
This chapter explores the various aspects of BGP policy control:

• Policy control techniques

• Conditional advertisement

• Aggregation and deaggregation

• Local AS

• QoS policy propagation

• BGP policy accounting

• Case study: AS integration via the Local AS

BGP.book Page 108 Wednesday, November 12, 2003 5:19 PM

C H A P T E R 4

Effective BGP Policy Control
Throughout this book, you have learned that BGP is first and foremost a policy tool. This
results in BGP’s being used to build very complex policy-based architectures. The protocol
itself provides a list of attributes through which you can set policies. Additionally, Cisco
IOS software further expands and enhances what is available with additional tools and
knobs. This chapter examines these tools and how you can use them to build complex and
effective BGP policies.

Policy Control Techniques
BGP employs many common policy control techniques. This section starts with regular
expressions and then describes various forms of filter lists, route maps, and policy lists.

Regular Expression
A regular expression is a formula for matching strings that follow a certain pattern. It
evaluates text data and returns an answer of true or false. In other words, either the
expression correctly describes the data, or it does not.

A regular expression is foremost a tool. For example, a regular expression can help extract
the needed information from a large IOS output quickly, as shown in Example 4-1.

As a formula, a regular expression allows pattern matching in BGP AS_PATH and com-
munity policy settings. Example 4-2 shows the use of a regular expression to describe
an AS_PATH pattern that matches all AS_PATHs that are originated from the neighboring
AS 100.

Example 4-1 Regular Expression to Extract All Neighbors’ Maximum Data Segment Sizes

R2#show ip bgp neighbors | include max data segment
Datagrams (max data segment is 1460 bytes):
Datagrams (max data segment is 1460 bytes):
Datagrams (max data segment is 1460 bytes):

BGP.book Page 109 Wednesday, November 12, 2003 5:19 PM

110 Chapter 4: Effective BGP Policy Control

Components of a Regular Expression
A regular expression consists of two types of characters:

• Characters to be matched, or regular characters

• Control characters or metacharacters that have special meanings

To really make good use of regular expressions, it is critical to understand the control
characters and how they are used. Control characters can be grouped into three types:

• Atom characters, or atoms—An atom is an independent control character or
placeholder character that defines or expands the regular characters that are before or
after it. Some atoms can be standalone, without regular characters.

• Multiplier characters, or multipliers—A multiplier follows an atom or a regular
character and is used to describe repetitions of the character immediately before it.
Except for the dot (.) character, all other atom characters must be grouped with regular
characters before a multiplier is appended.

• Range characters—Range characters (brackets) specify a complete range.

Table 4-1 lists the common atom characters.

Some simple examples are listed in Table 4-2.

Example 4-2 Regular Expression Matches AS_PATH Patterns

ip as-path access-list permit ^(100_)+$

Table 4-1 Common Atom Characters and Their Usage

Atom Character Usage

. Matches any single character, including white space.

^ Matches the beginning character of a string.

$ Matches the ending character of a string.

_ Underscore. Matches a comma (,), left brace ({), right brace (}), the
beginning of an input string, the end of an input string, or a space.

| Pipe. It is an OR, meaning that it matches either of two strings.

\ An escape character to turn a control character that immediately follows
into a regular character.

BGP.book Page 110 Wednesday, November 12, 2003 5:19 PM

Policy Control Techniques 111

Table 4-3 shows the common multiplier characters.

A multiplier can be applied to a single-character pattern or a multicharacter pattern. To
apply a multiplier to a multicharacter pattern, enclose the pattern in parentheses. Some
simple examples are shown in Table 4-4.

Table 4-2 Examples of Atoms

Regular Expression Usage

^a.$ Matches a string that begins with character a and ends with any
single character, such as ab, ax, a., a!, a0, and so on.

^100_ Matches 100, 100 200, 100 300 400, and so on.

^100$ Matches 100 only.

^100_500_ Matches 100 500, 100 500 500, and so on.

100$|400$ Matches 100, 2100, 100 400, 400, 100 100, 1039 2400, 600 400,
and so on.

^\(65000\)$ Matches (65000) only.

Table 4-3 Multipliers and Their Usage

Multiplier Usage

* Any sequence of the preceding character (zero or more
occurrences).

+ One or more sequences of the preceding character (one or more
occurrences).

? Matches a preceding character with zero or one occurrences.

Table 4-4 Examples of Multipliers

Regular Expression Usage

abc*d Matches abd, abcd, abccd, abcccd, and so on.

abc+d Matches abcd, abccd, abcccd, and so on.

abc?d Matches abd, abcd, abcdf, and so on.

a(bc)?d Matches ad, abcd, cabcd, and so on.

a(b.)*d Matches ad, ab0d, ab0b0d, abxd, abxbxd, and so on.

BGP.book Page 111 Wednesday, November 12, 2003 5:19 PM

112 Chapter 4: Effective BGP Policy Control

The characters [] describe a range. Only one of the characters within the range is matched.
You can make the matching exclusive by using the caret (^) character at the start of the
range to exclude all the characters within the range. You can also specify a range by
providing only the beginning and the ending characters separated by a dash (-). Some
simple examples are shown in Table 4-5.

How to Use Regular Expressions in Cisco IOS Software
Regular expressions in IOS are only a subset of what is available from other operating
systems. The use of regular expressions within IOS can be generally described in two
categories:

• Filtering the command output

• Pattern matching to define policies

Regular expressions can be used in filtering outputs of show and more commands. The
entire line is treated as one string. Table 4-6 shows the three types of filtering that can be
done on an output.

To filter the output, send the output with a pipe character (|) followed by the keyword and
a regular expression. For example, show run | begin router bgp shows the part of the
running configuration that begins with router bgp. To interrupt the filtered output, press
Ctrl-^ (press Ctrl, Shift, and 6 at the same time). Example 4-3 shows an example of filter-
ing show ip cef output to show all the prefixes associated with the interface Ethernet0/0.

Table 4-5 Examples of Ranges

Regular Expression Usage

[aeiouAEIOU] Matches a, aa, Aa, eA, x2u, and so on.

[a-c1-2]$ Matches a, a1, 62, 1b, xv2, and so on.

[^act]$ Matches d, efg*, low2, actor, path, and so on, but not pact.

Table 4-6 Regular Expressions Used to Perform Three Types of Output Filtering

Keyword Usage

begin Begins output lines with the first line that contains the regular
expression.

include Displays output lines that contain the regular expression.

exclude Displays output lines that do not contain the regular expression.

BGP.book Page 112 Wednesday, November 12, 2003 5:19 PM

Policy Control Techniques 113

NOTE To type a question mark in a regular expression on the router, first press Ctrl-V (Escape for
CLI), and then you can enter ?.

