
CHAPTER

13
Enterprise Security

on the Mobile OS

343

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 /

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:49 AM

Color profile: Disabled
Composite Default screen

Enterprise security on mobile operating systems and its installed applications
is imperative. Historically, many users have migrated to mobile devices for a
variety of reasons, including corporate users, users with limited to no access

to a computer, and users wanting to connect to others for social purposes. Although
all three classes are equally important, the one major class of users where security is
imperative is the enterprise user. For example, whereas Shalin and Sonia, two college
students who use their mobile phone to update their Facebook pages every 30 minutes,
might not care so much about security features, Jai and Raina, two corporate executives
discussing merger and acquisition (M&A) details, will care tremendously (and
probably assume it is already built in). As the mobile device migrates from personal
use to use in corporations, the data it holds will be considered sensitive, confidential, or
“top secret” (especially if you are President Obama; see www.cbc.ca/technology/story/
2009/01/23/obama-blackberry.html?ref=rss). As this migration occurs, security
options, features, and applications will need to follow along as well. A good
example of the mixing of the two worlds is Apple’s iPhone. Not only does every
corporate executive have one, so does every 22-year coming out of college. The
security requirements for the two types of users are quite different—the compromise
of a Facebook address book versus the loss of an M&A spreadsheet mean very
different things.

This chapter discusses the enterprise security features, support, and applications
available on four major mobile platforms—BlackBerry OS, Windows Mobile, iPhone OS,
and Google Android. It should be noted that this chapter is simply a quick summary
of the in-depth security features discussed in Chapters 2–5. Here are the key categories
that will be discussed:

� Device security options

� Secure local storage

� Security policy enforcement

� Encryption

� Application sandboxing, signing, and permissions

� Buffer overflow protection

� Summary of security features

Device Security Options
In terms of mobile device, a few key security features should always be on. Some of
these are obvious, but others are less well known.

3 4 4 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:49 AM

Color profile: Disabled
Composite Default screen

PIN
Most or all mobile devices have the ability to enable a four-to-eight digit PIN in
order to use the phone (outside of 911 services). You should enable the PIN on
your phone, period. It’s simple and the first step in securing the mobile device.
Furthermore, assuming your phone will be lost or stolen at some point in time (even
if you just misplace it for a few hours in a coffee shop), an unmotivated attacker will
probably not try to break into the OS if they see a PIN has been enabled (but will
rather wipe and sell it). The data on the phone, or the data the phone has access to
via local or stored credentials, is probably worth more than the device itself.

Although a four-digit PIN only needs 10,000 attempts to brute-force it, many
mobile devices have a time delay after ten failed attempts. For example, if someone
has stolen a phone for the data and not the device, they will probably attempt to
brute-force the PIN. After ten attempts, there is a time delay between attempts,
making the 9,990 attempts take much longer. On at least some mobile devices, there
is an additional 90-second penalty for every failed attempt above ten, where attempt
11 would require a pause of 90 seconds, attempt 12 would require 180 seconds,
attempt 13 would require 270 seconds, and so on. The time delay will not prevent a
successful brute-force attack, but will make it considerably harder and longer to
perform. The delay should reach a point where the user who has lost the phone is
able to notify the appropriate authorities, who can then remotely wipe the phone of
its contents (see next section “Remote Wipe”), leaving the attacker with no data after
any potential brute-force attack that has actually been successful. Furthermore, some
organizations enforce a policy to immediately wipe a mobile phone after ten failed
login attempts. Although this may seem aggressive, if an organization is holding
sensitive or regulated data, the policy is probably warranted. Furthermore, many
corporate phones are fully synced/backed up by enterprise servers, so restoring the
data to a new device is trivial (it often takes 45 to 90 minutes).

