
1
Ch

ap
te

r

EdwardsCh01.qrk 2/4/04 11:22 AM Page 2

Getting
Started

3

Covering the essentials of a Series 60 project, plus building,
deploying and running an example application

EdwardsCh01.qrk 2/4/04 11:22 AM Page 3

This chapter overviews the process of building, deploying and running an
example Series 60 application with a Graphical User Interface (GUI). If you have
already been involved in Series 60 development, you may want to skip this
chapter. Chapter 2 builds on the overview, providing a detailed description of
the project files and the development tools that are used on a regular basis.

We assume that you have installed both a Series 60 Software Development Kit
(SDK) and a chosen Integrated Development Environment (IDE). Both
installations are reasonably easy and are well documented elsewhere. If you do
not have the necessary SDK and IDE, see the Preface for details of how to obtain
them.

Topics covered are:

• Series 60 C++ SDKs—Different versions of the SDKs that are available and
how they relate to versions of Series 60 Platform releases, and hence to
specific Series 60 products.

• Development Process Overview—A high-level description of the process of
specifying, building and running a Series 60 project for an emulator or a
target device, plus a guide to the many IDE and build options available to
developers.

• Series 60 Emulators—The features and layout of the Series 60 emulators,
both debug and release versions. An overview of the similarities and
differences between an emulator and a real Series 60 device.

• Building for the Emulator—How to build the HelloWorld project for the
emulator using IDEs from different vendors and also from a PC command
prompt.

• Running the Emulator—Each method of starting an emulator, and how to
locate and run the example HelloWorld application—as both release and
debug build variants.

• Building for a Target Device—How to build the HelloWorld example project
for a Series 60 device as an appropriate ARM binary executable.

• Deploying on a Target Device—How to package up the various components
of an application, options for transferring it to a Series 60 device and then
how to locate and execute it.

4 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 4

A step-by-step overview of the development process shows you the essential
steps. This is the fast-track guide to using Series 60 C++ build tools and various
IDEs. You will see how to build and run an example “Hello World” application
with the Series 60 emulator (version 1 and 2), plus how to build, deploy and run
the application on a target device. All the information needed to build and run
the HelloWorld example is provided within this chapter.

All the project files, source files and deployment information associated with
the examples in this book are available online as noted in the Preface. If you
have not already obtained the source materials, you are advised to download
and install them—they will be helpful for reference as you read through this
chapter.

Chapter 2 gives detailed explanations of the components that make up a typical
project and the key build tools. Chapter 3 covers the fundamentals of Symbian
OS and the key concepts you must understand fully to develop efficient, reliable
code for Series 60 devices. In Chapter 4 the class structure of a GUI application
is described and a detailed examination of typical application code is begun.

Details on debugging and testing applications are provided in Chapter 13.

Series 60 C++ Software Development Kits (SDKs)

Symbian OS is widely used in multiple smartphone platforms, such as Series
60, Series 80 and Series 90, three of the UI platforms from Nokia, and UIQ (the
UI platform from UIQ Technology).

Series 60 SDKs are built upon specific versions of Symbian OS C++ SDKs
released by Symbian. An SDK contains a wide range of tools, APIs, libraries and
documentation to enable you to develop new applications, typically as after-
market applications.

As a developer you may need to work with SDKs for more than one version of
Series 60 (or even SDKs for different Symbian OS UI platforms). The most
important issue is to select the correct SDK version for your chosen Series 60
product.

Nokia or Series 60 Licensees release SDKs that are suitable for development for
a specific version of Series 60 Platform. That is to say, each Series 60 product is
based on a particular release of the platform, and SDK releases are made to be
suitable for development for a platform version. A particular SDK release may
also be suitable for use with earlier versions of the platform as well. Such
“backward compatibility” will depend on the version of the Symbian OS used
as the basis of the release, the APIs used by the application developer and any
changes that have occurred in those APIs between platform releases. Particular
Licensees also may introduce additional product-specific APIs to allow
developers to access the features that differentiate their Series 60 product from

Chapter 1 Series 60 C++ Software Development Kits (SDKs) 5

EdwardsCh01.qrk 2/4/04 11:22 AM Page 5

those from other Licensees. For example, the Siemens SX1 smartphone
includes an FM radio, so the relevant SDK may include “add-on” APIs to
manipulate the radio. For maximum compatibility across different Licensee
products you may want to avoid using such product-specific APIs. You may even
choose to limit your use of the general APIs to those that are common and
unchanged across a selected range of platform versions.

You will find the key differences between releases of Series 60 Platform
described in broad detail in the Introduction to this book.