Regular expressions are used extensively in pattern matching to define BGP policies, such
as AS_PATH filtering. The AS_PATH attribute lists, in reverse order, the AS numbers,
separated by blank spaces, that the prefix has traversed. You can use the command show ip
bgp regexp to verify the result of the configured regular expressions.

Table 4-7 shows some examples of common AS_PATH pattern matching using regular
expressions.

Example 4-3 Filtering show ip cef Output with a Regular Expression

R1#show ip cef | include Ethernet0/0
172.16.0.0/16 192.168.12.2 Ethernet0/0
192.168.12.0/24 attached Ethernet0/0
192.168.12.2/32 192.168.12.2 Ethernet0/0
192.168.23.0/24 192.168.12.2 Ethernet0/0
192.168.25.0/24 192.168.12.2 Ethernet0/0
192.168.36.0/24 192.168.12.2 Ethernet0/0

Table 4-7 Examples of AS_PATH Pattern Matching Using Regular Expressions

AS_PATH Pattern Usage

.* Matches all path information—for example, no filtering.

^$ Matches updates originated from the local AS.

^200$ Matches all paths that start and end with AS 200—that is, only updates
originated and sent from AS 200 (no AS prepending and no
intermediary). For example, this does not match 200 200.

_200$ Matches all routes originated from AS 200, including those prepended
with 200.

^200 Matches any updates received from the neighboring AS 200, such as
200, 200 100, 200 300 100, 2001, and so on.

200 AS_PATH contains AS 200 (the prefix passed through AS 200 but not
necessarily originated by or received directly from AS 200), such as 200,
200 100, 300 200 100, and so on.

^100(_100)*(_400)*$ Matches paths from AS 100 and its immediate neighbor AS 400, such as
100, 100 100, 100 400, 100 400 400, 100 100 100 400 400, and so on.

BGP.book Page 113 Wednesday, November 12, 2003 5:19 PM

114 Chapter 4: Effective BGP Policy Control

Filter Lists for Enforcing BGP Policies
Filter lists are used extensively in BGP to define policies. This section covers prefix lists,
AS path lists, and community lists.

Prefix Lists
Prefix lists are used to filter IP prefixes and can match both the prefix number and the prefix
length. Compared to regular access lists, use of prefix lists provides higher performance
(fewer CPU cycles).

NOTE Prefix lists cannot be used as packet filters.

A prefix list entry follows the same general format as an IP access control list (ACL). An
IP prefix list consists of a name for the list, an action for the list (permit/deny), the prefix
number, and the prefix length. Here is the basic format of an IP prefix list:

ip prefix-list name [seq seq] {deny | permit} prefix/length

NOTE A distribute list is another way to filter BGP routing updates. It uses access lists to define
the rules and is mutually exclusive with the prefix list.

Any prefixes entered are automatically converted to match the length value entered. For
example, entering 10.1.2.0/8 results in 10.0.0.0/8. Example 4-4 shows a simple example of
matching 172.16.1.0/24. As with an access list, a deny-all entry is implied at the end of the
list.

Optionally, a sequence number can be supplied for each entry. By default, the sequence
numbers are automatically generated in increments of 5. They can be suppressed with the
command no ip prefix-list seq. Entries are processed sequentially based on the sequence
number. The use of sequence numbers offers flexibility when modifying a portion of a
prefix list.

Example 4-4 Matching 172.16.1.0/24

ip prefix-list out-1 permit 172.16.1.0/24

BGP.book Page 114 Wednesday, November 12, 2003 5:19 PM

Policy Control Techniques 115

With the basic form of the prefix list, an exact match of both prefix number and prefix length
is assumed. In Example 4-4, the prefix list matches only the prefix 172.16.1.0/24. The
prefixes 172.16.1.128/25 and 172.16.1.0/25, for example, are not matched.

To match a range of prefixes and lengths, additional optional keywords are needed. When
a range ends at /32, the greater-than-or-equal-to (ge) can be specified. The value of ge must
be greater than the length value specified by prefix/length and not greater than 32. The
range is assumed to be from the ge value to 32 if only the ge attribute is specified. If the
range does not end at 32, another keyword, le, must be specified. The use of le is discussed
later in this section.

NOTE A prefix consists of a prefix number and a prefix length. When a range is specified for
a prefix list, the prefixes are matched for a range of prefix numbers and prefix lengths. For
example, if a prefix list is 172.16.1.0/24 ge 25, the matched range of the prefix numbers
is 172.16.1.0 255.255.255.0 (representing a network mask in this case). The range of
the matched prefix lengths falls between 25 and 32, inclusive. Thus, prefixes such as
172.16.1.128/25 and 172.16.1.0/30 are included. As another example, if the prefix list is
172.16.1.0/24 ge 27, the matched range of the prefix numbers is still the same—that is,
172.16.1.0 255.255.255.0. The difference between the two is the range of the matched
prefix lengths is smaller in the second example.

Example 4-5 shows an example of matching a portion of 172.16.0.0/16. Notice that the
range is between /17 and /32, inclusive. Thus, the network 172.16.0.0/16 is excluded from
the match. The legacy extended ACL version is also included for comparison.

NOTE Standard ACLs do not consider prefix lengths. To filter classless routing updates, you can
use extended ACLs. The source address, together with wildcard bits, specifies the prefix
number. The field of destination address in an extended ACL is used to represent the actual
netmask, and the field of destination wildcard bits is used to denote how the netmask should
be interpreted. In other words, the fields of destination address and wildcard masks indicate
the range’s prefix lengths. The following are some examples.

Example 4-5 Matching a Portion of 172.16.0.0 255.255.0.0

ip prefix-list range-1 permit 172.16.0.0/16 ge 17
!
access-list 100 permit ip 172.16.0.0 0.0.255.255 255.255.128.0 0.0.127.255

BGP.book Page 115 Wednesday, November 12, 2003 5:19 PM

116 Chapter 4: Effective BGP Policy Control

This denies the prefix 172.16.0.0/24 only (not a range):
access-list 100 deny ip host 172.16.0.0 host 255.255.0.0

This permits 172.16.0.0 255.255.0.0 (the entire class B range):
access-list 100 permit ip 172.16.0.0 0.0.255.255 255.255.0.0 0.0.255.255

This denies any updates with lengths of 25 bits or longer:
access-list 100 deny ip any 255.255.255.128 0.0.0.127

Besides numbered ACLs, named extended IP ACLs can also be used for this purpose.

The range can also be specified by the less-than-or-equal-to (le) attribute, which goes from
the length value specified by prefix/length to the le value, inclusive. Example 4-6 shows an
example of matching the entire range of 172.16.0.0/16—that is, 172.16.0.0 255.255.0.0
using the regular mask or 172.16.0.0 0.0.255.255 using the inverted mask. If you want to
specify a range that does not start from the length, you must specify another keyword, ge,
as discussed next.