With some mobile devices, such as the Apple iPhone, the SIM card also has
protection, just not the phone. For example, the SIM card in an Apple iPhone will
have a PIN as well. If someone steals the SIM card from a device and puts in into
another iPhone (in order to steal its data), they will still be required to enter the correct
PIN value. To enable a PIN on a SIM or the passlock on an Apple iPhone, complete
the following steps:

1. Select Settings | Phone | SIM PIN.

2. Turn on the SIM PIN option.

3. Enter the current PIN (1111 [U.S.], 0000, or 3436).

4. Select Change PIN.

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 4 5

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:49 AM

Color profile: Disabled
Composite Default screen

5. Select Settings | General | Passcode Lock.

6. Enter your four-digit code.

To enable a PIN on a Windows Mobile phone, complete the following steps:

1. Select Start | Settings | Security.

2. Select Device Lock.

3. Enter your four-digit code.

Remote Wipe
The ability to remotely wipe data on a mobile device is imperative, especially if it is
a smartphone/PDA and is used for corporate purposes. Not only is the remote wipe
capability supported on many major platforms using enterprise software, many
third-party organizations sell software to remotely wipe your device as well. One
way or another, the ability to remotely wipe data off a smartphone/PDA makes the
loss of such a device a lot less stressful.

To remotely wipe a smartphone/PDA using a Microsoft Exchange server,
complete the following steps:

NOTE

You must be an Exchange admin to perform these functions.

1. Browse to the Mobile Admin site on your Exchange server (https://<Exchange
Server Name>/mobileadmin).

2. Select Remote Wipe.

3. Enter the name or e-mail address of the user whose device you wish to wipe
(such as shalindwivedi.com or simply Shalin).

4. Under the Action column, select Wipe to remotely wipe the information from
the mobile device. Note that you can select Delete if you simply want to break
the connection between the mobile device and the Exchange server, but not
necessarily wipe the data.

If direct push is enabled, the device will be wiped immediately. If direct push is
not enabled, the device will be wiped the next time the mobile device attempts to
sync with the Exchange server.

3 4 6 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:49 AM

Color profile: Disabled
Composite Default screen

Secure Local Storage
The ability to store sensitive information locally in a secure fashion is another
imperative security feature for mobile operating systems. For example, many
applications that are installed on a mobile operating system require some type of
authentication to a remote Internet service. Requiring the user to remember and
enter authentication credentials each time they want to use the application becomes
cumbersome; however, without authentication, the application has no way to identify
which user has signed in. For example, many applications installed on the iPhone,
Windows Mobile, BlackBerry OS, and the gPhone actually store login information,
such as username and password, locally on the device in clear text. Most of the time,
the file is easily accessible in backup files with no encryption or obfuscation of this
information. This presents a few problems for the user. First, if the device is ever lost
or stolen, the owner’s username and password for the application are in clear text for
all to see. Second, and probably more importantly, other install applications running
on the phone could access this same information. For example, any malicious piece of
software installed on the phone, such as malware, viruses, or worms, could access the
clear-text file with the username and password and then send it to a remote system
controlled by an attacker. Furthermore, whereas the storage of username and password
information is probably common, some applications may store more sensitive information,
such as credit card information (e-commerce applications) and even medical record
numbers (medical applications used on a doctor’s PDA). The following section covers
the iPhone’s solution to the local storage issue.

Apple iPhone and Keychain
The iPhone addresses the need to store sensitive credential information on the local
device via the use of the Keychain. The Keychain can be used by iPhone applications
to store, retrieve, and read sensitive information, such as passwords, certificates, and
secrets. Once invoked by an application, the Keychain service ensures an application
is verified to access the Keychain by checking its signature (signed by Apple) before
granting permissions. The Keychain takes care of all the key management issues, and
the application does not have to do much beyond calling to the service.

One key idea to mention is when an application is not using the Keychain and data
is being backup to a personal computer. If an iPhone is backed up to a regular computer,
all the data on the iPhone will be stored in the clear on the PC, except for data stored

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 4 7

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:49 AM

Color profile: Disabled
Composite Default screen

in the Keychain. Hence, if an application truly wants to protect data on the iPhone, it
should ensure the Keychain is being used; otherwise, data will be shown in clear text
when it is connected to a regular computer.

