
C H A P T E R 7

EAP Authentication Protocols
for WLANs

The second in the WLAN authentication trilogy of chapters, this chapter examines the
various authentication protocols such as the Extensible Authentication Protocol (EAP),
Protected EAP (PEAP), the Lightweight Extensible Authentication Protocol (LEAP), and
EAP- Flexible Authentication via Secure Tunneling (EAP-FAST). This chapter begins with
a look at the fundamental concepts and contexts of authentication and access control; next,
it discusses the various protocols such as EAP and 802.1x.

Notice the slow progression out of the basic 802.11 standards as you begin to leverage other
standards: IEEE, the Internet Engineering Task Force (IETF), and sometimes even propri-
etary standards. You will see how the various protocols add more security features such as
encrypted tunnels for exchanging various information (authentication, credentials, and
other data), dynamic key distribution and rotation, authenticating the user rather than the
device, and applying identity-based mechanisms and systems that are part of the adminis-
trative domain in enterprises.

Access Control and Authentication Mechanisms
Before allowing entities to access a network and its associated resources, the general
mechanism is to authenticate the entity (a device and/or user) and then allow authorization
based on the identity. The most common access control is binary: It either allows access or
denies access based on membership in a group.

NOTE Extending access control, especially to the wireless world, means a more finely grained
authorization; for example, you can allow access to the network and its resources for
internal employees and allow Internet access for guests. Employees are also working
on federations, so access can be allowed based on the entity’s membership in identity
federations—for example, intercollege access to researchers, interorganization access
based on collaboration on certain projects, and other similar groups and roles.

The different layers, standards, and conceptual entities in the EAP/802.1x world are seen
in Figure 7-1.

1587051540.book Page 157 Tuesday, October 26, 2004 4:59 PM

158 Chapter 7: EAP Authentication Protocols for WLANs

Figure 7-1 Layered Authentication Framework

The Three-Party Model
The authentication is based on a three-party model: the supplicant, which requires access; the
authenticator, which grants access; and the authentication server, which gives permission.

The supplicant has an identity and some credentials to prove that it is who it claims to be. The
supplicant is connected to the network through an authenticator’s port that is access controlled.
The port concept is important because it acts as the choke point for the supplicant’s access to
the network resources. The access to the network can be controlled at a single point. The sup-
plicant is called a peer in the IETF RFCs and drafts.

Authentication
Process

TLS

802.5
Token Ring

4

Access Methods/
Media Layer

Authentication
Transport

Authentication
Transport

Authentication
Server

Layers Entities

Authenticator

Port/Network
Access Port

3

2

1

LEAP PEAP

EAPOL, RADIUS, DIAMETER

EAP-TTLSEAP-FAST

CHAP

EAP-TTLS UN/PW

802.11
WLAN

802.3
Ethernet

802.11
Serial Link

EAP, 802.1x

Supplicant/
Peer

1587051540.book Page 158 Tuesday, October 26, 2004 4:59 PM

Access Control and Authentication Mechanisms 159

NOTE In the wireless world, the most common supplicant is the STA (Station) (laptop or PDA), and
the authenticator is the access point (AP). The STA to AP cardinality is 1:1. (That is, one STA
can, at one time, connect to the network through only one AP.) This restriction is tailor made
for the EAP/802.1x concept of an access-controlled port.

The authenticator itself does not know whether an entity can be allowed access; that is the
function of the authentication server. In the IETF world, the authenticator is referred to as the
network access server (NAS) or Remote Address Dial-In User Service (RADIUS) client.

NOTE In many cases, the authenticator and the authentication server roles can be performed by one
device, such as the 802.11 AP.

Let’s look at the big picture before discussing the details. The supplicant initiates an access
request, and the authenticator starts an EAP message exchange. (In the stricter sense of the
standards, such as 802.1x, the supplicant does not necessarily always initiate the access request;
the authenticator can initiate an authentication request when it senses a disabled-to-enabled
state transition of a port.) At some point, the authenticator communicates with the authenticator
server, which decides on an authentication protocol. A set of exchanges then occurs between
the supplicant, the authenticator, and the server; at the end of this exchange, a success or failure
state is reached. If the authentication succeeds, the authenticator allows network access to the
supplicant through the port. The authenticator also keeps a security context with the supplicant-
port pair. This context could trigger many things, including timeout if the authentication is only
for a period of time (for example, the billed access in public WLAN scenario).

Layered Framework for Authentication
As shown in Figure 7-1, the authentication model is a layered one and has well-defined
functionalities and protocols defining each layer and the interfaces between them. The access
media (Step 1 in Figure 7-1) can be any of the 802 media: Ethernet, Token Ring, WLAN, or the
original media in the serial Point-to-Point Protocol (PPP) link. The EAP specifications provide
a framework for exchanging authentication information (Step 2 in Figure 7-1) after the link
layer is established. The exchange does not even need IP. It is the function of the transport
protocol layer (Step 3 in Figure 7-1) to specify how EAP messages can be exchanged over
LAN, which is what 802.1x (and to some extent some parts of 802.11i) does. The actual
authentication process (Step 4 in Figure 7-1) is the one that defines how and what credentials
should be exchanged. Bear in mind that this framework still does not say how the authorization

1587051540.book Page 159 Tuesday, October 26, 2004 4:59 PM

160 Chapter 7: EAP Authentication Protocols for WLANs

should be done, such as what decisions are made and when. This functionality is completely
left to the domain.

Table 7-1 lists the major standards and efforts in the authentication framework domain. This
chapter covers the different flavors of EAP. Hopefully, this table will enable you to dig deeper
into the areas in which you are interested.

Table 7-1 Specifications and Standards in the Authentication Framework Domain

Mechanism Specification Description

Domain: Access Method

PPP RFC 1661: The Point-to-Point
Protocol (PPP)

802.3, 802.5, 802.11
and other standards

Various IEEE access media standards

Transport Layer Security
(TLS)

RFC 2246: Transport Layer Security
Version 1.0

RFC 3268: AES Cipher Suit for TLS

RFC 3546: TLS extensions

Domain: Authentication Exchange

EAP RFC 2284: PPP Extensible
Authentication Protocol (EAP)

Original 1998 EAP standard

RFC 3579: RADIUS Support for
EAP

Was RFC 2284bis

Will supersede RFC 2284

draft-urien-eap-smartcard-03.txt EAP-Support in SmartCard

draft-funk-eap-md5-tunneled-00.txt EAP MD5-tunneled authentication
protocol

draft-mancini-pppext-eap-ldap-
00.txt

EAP-LDAP protocol

draft-haverinen-pppext-eap-sim-
12.txt

EAP SIM authentication

draft-arkko-pppext-eap-aka-11.txt EAP AKA authentication

draft-tschofenig-eap-ikev2-02.txt EAP IKEv2 method

draft-salki-pppext-eap-gprs-01.txt EAP GPRS protocol

draft-aboba-pppext-key-problem-
07.txt

EAP key management framework

draft-jwalker-eap-archie-01.txt EAP Archie protocol

draft-ietf-eap-statemachine-01 State machines for EAP peer and
authenticator

1587051540.book Page 160 Tuesday, October 26, 2004 4:59 PM

Access Control and Authentication Mechanisms 161

802.1x IEEE Std. 802.1X-2001 Port-based network access control

802.1aa Revision of the 802.1x, work-in-
progress

Domain: Authentication Process

RADIUS RFC 2865: RADIUS Current RADIUS specification

Supersedes RFC 2138, which in
turn supersedes RFC 2058

RFC 2866: RADIUS Accounting Defines protocol for carrying
accounting information between
authenticator and authentication
server

