• Ability to show orders from a table in a SQL DB
• Correct Usage

•User enters in Name field = Kenny

•Result
SELECT * FROM OrdersTable WHERE CustomerName =

‘Kenny'
• Exploit Usage

•Attacker enters Name and SQL Command
• Semi colon triggers end of query begins a new one

•Result
SELECT * FROM OrdersTable WHERE CustomerName =
‘Kenny';drop table OrdersTable--‘

• What happens to the Orders table?

SQL Injection in the News

• April 2008 - nihaorr1
• Infected upwards of 100,000 web pages (per the Register)

• 500,000 per Slashdot

• Used SQL injection to infect databases
• Legitimate users (at legitimate but infected sites) were

redirected to the attacker site
• And infected by drive-by malware/Trojan if vulnerable

Sub-requirement 6.6

• Ensure that all web-facing applications are
protected against known attacks by applying
either of the following methods:
• Having all custom application code reviewed for common

vulnerabilities by an organization that specializes in
application security

• Installing an application layer firewall in front of web-facing
applications.

PCI Data Security Standard, https://www.pcisecuritystandards.org/pdfs/pci_dss_v1-1.pdf

Sub-requirement 6.6

• Clarifications were issued in February 2008
• Reiterates that this is an either/or requirement

• Do not need to implement both
• For Code Review

• Manual review of application source code
• Proper use of automated application source code analyzer

(scanning) tools
• Manual web application security vulnerability assessment
• Proper use of automated web application security vulnerability

assessment (scanning) tools
Information Supplement: Requirement 6.6

Code Reviews and Application Firewalls Clarified
https://www.pcisecuritystandards.org/pdfs/infosupp_6_6_applicationfirewalls_codereviews.pdf

Sub-requirement 6.6 Clarifications

• For Code Review
• Internal resources can perform the scan/assessment
• Must be organizationally separate from the management of

the application being tested
Information Supplement: Requirement 6.6

Code Reviews and Application Firewalls Clarified
https://www.pcisecuritystandards.org/pdfs/infosupp_6_6_applicationfirewalls_codereviews.pdf

More information on scanning and assessment tools coming up
in next section!

Sub-requirement 6.6 Clarifications

• Application Firewall
• = Web Application Firewall (WAF)

• Not an application-layer firewall
• What makes a WAF acceptable for PCI?

• Meet all applicable PCI DSS requirements
• React appropriately to threats
• Inspect web application input and respond
• Prevent data leakage
• Enforce both positive and negative security models
• Inspect Hypertext Markup Language (HTML), Dynamic HTML

(DHTML), and Cascading Style Sheets (CSS)
For more additional information please review:

Information Supplement: Requirement 6.6
Code Reviews and Application Firewalls Clarified

https://www.pcisecuritystandards.org/pdfs/infosupp_6_6_applicationfirewalls_codereviews.pdf

Sub-requirement 6.6 Clarifications

• Example WAF Vendors
• Barracuda (NetContinuum)
• Breach Security
• Check Point Web Intelligence
• Cisco ASA
• Citrix
• F5
• Imperva
• Protegrity

Requirement 6
Recommendations
• Have change control procedures

• Impact statements, signoff for changes, and backout
procedures

• Have a process for identifying new
vulnerabilities

• Test production changes
• And educate testers!

• Have a documented software development
lifecycle

• Have separate personnel and environments for
production and test

• Code review or firewall consider:
• Time constraints
• Code availability

PA-DSS
• Payment Application Data Security Standard

• Started life out as VISA’s PABP
• Guidelines on creating secure credit card payment systems

• Applies to payment applications that are
• Developed and sold to more than one customer
• Not resident in standalone (dumb) terminals if they meet

basic standards
• Not connected to rest of the network
• No SAD is stored

• For buyers
• Look for point of sale systems that have received PA-DSS (or

PABP) certification
• For developers

• Review the PA-DSS for additional in-depth guidance when
creating secure payment systems

https://www.pcisecuritystandards.org/pdfs/pci_pa-dss_faqs.pdf

Building Security In

• Check assumptions
• And leave finger pointing at the door

• Is a team effort
• “It Takes a Village”

• Is not the same thing as creating “perfect” code
• Unbreakable?

• Not likely

• Risk assessment
• Balancing the risks and consequences

Software Development Lifecycle

Securing the SDLC

•Risk assessment feedback
•Implement fixes/changes as needed
•Documentation

Additional Secure SDLC Resources

• Comprehensive, Lightweight Application
Security Process, (CLASP)
• The Open Web Application Security Project (OWASP)

http://www.owasp.org/index.php/OWASP_CLASP_Project

• The OWASP Top Ten
• And Testing Guide

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project

• Cigital’s TouchPoints
• Software Security: Building Security In by Gary McGraw

http://www.cigital.com/training/touchpoints/

Additional Secure SDLC Resources

• DHS – Build Security In
https://buildsecurityin.us-cert.gov/

• Top Ten Security Coding Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices

• Information Assurance Technology Analysis
Center (IATAC) SOAR on Software Security
Assurance

http://iac.dtic.mil/iatac/download/security.pdf

• Microsoft’s Security Development Lifecycle (SDL)
• A Look Inside the Security Development Lifecycle at Microsoft

http://msdn.microsoft.com/msdnmag/issues/05/11/SDL/

• The Security Development Lifecycle by Michael Howard and
Steve Lipner

Tools

• Static Source Code Analysis
• Requires access to source code
• Can be accomplished before build
• Manual or
• Automated

• For developers (inside the IDE)
• For auditors/testers (as stand alone)

• Dynamic
• Source code not required
• Tests the product from the view of the “outsider”
• Best in conjunction with

• Skilled testers who can tune the products
• Manual penetration testing to validate tool findings

Tools

• Which is better – Static or Dynamic?
• a/k/a – Black Box or White Box
• Tools look at different views of the application
• Most comprehensive approach is “Grey Box”

Tools - Dashboards

• Scanning/Testing tools provide dashboards of
metrics
• Number of flaws
• Severity of flaws
• Time to fix

• Can be grouped by
• Application team
• Application type

• And used to measure improvement

Tool Vendors
Static Dynamic

Fortify Cenzic

HP/SPI* HP/SPI

Klocwork IBM/Watchfire

Ounce Labs NTObjectives

Veracode* (binary SaaS) WhiteHat

Final Thoughts

• FIs create a lot of custom/proprietary code
• Compliance is often about the controls
• Follow a robust SDLC methodology

• Define requirements and hygiene for financial and other
sensitive data before implementation

• Test before production

• As new mandates arise
• Audit – controls may already be in place
• Adjust - as needed

	DianaKelley.ppt