Security Policy Enforcement
Managing mobile devices is a tough task for IT groups, but a required one. Unlike
many other items in the IT world, a mobile device is not only likely to be lost, stolen,
or given away at some point in time, but also very likely to have corporate data on it.
This combination presents a difficult problem for IT groups, which need to ensure they
have some control over mobile devices (and their data) but also know that users may
try to bypass security rules if the barriers are too difficult to reach. For example, during
the early 2000s, many organizations actually banned the use of 802.11 wireless access
points on corporate networks because they were simply “too insecure.” Not be denied
of the information super highway without wires, many employees simply set up their
own rogue access points in cubes and conferences rooms, creating a worse security
picture (not knowing one is insecure versus knowing where your weak security points
live). Similarly, banning phones and features will likely create a scenario where the IT
groups are unaware of the backdoors without having the ability to monitor them on a
weekly basis. It is this author’s opinion that one cannot prevent users from embracing
newer technologies in the name of security—users will do it anyway in a far less secure
fashion, so you should embrace it as strongly as you can. Using the music and motion
picture industries as an example, stopping a technology wave is impossible, so
embracing it is better than trying to fight it.

On the flip side of the IT groups are the mobile device vendors. Some mobile
vendors have made the process of securing mobile operating systems easier, while
others have not. Whereas IT groups have to own the problem, mobile vendors
sometimes make things worse by creating the problem. For example, many mobile
devices target the consumer market more rather than the enterprise market. The
consumer market cares more about connecting to MySpace, Facebook, and Twitter
quickly rather than remotely wiping a device. Therefore, if a mobile device is
targeting the consumer market, the enterprise security features offered will usually
be less than optimal. Hence, the phones targeted toward the consumer market may
have little or no security options available on them, creating a difficult challenge for
the enterprise. For example, a user could be buying a mobile phone for personal
reasons (sending pictures to family members), but still use the mail, calendar, and
document review features on it. It is not possible to separate these two motives for a
single type of user, so having enterprise security support across the board makes the
process of protecting sensitive data much easier.

3 4 8 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:50 AM

Color profile: Disabled
Composite Default screen

Managing mobile operating systems really means the ability to set security policies
on the system. For example, similar to the ability of a Windows administrator to
require the use of certain types of passwords while avoiding others, this type of policy
control is desired on mobile operating systems. Also in the PC world, a local security
policy on a Windows/Unix platform can have over 50 different options; this same idea
should be true for mobile operating systems. Having a long list of security options an
IT organization can enable/disable will go a long way toward data protection, which
is the core pain point for these systems in the first place. To date, only a few mobile
operating systems have strong support for enterprise security. These vendors not only
have the ability to remotely enforce security policies on mobile devices, but have a long
list of polices to enforce as well. A good example is the BlackBerry Enterprise Server
(BES). BES not only has the ability to manage devices remotely (which includes many
of the topics discussed in this chapter), but also has the ability to set fine-grained security
polices in the device, such as the minimum encryption key length to be used on the
device. A good reference point for each of the major mobile operating systems/devices
and the security options they offer can be found on the following links. Also, be sure
to reference Chapters 2–5 for the specific implementation details:

BlackBerry Enterprise Server

� http://na.blackberry.com/eng/deliverables/3801/Policy_Reference_Guide.pdf

� www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/7979/118
1821/828044/1181292/1272812/1272762/BlackBerry_Enterprise_Solution
_Version_4.1.2_Security_Technical_Overview?nodeid=1272692&vernum=0

iPhone

� https://developer.apple.com/iphone/library/navigation/Topics/Security/index
.html#//apple_ref/doc/uid/TP40007378

Windows Mobile

� http://msdn.microsoft.com/en-us/library/ms851423.aspx

� https://partner.microsoft.com/40086942

Android

� http://developer.android.com/guide/topics/security/security.html

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 4 9

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:50 AM

Color profile: Disabled
Composite Default screen

The key takeaway here is to review the security policies available for the platform
you plan to support and enforce the desired security features. Also, users should
apply a lot of pressure on vendors who do not have strong security options available
but claim to have enterprise support. Supporting the enterprise does not merely mean
having an IMAP/POP3 client with SMTP, but rather having the ability to set strong
security policies on the device. The latter should ensure the loss of a mobile phone
means only a $200 loss to the organization, and not a press release about a data
breach on the company’s website.

Encryption
Encryption support for mobile operating systems is imperative. The likelihood of
losing a mobile phone far exceeds the possibilities of losing a laptop. Although the
amount of sensitive data on a laptop far exceeds that on a mobile device, data stored
in corporate e-mail and Microsoft Office provides a goldmine for any thief, no manner
what form or amount it comes in. This section covers the encryption options in mobile
devices, including full disk encryption, e-mail encryption, and file encryption.