Supersedes RFC 2139, which in
turn supersedes RFC 2059

RFC 2867: RADIUS Accounting
Modifications for Tunnel Protocol
Support

Updates RFC 2866

RFC 2868: RADIUS Attributes for
Tunnel Protocol Support

Updates RFC 2865

RFC 2809: Implementation of L2TP
Compulsory Tunneling via RADIUS

RFC 2869: RADIUS Extensions Adds attributes for carrying AAA
information between the authenti-
cator (NAS) and authentication
server (shared accounting server)

RFC 3576: Dynamic Authorization
Extensions to RADIUS

RFC 2548: Microsoft Vendor-
Specific RADIUS Attributes

RFC 3575: IANA Considerations for
RADIUS

Describes best practices for
registering RADIUS packet types

Updates Section 6 of RFC 2865

RFC 3580: IEEE 802.1x Remote
Authentication Dial-In User Service
(RADIUS) Usage Guidelines

RFC 3162: RADIUS and IPV6

Table 7-1 Specifications and Standards in the Authentication Framework Domain (Continued)

Mechanism Specification Description

continues

1587051540.book Page 161 Tuesday, October 26, 2004 4:59 PM

162 Chapter 7: EAP Authentication Protocols for WLANs

RFC 2881: Network Access Server
Requirements Next Generation
(NASREQNG) NAS Model

Proposes a model for NAS—the
authenticator

RFC 2882: Extended RADIUS
Practices

RFC 2618, 2619, 2620, and 2621 Various RADIUS MIBs

RFC 2607: Proxy Chaining and
Policy Implementation in Roaming

One-Time Password
(OTP)

RFC 2289: A One-Time Password
System

RFC 2243: OTP Extended
Responses

EAP TLS (EAP
Transport Layer
Security)

RFC 2716: PPP EAP TLS
Authentication Protocol

EAP TTLS (EAP
Tunneled TLS)

draft-ietf-pppext-eap-ttls-03.txt EAP tunneled TLS authentication
protocol

Kerberos RFC 1510: Kerberos V5

RFC 2712: Addition of Kerberos
Cipher Suites to Transport Layer
Security (TLS)

RFC 3244: Microsoft Windows 2000
Kerberos Change Password and Set
Password Protocols

RFC 3546: TLS Extensions Updates RFC 2246

RFC 3268: AES for TLS

CHAP RFC 1994: PPP Challenge
Handshake Authentication Protocol
(CHAP)

RFC 2433: Microsoft PPP CHAP
Extensions

RFC 2759: Microsoft PPP CHAP
Extensions, Version 2

Protected EAP (PEAP) draft-josefsson-pppext-eap-tls-eap-
07.txt

PEAP V2

Table 7-1 Specifications and Standards in the Authentication Framework Domain (Continued)

Mechanism Specification Description

1587051540.book Page 162 Tuesday, October 26, 2004 4:59 PM

EAP 163

EAP
The EAP, a flexible protocol used to carry arbitrary authentication information, is defined in
RFC 2284. (Incidentally, RFC 2284 is only 16 pages long!) A set of RFCs also defines the
various authentication processes over EAP, including TLS, TTLS, SmartCard, and SIM. The
IETF EAP workgroup is working on a revision of the EAP RFC and has submitted the new
document as RFC 3579 (was RFC 2284bis).

EAP has two major features. First, it separates the message exchange from the process of
authentication by providing an independent exchange layer. By doing so, it achieves the second
characteristic: orthogonal extensibility, meaning that the authentication processes can extend
the functionality by adopting a newer mechanism without necessarily effecting a corresponding
change in the EAP layer.

EAP Frames, Messages, and Choreography
The basic EAP consists of a set of simple constructs: four message types, two message frames,
and an extensible choreography.

The four message types are request, response, success, and failure. Figure 7-2 shows the EAP
frame format.

As shown in Figure 7-3, EAP also defines a packet to negotiate the EAP protocol configuration.
The EAP protocol is identified by C227 (Hex). This packet will be included in the data field of
the EAP frame in Figure 7-2.

draft-kamath-pppext-peapv0-00.txt Microsoft PEAP version 0
(implementation in Windows XP
SP1)

draft-puthenkulam-eap-binding-
04.txt

The compound authentication
binding problem

Diameter RFC 3588: Diameter Base Protocol

draft-ietf-aaa-diameter-nasreq-13.txt;
Diameter Network Access Server
Application

Diameter application in the AAA
domain

draft-ietf-aaa-diameter-cms-sec-
04.txt

Diameter CMS security
application

Table 7-1 Specifications and Standards in the Authentication Framework Domain (Continued)

Mechanism Specification Description

1587051540.book Page 163 Tuesday, October 26, 2004 4:59 PM

164 Chapter 7: EAP Authentication Protocols for WLANs

Figure 7-2 EAP Frame Format

Figure 7-3 EAP Configuration Negotiation Packet

Code

0 1 2 4

1 = Request
2 = Response
3 = Success
4 = Failure

1 Byte

Data
(Depends on
the Method)

Identifier (to Match
Request-Response)

1 Byte

Length (Total Length
of Packet)

2 Bytes

0 1 2 4

Authentication
Protocol

2 Bytes

= C227 (hex)

Type

1 Byte

= 3

Length

1 Byte

= 4

0 1 2 4

Code Code
Data

Length (Total
Length of Packet)

1587051540.book Page 164 Tuesday, October 26, 2004 4:59 PM

EAP 165

Depending on the type, the request and response packets include the type field and data, as
shown in Figure 7-4.

Figure 7-4 EAP Request/Response Frame

CW680704

Code

0 1 2 4

1 = Request or
2 = Response

1 Byte

Type-Data
(Length

depends on
the type)

Type

1 = Identify
2 = Notification
3 = Nak (response only)
4 = MD5-Challenge
5 = OTP (One Time Password)
6 = GTC (Generic Token Card)
7 = Not Assigned
8 = Not Assigned
9 = RSA Public Key Authentication
10 = DSS Unilateral
11 = KEA
12 = KEA-VALIDATE
13 = EAP-TLS
14 = Defender Token (AXENT)
15 = RSA Security SecurID EAP
16 = Arcot Systems EAP
17 = EAP-Cisco Wireless (LEAP)
18 = Nokia IP Smart Card Authentication
19 = SRP-SHA1 Part 1
20 = SHP-SHA2 Part 2
21 = EAP-TTLS
22 = Remote Access Service
23 = UTMS Authentication and Key Agreement
24 = EAP-3Com Wireless
25 = PEAP
26 = MS-EAP Authentication
27 = Mutual Authentication w/Key Exchange (MAKE)
28 = CRYPTOCard
29 = EAP-MSCHAP-V2
30 = DynamID
31 = Rob EAP
32 = SecurID EAP
33 = EAP-TLV
34 = SentriNET
35 = EAP-Actiontec Wireless
36 = Cogent Systems Biometrics Authentication EAP
37 = AirFortress EAP
38 = EAP-HTTP Digest
39 = SecureSuite EAP
40 = Device Connect EAP
41 = EAP-SPEKE
42 = EAP-MOBAC
43 = EAP-FAST
44 – 191 = Not Assigned; Can Be Assigned by
IANA on the Advice of a Designated Expert
192 – 253 = Reserved. Requires Standards Action
254 = Expanded Types
255 = Experimental Usage

1 Byte

Identifier (to match
request-response)

1 Byte

Length (Total
Length of Packet)

2 Bytes

5

1587051540.book Page 165 Tuesday, October 26, 2004 4:59 PM

166 Chapter 7: EAP Authentication Protocols for WLANs

NOTE The RFC assigns eight request/response types. The rest are assigned by the Internet Assigned
Numbers Authority (IANA). The current assignments are shown in Table 7-2.