More extensive variants of Series 60 Development Platforms are available to
Licensees, Competence Centers, and other software and technology partners to
allow them to develop at the system level, rather than at the application level.
This book, however, will focus on the publicly available SDKs.

Using Multiple SDKs

Using a single Symbian OS SDK is very easy, and the installation process will
prepare it for immediate use. However, developers often need to work with
SDKs for different versions of Series 60, or even SDKs for different user
interface (UI) platforms. As described in Chapter 2, you can install multiple
SDKs on your development PC, with a few restrictions on where they can be
installed and how they are selected for use.

Development Process Overview

PC-based platform emulators are provided as part of the SDKs so that most
development and testing can be performed without target hardware. Series 60
project executables can be created as debug or release variants for emulators
and for target hardware (although currently some restrictions apply to on-target
debugging). Additionally, when building for target devices it is possible to
create executable code in various binary formats (for example, ARMI, ARM4

and Thumb, explained later in this chapter). The compilation and linking process
can be performed using command-line tools or from within a variety of IDEs.
The IDEs covered here are Microsoft Visual C++ version 6, Metrowerks
CodeWarrior, and Borland C++Builder 6 Mobile Edition and Borland
C++BuilderX Mobile.

Symbian devised a method of specifying development projects in a platform-
neutral way. Two universal project files can be created (projectname.mmp and
bld.inf), where projectname is the name of the component or application to
be developed (HelloWorld for our example project). These two text files can
then be used as a starting point for any of the build options, IDEs and platform
variants.

The bld.inf file specifies the names of all the project component(s) to be built,
with each component specified in its own .mmp file. Both types of file are plain

6 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 6

text, and often you will simply have a single .mmp file that defines the
application you are creating. If the project consists of multiple components,
such as the application itself and specific function libraries, then each
component would have its own .mmp file. Each of the libraries plus the
application would have an .mmp file, and each filename would be listed in the
bld.inf file for the project. The syntax of .mmp and bld.inf files is detailed in
Chapter 2.

In the HelloWorld example, there are only two project specification files:
bld.inf and helloworld.mmp. Using these two files, any platform-specific project
and command files required can be created.

Typically you employ a Symbian tool called bldmake, using the two project
specification files as input, to generate a command file called abld.bat. You
can then use abld.bat, from the command prompt, to perform a number of
project-related actions. For example, abld.bat can be used to generate
platform- and IDE-specific project makefiles. If the project source code exists,
and is complete, abld can be used to build the project for one or more
platforms.

Since most development projects are built and run from within an IDE, you
would usually create the project files suitable for your chosen IDE.

In the case of Microsoft Visual C++, you use abld at the command line to create
the HelloWorld.dsp and HelloWorld.dsw project files. The .dsw file is the
workspace file to be opened from within the IDE, and it may reference one or
more .dsp files.

For Metrowerks CodeWarrior you can either create the project file from within
the IDE in the usual way or import the .mmp file directly into the IDE. The import
process will create the CodeWarrior specific project (HelloWorld.mcp) file
required.

Similarly, the Borland C++ Builder Mobile Edition IDEs can perform an
equivalent import task to the Metrowerks IDE, but by importing the bld.inf file
instead of the .mmp file. Borland C++BuilderX, for example, will create a project
file called HelloWorld.cbx.

Opening the IDE-specific project file will then allow you to develop, build, run
and debug the application with full IDE support.

For developers who prefer working at the command-line level, abld can also be
used to compile and link from a command prompt.

All of the methods for creating the IDE (or command-line) specific project files
outlined are described in detail later in this chapter. In addition, Figure 1–1
illustrates the use of the two generic Symbian OS project files to generate the
required platform-specific project files, either via IDE import options or using
the Symbian tools.

Chapter 1 Development Process Overview 7

EdwardsCh01.qrk 2/4/04 11:22 AM Page 7

Using an IDE versus Command-Line Tools

The different options currently available to you for working with Series 60
development projects are summarized in Table 1–1. More options are becoming
available all the time from Symbian, Nokia and the development tool vendors
Borland and Metrowerks. However, it is likely that the Microsoft development
tools, though currently viable and still widely used, will no longer be supported
in the not-too-distant future.

There are currently considerable differences between the capabilities of the
various IDEs from Microsoft, Borland and Metrowerks. Development to
enhance the latter two development environments is ongoing. EMCC Software
Ltd uses IDEs from all three vendors as the basis of its development activities.
We also use the command-line tools every day—not because we want to but
because we currently have to. This is primarily for building for target devices
and for automating overnight builds. The C++BuilderX and CodeWarrior IDEs
can now build for target devices—but not all essential build operations are
covered by some variants of the IDEs.