Full Disk Encryption
In the Mac and PC worlds, several solutions are offered for full disk encryption,
including a few native ones, even on the OS itself (such as Bitlocker on Windows
Vista). Unfortunately, the native options are not as widely available on mobile
operating systems, which offer little or no solutions for full disk encryption by default.
The current security climate will probably change this in the near future, as
mobile operating systems will likely embrace the large corporate user base and the
data-protection standards it requires, rather than force users to bypass their security
teams by using mobile devices in an insecure manner. However, in the short term,
users have limited support for full disk encryption, and must rather rely on file or
e-mail encryption only, as discussed in the next two sections.

E-mail Encryption
Outside of full disk encryption, e-mail encryption is probably the next best thing.
Eighty-five percent of the contents a user would want to encrypt on their mobile
operating system is probably e-mail. Of the remainder, ten percent would be e-mail
attachments downloaded to the OS in the form of Word, PDF, and Excel documents
and five percent would be the storage of authentication credentials.

3 5 0 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:50 AM

Color profile: Disabled
Composite Default screen

Although all or most mobile phones support Transport Layer Security (TLS)/
Secure Sockets Layer (SSL) for transmission security, with HTTP, IMAP/POP3, and
SMTP, most of them do not support local encryption of stored e-mail. Encryption for
locally stored e-mail is important for several reasons. For example, a user may feel
secure that their e-mail is passing public communication channels over a TLS tunnel,
but if their device were to be stolen, the downloaded e-mail on the device would sit in
clear text and in the hands of a malicious person. The need to encrypt locally stored
e-mail is obvious—a lost or stolen mobile device could expose plenty of sensitive
information sitting in one’s Inbox. Furthermore, the few seconds someone “borrows”
your phone to make a call could be enough time for a motivated attacker to forward
all the e-mail from your phone to a system they control. Unfortunately, none of the
most popular mobile operating systems provide native support for local e-mail.
BlackBerry devices do offer the best non-native support via the integration of Pretty
Good Privacy (PGP). PGP is a popular e-mail encryption tool used on PCs. Using
PGP Universal within a BlackBerry enterprise, users can encrypt the contents of an
e-mail similar to how it is performed on a PC. Although the use and integration of
PGP Universal on BlackBerry Enterprise Servers is not a quick exercise, it does give
the corporate enterprise the option to offer the same level of at-rest security protection
of e-mail as in the PC world. In addition to PGP, S/MIME is supported on BlackBerry
and Windows Mobile as well.

NOTE

More information can be found on integrating PGP or S/MIME to encrypt the actual contents of
e-mail (e-mail at rest, not e-mail in transit) on a local BlackBerry device on the BlackBerry
website: http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/7979/
1181821/828044/1181292/1272812/1272762/BlackBerry_Enterprise_Solution_Version_
4.1.2_Security_Technical_Overview?nodeid=1272692&vernum=0.

File Encryption
The last category we discuss under the encryption umbrella is file encryption. A wider
amount of support for file encryption, as opposed to e-mail encryption, is provided from
the major mobile operating systems. Specifically, BlackBerry, Windows Mobile 6.1, and
iPhone (using Keychain) all natively support local file encryption. Both BlackBerry and
Windows Mobile 6.1 seem to offer the most seamless encryption options via the use of
their policy servers. For example, the BlackBerry Enterprise Server has an option to
enable file-level encryption using options on its policy server. Furthermore, Windows
Mobile 6.1 users can encrypt e-mail, calendars, My Document files/folders, and tasks
by enabling the On-Device Encryption options on the management server.

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 5 1

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:50 AM

Color profile: Disabled
Composite Default screen

Application Sandboxing, Signing, and Permissions
Mobile devices have become similar to PCs, where it’s almost less about the underlying
operating system and more about the applications running on them. For example, the
iPhone is a great product, but the applications that run on top of the iPhone OS bring it a
significant amount of appeal as well. Similar to the desktop world, if applications are not
under tight security controls, they could do more damage than good. Furthermore, as
security controls get tighter and tighter on operating systems, attackers are more likely
to develop hostile applications that entice users to download/install them (also known as
malware) than to try to find a vulnerability in the operating system itself. In order to
ensure applications are only allowed access to what they need, in terms of the core OS,
and to ensure they are actually vetted before being presented to the mobile user for
download, application sandboxing and signing are two important items for mobile
operating systems. This section covers some of the security features available on mobile
operating systems to protect applications from each other as well as the underlying OS,
including application sandboxes, application signing, and application permissions.