Table 7-2 EAP Packet Types Assigned by IANA

Type Description

1–6 Assigned by RFC

1 Identity

2 Notification

3 Nak (response only)

4 MD5-Challenge

5 One-Time Password (OTP)

6 Generic Token Card (GTC)

7 Not assigned

8 Not assigned

9 RSA Public Key Authentication

10 DSS Unilateral

11 KEA

12 KEA-VALIDATE

13 EAP-TLS

14 Defender Token (AXENT)

15 RSA Security SecurID EAP

16 Arcot Systems EAP

17 EAP-Cisco Wireless (LEAP)

18 Nokia IP SmartCard authentication

19 SRP-SHA1 Part 1

20 SRP-SHA1 Part 2

21 EAP-TTLS

22 Remote Access Service

23 UMTS Authentication and Key Agreement

24 EAP-3Com Wireless

1587051540.book Page 166 Tuesday, October 26, 2004 4:59 PM

EAP 167

NOTE The expanded type (254) frame includes a vendor ID; therefore, it is not deemed interoperable.

Figure 7-5 shows the success/failure frame.

25 PEAP

26 MS-EAP-Authentication

27 Mutual Authentication w/Key Exchange (MAKE)

28 CRYPTOCard

29 EAP-MSCHAP-V2

30 DynamID

31 Rob EAP

32 SecurID EAP

33 EAP-TLV

34 SentriNET

35 EAP-Actiontec Wireless

36 Cogent Systems Biometrics Authentication EAP

37 AirFortress EAP

38 EAP-HTTP Digest

39 SecureSuite EAP

40 DeviceConnect EAP

41 EAP-SPEKE

42 EAP-MOBAC

43 EAP-FAST

44–191 Not assigned; can be assigned by IANA on the advice of a designated expert

192–253 Reserved; requires standards action

254 Expanded types

255 Experimental usage

Table 7-2 EAP Packet Types Assigned by IANA (Continued)

Type Description

1587051540.book Page 167 Tuesday, October 26, 2004 4:59 PM

168 Chapter 7: EAP Authentication Protocols for WLANs

Figure 7-5 EAP Success/Failure Frame

The EAP message exchange is basic, as shown in Figure 7-6. EAP starts after the supplicant
has data and link layer connectivity (Step 0 in Figure 7-6). The communication between the
authenticator and the supplicant is done as a request-response paradigm, meaning a message is
sent and the sender waits for a response before sending another message.

NOTE Generally, either side should be able to start EAP, not just the authenticator. But in this case,
notice that the authenticator starts the EAP message, not the supplicant/client. EAP does not
assume a specific protocol such as IP, so the messages are “lock-step”—an ordered exchange
of messages in which a reply is sent only after receiving the earlier message. Another important
observation is that EAP is a point-to-point (peer-to-peer) exchange at the transport layer, not
multicast or any other many-to-many mechanism. The choreography is just a minimal
framework facilitating further RFCs to define the exact processes. That is what many of the
RFCs do: define EAP over various authentication processes such as EAP-SIM, EAP-over-
LDAP, EAP-over-GPRS, and of course, EAP-over-802, which is the 802.1x specification.

The first exchange (Step 1 in Figure 7-6) could be an identity exchange. Even though there is
an identity message type, the RFC does not guarantee identity semantics and encourages that
the authentication mechanisms not depend on this exchange for identity and have their own
identity-recognition mechanisms. Moreover, the initial exchange would most likely be in
cleartext; therefore, it is a security vulnerability.

Code

0 1 2 4

1 = Request
2 = Response
3 = Success
4 = Failure

1 Byte

Identifier (to Match
Request-Response)

1 Byte

Length (Total Length
of Packet)

2 Bytes

= 4

1587051540.book Page 168 Tuesday, October 26, 2004 4:59 PM

EAP 169

Figure 7-6 EAP Message Exchange Framework

In Step 2, all the exchanges between the supplicant, authenticator, and back-end authentication
systems are defined by a wide variety of specific RFCs or drafts and authentication
mechanisms.

Finally, at some point, the authenticator determines whether the authentication is a success or
failure and sends an appropriate message to the supplicant (Step 3 in Figure 7-6).

��	
���
 �	��	��

��	
���
 �	���
�	

�������	 �	����	 �	��	
�	�

�	�	
��
� �
 ��	

����	
�������
 ����	��

 ����
��

!���"���� ����

#�
$

����	
�������

����	��%��	��&��

�	����	

!'���
�	

 ��	� �
��	(� &�� ����	
�������
) ����*�+

��������	 ��	
���
 �	�,	��+ �
� �� �
- *��
�

.������ ��������� �
� �	�����

��������
�

�

/

0

1

����	�� �	����	

2�����	 �	����	 �

3	�

4�

����	�� 5

/%�

0%�

����	
������� ����	
�������

�	�,	�

1587051540.book Page 169 Tuesday, October 26, 2004 4:59 PM

170 Chapter 7: EAP Authentication Protocols for WLANs

EAP Authentication Mechanisms
This section examines in detail some of the most relevant EAP authentication frameworks.
The typical mechanisms using EAP over LANS are EAP-MD5, EAP-One-Time Password
(EAP-OTP), EAP-TLS, EAP-TTLS, EAP-Generic Token Card (EAP-GTC), Microsoft CHAP
(EAP-MSCHAPv2), and EAP-FAST.

EAP-MD5
The EAP-MD5 is a Challenge Handshake Authentication Protocol (CHAP), as defined in RFC
1994. Figure 7-7 shows the choreography of the EAP-MD5 mechanism.

Figure 7-7 EAP-MD5 Choreography

Identity (User Name)Request

Identity (User Name) Response

Challenge Challenge

Calculate Challenge
Hash Using Password

Response

Identity (Username)

Establish Data
Link

Verify Response
Hash Using
Shared Secret
(Usually Stored
Password Keyed
by the Username/
Identity

Response

Supplicant

2

1Prime Store with Shared Secret

3

4

5Success Message

Failure Message

Unencrypted Channel (If Success)

OR

Yes

No

Verify ?

6

3-a

3-a
3-b

4-c

4-b

4-a

4-d

4-f

4-e

Authenticator Authentication
Server

PPP-CHAP
Exchange

Authentication — Accept

Authentication — Reject OR

1587051540.book Page 170 Tuesday, October 26, 2004 4:59 PM

EAP 171

For EAP-MD5 to work, the client and the authentication server must have a shared secret,
usually a password associated with an identity/username. This needs to be established out
of band (Step 1 in Figure 7-7). The connectivity (Step 2 in Figure 7-7) and identity exchange
(Step 3 in Figure 7-7) are required before the EAP-MD5 process. The EAP-MD5 method
consists of a random challenge to the supplicant (Step 4-a in Figure 7-7) and a response from
the supplicant (Step 4-c, Step 4-d in Figure 7-7), which contains the hash of the challenge
created using the shared secret (Step 4-b in Figure 7-7). The authentication server verifies the
hash (Step 4-e in Figure 7-7) and accepts or rejects the authentication. The authenticator allows
or disallows access (Step 5 in Figure 7-7) based on this decision. If successful, the supplicant
gains access (Step 6 in Figure 7-7).