At the time of writing, the easiest and most generic starting point for any new
Series 60 project is to define a pair of bld.inf and .mmp project files. At EMCC
Software, these files are used for generation of any IDE-specific project files and
for use during any command-line builds needed. This approach is taken
throughout the book. It is also the approach currently adopted by every single
example project provided by both Symbian and Nokia in their SDKs and in the

8 Chapter 1 Getting Started

IDE projectfiles

IDE Import

.wins

makmake

bldmake

.arm4
.armi

.thumb

abld

calls

Invoke

Invoke

abld.bat

.mmp

bld.inf

Figure 1–1 Generation of IDE and platform-specific
project files from generic Symbian files.

EdwardsCh01.qrk 2/4/04 11:22 AM Page 8

Through the rest of this chapter, the HelloWorld example project is used to
illustrate all the steps involved in the development, debugging, and deployment
process for the Series 60 emulator.

All of the other files required for the example application are provided—for
example, the header (.h), source (.cpp) and user interface resource (.rss) files.

You can test the application using the Series 60 emulator, either started from
within an IDE or run from a command prompt. However, debugging an
application on the emulator must be performed from within an IDE.

After developing, running, testing or debugging an application on the emulator
you typically will want to build and run it on a target device. So you will then
be shown how to build the example application for a target device, how to
deploy it and then run it on target Series 60 hardware.

Chapter 1 Development Process Overview 9

Table 1–1 PC-Based Development Options Summarized

Option Description

Command line building Using the Symbian OS tools combined with compilation and
linking using the Microsoft Visual C++ compiler/linker for
emulator builds invoked from a command line. Emulator can
also be invoked from the command line. Source-level
debugging on the PC emulator requires working from within
an IDE.

The GNU C++ cross compiler and linker used for ARM target
device builds invoked from the command line.

Microsoft Visual C++ IDE Compilation and linking using the Microsoft Visual C++
compiler/linker for emulator builds from within the IDE.

The GNU C++ cross compiler and linker used for ARM target
device builds invoked from a command prompt.

Borland C++ IDE Two IDE options are currently available; both use the Borland
C++ compiler and linker for emulator builds from within an IDE.

The GNU C++ cross compiler and linker used for ARM target
device builds invoked from the command line.

Metrowerks Using the Metrowerks compiler and linker for emulator builds
CodeWarrior C++ IDE from within the IDE.

The GNU cross compiler and linker for ARM target device
builds, either invoked from the command line or directly from
within the CodeWarrior IDE.

documentation they supply. Using an IDE exclusively is not currently possible
on a day-to-day basis. Things will change before very much longer, but these are
the current facts of life for Symbian OS and Series 60 developers.

EdwardsCh01.qrk 2/4/04 11:22 AM Page 9

Series 60 Emulators

Development, debugging and initial testing of Series 60 applications is usually
carried out on a PC-hosted emulator that provides a Microsoft Windows-based
implementation of a Series 60 device. In most cases you will discover that the
emulator-based development process closely mimics the operation of an
application running on a real device; so that the majority of your development
work can take place even before hardware is available. The exact appearance of
the emulator may vary from the figures provided and will depend on the target
platform you are working with, the version of Series 60 you are using, and the
selected IDE. For example, the fascia bitmap may have been changed to closely
resemble a particular Series 60 device from a Licensee. In addition, buttons and
other interaction elements may be moved or added to emulate the
configuration of a manufacturer’s actual device. Also, the applications available
on the emulator will depend on the platform version and the device
manufacturer’s preferences.

Some differences between an emulator and a real device cannot be overcome.
Real Series 60 devices will have hardware accessories such as cameras and
other features such as vibration feedback. Thus, at some point, hardware will be
necessary for development and testing. In addition, PC-based emulators do not
accurately mimic issues of precise timing, application performance and
memory management.

For PC-based development, the edit/compile/build cycle is based on a Microsoft
Windows-hosted development toolset. However, instead of linking and building
against Win32 or MFC libraries, developers link and build against the headers
and PC-format libraries installed by the Series 60 SDK. The resulting Windows-
format binary executable is then run under the PC-hosted emulator.

During development, the project file for the specific IDE manages all linking and
building details. It also ensures that all outputs from the build, and other
required resources, such as application resource files, are built into the
appropriate location for running or debugging under the emulator.