Example 4-7 shows another example. Both the prefix list and the ACL versions are shown.

When both ge and le attributes are specified, the range goes from the ge value to the le
value. A specified ge value and/or le value must satisfy the following condition:

length < ge value <= le value <= 32

The expanded prefix list format follows. Note that the ge attribute must be specified before
the le value:

ip prefix-list name [seq #] deny | permit prefix/length [ge value] [le value]

Example 4-8 shows an example of using both ge and le attributes to match a portion of
172.16.1.0/24. The ACL version is also included.

Example 4-6 Matching the Entire Class B Range of 172.16.0.0/16

ip prefix-list range-2 permit 172.16.0.0/16 le 32

Example 4-7 Matching 172.16.0.0 255.255.224.0

ip prefix-list range-3 permit 172.16.0.0/19 le 32
!
access-list 100 permit ip 172.16.0.0 0.0.31.255 255.255.224.0 0.0.31.255

BGP.book Page 116 Wednesday, November 12, 2003 5:19 PM

Policy Control Techniques 117

Note that 172.16.1.0/24 is not in the range, nor are all the /32s. The matched ranges include
all the following prefixes:

• Two /25s—172.16.1.0/25, 172.16.1.128/25

• Four /26s—172.16.1.0/26, 172.16.1.64/26, ..., 172.16.1.192/26

• Eight /27s—172.16.1.0/27, 172.16.1.32/27, ..., 172.16.1.224/27

• 16 /28s—172.16.1.0/28, 172.16.1.16/28, ..., 172.16.1.240/28

• 32 /29s—172.16.1.0/29, 172.16.1.8/29, ..., 172.16.1.248/29

• 64 /30s—172.16.1.0/30, 172.16.1.4/30, ..., 172.16.1.252/30

• 128 /31s—172.16.1.0/31, 172.16.1.2/31, ..., 172.16.1.254/31

Table 4-8 shows more examples of prefix lists.

AS Path Lists
AS path filters are used to filter the BGP AS_PATH attribute. The attribute pattern is defined
by a regular expression string, either permitted or denied per the list’s action. With regular
expressions and AS path filters, you can build complex BGP policies.

The AS path list is defined by the ip as-path access-list command. The access-list-number
is an integer from 1 to 500 that represents the list in the global configuration:

ip as-path access-list access-list-number {permit | deny} as-regular-expression

The filter can be applied in a BGP neighbor command using a filter list or in a route map
(discussed in the later section “Route Maps”). Example 4-9 shows the use of an AS path
filter to allow incoming routes from peer 192.168.1.1 that are only originated in AS 100.

Example 4-8 Matching a Portion of 172.16.1.0 255.255.255.0

ip prefix-list range-3 permit 172.16.1.0/24 ge 25 le 31
!
access-list 100 permit ip 172.16.1.0 0.0.0.255 255.255.255.128 0.0.0.126

Table 4-8 Additional Examples of Prefix Lists

Prefix List What It Matches

0.0.0.0/0 Default network

0.0.0.0/0 le 32 Any address that has a length between 0 and 32 bits, inclusive

Example 4-9 Path Filter to Permit Only Routes Originated from AS 100

neighbor 192.168.1.1 filter-list 1 in
!
ip as-path access-list 1 permit _100$

BGP.book Page 117 Wednesday, November 12, 2003 5:19 PM

118 Chapter 4: Effective BGP Policy Control

Community Lists
Community lists are used to identify and filter routes by their common community
attributes. There are two forms of community lists: numbered and named. Within each
category, there are also standard and expanded formats. A standard format allows actual
community values or well-known constants, and an expanded format allows communities
to be entered as a regular expression string. There is a limit of 100 for either format of the
numbered lists (1 to 99 for the standard format and 100 to 199 for the expanded format),
but named lists have no limit. The general formats are as follows:

• Standard numbered list:

ip community-list list-number {permit | deny} community-number

• Expanded numbered list:

ip community-list list-number {permit | deny} regular-expression

• Standard named list:

ip community-list standard list-name {permit | deny} community-number

• Expanded named list:

ip community-list expanded list-name {permit | deny} regular-expression

By default, the community-number value is a 32-bit number between 1 and 4294967295. If
you enter it in the aa:nn format (the new format), the resulting format is converted to a
32-bit number. If you enable the new format globally using ip bgp-community new-
format, the new format is displayed. This change is immediate. Note that the format you
choose is important, because the filtering using a regular expression in an expanded list can
have different results for different formats.

NOTE The new community format splits the 32-bit number into two 16-bit numbers, aa:nn. Each
number is expressed in decimal format. Typically, aa is used to represent an AS number,
and nn is an arbitrary 16-bit number to denote a routing or administrative policy. Methods
to design a coherent community-based policy are discussed in more detail in Chapter 9,
“Service Provider Architecture.”

One or more community numbers (separated by a space) can be entered per entry, or
multiple entries can be entered per list number or name. When multiple communities
are entered into the same entry, a match is found only when all communities match the
condition—that is, an AND comparison. When multiple entries are entered for the same list

BGP.book Page 118 Wednesday, November 12, 2003 5:19 PM

Policy Control Techniques 119

number or name, a match is found when any entry matches—that is, an OR comparison.
Example 4-10 shows two forms of community lists.

With list 1, a match is found only when both community values of 100:1 and 100:2 are
attached to a prefix. For list 2, a match is found if a prefix has a community with either
100:1 or 100:2 or both. Note that the rules stated here apply only to matching community
values. They do not indicate whether a community is permitted or denied. For example, if
the community list 2 in Example 4-10 is changed to deny 100:1 and 100:2 and to permit all
other community values, a prefix with a community of 100:1 and 100:2 results in a match,
and the prefix is denied.

NOTE To announce community settings to a peer, you must configure the command neighbor
send-community for that peer. The result of this command is to send the peer with the
communities permitted by the local outbound policies of the best paths.

Besides private communities, there are four well-known communities, as discussed in
Chapter 2, “Understanding BGP Building Blocks”—internet, no-export, local-as, and no-
advertise.

Community values for a prefix can be set or reset in two ways:

• Use a set clause within a route map to set a community value, to add a community
value (additive), or to remove all community values:

set community {community-value [additive]} | none

• Use a set clause within a route map to selectively remove some community values:

set comm-list community-list-number delete

This route map set command removes communities from the community attribute of
an inbound or outbound update. Each community that matches the given community
list is removed from the community attribute. When used with this command, each
entry of a standard community list should list only one community.