EAP-MD5 is a pure authentication protocol; after the authentication, the messages are trans-
mitted in cleartext. It is also a client authentication protocol—the server side (authenticator) is
not authenticated; therefore, it cannot detect a rogue AP.

EAP-MD5 also contains a set of good features: It requires only lightweight processing (which
translates to less hardware) and does not require a key/certificate infrastructure. Although pure
EAP-MD5 has some value in the PPP world, it is of limited use in the wireless world. For
example, Microsoft has dropped the support for EAP-MD5 for the wireless interface in
Windows XP. Support was dropped because of security problems; EAP-MD5 is vulnerable to
dictionary and brute-force attacks when used with Ethernet and wireless.

EAP-OTP
EAP-OTP is similar to MD5, except it uses the OTP as the response. The request contains a
displayable message. The OTP method is defined in RFC 2289. The OTP mechanism is
employed extensively in VPN and PPP scenarios but not in the wireless world.

EAP-GTC
The EAP-GTC (Generic Token Card) is similar to the EAP-OTP except with hardware token
cards. The request contains a displayable message, and the response contains the string read
from the hardware token card.

EAP-TLS
As you have seen, methods such as EAP-MD5 and EAP-GTC are specific to authentication and
are confined to authenticating only the client. EAP-TLS adds more capabilities such as mutual
authentication, which provides an encrypted transport layer and the capability to dynamically
change the keys. On the other hand, EAP-TLS is based on digital certificates and thus requires
an infrastructure to manage—issue, revoke, and verify—certificates and keys.

1587051540.book Page 171 Tuesday, October 26, 2004 4:59 PM

172 Chapter 7: EAP Authentication Protocols for WLANs

EAP-TLS is based on the TLS protocol that is defined in RFC 2246. The following section talks
a little bit about TLS, and then you will look at which of its features carry over into EAP-TLS.

NOTE The origin of the transport level protocol was SSLv1, proposed and implemented by Netscape
for securing browser traffic. SSL 1.0 was superseded by SSL 2.0, which was the original SSL.
SSL 3.0, which, of course, superseded SSL 2.0, is the most common security protocol used
today. IETF chartered a working group in 1996, accepted submissions from Netscape (SSL 3.0)
and Microsoft (PCT), and delivered RFC 2246—TLS 1.0.

A Brief Introduction to TLS
TLS has the concept of sessions and connection. A connection is a channel, whereas a session
is governed by security context—session identifier, peer certificate, compression method,
cipher spec for the session key, and MAC algorithm parameters and the shared master secret.
TLS can and will securely negotiate different session parameters while maintaining the same
connection—usually a TCP connection. The handshake phase establishes a session, and the
session keys (symmetric) encrypt the transport during the data transfer phase. In addition to
providing confidentiality, TLS provides integrity check. TLS, of course, is a point-to-point
method.

TLS defines two layers: a record layer (which exchanges messages dealing with things such as
fragmentation, MAC, and encryption) and a message layer (which defines different types of
messages). The four message types are as follows:

• Change cipher spec—Used to signify change in the session context to be used by the
record layer. This is an independent content type that is used to avoid getting trapped in
specific protocol messages, at which point the pipe could stall.

• Alert—Could be warning or fatal. The alert message subtypes (approximately 26 sub-
types) include close notify, decryption failed, certificate revoked, access denied, and so
on.

• Handshake protocol—You will see these messages in Figure 7-8. The subtypes include
the following:

— Hello messages (hello_request, client_hello, and server_hello)

— Server authentication and key exchange messages (certificate,
server_key_exchange, certificate_request, and server_hello_done)

— Client authentication and key exchange messages (certificate_verify and
client_key_exchange)

— Handshake finalization message (finished)

1587051540.book Page 172 Tuesday, October 26, 2004 4:59 PM

EAP 173

• Application data—The records themselves are transmitted over a reliable protocol such
as TCP. TLS also defines a handshake protocol for authentication, exchanging
cryptographic parameters and establishing session context.

Figure 7-8 shows the TLS choreography, through the lifetime of a connection, in some detail.

Figure 7-8 TLS Choreography

The handshake protocol (Steps 3, 4, 5, and 6 in Figure 7-8) accomplishes server authentication,
algorithm negotiation, establishing session context, and (optional) client authentication. Of course,

Client

Establish Connection (for example, TCP)

Issue
Certificates

Server Hello
Certificate
ServerKeyExchange
Server Request
Server Hello Done

ChangeCipherSpec

Application Data (Encrypted with MAC — Based on Session Context)

Finished

Certificate
Derive
Session Keys,
Initialize Context

Derive
Session Keys,
Initialize Context

Close Connection Close Connection

ClientKeyExchange
Certificate Verify
ChangeCipherSpec

Finished

Close_notify

Client Hello

Enterprise PKI

CA (Certificate
Authority)

2

7

3

4

5

6

8

Server

1

1587051540.book Page 173 Tuesday, October 26, 2004 4:59 PM

174 Chapter 7: EAP Authentication Protocols for WLANs

to successfully complete the handshake and arrive at the keys and secrets, the client and server
should have digital certificates (Step 1 in Figure 7-8) and connectivity (Step 2 in Figure 7-8).

After the handshake is successfully completed, the client and server can exchange application
data (Step 7 in Figure 7-8) using the established secure transport. Occasionally, renegotiation
of session context might happen, usually for new session keys. Finally, the client or server with
the close message closes the connection (Step 8 in Figure 7-8).

EAP-TLS Choreography
EAP-TLS employs selected parts of the TLS. For example, it uses the TLS handshake for
mutual authentication, cipher suit negotiation, and to derive session keys; however, it does not
use all parts of the TLS record protocol.

Figure 7-9 EAP-TLS Frame Format

Figure 7-9 shows the frame format for EAP-TLS. The EAP type is 13 (see Table 7-2). The EAP
data frame consists of TLS-specific fields. A similar approach is taken for the choreography, as
shown in Figure 7-10. As expected, Figure 7-10 is a combination of Figures 7-6
and 7-8.

After the EAP identity request and response, a TLS-START request is sent (this is where Bit 2
of the TLS flag is used) to the supplicant (Step 3-a in Figure 7-10). This initiates the TLS
handshake protocol (remember, TLS starts with a client-hello), which, in the end, results in
authentication and establishing session keys for securing (confidentiality and integrity) the
transport layer. As you saw in the TLS section, the session context contains all the relevant
information. After the handshake is done, EAP-TLS does not use any of the TLS record
protocols; that is, the application data is not exchanged using the TLS record protocol.

Code

0 1 2 4 65 10

1 = Request
2 = Response

1 Byte

TLS DataType

=13 (EAP-TLS)

1 Byte

Identifier (to Match
Request-Response)

1 Byte

TLS Flags

1 Byte

TLS Message
Length

4 Bytes

Length (Total
Length of Packet)

2 Bytes

1587051540.book Page 174 Tuesday, October 26, 2004 4:59 PM

EAP 175

Figure 7-10 EAP-TLS Choreography

NOTE As you can see, this still does not satisfy all the requirements of the wireless world because
EAP-TLS is written for PPP, where a key and authentication are sufficient for communication
and the client authenticates the server. The wireless world also has the authenticator/AP, which
has to be authenticated, and the server is a RADIUS server.

In the wireless world, EAP-TLS is used as a strong and secure means for authentication and key
establishment. After that, the native WEP mechanisms are used to encrypt the data. In fact, the
WEP encryption key is derived from the TLS session key.