Referring to Figure 1–2, the Series 60 display is logically divided into three
areas: status pane, main pane and control pane. (See the “Series 60 UI Style
Guide” provided with the Series 60 SDK documentation for a comprehensive
description of user interface elements and standards.)

The status pane is the graduated (blue, on the emulator) bar near the top of the
screen plus the area above it. The main pane is the middle section of the screen
between the status pane and the soft key labels at the bottom of the screen. The
control pane is the area immediately below the main pane and includes the soft
key labels.

The status pane may display information for the current application, as well as
general information about the device status, such as the signal strength and
battery charge. It is visible in most situations, but sometimes it may be hidden.
Many games, for example, will use the whole screen.

10 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 10

The main pane is the principal area of the screen where an application can
display its data. Typically, this area, also referred to as the client rectangle, is
fully occupied by an application’s data display.

The control pane occupies the bottom part of the screen and displays the labels
associated with the two soft keys and a scroll indicator when required. Like the
status pane, the control pane can also be hidden at times. In such situations it
is within Series 60 style guidelines to have the user assume the availability of
the Options menu (the default label for the left soft key), even though it may not
be visible. (See the “Nokia Series 60 Games UI Style Guide” provided with the
Series 60 SDK documentation.)

The two buttons below the control pane are the left and right soft keys and are
used to select the currently associated Options menu or labeled action. The
four-way navigation key will scroll up, down, left, right, or will select if pressed
(clicked) in the center.

You can interact with the emulator via the PC mouse or cursor keys for
navigation around the objects on the display. It is possible to use mouse clicks
to select folders and other displayed objects directly rather than via clicking on

Chapter 1 Series 60 Emulators 11

Status Pane

Main Pane

Control Pane

Right Soft Key

Navigation Key

Left Soft Key

Twelve-way
Keypad

Application
Button

Figure 1–2 Series 60 emulator.

EdwardsCh01.qrk 2/4/04 11:22 AM Page 11

the four-way navigation key (on the emulator only). For data entry the PC
keyboard can be used, or you may click on the twelve-way keypad on the
emulator fascia. Therefore the interaction with the emulator is close to, but not
exactly the same as, using a real Series 60 device—there is no pen input on a
real device, so all movement and selection is through cursor (joystick)
navigation.

Building for the Emulator

Since Series 60 applications can be built from a command prompt or from
within an IDE, we have detailed both methods here. We’ll start by building the
project to run under the PC-hosted emulator (that is, for an x86 instruction set)
using the C++ compiler supplied with the IDE. We almost always use a debug
build, so that symbolic debug information and memory-leak checking are
available (checking for memory dynamically allocated on the heap that is not
released correctly).

Building from the Command Line

Open a command prompt and change to the drive/folder that contains your
Series 60 SDK. Navigate to the folder where the project definition
(helloworld.mmp) and component description (bld.inf) files are located—
for example:

\Symbian\Series602_0\EMCCSoft\HelloWorld\group

for a Series 60 2.x project

or

\Symbian\6.1\Series60\EMCCSoft\HelloWorld\group

for a Series 60 1.x project

and type:

bldmake bldfiles

After a second or two this command completes without any visual output. It
uses the bld.inf and helloworld.mmp files to generate a new file:
abld.bat.This command file is always generated in place, as required. Unlike
the bld.inf and .mmp files, abld.bat is not portable between different IDEs
and should never be edited by hand.

To compile and link the project, type:

abld build wins udeb —for Visual C++
abld build winsb udeb —for Borland C++
abld build winscw udeb —for CodeWarrior

12 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 12

The abld command will build the project (in other words, compile and link) for
the Series 60 emulator (the wins, winscw or winsb variant) with debugging
(udeb—Unicode debug) information included in the binary executable.

Building from an IDE

Projects, such as our example HelloWorld application, normally are built and
run from within an IDE, so we need to create IDE-specific project files from the
bld.inf and HelloWorld.mmp files. For Visual C++ this must be performed
from the command line, using tools supplied by Symbian. For Borland and
CodeWarrior this is optional, since both IDEs can import either the bld.inf or
.mmp file, respectively, to create the IDE project files.

When working from the command prompt it may be necessary to create the
abld.bat file if it does not exist already, or recreate it if the .mmp file or
bld.inf file has changed. At a command prompt you create the abld command
file by typing:

bldmake bldfiles

Building Using Microsoft Visual C++ IDE

Open a command prompt and navigate to the drive/project folder for the
HelloWorld project and then type:

abld makefile vc6

This will create project and workspace files (helloworld.dsp and .dsw
files) suitable for Microsoft Visual C++. They will be located under the
\Epoc32\Build sub-folder structure; the complete path will depend on the
location of your SDK, for example:

\Epoc32\Build\EMCCSoft\HelloWorld\HelloWorld\Wins

By opening the workspace file (helloworld.dsw) in Visual C++, you can
compile or link the application, either by pressing F7 or via the IDE menu
option, Build|Build HelloWorld.app.