Example 4-10 Two Ways of Entering Community Lists

ip community-list 1 permit 100:1 100:2
ip community-list 2 permit 100:1
ip community-list 2 permit 100:2

BGP.book Page 119 Wednesday, November 12, 2003 5:19 PM

120 Chapter 4: Effective BGP Policy Control

NOTE When both the set community and set comm-list delete commands are configured in the
same instance of a route map, the delete operation is performed before the set operation.

Route Maps
A route map is a flexible and powerful way to set BGP policies. It can set and reset both
prefixes and BGP attributes based on predefined conditions. A route map is often used to
define policies toward a BGP peer or during route generation. A route map can filter updates
based on prefix, AS_PATH, communities, metrics, next hop, ORIGIN, LOCAL_PREF,
WEIGHT, and so on. A route map often uses policy control lists to define BGP policies.

A route map is a named group of filters consisting of one or more instances. Each instance
is identified by a unique sequence number that determines the order of processing. Instanc-
es are applied sequentially. If a match is found, the rest of the route map is skipped. If
the route map is finished without a match, a deny action is performed. When used in the
neighbor command, only one route map per type per direction is allowed for each neighbor.

Within each instance, you can set conditions using the match clause and set actions using
the set clause. Example 4-11 shows a simple route map named Set-comm, which resets
communities to 200:100 when updates are originated from AS 100.

The second instance (with sequence number 20) is important, because without it, all other
updates that don’t match the first instance are not accepted. When no match clause is spec-
ified under an instance, the result is to permit any. This instance basically means that no
action should be taken for prefixes that do not match the conditions in the first instance.

NOTE The deny keyword in a route map is equivalent to a no keyword for other commands, but
it does not necessarily indicate to deny something. The exact meaning depends on the route
map’s purpose. For example, if a route map is to suppress a route, deny is used to unsup-
press that route. The same concept also applies to other forms of filtering of BGP prefixes
and attributes.

Example 4-11 Simple Route Map Example

ip as-path access-list 1 permit _100$
!
route-map Set-comm permit 10
 match as-path 1
 set community 200:100
route-map Set-comm permit 20

BGP.book Page 120 Wednesday, November 12, 2003 5:19 PM

Policy Control Techniques 121

There are two ways to match more than one condition. You can enter multiple conditions in
the same match command or in different match commands. The processing rules are as
follows:

• An OR function is performed between multiple match parameters defined in the same
match command, regardless of the type of match commands.

• An OR function is performed when there are multiple match commands of the same
type. Actually, IOS converts this form into the form discussed in the preceding bullet.

• An AND function is performed if there are multiple match commands of different
types in the same route map instance.

Example 4-12 shows how the preceding rules work. The route map foo matches either
community 100:1 or 100:2. With the route map foo2, a match is found only when the prefix
and both communities are matched.

You can use a route map in the following BGP commands:

• neighbor

• bgp dampening

• network

• redistribute

Additionally, you can use route maps in various commands for specific purposes:

• suppress-map

• unsuppress-map

• advertise-map

• inject-map

• exist-map

• non-exist-map

• table-map

Example 4-12 Processing Example When Multiple Conditions Are Set with match Commands

ip community-list 1 permit 100:1
ip community-list 2 permit 100:2
ip community-list 3 permit 100:1 100:2
!
ip prefix-list 1 seq 5 permit 13.0.0.0/8
!
route-map foo permit 10
 match community 1 2
!
route-map foo2 permit 10
 match ip address prefix-list 1
 match community 3

BGP.book Page 121 Wednesday, November 12, 2003 5:19 PM

122 Chapter 4: Effective BGP Policy Control

Policy Lists
Complex route maps often have more than one match clause of different types. In a medium
to large network, many of the same match clauses are reused repeatedly by different route
maps. If the same sets of match clauses can be extracted from a route map, they can be
reused by more than one route map or in different instances of the same route map. These
independent match clauses are called policy lists.

A policy list is a subset of route maps that contains only match clauses. When a policy list
is referenced in another route map, all the match clauses are evaluated and processed as if
they were configured directly in the route map. Match clauses are configured in policy lists
with permit or deny statements. The route map evaluates and processes each match
clause and permits or denies routes based on the configuration in the referenced policy list.

A policy list is configured with the ip policy-list command and is referenced within another
route map using the match policy-list command. Two or more policy lists can be
referenced within a route map, and each entry can contain one or more policy lists. When
multiple policy lists are configured in the same match policy-list command, it is an OR
operation; when multiple match policy-list statements are configured, it is an AND
operation. The policy lists and all other match and set options within a route map instance
can coexist.

Example 4-13 shows a route map configuration using policy lists. Two policy lists are
configured: as100 and as200. In as100, a match is found when both the AS path starts with
AS 100 and the community is 300:105. In as200, a match is found when the AS path starts
with AS 200 and the community is 300:105. With the route map foo, first a match is made
to select the prefix to be 10.0.0.0/8, and then an OR operation is made for the two policy
lists. The final action is to change the local preference to 105 for the updates that match.

Example 4-13 Example of Policy List Configuration

ip prefix-list 1 permit 10.0.0.0/8
ip as-path access-list 1 permit ^100_
ip as-path access-list 2 permit ^200_
ip community-list 1 permit 300:105
!
ip policy-list as100 permit
 match as-path 1
 match community 1
!
ip policy-list as200 permit
 match as-path 2
 match community 1
!
route-map foo permit 10
 match ip address prefix-list 1
 match policy-list as100 as200
 set local-preference 105
route-map foo permit 20

BGP.book Page 122 Wednesday, November 12, 2003 5:19 PM

Conditional Advertisement 123

Filter Processing Order
When multiple filters are configured per neighbor, each filter is processed in a specific
order, as shown in Figure 4-1. For inbound updates, the filter list is processed first, followed
by the route map. The distribute list or prefix list is processed last. On the outbound side,
the distribute list or prefix list is processed first, and then the prefix list received via
Outbound Route Filtering (ORF), and then the filter list. The route map is processed last.

Figure 4-1 Filter Processing Order

An update has to pass through all the filters. One filter does not take precedence over
another. If any filter does not match, the update is not permitted. For example, if an inbound
update is permitted by the filter list and the route map but is denied by the prefix list,
the update is denied. The same rule applies on the outbound side.

When a policy for a neighbor is configured in the neighbor command but the policy is not
defined, the following are the default behaviors:

• For distribute lists and prefix lists, permit any.

• For filter lists and route maps, deny any.

Conditional Advertisement
BGP by default advertises the permitted best paths in its BGP routing information base
(RIB) to external peers. In certain cases, this might be undesirable. Advertisement of some
routes might depend on the existence and nonexistence of some other routes. In other
words, the advertisement is conditional.