Client

Establish Connection (for example, TCP)

Issue
Certificates

Server Hello

Certificate
ServerKeyExchange
Server Request
Server Hello Done

ChangeCipherSpec

Exchange Data Using Key Derived from the Session Key

Finished

Certificate
Derive
Session Keys,
Initialize Context

Derive
Session Keys,
Initialize Context

ClientKeyExchange
Certificate Verify

Client Hello

ChangeCipherSpec

Finished

Identity Request

Identity Response

EAP-TLS Start

Enterprise PKI

CA (Certificate
Authority)

2

7

3

3-a

4

5

6

Server

1

1587051540.book Page 175 Tuesday, October 26, 2004 4:59 PM

176 Chapter 7: EAP Authentication Protocols for WLANs

EAP-TTLS
EAP-TTLS is similar to EAP-TLS, but the client authentication is extended after the secure
transport has been established. Then the client can be authenticated using any of the methods
like username/PW, CHAP, and MSCHAPv2. This is called tunneled authentication. What this
achieves is that the client does not require a digital certificate; only the authentication server
needs one. This capability simplifies the client credential management. Organizations can also
use currently available/legacy authentication methods (usually password-based schemes).

PEAP
In many ways, PEAP is actually EAP over TLS for the wireless domain. In this section, you
will see how PEAP adds capabilities needed in the wireless domain, such as chaining EAP
mechanisms and exchange of arbitrary parameters, cryptographic binding between EAP
mechanism and the tunnel, session optimization, and generic reauthentication.

From a draft perspective, all the EAP drafts are generic and do not fully address the wireless
domain. In addition, RFC 3579 is superseding RFC 2284. The PEAP draft aims at providing
secure EAP authentication for 802.11 based on the new EAP drafts.

NOTE One of the major security vulnerabilities from the EAP perspective is that some of the outer/
initial exchanges, such as identity and results, are sent in the clear. This can result in denial-of-
service (DoS) vulnerability; for example, an intruder can flood EAP failure messages. Inner
exchanges such as EAP-MD5, EAP-SIM, and EAP-MSCHAPV2 also are not fully and
uniformly protected. In many cases, the credential exchanges are open to attacks, such as
dictionary attacks on a password.

The opportunity for vulnerability is complicated by the “compound binding problem” with
PEAP and like protocols, in which two otherwise-secure protocols are combined without
cryptographic handoff and might become less secure in combination than separate. On the other
hand, password-based EAP protocols are simpler to manage.

PEAP aims at leveraging EAL-TLS, securing the open exchanges, and facilitating any of the
EAP mechanisms over the secure channel, thus maintaining the simplicity (as far as possible)
with the required level of security. For example, PEAP requires only server-side certificates,
uses TLS for the secure tunnel, and extends the EAP-TLS beyond the finished message
exchange to add client authentication and key exchange. The client authentication can be any
of the EAP methods and thus can achieve security and the use of existing authentication
paradigms. Of course, PEAP has some drawbacks. It is a little chatty (because of more message
exchanges) and does require a certificate infrastructure for the servers. Also, TLS is normally
implemented over a reliable transport-TCP, so implementing TLS over EAP requires small
reliability and retransmit mechanisms.

1587051540.book Page 176 Tuesday, October 26, 2004 4:59 PM

PEAP 177

The PEAP protocol has two phases. The first phase is to establish a secure tunnel using the
EAP-TLS with server authentication. The second phase implements the client authentication
based on EAP methods, exchange of arbitrary information, and other PEAP-specific capabili-
ties through the secure transport established during phase 1. It will be instructive to see how
PEAP manages to stay within EAP-TLS (for the most part), still adding capabilities. This is
important to achieve a simpler supporting infrastructure.

PEAP Frame Format
Figure 7-11 shows the PEAP request and response format.

Figure 7-11 PEAP Frame Format

The PEAP frame format is almost the same as the EAP-TLS format, the difference being the
version bits in the flags field and the type (25 for PEAP versus 13 for EAP-TLS; see Table 7-2).

Code

0 1 2 4 65 10

1 = Request
2 = Response

Bit
0 = Reserved
1 = Major Version = 1
2 = Minor Version = 0

Bit
0 = Length Included
1 = More
2 = EAP-TLS Start
3 = Reserved
4 = Reserved

1 Byte

TLS DataType

= 25 (PEAP)

1 Byte

Identifier (to Match
Request-Response)

1 Byte

TLS Flags

5 Bits

Version

3 Bits

Length (Total
Length of Packet)

2 Bytes

TLS Message
Length

4 Bytes

1587051540.book Page 177 Tuesday, October 26, 2004 4:59 PM

178 Chapter 7: EAP Authentication Protocols for WLANs

PEAP Arbitrary Parameter Exchange
The type-length-value (TLV) mechanism is used to exchange arbitrary name-value pairs.
Because this exchange happens in the second phase of the PEAP exchange, the frame formats
are EAP formats with type 33 (see Table 7-2) but different from the TLS domain.

Figure 7-12 shows the frame format for the TLV mechanism. The RFC has defined approxi-
mately eight TLV types. Figure 7-13 shows the vendor-specific TLV. As you can see, this makes
PEAP totally extensible but specific to a vendor.

Figure 7-12 PEAP TLV Frame Format

Code

0 5

1 = Request
2 = Response

0—2
3

4
5
6
7
8
9
10

= Reserved
= Result TLV (Acknowledge
 Success/Failure)
= NAK TLV
= Crypto Building TLV
= Connection Building TLV
= Vendor-Specific TLV
= URI TLV
= EAP Payload TLV
= Intermediate Result TLV

1 Byte

Value

For example, in the case
of the result TLV, the value
field will be the status,
2 bytes long; 1 = success,
and 2 = failure.

Mandatory Flag

0 = Nonmandatory
1 = Mandatory TLV

1 Bit
Type

=33 (EAP-TLV)

1 Byte

Length of Value Field

2 Bytes

ID

1 Byte

Length

2 Bytes

TLS Type

14 Bits

Reserved = 0

2 Bytes

1587051540.book Page 178 Tuesday, October 26, 2004 4:59 PM

PEAP 179

Figure 7-13 PEAP TLV Frame Format—Vendor-Specific TLV

Another interesting mechanism is the EAP Payload TLV shown in Figure 7-14, which
encapsulates the EAP frame in a PEAP-TLV frame. This is powerful because it can tunnel EAP
methods over the secure transport. The following subsection shows how this is being used in
the PEAP phase 2 choreography.

Figure 7-14 PEAP TLV Frame Format—EAP Payload TLV

Code

0 5

1 = Request
2 = Response

= 7 (Vendor-Specific TLV)

1 Byte

Value
TLVs

Format Defined by Vendor
Mandatory Flag

= 1 (Mandatory TLV)

1 Bit
Type

=33 (EAP-TLV)

1 Byte

Length of Value Field

2 Bytes
ID

1 Byte

Length

2 Bytes

TLV Type

Vendor ID

4 Bytes

14 Bits

Reserved = 0

1 Bit

�	
�

� �

� � �������
� � ����	���

� � ���� ����	�
 � !"

� #���

$��%	���
��� �	���%�
 %�� 	&
���	'%���

� !�

��� �	
�

� � � � �

� � �������
� � ����	���
(�)�''���
� � *�%��+�

� #���

,��
��	+� *��-

� � �,��
��	+� � !"

� #%�
����

�((����.� !"