Building Using Borland C++IDE Builder 6

If you are using Borland C++Builder 6 Mobile Edition, which is based on
C++Builder 6 Personal Edition with the Mobile plug-in, you can simply import
the bld.inf file for the HelloWorld project into the IDE. Use the File|New|Other

menu option. Then select the Mobile tab in the resulting dialog: Import Mobile

Application. Browse to the location of the component description (bld.inf) file
and open it.

Use Ctrl+F9, or Project|Make from the menu, to build. To build and run, use F9

or Run|Run from the menu. Note that F9 or Run|Run will cause a project rebuild

Chapter 1 Building for the Emulator 13

EdwardsCh01.qrk 2/4/04 11:22 AM Page 13

each time! To just run the emulator, use Tools|Mobile Build Tools|Run Emulator.
You may be prompted to save a number of project-related files, for example,
Borland project (.bpr), Borland project group (.bpg) files. These files will be
saved in the same folder as your bld.inf file.

It is also possible to execute individual abld commands and run other SDK tools
such as aifbuilder and sisar from the Tools|Mobile Build Tools menu. These tools
are described in Chapter 2.

Building Using Borland C++BuilderX

When using any of the commercial C++BuilderX products, you can simply
import the bld.inf file for the HelloWorld project into the IDE.

Use File|New and click the Mobile C++ tab in the Object Gallery. Select Import

Symbian C++ Project. Select the correct Series 60 SDK from the drop-down list,
browse to the location of the project bld.inf file. Press the Next tab, give the
project a name, press the Finish tab and the project will open. Press Ctrl+F9 or
select Project|Make Project. To run, Press F9, or select Run|Run Project or use
the toolbar tab to Make and Run the project.

Building Using CodeWarrior IDE

If you are using Metrowerks CodeWarrior for Symbian (Personal v2.5, other
editions may vary slightly), you can simply import the HelloWorld.mmp file
using the IDE menu option, File|Import Project from .mmp File.

This runs a project conversion wizard. Select the SDK to use with this project,
select (or browse to) the .mmp file, and select a platform of WINSCW (or all by
leaving it blank). The build variant will default to UDEB. Use F7 or Project|Make

from the menu to build the project.

The CodeWarrior Project files (.mcp, .xml, .resources and .pref files) are
created automatically in the same directory as the HelloWorld.mmp file.

Alternatively you can create a CodeWarrior IDE project from the command line.
To do this, run bldmake bldfiles as described; then, to generate a CodeWarrior
IDE project, use:

abld makefile cw_ide

This creates an importable project file HelloWorld.xml in the directory:

\Epoc32\Build\EMCCSoft\HelloWorld\HelloWorld\Winscw

You can now use CodeWarrior to import this file and to generate a native
project (.mcp) file. Choose the File|Import Project menu option, select the
HelloWorld.xml file, and choose a name for the project (such as HelloWorld

again). CodeWarrior will now generate and load the project, which you can
build, run, debug and so on, using the normal IDE commands.

14 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 14

Running the Emulator

In a Series 60 SDK two versions of the emulator executable are available: a
version built containing symbolic debugging information, and another built as
a release variant. The release emulator is limited to evaluation and
demonstration of applications—it starts up considerably quicker because of the
absence of the debugging information.

Both versions are called epoc.exe, but they are located in their own
subdirectories. The name epoc is historical—it was the name of the operating
system prior to Symbian OS.

In normal development activities, it is usual to use the debug variant of the
emulator. Depending on your choice of IDE, you may be able to run the debug
version normally or in “debug mode.” To be able to run the same “debug
emulator” in two modes may seem a little confusing at first.

Sometimes you may want to start the emulator, locate the application and run it
(as described later) simply for testing purposes. If a serious error occurs, the
emulator and application will shut down in a controlled way.

Other times you may want to put a breakpoint in your code at a specific point
where you think a problem exists, and then have the IDE run the emulator in
“debug mode.” You then locate the application and run it as before. Suitable
interaction with your application will cause the breakpoint in the code to be
reached. At that point, the source code will be displayed in the IDE along with
all of the symbolic debug information associated with the application. Then you
can use the debugging features of the IDE to step through sections of code, in
a controlled manner. All the while you are able to view the application source
code, data, call stack and other debug-related information displayed by the IDE
to assist you in tracking down errors in code or logic.