In a multihomed network, some prefixes are to be advertised to one of the providers only if
information from the other provider is missing, such as a failure in the peering session or
partial reachability. The conditional BGP announcements are in addition to the normal
announcements that a BGP router sends to its peers.

NOTE A conditional advertisement does not create routes; it only withholds them until the
condition is met. These routes must already be present in the BGP RIB.

Filter List Route Map Distribute List/Prefix List

Inbound

Outbound

Start

Start

Distribute List/Prefix List Prefix List via ORF Filter List Route Map

BGP.book Page 123 Wednesday, November 12, 2003 5:19 PM

124 Chapter 4: Effective BGP Policy Control

Configurations
Conditional advertisement has two forms: advertisement of some prefixes when some other
prefixes do not exist and advertisement of some prefixes when they do exist. The prefixes
to be advertised are defined by a special route map called advertise-map. The condition is
defined by a route map called non-exist-map for conditions that do not exist or by a route
map called exist-map for conditions that do exist.

The first form of conditional advertisement is configured as follows:

neighbor advertise-map map1 non-exist-map map2

The route map associated with the non-exist-map specifies the prefix (or prefixes) that the
BGP speaker tracks. Only permit is accepted; any deny is ignored. When a match is made,
the status of the advertise-map is Withdraw; when no match is made, the status becomes
Advertise.

Within the non-exist-map, a match statement for the prefix is required. You can configure it
with a prefix list or a standard access list. Only an exact match is supported. Additionally,
AS_PATH and community can be matched.

The route map associated with the advertise-map defines the prefix (or prefixes) that are
advertised to the specific neighbor when the prefixes in the non-exist-map no longer exist—
that is, when the status is Advertise. When the status is Withdraw, the prefix or prefixes
defined in the advertise-map are not advertised or withdrawn. Note that the advertise-map
applies only on the outbound direction, which is in addition to the other outbound filters.

The second form of conditional advertisement is configured as follows:

neighbor advertise-map map1 exist-map map2

In this case, the route map associated with the exist-map specifies the prefix (or prefixes)
that the BGP speaker tracks. The status is Advertise when the match is positive—that is,
when the tracked prefix exists. The status is Withdraw if the tracked prefix does not exist.
The route map associated with the advertise-map defines the prefix (or prefixes) that are
advertised to the specific neighbor when the prefix in the exist-map exists. Prefixes in both
route maps must exist in the local BGP RIB.

Examples
Figure 4-2 shows a topology of a conditional advertisement that tracks the nonexistence
of a prefix. AS 100 is multihomed to AS 200 and AS 300, with the link to AS 300 as the
primary connection. The address block of AS 100 is assigned from AS 300, within the range
of 172.16.0.0/16. The address block 172.16.1.0/24 is not to be advertised to AS 200 unless
the link to AS 300 fails. AS 300 sends 172.16.2.0/24 to AS 100, and it is tracked by the non-
exist-map on R1. Example 4-14 shows R1’s BGP configuration. Note that the community
100:300 is set and matched for the prefix to be tracked to ensure that the prefix is indeed
from AS 300.

BGP.book Page 124 Wednesday, November 12, 2003 5:19 PM

Conditional Advertisement 125

Figure 4-2 Conditional Advertisement in a Primary-Backup Scenario

When prefix 172.16.2.0/24 is present in R1’s BGP RIB, 172.16.1.0/24 is not advertised to
R2, as shown in Examples 4-15 and 4-16.

Example 4-14 Sample BGP Configuration for Conditional Advertisement on R1

router bgp 100
 network 172.16.1.0 mask 255.255.255.0
 neighbor 192.168.12.2 remote-as 200
 neighbor 192.168.12.2 advertise-map AS200-out non-exist-map AS300-in
 neighbor 192.168.13.3 remote-as 300
 neighbor 192.168.13.3 route-map Set-comm in
!
ip community-list 1 permit 100:300
ip prefix-list AS300-track seq 5 permit 172.16.2.0/24
ip prefix-list Local-prefix seq 5 permit 172.16.1.0/24
!
route-map AS300-in permit 10
 match ip address prefix-list AS300-track
 match community 1
!
route-map Set-comm permit 10
 set community 100:300
!
route-map AS200-out permit 10
 match ip address prefix-list Local-prefix

AS 200

R2

AS 100
R1

AS 300

R3

.2
.3

.1
.1

192.168.12.0/24 192.168.13.0/24 172.16.2.0/24

172.16.0.0/16

Backup Primary

172.16.1.0/24

BGP.book Page 125 Wednesday, November 12, 2003 5:19 PM

126 Chapter 4: Effective BGP Policy Control

When the session between R1 and R3 is down, 172.16.2.0/24 is removed from R1’s BGP
RIB. R2’s advertisement status is now Advertise, as shown in Example 4-17. The prefix
172.16.1.0/24 is now available in R2, as shown in Example 4-18. For this design to work,
it is important to ensure that the right prefix from the provider is being tracked.

Figure 4-3 shows a topology of conditional advertisement to track the existence of a prefix.
Within AS 100, R1 is the only BGP speaker, and it has an eBGP session with R3 in AS 300.
All routers within AS 100 communicate using OSPF. The internal address block 10.0.0.0/
16 is translated into a public block 172.16.0.0/16 on R2. The policy is that R1 should not
advertise 172.16.0.0/16 to R3 unless 10.0.0.0/16 is available.

Example 4-15 Advertisement Status in R1 Under Normal Conditions

R1#show ip bgp 172.16.2.0
BGP routing table entry for 172.16.2.0/24, version 3
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Advertised to non peer-group peers:
 192.168.12.2
 300
 192.168.13.3 from 192.168.13.3 (192.168.13.3)
 Origin IGP, metric 0, localpref 100, valid, external, best
 Community: 100:300

R1#show ip bgp neighbor 192.168.12.2 | include Condition-map
 Condition-map AS300-in, Advertise-map AS200-out, status: Withdraw

Example 4-16 R2 Does Not Have 172.16.1.0 Under Normal Conditions

R2#show ip bgp 172.16.1.0
% Network not in table

Example 4-17 Advertisement Status During Primary Link Failure

R1#show ip bgp neighbor 192.168.12.2 | include Condition-map
 Condition-map AS300-in, Advertise-map AS200-out, status: Advertise

Example 4-18 Prefix 172.16.1.0 Is Present on R2 During a Primary Link Failure

R2#show ip bgp 172.16.1.0
BGP routing table entry for 172.16.1.0/24, version 14
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 100
 192.168.12.1 from 192.168.12.1 (192.168.13.1)
 Origin IGP, metric 0, localpref 100, valid, external, best

BGP.book Page 126 Wednesday, November 12, 2003 5:19 PM

Conditional Advertisement 127

Figure 4-3 Conditional Advertisement to Track the Existence of a Prefix

Example 4-19 shows a sample BGP configuration on R1. Both the prefix to be advertised
(172.16.0.0) and the prefix tracked (10.0.0.0) are injected into the BGP RIB. The private
prefix is then blocked from being advertised to R3 with the prefix list Block10. The exist
map Prefix10 tracks the existence of 10.0.0.0/16, which is learned from OSPF. When the
match returns true (status: Advertise), AS300-out is executed. When 10.0.0.0/16 is gone
from OSPF (status: Withdraw), 172.16.0.0/16 is not advertised or withdrawn.