� #���

 ��-�/ 	& !���� *%��

� #����

 ��-�/ ��	���
 ��-�/ 	& ��'0��

� #����

12

� #���

12 2���

� #���

 ��-�/

� #����

� ! ����

�� #%��

����+3�
 � �

� #%�

!���� *%��

��� ��'0�� � !�

1587051540.book Page 179 Tuesday, October 26, 2004 4:59 PM

180 Chapter 7: EAP Authentication Protocols for WLANs

NOTE Not all PEAP implementations are required to understand all the TLV types. The mandatory
flag indicates this disposition. The mandatory TLV types are the EAP Payload TLV, Intermedi-
ate Result TLV, vendor-specific TLV (syntactical—that is, it should understand that it is a
vendor-specific TLV; semantic understanding depends on the vendor implementation), Result
TLV, and NAK TLV. The NAK TLV is used to indicate if an entity cannot understand the syntax
of a TLV.

Another feature in the specs is the optimization of TLV message exchange; the spec allows
multiple TLVs to be sent in one message—the only caveat being that multiple TLVs in one
message are not allowed for the EAP Payload TLV.

PEAP Choreography
The PEAP choreography is similar (in fact, the same in most of the cases) to EAP-TLS. The
main difference is that PEAP does not require client authentication, and the message exchange
extends beyond where EAP-TLS stops.

Figure 7-15 shows the PEAP exchange.

As you can see, the PEAP conversation is between the EAP server and the EAP peer, and the
authenticator acts as a pass-through for most of the conversation. The advantage of this scheme
is that newer EAP schemes can be developed and implemented without changing the authenti-
cator and NAS—only the peer(supplicant/client) and the EAP server need to be updated. This
results in easier and simpler upgrade to the supporting infrastructure.

Step 1 Similar to EAP-TLS, the EAP server requires a certificate; the client/peer
certificate is optional.

Step 2 The client/peer must establish a connection to the authenticator—in this case,
a wireless connection. An important requirement is the secure channel be-
tween the authenticator and the EAP server. This is vital because the specifi-
cation does not indicate how this is established, but it requires one.

Step 3 The identity request-response is the basic EAP sequence, which is sent in the
clear. In PEAP, this is used for administrative purposes, such as which server
to select, and possibly for other initial context setup. The identity, which is
sent in the clear, should not be used for any other purposes. Any identity
exchange should happen in phase 2 after the secure tunnel is established—for
example, tunneling the identity request-response using the EAP-TLV
mechanism (Step 7). The identity response is sent to the EAP server, which
in turn starts the process with the EAP-TLS start message.

1587051540.book Page 180 Tuesday, October 26, 2004 4:59 PM

PEAP 181

Figure 7-15 PEAP Choreography

Steps 4, 5, and 6 These steps are typical EAP-TLS exchanges. Usually the client
certificate is not exchanged. The successful completion of the EAP-TLS ends
phase 1, and phase 2 leverages the secure tunnel created by phase 1.

Step 7 This is the beginning of phase 2. The EAP-TLV mechanism can be used to
tunnel the normal EAP identity exchange.

Establish Connection
(for example, TCP) Establish Secure Channel

Issue
Certificates

EAP-Request/EAP-TLV[RESULT-TLV[CryptoBinding...]]

EAP Type X Exchanges

Certificate, ServerKeyExchange, Certificate Request

EAP-Request/EAP-TLV[EAP-Payload-TLV[EAP-Request/Identify-Type=X]]

Result-TLV Response

Tunneled Response for EAP Type X

EAP-Request/EAP-TLV[EAP-Payload-TLV[EAP-Request/Identity]]

Server Hello

Tunneled Identity Response

Exchange Data Using Key Based on the Derived CSK
EAP Success

EAP Success
CSK

EAP Success
ChangeCipherSpec

Certificate, ClientKeyExchange, CertificateVerify, ChangeCipherSpec

Finished

Derive CSK (Compound
Session Key)

Derive MSK
(Master Session
Key)

Identity Request

EAP-TLS Start

Server Hello Done

Client Hello

Identity Response
Identity Response

Enterprise PKI

Derive CSK

Derive MSK

CA (Certificate
Authority)

2

7

8

9

11

12

3-a

4

5

6

10

Server

1

3

PEAP Phase 1

PEAP Phase 1

Client
Authentication
NAS Server

1587051540.book Page 181 Tuesday, October 26, 2004 4:59 PM

182 Chapter 7: EAP Authentication Protocols for WLANs

Step 8 In this step, the EAP server authenticates the client using any of the EAP
mechanisms: EAP-MD5, EAP-CHAP, EAP-SIM, and so on. The exchange is
fully protected by the TLS tunnel, and the EAP-TLV choreography allows a
graceful mechanism to affect the EAP mechanisms. This is the heart of the
PEAP method—the server with a certificate, the establishment of the tunnel
by TLS, and the use of the EAP methods available in the organization’s
infrastructure.

Step 9 This is the final stage of crypto binding and so on between the client and the
EAP server.

Step 10 In this step, the client and the server derive the required keys.

Key Derivation, Exchange, and Management

The description in this section really skipped over the more intimate details about key
derivation, exchange, and management. You should read the PEAP RFC for the details; there
are key derivation algorithms, key management sequences, and theory. The Compound Session
Key (CSK) is actually a concatenation of the Master Session Key (MSK), which is 64 bytes,
and the Extended Master Session Key (EMSK), which is 64 bytes.

The MSK and EMSK are defined in RFC 3269 (also known as RFC 2284bis) as follows:

• Master Session Key—Key derived between the peer and the EAP server and exported to the
authenticator.

• Extended Master Session Key—Additional keying material derived between the peer and
the EAP server and exported to the authenticator. It is reserved for future use and not defined
in the current RFC. In addition, the PEAP key mechanisms are designed for future
extensibility; the exchange sequences (and choreographies) and formats can be used for
handling any key material; binding inner, outer, and other intermediate methods; and
verifying the security between the layers that are required for future algorithms.

Step 11 This is where the authenticator receives the keys and the result of the
authentication process.

Step 12 Now the client and AP can exchange information using the keys that are
derived from the PEAP mechanism.

1587051540.book Page 182 Tuesday, October 26, 2004 4:59 PM

802.1x: Introduction and General Principles 183

There are a lot more details and capabilities, such as reauthentication using the session
resumption feature of TLS, fast roaming, fragmentation and assembly, key rotation and
rekeying, and so on, in PEAP. In short, PEAP is a powerful mechanism that is in its initial stages
of implementation.

802.1x: Introduction and General Principles
As you have seen, the EAP and other methods are primarily developed for dial-up connections;
therefore, there are no link layer protocols for them in the 802 LAN worlds. You cannot
arbitrarily open up a TCP port and start sending EAP data. That is where 802.1x comes in. It
provides a set of context (such as port and supplicant), state machines between the various
layers, and the EAP over LAN (EAPOL) protocol. Of course, 802.1x is not specific to WLANS;
in fact, the standard is being used in wired networks successfully. 802.1x provides the access
models, whereas EAP adds the authentication mechanisms.

NOTE The 802.1x specification is clear about what 802.1x does and does not do. It provides a
framework but does not specify the information (credentials and other challenge-response
artifacts) or the basis of authentication (such as how to authenticate, what information is used
to authenticate, how the decisions are made, and what authorizations are allowed as a result of
the authentication).

The 802.1x specification starts with the concept of a port as single entry into a network for a
supplicant. Hence, it covers 802.3 networks while considering a shared medium like the
classical token ring out of scope. In fact, the 802.1x defines EAPOL only for 802.3 Ethernet
MACs and Token Ring/FDDI MACs. As previously shown, this plays well with the 802.11 in
which each client can be associated with only one AP; hence, the connection to an AP is
analogous to the port in the 802.1x realm.