The appearance of a typical Series 60 emulator is shown in Figure 1–3.
Debugging an application under an emulator using the Microsoft Visual C++ IDE
is illustrated in Figure 1–4.

Emulator Executable Locations

For a Series 60 1.2 SDK the release build emulator is typically located under the
following:

For Visual C++

\Symbian\6.1\Series60\Epoc32\Release\wins\urel\epoc.exe

For Borland C++

\Symbian\6.1\Series60\Epoc32\Release\winsb\urel\epoc.exe

For CodeWarrior

\Symbian\6.1\Series60\Epoc32\Release\winscw\urel\epoc.exe

Chapter 1 Running the Emulator 15

EdwardsCh01.qrk 2/4/04 11:22 AM Page 15

Applications
Button

16 Chapter 1 Getting Started

Figure 1–4 The HelloWorld application on the emulator in debug mode under the Microsoft
Visual C++ IDE.

Figure 1–3 Applications grid and list views of Series 60 Platform 1.2 debug emulator.

EdwardsCh01.qrk 2/4/04 11:22 AM Page 16

The debug build emulator is typically located under:

For Visual C++

\Symbian\6.1\Series60\Epoc32\Release\wins\udeb\epoc.exe

For Borland C++

\Symbian\6.1\Series60\Epoc32\Release\winsb\udeb\epoc.exe

For CodeWarrior

\Symbian\6.1\Series60\Epoc32\Release\winscw\udeb\epoc.exe

The exact paths will depend on the options you choose during the installation
of the SDK. In the case of the Series 60 2.x SDK the paths to the emulator will
be very similar—for example:
\Symbian\Series602_0\Epoc32\release\wins\udeb\epoc.exe.

Figure 1–3 shows the Series 60 1.2 emulator. It starts up showing the
Applications main menu as either a grid view or a list view.

The Series 60 2.0 emulator starts with a mock-up of the phone application, and
you have to navigate to the applications menu by pressing the applications
button shown in Figure 1–3. Whatever version of Series 60 Platform you are
using, always specify the debug (udeb) version of the emulator executable
as the default for development projects—for example:
\Epoc32\Release\wins\udeb\epoc.exe.

Emulator Debug Mode

When running the application in debug mode under the emulator, the source
code, function call stack, variable information and so on are shown as soon as
the breakpoint in the code is reached, as shown in Figure 1–4. The emulator
window itself may disappear (it is minimized) if the application code is not at a
point where user input is required.

Running the Emulator from a Command Prompt

To run the debug emulator from the command line, open a command prompt,
change to the folder in your Series 60 SDK where the epoc.exe application is
located (for example, \Symbian\6.1\Series60\Epoc32\Release\wins
\udeb) and type the following:

epoc

This will start the debug emulator and you can then locate and run your
application, but not in debug mode. To debug an application you need to run
the emulator in debugging mode and this can only be done from within an IDE.
To run the release emulator enter the following:

epoc –rel

Chapter 1 Running the Emulator 17

EdwardsCh01.qrk 2/4/04 11:22 AM Page 17

Running the Emulator from the Visual C++ IDE

From within the Visual C++ IDE you can start the debug version of the emulator
by pressing Ctrl+F5, or from the menu use Build|Execute Epoc.exe. This will run
the emulator in non-debug mode. Alternatively, you can use F5 or select
Build|Start Debug|Go from the menu to run the emulator in debug mode.

The first time you run the emulator for a Visual C++ project, a dialog will appear
asking you to supply the name of the executable. Navigate to epoc.exe in the
folder \Epoc32\Release\wins\udeb in the root of your SDK.

Running the Emulator from the
Borland C++Builder 6 and C++BuilderX IDEs

You can start the debug version of the emulator using the Tools|Mobile Build

Tools menu option, then select Run Emulator. Alternatively you can use the
Run|Run menu option (F9), but it will cause a project rebuild each time—this
can be a lengthy and time-consuming process! Using this option, you will need
to cancel the build dialog (“Compiling”) before the emulator will start up.

If you are running the emulator from C++BuilderX, use the Run|Debug Project

menu option or press Shift+F9. If you wish to rebuild the project and start the
emulator, select Run|Run Project or press F9.

Running the Emulator from the CodeWarrior IDE

Select the Project|Run menu option or press Ctrl+F5 to run the emulator. Press
F5 or use the Project|Debug menu option to run the emulator in debug mode.