Example 4-19 Sample BGP Configuration on R1

router bgp 100
 network 10.0.0.0 mask 255.255.0.0
 network 172.16.0.0
 neighbor 192.168.13.3 remote-as 300
 neighbor 192.168.13.3 prefix-list Block10 out
 neighbor 192.168.13.3 advertise-map AS300-out exist-map Prefix10
 no auto-summary
!
ip prefix-list Block10 seq 5 deny 10.0.0.0/16
ip prefix-list Block10 seq 10 permit 0.0.0.0/0 le 32
ip prefix-list adv-out seq 5 permit 172.16.0.0/16
ip prefix-list Private10 seq 5 permit 10.0.0.0/16
!
route-map Prefix10 permit 10
 match ip address prefix-list Private10
!
route-map AS300-out permit 10
 match ip address prefix-list adv-out

AS 100
OSPF

R1

AS 300

R3

172.16.0.0/16

R2

10.0.0.0/16
192.168.12.0/24

192.168.13.0/24

.3

.1

BGP.book Page 127 Wednesday, November 12, 2003 5:19 PM

128 Chapter 4: Effective BGP Policy Control

Example 4-20 shows what happens when 10.0.0.0/16 is available on R1’s BGP RIB. The
prefix 172.16.0.0/16 is advertised to R3.

Example 4-21 shows what happens when 10.0.0.0 is not available on R1.

Example 4-20 Advertisement of 172.16.0.0/16

R1#show ip bgp 10.0.0.0
BGP routing table entry for 10.0.0.0/16, version 2
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 Local
 192.168.12.2 from 0.0.0.0 (192.168.13.1)
 Origin IGP, metric 20, localpref 100, weight 32768, valid, sourced, local,
 best

R1#show ip bgp 172.16.0.0
BGP routing table entry for 172.16.0.0/16, version 4
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Advertised to non peer-group peers:
 192.168.13.3
 Local
 192.168.12.2 from 0.0.0.0 (192.168.13.1)
 Origin IGP, metric 20, localpref 100, weight 32768, valid, sourced, local,
 best

R1#show ip route 10.0.0.0
Routing entry for 10.0.0.0/8, 1 known subnet
O E2 10.0.0.0/16 [110/20] via 192.168.12.2, 00:36:47, Ethernet0/0

R1#show ip bgp neighbor 192.168.13.3 | include Condition-map
 Condition-map Prefix10, Advertise-map AS300-out, status: Advertise

R3#show ip bgp 172.16.0.0
BGP routing table entry for 172.16.0.0/16, version 12
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 100
 192.168.13.1 from 192.168.13.1 (192.168.13.1)
 Origin IGP, metric 20, localpref 100, valid, external, best

Example 4-21 No Advertisement When 10.0.0.0 Is Down

R1#show ip bgp neighbor 192.168.13.3 | include Condition-map
 Condition-map Prefix10, Advertise-map AS300-out, status: Withdraw

R3#show ip bgp 172.16.0.0
% Network not in table

Advertise

BGP.book Page 128 Wednesday, November 12, 2003 5:19 PM

Conditional Advertisement 129

Example 4-22 shows the output of debug ip bgp update on R1 when 10.0.0.0/16 is
down. Example 4-23 shows a similar output when 10.0.0.0/16 is up again.

Example 4-22 Output of debug ip bgp update on R1 When 10.0.0.0 Is Down

*Jul 29 21:37:39.411: BGP(0): route 10.0.0.0/16 down
*Jul 29 21:37:39.411: BGP(0): no valid path for 10.0.0.0/16
*Jul 29 21:37:39.411: BGP(0): nettable_walker 10.0.0.0/16 no best path
*Jul 29 21:37:39.411: BGP(0): 192.168.13.3 computing updates, afi 0, neighbor
 version 4, table version 5, starting at 0.0.0.0
*Jul 29 21:37:39.411: BGP(0): 192.168.13.3 update run completed, afi 0, ran for
 0ms, neighbor version 4, start version 5, throttled to 5
*Jul 29 21:38:20.331: BPG(0): Condition Prefix10 changes to Withdraw
*Jul 29 21:38:20.331: BGP(0): net 172.16.0.0/16 matches ADV MAP AS300-out: bump
 version to 6
*Jul 29 21:38:20.379: BGP(0): nettable_walker 172.16.0.0/16 route sourced locally
*Jul 29 21:38:20.379: BGP(0): 192.168.13.3 computing updates, afi 0, neighbor
 version 5, table version 6, starting at 0.0.0.0
*Jul 29 21:38:20.379: BGP(0): 192.168.13.3 172.16.0.0/16 matches advertise map
 AS300-out, state: Withdraw
*Jul 29 21:38:20.379: BGP(0): 192.168.13.3 send unreachable 172.16.0.0/16
*Jul 29 21:38:20.379: BGP(0): 192.168.13.3 send UPDATE 172.16.0.0/16 --
 unreachable
*Jul 29 21:38:20.379: BGP(0): 192.168.13.3 1 updates enqueued (average=26,
 maximum=26)
*Jul 29 21:38:20.379: BGP(0): 192.168.13.3 update run completed, afi 0, ran for
 0ms, neighbor version 5, start version 6, throttled to 6

Example 4-23 Output of debug ip bgp update on R1 When 10.0.0.0 Is Up

*Jul 29 21:40:10.679: BGP(0): route 10.0.0.0/16 up
*Jul 29 21:40:10.679: BGP(0): nettable_walker 10.0.0.0/16 route sourced locally
*Jul 29 21:40:10.679: BGP(0): 192.168.13.3 computing updates, afi 0, neighbor
 version 6, table version 7, starting at 0.0.0.0
*Jul 29 21:40:10.679: BGP(0): 192.168.13.3 update run completed, afi 0, ran for
 0ms, neighbor version 6, start version 7, throttled to 7
*Jul 29 21:40:20.539: BPG(0): Condition Prefix10 changes to Advertise
*Jul 29 21:40:20.539: BGP(0): net 172.16.0.0/16 matches ADV MAP AS300-out: bump
 version to 8
*Jul 29 21:40:21.119: BGP(0): nettable_walker 172.16.0.0/16 route sourced locally
*Jul 29 21:40:37.639: BGP(0): 192.168.13.3 computing updates, afi 0, neighbor
 version 7, table version 8, starting at 0.0.0.0
*Jul 29 21:40:37.639: BGP(0): 192.168.13.3 172.16.0.0/16 matches advertise map
 AS300-out, state: Advertise
*Jul 29 21:40:37.639: BGP(0): 192.168.13.3 send UPDATE (format) 172.16.0.0/16,
 next 192.168.13.1, metric 20, path
*Jul 29 21:40:37.639: BGP(0): 192.168.13.3 1 updates enqueued (average=51,
 maximum=51)
*Jul 29 21:40:37.639: BGP(0): 192.168.13.3 update run completed, afi 0, ran for
 0ms, neighbor version 7, start version 8, throttled to 8