A controlled port is one that allows access after a successful authentication. A controlled port
probably offers all the network services. The concept of an uncontrolled port also exists and is
important because initial messages and authentication services would be offered through an
uncontrolled port. Usually only minimal administrative services are offered by an uncontrolled
port.

1587051540.book Page 183 Tuesday, October 26, 2004 4:59 PM

184 Chapter 7: EAP Authentication Protocols for WLANs

EAPOL
EAP encapsulation over LAN (EAPOL) is the method to transport EAP packets between a
supplicant and an authenticator directly by a LAN MAC service. Figure 7-16 shows the MAC
Protocol Data Unit (MPDU) for Ethernet. The header fields include Ethernet type, protocol
version, packet type, and body length.

Figure 7-16 EAPOL MPDU for 802.3/Ethernet

The body itself is the EAP packet you saw in earlier sections dealing with EAP.

NOTE For the Token Ring/FDDI, the MPDU header is 12 bytes long with the first field SNAP-encoded
Ethernet type.

0 2 3 4 6

Length (Total
Length of Packet

2 Bytes

2 Bytes

EAP Code

1 Byte

ID

1 Byte

0 1 2 4

1 = Request
2 = Response
3 = Success
4 = Failure

EAP Code

1 Byte

= EAP-Packet
= EAPOL-Start
= EAPOL-Logoff
= EAPOL-Key
= EAPOL-
 Encapsulated
 -ASF-Alert
= Reserved

1
2
3
4
5

6–255

Ethernet Type

2 Bytes

= 88-8E

Protocol Version

1 Byte

= 2

Data

EAP Packet

Packet BodyPacket Body

Packet Body
Length

1587051540.book Page 184 Tuesday, October 26, 2004 4:59 PM

Cisco LEAP (EAP-Cisco Wireless) 185

As you might have guessed by now, a supplicant can initiate an authentication by the EAPOL-
start frame. But usually a port in an authenticator becomes active (by a connection from a
client), and the authenticator starts the EAP process, usually by an EAP-request-identity
message encapsulated as EAP type in the EAPOL packet type field. One important packet type
is the EAPOL-logoff from a supplicant to the authenticator. In the 802.11 world, this ends an
association.

802.1x deals extensively with state machines, timers, handoff between the various layers,
and port access control MIBs for SNMP. You can best understand these concepts by reading the
standard.

Cisco LEAP (EAP-Cisco Wireless)
Cisco LEAP was developed at a time when WEP showed vulnerabilities and the full wireless
security blueprint was not standardized. Moreover, instead of requiring a certificate
infrastructure for clients, organizations wanted to leverage authentications that were already
available within their infrastructure for secure WLAN. So Cisco developed a lightweight
protocol that leveraged many of the existing features and still provided the required security
features.

LEAP uses 802.1x EAPOL messages, performs server authentication, achieves username/
password (over MS-CHAP) as the user authentication mechanism, uses a RADIUS server as
the authentication server, and provides mechanisms for deriving and distributing encryption
keys.

NOTE The EAP type is EAP-Cisco Wireless (see Table 7-2).

Figure 7-17 details the LEAP choreography.

The entities that participate in a LEAP exchange are the RADIUS server, the AP, and the client.

In Step 1, the client and the RADIUS server should have the shared secret, usually a username-
password database of all users in the RADIUS server (or access to a Microsoft Active Directory
infrastructure), and each client should have its own username and password.

After a client establishes connectivity (Step 2), it initiates the authentication process by an
EAPOL-start (Step 3), to which the AP responds by an EAP-request-identity message over
EAPOL (Step 4).

1587051540.book Page 185 Tuesday, October 26, 2004 4:59 PM

186 Chapter 7: EAP Authentication Protocols for WLANs

Figure 7-17 LEAP Choreography

The client response with identity is sent to the RADIUS server in a RADIUS message (Step 5).

From this point on, the AP acts as a relay between the client and the RADIUS server, until after
Step 7.

Step 6 is client authentication by challenge-response mechanism. The server sends a challenge,
to which the client responds with a hash calculated using the password and the LEAP algorithm.
The server also calculates the hash, and if they are equal, the authentication is success. As you
can see, the client authentication happens based on existing infrastructure and still not
transmitting the credential (here the password).

Verify Response
Hash Using Shared
Secret (Usually
Stored Password
Keyed by the
Username/
Identity) and
Leap Algorithm

Supplicant Authenticator

Establish Data Link

EAPOL-Start

Identity

Response

LEAP Client Challenge

Response

Success Message

Exchange Data Using Encryption Keys

Derive Keys

EAPOL-Request[Identity]

RADIUS Access Request

RADIUS[LEAP Client Challenge]

LEAP Server Challenge

LEAP Client Response

EAPOL[LEAP Server Challenge]

Failure Message

EAPOL-Key[Cell Multicast Key]
EAPOL-Key[Session
ID and Key Length]

EAPOL[LEAP Client Challenge
Response]

Calculate Challenge Hash Using User-
Supplied Password and LEAP Algorithm

EAPOL

Prime Store with Shared Secret

RADIUS Server
RADIUS
(ACS)

Infrastructure

Microsoft AD
Infrastructure

RADIUS

Client
Authentication
Using CHAP

Server
Authentication
Using CHAP

9

5

2

1

7

6

8

4
3

EAP-Success
+ RADIUS Access Challenge

+ Session and Cell Multicast Keys
+ Encryption Keys

RADIUS Deny

Yes

No

Verify ?

Derive Keys

OR OR

1587051540.book Page 186 Tuesday, October 26, 2004 4:59 PM

EAP-FAST 187

In Step 7, the server authentication happens through a similar mechanism, and at the end,
the server sends the encryption keys to the AP. The AP distributes the required key material
by broadcast.

The client derives the encryption key from the key materials (Step 8), and from then on, the AP
and the client can use the encryption keys to have a secure conversation (Step 9).

NOTE The LEAP key generation mechanism is proprietary and is generated every (re)authentication,
thus achieving key rotation. The session timeout in RADIUS allows for periodic key rotation,
thus achieving security against sniffing and hacking the keys. The RADIUS exchanges for
LEAP include a couple of Cisco-specific attributes in the RADIUS messages.

EAP-FAST
Comparing the various methods, the EAP-FAST mechanism is the most comprehensive and
secure WLAN scheme. LEAP was proven to be susceptible to dictionary attacks, and EAP-
FAST is preferable to LEAP. In short, EAP-FAST is hardened LEAP with better crypto
protecting the challenge/response mechanism.

EAP-FAST not only mitigates risks from passive dictionary attacks and man-in-the-middle
(MitM) attacks, it also enables secure authentication based on currently deployed infrastruc-
ture. In addition, EAP-FAST minimizes the hardware requirement; many of the mechanisms
require computational burden at the edge devices for asymmetric cryptography and certificate
validation. As you have seen from your experience, secure-but-difficult-to-deploy mechanisms
would not be popular; hence, EAP-FAST’s features (such as flexible deployment model,
support for secure provisioning, and efficiency) make it attractive for deployments.

NOTE EAP-FAST started out as Tunneled EAP (TEAP), also known as LEAP V2. But as it evolves,
it has become more than a LEAP replacement and is maturing. The final specification might be
a little different from what is portrayed here, but the major concepts will not be different.

EAP-FAST is available as an informational Internet draft at http://www.ietf.org/internet-drafts/
draft-cam-winget-eap-fast-00.txt.