Application Sandboxing
Isolating mobile applications into a sandbox provides many benefits, not only for
security but also stability. Mobile applications might be written by a large organization
with a proper security SDL (software development life cycle) or they might be
written by a few people in their spare time. It is impossible to vet each different
application before it lands on your mobile phone, so to keep the OS clean and safe,
it is better to isolate the applications from each other than to assume they will play
nice. In addition to isolation, limiting the application’s calls into the core OS is also
important. In general, the application should only have access to the core OS in
controlled and required areas, not the entire OS by default. For example, in Windows
Vista, Internet Explorer (IE) calls to the operating system are very limited, unlike
previous versions of IE and Windows XP. In the old world, web applications could
break out of IE and access the operating system for whatever purpose, which became
a key attack vector for malware. Under Vista and IE7 Protected Mode, access to the
core operating system is very limited, with only access to certain directories deemed
“untrusted” by the rest of the OS. Overall, the primary goals of application sandboxing
are to ensure one application is protected from another (for example, your PayPal
application from the malware you just downloaded), to protect the underlying OS
from the application (both for security and stability reasons), and to ensure one bad
application is isolated from the good ones.

3 5 2 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:50 AM

Color profile: Disabled
Composite Default screen

All mobile operating systems have implemented some form of application
isolation, but in different forms. The newer model of application sandboxing gives
each application its own unique identity. Any data, process, or permission associated
with the application remains glued to the identity, reducing the amount of sharing
across the core OS. For example, the data, files, and folders assigned to a certain
application identity would not have access to any data, file, and folders assigned to
another application’s identity (see Figure 13-1).

The traditional model uses Normal and Privileged assignments, where certain
applications have access to everything on the device, and Normal applications have
access to the same entities on the device. For example, this model would prevent
Normal applications from accessing parts of the file system that are set aside for
Privileged applications; however, all Normal applications would have access to the
same set of files/folders on the device (see Figure 13-2).

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 5 3

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

Figure 13-1 New application isolation model

Figure 13-2 Traditional application isolation model

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:50 AM

Color profile: Disabled
Composite Default screen

The next two subsections provide a short summary of how the different mobile
operating systems measure up in terms of application sandboxing (be sure to reference
Chapters 2–5 for the specific implementations). Also, much of this information comes from
Chris Clark’s research on mobile application security, presented at the RSA Conference
(https://365.rsaconference.com/blogs/podcast_series_rsa_conference_2009/2009/03/31/
christopher-clark-and-301-mobile-application-security—why-is-it-so-hard).

Windows Mobile/BlackBerry OS
BlackBerry devices and Windows Mobile both use the traditional model for
application sandboxing. For example, Blackberry uses Normal and Untrusted roles,
whereas Windows Mobile uses Normal, Privileged, and Blocked. On Windows
Mobile, Privileged applications have full access to the entire device and its data,
processes, APIs, and file/folders, as well as write access to the entire registry.
Normal applications have access to only parts of the file system, but all the Normal
applications have access to the same subset of the operating systems. It should be
noted although one Normal application can access the same part of the file system as
another Normal application, it cannot directly read or write to the other application’s
process memory. Blocked applications are basically null, where they are not allowed
to run at all.

So how does an application become a Privileged application? Through application
signing, which is discussed in the “Application Signing” section. On Windows Mobile,
the certificate used to sign the application determines whether the application is running
in Normal mode or Privileged mode. If you want your application to run as Privileged
instead of Normal, you have to go through a more detailed process from the service
provider signing your applications.

iPhone/Android
Both the iPhone and Android use a newer sandboxing model where application roles
are attached to file permissions, data, and processes. For example, Android assigns
each application a unique ID, which is isolated from other applications by default.
The isolation keeps the application’s data and processes away from another application’s
data and processes.