Locating and Running the Application

Navigate to, and select the HelloWorld application by clicking on the image of
the cursor keys on the emulator fascia bitmap, or by using the PC keyboard
cursor (arrow) keys. Click on the Selection button (in the middle of the cursor
controls) to start the application.

Applications that do not have their own specific icon (as specified in an
.aif file, detailed in Chapter 2) will be given a default icon, which looks like
a piece of a jigsaw puzzle, by the system.

Under some SDK/IDEs (for example, versions of Borland and CodeWarrior), the
application you have built may be located in a folder called “Other” rather than
on the main desktop. If so, navigate to and select the Other folder and then
open it by clicking on the Selection button. Navigate to and select the
HelloWorld application and click on the Selection button to invoke the
application.

The HelloWorld application will run and should appear as shown in Figure 1–5.

18 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 18

Debugging the Application

Alternatively, you could run the application
on the emulator from within an IDE in
debugging mode—the procedure will vary
depending on the IDE in use. Typically you
would first set a breakpoint at an appropriate
point in the source code.

Start the emulator in debugging mode.
Since it is the application (essentially a
dynamic link library—DLL) that will be
debugged, not the emulator itself, navigate
to and run the application as described
earlier in “Locating and Running the
Application.” The application will start up,
and then execution will stop at the
breakpoint you set earlier. You can the use
the facilities of your chosen IDE to step

through the execution of the application source code.

Further IDE Help

Further explanation of the various IDE functions is beyond the scope of this
chapter, so for more details refer to the IDE help information, available through
the Help menu option.

For Microsoft Visual C++ this is accessed through the Help|Contents menu
option, provided you installed MSDN with your IDE.

For Borland C++Builder 6 this is accessed through the Help menu option. You
will find a separate Help|Borland C++ Mobile Edition Help page as well as the
standard Borland help files. For C++BuilderX, select Help|Help Topics and
choose Mobile Development.

For Metrowerks CodeWarrior there is a Help|Online Manuals menu option that
contains lots of valuable information on working with Symbian OS.

Additional specific IDE information can be obtained online—for example, for
Visual C++ information go to http://msdn.microsoft.com/, for Borland C++ go
to http://bdn.borland.com/ and for CodeWarrior go to
http://www.metro-werks.com/MW/Develop/Wireless/.

Building for a Target Series 60 Device

Building for a Series 60 device with the Visual C++ IDE must be performed at the
command prompt using the abld command, as described next. However,
CodeWarrior and C++Builder allow building for a target device from within
the IDE.

Chapter 1 Bulding for a Target Series 60 Device 19

Figure 1–5 The “Hello World”
application.

EdwardsCh01.qrk 2/4/04 11:22 AM Page 19

Building for a Series 60 device based on an ARM processor on a PC requires the
use of a suitable PC-hosted cross compiler (for example, the GNU gcc C++
Compiler, as supplied with the Series 60 SDK) to build the executables in a
suitable ARM binary format.

When building the project for a Series 60 device you would typically use a
release build, since that is what you would do to create a final, deliverable
application.

To build for target hardware, open a command prompt window and navigate to
the group directory for the GUI HelloWorld project, then enter the following
commands:

bldmake bldfiles

abld build armi urel —For Visual C++ and CodeWarrior

or

abld build armib urel —For Borland C++

This will cause abld to invoke the build (cross-compilation and linking) system
to produce an armi (ARM Interworking) release (urel—Unicode release) build
of the application for execution on a target device using the gcc tool chain.

There are currently three build variants for ARM based devices—ARMI, ARM4

and Thumb. ARMI executables will work with the other two build variants.
Typically you should build the ARMI binary executable variant for compatibility
with the maximum number of real devices. ARM4 builds give maximum
performance at the expense of increased code size. Thumb builds will reduce the
code size at the expense of a slight reduction in execution speed.

The build steps actually include C++ compilation, linking, resource compilation,
and production of the application information (.aif) file—the file that contains
the application icon and other specific details.

When building for a target device a Symbian OS-specific tool called petran is
automatically invoked behind the scenes. Petran translates HelloWorld.app
into a form suitable for loading at runtime by the Symbian OS executable
loader.

If you are using the CodeWarrior IDE to build for a Series 60 device, use
Project|Set Default Target either to select the required target (for example, ARMI
UREL) or to choose Build All, and then build with Project|Make.

With C++Builder X, you need to select the Project|Properties menu item and
then select the Symbian settings tab. From this dialog you can change the
Platform and Build options to ARMI and UREL, respectively. Note: At the time of
writing ARMI was the only target Platform option available.

Pressing Ctrl+F9 will make the project, creating the installation package (.sis)
as part of the project; installation packages are described in the next section.