To bootstrap the process securely, EAP-FAST establishes a shared secret (between the client
and the authentication server) referred to as the Protected Access Credential Key (PAC-Key).
The PAC consists of the PAC-Key (32 bytes), an opaque field cached by the server, and PAC

1587051540.book Page 187 Tuesday, October 26, 2004 4:59 PM

188 Chapter 7: EAP Authentication Protocols for WLANs

info (metadata about the PAC). The PAC is used to establish a tunnel that is then used to perform
authentication. The three-phase EAP-FAST protocol is shown in Table 7-3.

Figure 7-18 shows the functional entities involved in an EAP-FAST exchange. Of course, more
than one function can be embedded in one server or software layer.

Figure 7-18 EAP-FAST Functional Entities

NOTE The separation of duties between an EAP-FAST server and the inner method server adds
deployment flexibility and extensibility. An organization can use the current and available
authentication infrastructure and then progressively move to any other infrastructure it chooses.

Table 7-3 EAP-FAST Phases

Phase Function Description Purpose

Phase 0 In-band
provisioning—
provide the peer with
a shared secret to be
used in secure phase
1 conversation

Uses Authenticated Diffie-
Hellman Protocol (ADHP)

This phase is independent of
other phases; hence, any other
scheme (in-band or out-of-
band) can be used in the future.

Eliminate the requirement in the
client to establish a master secret
every time a client requires
network access

Phase 1 Tunnel establishment Authenticates using the PAC
and establishes a tunnel key

Key establishment to provide
confidentiality and integrity
during the authentication process
in phase 2

Phase 2 Authentication Authenticates the peer Multiple tunneled, secure
authentication mechanisms

Supplicant Authenticator EAP-FAST Server

Inner Method
Server

1587051540.book Page 188 Tuesday, October 26, 2004 4:59 PM

EAP-FAST 189

EAP-FAST Frame Format
As shown in Figure 7-19, the EAP-FAST frame format is similar to the TLS format for phase 1.

Figure 7-19 EAP-FAST Frame Format

The major contribution by EAP-FAST to the frame format is the PAC fields and associated
information in the phase 0 and subsequent conversations. Figure 7-20 shows the PAC-TLV.

Table 7-4 describes some of the salient fields.

EAP-FAST Choreography
The EAP-FAST choreography is a combination of multiple conversations. Figure 7-21 shows
an overview of the EAP-FAST choreography.

Code

0 1 2 4

1 = Request or
2 = Response

1 Byte

DataType

= 43 (EAP-FAST)

1 Byte

Identifier (to Match
Request-Response)

1 Byte

Length (Total
Length of Packet)

2 Bytes

5 6 10

Version

Bit
0 = Reserved
1 = Major Version = 1
2 = Minor Version = 0

3 Bits

TLS Flags

Bit
0 = Length Included
1 = More
2 = EAP-FAST Start
3 = Reserved
4 = Reserved

5 Bits

TLS Message
Length

4 Bytes

1587051540.book Page 189 Tuesday, October 26, 2004 4:59 PM

190 Chapter 7: EAP Authentication Protocols for WLANs

Figure 7-20 PAC TLV Frame Format

Table 7-4 Salient Fields in EAP-FAST

Name Description Relevance

A-ID Authority identifier. This field
would be in the EAP-FAST
start frame.

A unique name identifying the authentication
server. Will be used by the client/peer to index
into the PAC and other context information.

I-ID Initiator identifier. A unique name identifying the peer/client.

CRED-LIFETIME Expiration time of the
credential.

This field will be in the PAC key info and used
to validate a PAC key set.

Code

0 5

1 = Request
2 = Response

= 11 (PAC TLV)

1 Byte

Type Code

0 1 2 0 4

1 = PAC Key
2 = PAC Opaque
3 = CRED-LIFETIME
4 = A-ID
5 = I-ID
6 = SERVER-PROTECTED-DATA
7 = A-ID-Info
8 = PAC Acknowledgement
9 = PAC Info

2 Bytes

Mandatory Flag

= 1 (Mandatory TLV)

1 Bit
Type

= 33 (EAP-TLV)

1 Byte

Total Length of
Value List Field

2 Bytes

Length of Value Field

2 Bytes

ID

1 Byte

ID Value

Multiple PAC
Fields

Format of Each
PAC Field

1 Byte

Length

2 Bytes

TLV Type

14 Bits

Reserved = 0

1 Bit

1587051540.book Page 190 Tuesday, October 26, 2004 4:59 PM

EAP-FAST 191

Figure 7-21 EAP-FAST Choreography Overview

Step 1 Step 1, of course, is to have connectivity between the client/peer and AP, in
addition to secure connections between the AP, EAP-FAST server, and
authentication server.

Step 2 To bootstrap a secure channel, the EAP phase 0 provisioning needs to be
performed. This is done once per client setup. This phase itself is an EAP-
TLS exchange, with the Diffie-Hellman key exchange and fields embedded
in the TLS choreography. At the end of phase 0, the PAC between the peer/
client and the authentication server is established.

Step 3 This is similar to the EAP identity exchange.

Step 4 This is the EAP-FAST start message, which includes the authenticator ID.

Once per Client Setup

TLS Finished

EAP-FAST Start[A-ID]

Authentication

TLS Change Cipher Spec

Provisioning

Optional PAC Refresh

Protected Data Exchange

TLS Finished

TLS Change Cipher Spec

EAP-FAST[TLS Client Hello[Client_random, PAC-Opaque]]

EAP-FAST[TLS Server Hello[Server_random]]

Authentication
Infrastructure

RADIUS (ACS)
Infrastructure

Microsoft AD
Infrastructure

EAP-FAST
Server

Establish Connection
(for example, TCP)

Establish Secure Channel

WPA Key Management

EAP Identity Request

EAP Success

EAP Identity Response
Identity Response

Establish Secure Channel

Authentication Conversions

1

2

4

5

6

7

9

3

10

8

Phase 1

Phase 2

Phase 0

Client
Authentication
NAS Server

Protected Data Exchange

1587051540.book Page 191 Tuesday, October 26, 2004 4:59 PM

192 Chapter 7: EAP Authentication Protocols for WLANs

Steps 5, 6, and 7 TLS exchanges over EAP-FAST to authenticate the peer and the
server. The client sends the PAC-opaque to the server in Step 5.

Step 8 Step 8, the inner authentication method, is where the actual authentication
happens. The message exchange is implemented via EAP-TLV over EAP-
FAST between the peer and the EAP server and most probably RADIUS
between the EAP server and the authentication server. It is also possible that
the same software in one computer performs both server functions. The phase
2 inner authentication method over EAP-TLV can be EAP-SIM, EAP-OTP,
EAP-GTC, or MSCHAPv2.

NOTE One of the built-in features in EAP-FAST is the PAC refresh, which can be done after successful
authentication, at the end of Step 8. This functionality adds the secure update of the PAC as part
of the EAP-FAST message exchange and infrastructure, thus making maintenance easier and
more secure.

Step 9 This is the mandatory EAP success message required by EAP.

Step 10 You can now use the key materials and contexts established by the three
phases to use WPA methods to exchange information, thereby achieving
confidentiality and integrity.

Summary
This chapter examined the authentication methods: EAP, PEAP, LEAP, and the newer,
emerging paradigm EAP-FAST. The chapter also dived into basic details about port-based
access control: the 802.1x. As you can see, the various solutions are at a different maturity in
terms of standardization and implementation. This scheme of things will probably continue for
this year, and by 2005, this area will be more stabilized. The following chapter looks at the
802.11i and the wireless security blueprint.

1587051540.book Page 192 Tuesday, October 26, 2004 4:59 PM