Application Signing
Application signing is simply a vetting process in order to provide users some
level of assurance concerning the application. It serves to associate authorship and
privileges to an application, but should not be thought of as a measure of the security
of the application or its code. For example, for an application to have full access

3 5 4 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

to a device, it would need the appropriate signature. Also, if an application is not
signed, it would have a much reduced amount of privileges and couldn’t be widely
disturbed through the various application stores of the mobile devices—and in some
mobile operating systems, it would have no privileges/distribution at all. Basically,
depending on whether or not the application is signed, and what type of certificate is
used, different privileges are granted on the OS. It should be noted that receiving a
“privileged” certificate versus a “normal” certificate has little to do with technical
items, but rather legal items. In terms of getting a signed certificate, you have a few
choices, including Mobile2Market, Symbian Signed, VeriSign, Geotrust, and
Thawte. The process of getting a certificate from each of the providers is a bit
different, but they all following these general guidelines:

1. Purchase a certificate from a Certificate Authorities (CA), and identify your
organization to the CA.

2. Sign your application using the certificate purchased in step 1.

3. Send the signed application to the CA, which then verifies the organization
signature on your application.

4. The CA then replaces your user-signed certificate in step 1 with its CA-signed
certificate.

If you wish your mobile application to run with Privileged access on the
Windows Mobile OS, your organization will still have to conform to the technical
requirements listed at http://blogs.msdn.com/windowsmobile/articles/248967.aspx,
which includes certain do’s and don’ts for the registry and APIs. The sticking point
is actually agreeing to be legally liable if you break the technical agreements (and
being willing to soak up the financial consequences).

The impact to the security world is pretty straightforward, so as to separate the
malware applications from legitimate ones. The assumption is that a malware author
would not be able to bypass the appropriate levels of controls by a signing authority
to get privileged level access or distribution level access to the OS, or even basic
level access in some devices. Furthermore, if that were to happen, the application
sandbox controls, described previously, would further block the application. A
good example of the visual distinction of applications that are signed from
applications that are not signed is shown in Figure 13-3, which shows a signed CAB
file on Windows Vista (right-click the CAB file and select Properties).

In terms of the major mobile operating systems, most, if not all, require some sort
of signing. For example, both BlackBerry and Windows Mobile requiring signing via
CAs, although both allow unsigned code to run on the device (but with low privileges).

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 5 5

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

Furthermore, the iPhone and Android require application signing as well, both of
which are attached to their respective application stores. Specifically, any application
distributed via the application store would have be signed first; however, Android
allows self-signed certificates whereas the iPhone does not.

Permissions
File permissions on mobile devices have a different meaning than in regular
operating systems, because there’s really no idea of multiple roles on a mobile
operating system. On a mobile operating system, file permissions are more for
applications, ensuring they only have access to their own files/folders and no or
limited access to another application’s data. On most mobile operating systems,
including Windows Mobile and the Apple iPhone, the permission model closely
follows the application sandboxing architecture. For example, on the iPhone, each
application has access to only its own files and services, thus preventing it from
accessing another application’s files and services. On the other hand, Windows
Mobile uses the Privileged, Normal, and Blocked categories, where Privileged
applications can access a file or any part of the file system. Applications in Normal

3 5 6 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

Figure 13-3 Signed application

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

mode cannot access restricted parts of the file system, but they all can access the
nonrestricted parts collectively. Similar to the iPhone, Android has a very fine-grained
permission model. Each application is assigned a UID, similar to the UID in the
Unix world, and that UID can only access files and folders that belong to it, nothing
else (by default). Applications installed on Android will always run as their given
UID on a particular device, and the UID of an application will be used to prevent its
data from being shared with other applications.

Table 13-1, created by Alex Stamos and Chris Clark of iSEC Partners, shows the
high-level permission model for applications installed on the major platforms for
critical parts of the mobile device.

Buffer Overflow Protection
The final category we’ll discuss is protection against buffer overflows. Before
cross-site scripting dominated the security conversation, buffer overflows were the
main attack class every security person worried about. A tremendous amount of
good resources for learning about buffer overflows exists. Refer to the following link
to get started: http://en.wikipedia.org/wiki/Buffer_overflow.