BGP.book Page 129 Wednesday, November 12, 2003 5:19 PM

130 Chapter 4: Effective BGP Policy Control

Aggregation and Deaggregation
Aggregation of prefix information reduces the number of entries BGP has to carry and
store. There are two common ways prefixes can be aggregated in BGP:

• Using the network command to enter an aggregate address and a static route to Null0

• Using the aggregate-address command to create an aggregate

Because the first method is straightforward, this section focuses on the second method—
using the aggregate-address command. Here is the full command with its various options:

aggregate-address address mask [as-set] [summary-only] [suppress-map map1]
 [advertise-map map2] [attribute-map map3]

The creation of an aggregate in the BGP RIB is dependent on the existence of at least one
component route in the local BGP RIB. Without any options specified, BGP attributes of
the individual components are not included in the aggregate. The aggregate prefix has the
following default attributes:

• NEXT_HOP—0.0.0.0 (local)

• AS_PATH—i (blank AS_PATH; origin code IGP)

• MED—Not set

• LOCAL_PREF—100

• WEIGHT—32768

• AGGREGATOR—Local

• ATOMIC_AGGREGATE—Tagged to the aggregate

By default, both the aggregate and its components are advertised. When summary-only is
enabled for the aggregate, only the aggregate is advertised, and all the specific component
routes are suppressed. The aggregate still maintains the default attributes just listed. If only
a subset of the components are to be suppressed, you can define the subset with suppress-
map. If a subset of suppressed routes needs to be made available, you can unsuppress those
routes on a per-neighbor basis using the neighbor unsuppress-map command.

The option as-set allows AS path loop detection for the aggregate. Additionally, some of
the attributes of components are included additively with the aggregate, even if they
conflict. For example, if one component prefix has community set to 100:200 and another
has it set to no-export, the community of the aggregate is 100:200 and no-export. The
aggregate is not advertised to an eBGP peer.

The option attribute-map (a form of route map for setting BGP attributes) is used to clean
up the aggregate’s attributes. Using the previous community example, if an attribute map
resets the community to 100:300, the previous two community values are replaced with
100:300, and the aggregate is advertised to an eBGP peer with 100:300. If only a subset of
components are to be used to form the aggregate’s attributes, these components can also be

BGP.book Page 130 Wednesday, November 12, 2003 5:19 PM

Aggregation and Deaggregation 131

defined by an advertise-map. Note that the aggregate’s AS_SET is inherited only from the
components that are defined in the map.

A common route aggregation practice is to group as large an address space as possible into
as few prefix entries as possible. This is desirable in reducing the number of prefixes carried
by the Internet, but it’s detrimental to adjacent networks that have multiple connections to
the aggregating network. One result of aggregation is that routing accuracy of neighbors is
lost. In this situation, more-specific routes can be generated to better identify a prefix’s
address subsets across multiple connections. Deaggregation is a BGP feature that
reconstructs components from a received aggregate prefix.

Deaggregation is accomplished by using the conditional injection feature. Conditional
injection is the creation of more-specific components when an aggregate exists. These com-
ponents are injected into the local BGP RIB to provide more-specific routing information
in the local AS than the aggregate. These components can be installed in the IP RIB and
advertised to other BGP peers within the AS.

Conditional route injection is configured as follows:

bgp inject-map map1 exist-map map2 [copy-attributes]

BGP tracks the prefix (the aggregate) in the exist-map to determine whether to install a
prefix or prefixes as specified in the inject-map. The exist-map must have at least two match
clauses:

• match ip address prefix-list specifies the aggregate based on which to inject more
specifics. Only one exact match is allowed.

• match ip route-source specifies the neighbor that sent the aggregate. The component
inherits the attributes from the aggregate if the option copy-attributes is specified;
otherwise, they are treated as locally generated routes for some of the attributes. The
NEXT_HOP is always the eBGP peer that originated the aggregate. Additional
matches can be made for AS_PATH and community.

Within the inject map, use set ip address prefix-list to define the prefixes to be injected into
the local BGP RIB. The injected prefixes can be displayed with the show ip bgp injected-
path command.

Figure 4-4 shows a sample topology that takes advantage of conditional injection to achieve
deaggregation. Both AS 300 and AS 400 are customers of AS 200 and receive address blocks
assigned by AS 200. The prefix block is 172.16.1.0/24 for AS 300 and 172.16.2.0/24 for AS
400. When announcing to AS 100, border routers of AS 200 summarize their address space
to a single aggregate, 172.16.0.0/16.

Because AS 100 follows a best-exit policy (sometimes called cold-potato routing), it
attempts to optimize its exit points. With a single aggregate, however, traffic destined for
AS 300 might be exiting the AS via R3. If more-specific prefixes are available, you can
control the traffic flows with better granularity.

BGP.book Page 131 Wednesday, November 12, 2003 5:19 PM

132 Chapter 4: Effective BGP Policy Control

Figure 4-4 Example of Conditional Injection

With traffic statistics analysis, AS 100 determines that the best exit for 172.16.1.0/24 is via
R2. It is also found that the best exit to 172.16.2.0/24 is via R3. In an effort to optimize the
exit points, conditional injection is deployed on R2 and R3. The network address for each
link is specified in Figure 4-4, with each router’s number as the host address.

Example 4-24 shows a sample BGP configuration on R2. The route map AS200-aggregate
matches the incoming aggregate from R4. If the match is positive, create 172.16.1.0/24 in
the local BGP RIB. To prevent the injected routes from leaking back out, a community of
no-export is set for the injected route. Also, a community of 100:200 is tagged for the route
to indicate that it is a locally injected specific from AS 200.