20 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 20

The executable and data files (HelloWorld.app, HelloWorld.rsc and
HelloWorld.aif) will now be located in a folder such as
\Epoc32\Release\Armi\Urel.

For testing on a Series 60 device, all of these files have to be transferred to a
device and located in a folder called \System\Apps\HelloWorld\.

File transfer to a device can be performed by copying to a memory card, or via
a USB cable, if the Series 60 device manufacturer has included appropriate
support in their product. Typically though, the file transfer is performed by
packaging all the application files into a special installation file. The next section
describes how this is achieved.

Deploying on a Target Device

Applications are delivered to target hardware in the form of a Symbian

Installation System (.sis) file. A .sis file is a single compressed archive file,
containing all of the files required for installation, plus optional information
about the installation process. The Symbian Installation System provides a
simple and consistent user interface for installing applications, data or
configuration information onto devices based on Symbian OS. Developers (or
end users) install components, packaged in .sis files.

Production of .sis files can be performed using the interactive sisar tool
provided with the Series 60 SDK. Sisar packages all the application files into
one .sis file for ease of installation onto target hardware. Alternative methods
for producing installation files are described in Chapter 2.

Everything required to make an installation (.sis) file is provided with the
example HelloWorld project—under the \install folder. In this example
project we will use a special installation package source file called
HelloWorld.pkg and a tool from Symbian called makesis.exe.

Building a SIS Install File

After building the armi release version of the HelloWorld application, as
described above, you need to package up the application components into an
installation package (.sis) file. Open a command prompt and navigate to the
SDK folder for the HelloWorld project. Change to the \install folder, then
build the .sis file by typing:

makesis helloworld.pkg

A successful build will produce an output message such as “Created
helloworld.sis”. The installation package (.sis) file will have been created
in the \install folder. Now you need to transfer it to the device, as described
in the next section.

Chapter 1 Deploying on a Target Device 21

EdwardsCh01.qrk 2/4/04 11:22 AM Page 21

SIS File Installation

You may choose among three potential installation options, depending on
the device you are using, and other facilities available to you—for example,
whether you have access to a PC with infrared or Bluetooth capability, or
access to appropriate software based on Symbian Connect (Nokia PC Suite,
for example, or a branded equivalent provided by the device
manufacturer):

• Installation through the invocation of a .sis file located on a PC, with
subsequent application installation on to the Series 60 device through an
infrared or Bluetooth session between the PC and the target device,
established via software such as Symbian Connect.

• Installation by transfer of a .sis file through OBEX (OBject EXchange), over
infrared or Bluetooth, from another device such as a PC, Symbian OS phone
or any OBEX-enabled device. This process will be managed via the
Messaging application, which intercepts the file attached to the message—
when you open up the message, it will automatically start the application
installation process on the phone.

• Alternatively, .sis files can be sent as email attachments. Application
installation is again managed via the Messaging application on the phone.
When you open the message, it will automatically start the installer.

The first two options depend on establishing a connection between your
development PC and the Series 60 device. The device manufacturer typically
supplies suitable communications software, and you will need to refer to the
specific instructions supplied with the connection software.

After installation a much-reduced version of the .sis file remains on the Series
60 device to control the uninstallation of the application, if required, using the
application “Manager.” This reduced .sis file contains only the information
required to uninstall the application and is typically very much smaller than the
original file.

Often the original .sis file may still exist on the device, if it was delivered as a
message attachment and the original message has not been deleted from the
Messaging application’s Inbox folder.

Running on a Target Device

Transfer the helloworld.sis file provided to the target hardware, using
one of the methods described above. After the transfer you will be offered
the chance to install the application on the device. To run the application
follow the procedure outlined in “Locating and Running the Application”
earlier in this chapter. You will be reassured to find that locating and running
the application on a target device is identical to the process on the
emulator—with one small difference: the application will not be located in an
“Other” folder.

22 Chapter 1 Getting Started

EdwardsCh01.qrk 2/4/04 11:22 AM Page 22

Summary

This chapter has described the whole process of building, deploying and
running a simple GUI application on the Series 60 emulator and on a real target
device. The skills you have gained here will be used on a daily basis as you
continue to develop for Series 60.

In the next chapter, you will build on this knowledge and look in detail at the
creation of a simple Series 60 application. You will learn about the composition
of project files, examine application information files and understand how to
produce installation package files. Some key additional SDK tools that are used
on a regular basis will also be described.

Chapter 1 Summary 23

EdwardsCh01.qrk 2/4/04 11:22 AM Page 23