If an operating system is written in C, Objective-C, or C++, buffer overflows are a
major attack class that needs to be addressed. In the case of major mobile operating
systems, both Windows Mobile (C, C++, or .NET) and the iPhone (Objective-C)
utilize these languages.

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 5 7

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

Data Type BlackBerry
Windows
Mobile 6

Apple iPhone
2.2.1 Google Android

E-mail Privileged Normal None Permission

SMS Privileged Normal None Permission

Photos Privileged Normal UIImagePicker
Controller

Permission

Location Privileged Normal First Use,
Prompts User

Permission

Call history Privileged Normal None Permission

Secure Digital
(SD) cards

Privileged Normal N/A Permission

Access network Privileged Normal Normal Permission

Table 13-1 Security Permissions Summary

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

The result of a buffer overflow vulnerability is usually remote root access to the
system or a process crash, either of which is bad for mobile operating environments.
Furthermore, buffer overflows have created serious havoc on commercial-grade
operating systems such as Windows 2000/NT/XP; therefore, it is imperative to avoid
any similar experiences on newly created mobile operating systems (where most are
based on existing operating systems). The main focus of this section is to describe
which mobile operating systems have inherited protection from buffer overviews.
Because buffer overflows are not a new attack class, but rather a dated one that affects
systems written in C or C++, several years have been devoted to creating mitigations
to help protect programs and operating systems. The following subsections describe
how each major platform mitigates against buffer overflows. Refer to Chapters 2–5
for the specific details.

Windows Mobile
Windows Mobile uses the /GS flag to mitigate buffer overflows. The /GS flag is the
buffer overflow check in Visual Studio. It should not be used as a complete foolproof
solution to find all buffer overflows in code—nor should anything be used in that
fashion. Rather, it’s an easy tool for developers to use while they are compiling their
code. In fact, code that has buffer overflows in it will not compile when the /GS flag is
enabled. The following description of the /GS flag comes from the MSDN site:

“[It] detects some buffer overruns that overwrite the return address, a
common technique for exploiting code that does not enforce buffer size
restrictions. This is achieved by injecting security checks into the compiled
code.”

So what does the /GS flag actually do? It focuses on stack-based buffer overflows
(not the heap) using the following guidelines:

� Detect buffer overruns on the return address.

� Protect against known vulnerable C and C++ code used in a function.

� Require the initialization of the security cookie. The security cookie is put on
the stack and then compared to the stack upon exit. If any difference between
the security cookie and what is on stack is detected, the program is terminated
immediately.

3 5 8 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

iPhone
The iPhone OS mitigates buffer overflows by making the stack and heap on the OS
nonexecutable. This means that any attempt to execute code on the stack or heap will
not be successful, but rather cause an exception in the program itself. Because most
malicious attacks rely on executing code in memory, traditional attacks using buffer
overflows usually fail.

The implementation of stack-based protection on the iPhone OS is performed
using the NX Bit (also known as the No eXecute bit). The NX bit simply marks
certain areas of memory as nonexecutable, preventing the process from executing
any code in those marked areas. Similar to the /GS flag on Windows Mobile, the
NX bit should not be seen as a replacement for writing secure code, but rather as a
mitigation step to help prevent buffer overflow attacks on the iPhone OS.

Android
Google’s Android OS mitigates buffer overflow attacks by leveraging the use of
ProPolice, OpenBSD malloc/calloc, and the safe_iop function. ProPolice is a stack
smasher protector for C and C++, using gcc. The idea behind ProPolice is to protect
applications by preventing the ability to manipulate the stack. Also, because protecting
against heap-based buffer overflows is difficult with ProPolice, the use of OpenBSD’s
malloc and calloc functions provides additional protection. For example, OpenBSD’s
malloc makes performing heap overflows more difficult.

In addition to ProPolice and the use of OpenBSD’s malloc/calloc, Android uses
the safe-iop library, written by Will Drewry. More information can be found at
http://code.google.com/p/safe-iop/. Basically, safe-iop provides functions to perform
safe integer operations on the Android platform.

Overall, Android uses a few items to help protect from buffer overflows. As
always, none of the solutions is foolproof or perfect, but each offers some sort of
protection from both stack-based and heap-based buffer overflow attacks.

BlackBerry
Buffer overflow protection on the BlackBerry OS isn’t relevant because the OS is built
heavily on Java (J2ME+), where the buffer overflow attack class does not apply. As
noted earlier, buffer overflows are an attack class that targets C, Objective-C, or C++.
The BlackBerry OS, however, is mainly written in Java. (It should be noted that parts of
the BlackBerry OS are not written in Java.) More information about BlackBerry’s use of
Java can be found at http://developers.sun.com/mobility/midp/articles/blackberrydev/.

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 5 9

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

Security Feature Summary
We have reviewed a variety of enterprise security features that should be available on
mobile operating systems to ensure the security of sensitive/confidential information.
During our discussion, we highlighted a few security features required on mobile
operating systems and the specific implementations available. However, it would
take a full book to cover all of them in the detail they deserve. Table 13-2, researched
and created by Alex Stamos and Chris Clark of iSEC Partners, lists all the features
we have discussed in this chapter (and a few more), as well as the support level each
major mobile device holds for the feature.

Conclusion
Enterprise security features differ from one mobile operating system to the next.
Some mobile operating systems are more ready for the enterprise than others in
terms of end-to-end security features, but each has its unique benefits. Organizations
should not determine which mobile device has the strongest security features and then
settle on that one for the entire organization because that view would be too narrow.

3 6 0 M o b i l e A p p l i c a t i o n S e c u r i t y

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

Feature BlackBerry
Windows
Mobile 6

Apple iPhone
2.2.1 Google Android

PIN Yes Yes Yes Yes

Remote wipe Yes Yes Yes No

Remote policy Yes (BES) Yes
(Exchange)

Yes (Exchange) No

“LoJack” Third party Third party Not yet Not yet

Local mail encryption Yes No No No

File encryption Yes Yes Keychain No

Application sandbox Yes No No Yes

Application signing Yes Yes Yes Yes

Permission model Fine grained,
JME class
based

Two tiers Sandbox,
multiple users

Fine grained,
kernel and IPC
enforced

OS buffer overflow
protections

N/A
(Java/JME-
based OS)

/GS stack
protection

Nonexecutable
heap+stack

ProPolice,
safe_iop,
OpenBSD malloc
and calloc

Table 13-2 Security Feature Summary

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

Instead, the organization should have a plan ready for each mobile device expected
within the enterprise. For example, an organization may determine that the
BlackBerry device has the strongest OS from a security perspective and therefore
endorse it for the entire company; however, there may be many users within the
organization using other devices, such as company executives using the iPhone.
Similarly, an organization may think Windows Mobile is the best platform for its
users, but then realize its own mobile application is exclusively available through the
Android application store, making that platform a required device to support as well.

Realistically, organizations should be prepared for employees to use any of the
four major mobile devices, or even a few more, and have a supported security solution
for each of them. Although an organization may suggest a supported handset for the
enterprise, users will still want what they feel is right for them, even if it is not the
preferred solution (as President Obama did in his presidency). The task of supporting
several mobile devices in the enterprise is not an easy one. Most organizations
don’t support four different operating systems for the users’ desktops, so supporting
four different mobile devices is, quite frankly, an odd but realistic scenario. The refusal
to have a security solution for each device expected in the enterprise may mean that
corporate data is walking away in an unsupported and uncontrolled fashion, thus making
the choice not to support a device much more risky.

This chapter touched on the major enterprise security features currently available
on the major mobile platforms. Support for secure local storage, security policy,
encryption, and application security are imperative for the enterprise as the mobile
phone continues to replace the laptop in usage. Similar to how the laptop replaced
the desktop in the enterprise and brought new security challenges along with it, the
same thought process will have to take place as the mobile device replaces the laptop
for many corporate functions, including e-mail, calendar, application usage, and
document viewing.

C h a p t e r 1 3 : E n t e r p r i s e S e c u r i t y o n t h e M o b i l e O S 3 6 1

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 / Chapter 13

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

ApDev / Mobile Application Security / Dwivedi, Clark & Thiel / 356-1 /
Blind Folio 362

ch13.ps
P:\010Comp\AppDev\356-1 First Pages\ch13.vp
Thursday, December 17, 2009 11:44:51 AM

Color profile: Disabled
Composite Default screen