Example 4-24 Sample BGP Configuration on R2

router bgp 100
 bgp inject-map AS200-specific exist-map AS200-aggregate
 neighbor 192.168.12.1 remote-as 100
 neighbor 192.168.12.1 send-community
 neighbor 192.168.23.3 remote-as 100
 neighbor 192.168.23.3 send-community
 neighbor 192.168.24.4 remote-as 200
!
ip bgp-community new-format
ip prefix-list AS200-R4 seq 5 permit 192.168.24.4/32
ip prefix-list Aggregate seq 5 permit 172.16.0.0/16
ip prefix-list Specific seq 5 permit 172.16.1.0/24
!
route-map AS200-specific permit 10

172.16.0.0/16

AS 400

R3

AS 100

192.168.23.0/24

R2

R5

AS 200

R4

R6
AS 300

192.168.12.0/24 192.168.13.0/24

192.168.45.0/24

192.168.24.0/24 192.168.35.0/24

192.168.57.0/24192.168.46.0/24

172.16.0.0/16

172.16.1.0/24
172.16.2.0/24

R1

R7

BGP.book Page 132 Wednesday, November 12, 2003 5:19 PM

Aggregation and Deaggregation 133

Example 4-25 shows a similar configuration on R3. Another way to inject the specific
components is to inject both specifics into routers R2 and R3 simultaneously. A preference
can be set for one of the two.

Example 4-26 shows the BGP RIB on R1. Note that the BGP next hops are border routers
that announce the aggregate and not the routers that inject the specifics. With the more-
specific information, R1 directs traffic to R4 for 172.16.1.0 and to R5 for 172.16.2.0. The
aggregate is used for all other traffic to 172.16.0.0.

 set ip address prefix-list Specific
 set community 100:200 no-export
!
route-map AS200-aggregate permit 10
 match ip address prefix-list Aggregate
 match ip route-source AS200-R4

Example 4-25 Sample BGP Configuration on R3

router bgp 100
 bgp inject-map AS200-specific exist-map AS200-aggregate
 neighbor 192.168.13.1 remote-as 100
 neighbor 192.168.13.1 send-community
 neighbor 192.168.23.2 remote-as 100
 neighbor 192.168.23.2 send-community
 neighbor 192.168.35.5 remote-as 200
!
ip bgp-community new-format
ip prefix-list AS200-R5 seq 5 permit 192.168.35.5/32
ip prefix-list Aggregate seq 5 permit 172.16.0.0/16
ip prefix-list Specific seq 5 permit 172.16.2.0/24
!
route-map AS200-specific permit 10
 set ip address prefix-list Specific
 set community 100:200 no-export
!
route-map AS200-aggregate permit 10
 match ip address prefix-list Aggregate
 match ip route-source AS200-R5

Example 4-26 BGP RIB on R1

R1#show ip bgp
BGP table version is 38, local router ID is 192.168.14.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

continues

Example 4-24 Sample BGP Configuration on R2 (Continued)

BGP.book Page 133 Wednesday, November 12, 2003 5:19 PM

134 Chapter 4: Effective BGP Policy Control

Example 4-27 shows the BGP RIB on R2. Note that communities of 100:200 and no-
export are attached to the injected prefixes.

 Network Next Hop Metric LocPrf Weight Path
* i172.16.0.0 192.168.35.5 100 0 200 400 i
*>i 192.168.24.4 100 0 200 300 i
*>i172.16.1.0/24 192.168.24.4 100 0 ?
*>i172.16.2.0/24 192.168.35.5 100 0 ?

Example 4-27 BGP RIB on R2

R2#show ip bgp
BGP table version is 34, local router ID is 192.168.24.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* i172.16.0.0 192.168.35.5 100 0 200 400 i
*> 192.168.24.4 0 200 300 i
*> 172.16.1.0/24 192.168.24.4 0 ?
* i 192.168.35.5 0 ?
*>i172.16.2.0/24 192.168.35.5 100 0 ?

R2#show ip bgp 172.16.1.0
BGP routing table entry for 172.16.1.0/24, version 34
Paths: (2 available, best #1, table Default-IP-Routing-Table, not advertised to
 EBGP peer)
 Advertised to non peer-group peers:
 192.168.12.1 192.168.23.3
 Local, (aggregated by 200 192.168.46.4), (injected path from 172.16.0.0/16)
 192.168.24.4 from 192.168.24.4 (192.168.46.4)
 Origin incomplete, localpref 100, valid, external, best
 Community: 100:200 no-export
 Local, (aggregated by 200 192.168.57.5), (injected path from 172.16.0.0/16)
 192.168.35.5 (metric 20) from 192.168.23.3 (192.168.35.3)
 Origin incomplete, localpref 100, valid, internal
 Community: 100:200 no-export

R2#show ip bgp 172.16.2.0
BGP routing table entry for 172.16.2.0/24, version 32
Paths: (1 available, best #1, table Default-IP-Routing-Table, not advertised to
 EBGP peer)
 Not advertised to any peer
 Local, (aggregated by 200 192.168.57.5)
 192.168.35.5 (metric 20) from 192.168.23.3 (192.168.35.3)
 Origin incomplete, localpref 100, valid, internal, best
 Community: 100:200 no-export

Example 4-26 BGP RIB on R1 (Continued)

BGP.book Page 134 Wednesday, November 12, 2003 5:19 PM

Local AS 135

When the link between R2 and R4 is down, the aggregate from R4 is removed. Under this
condition, R2 stops the injection of the prefix 172.16.1.0/24. This is shown in the BGP RIB
on R1 in Example 4-28. When the link between R3 and R5 is down as well, both 172.16.0.0
and 172.16.2.0 are also removed from AS 100 (not shown).

Local AS
When two ISPs merge their networks, many challenges related to BGP design arise. When
one AS is being replaced by another AS, its former peering autonomous systems might not
honor the new AS and might continue to insist on the previous peering agreements. For
example, if ISP A has a private peering agreement with ISP B, and if ISP A is acquired by
ISP C, ISP B might not want to peer with ISP C but might honor the previous peering
agreement with ISP A.

An ISP generally has various peering agreements with other ISPs. Changing the AS number
on a large scale might be too disruptive to its peering sessions with other ISPs. Also, chang-
ing the AS number on all the routers in one large AS during one maintenance window might
not be feasible or recommended. During the migration, both autonomous systems must
coexist and continue to communicate. The BGP Local AS feature helps reduce these
challenges.

With the Local AS feature, a BGP speaker can be physically in one AS and acts as such to
some neighbors while it appears to be another AS to other neighbors. When sending and
receiving AS_PATH to and from neighbors with Local AS configured, BGP prepends the
Local AS to the real AS. For these neighbors, BGP uses the Local AS as the remote AS in
the configuration. Thus, the Local AS number appears as if it were another AS inserted
between the two real autonomous systems.

Figure 4-5 shows an example. When AS 2 is configured on AS 200 as a Local AS, the
AS_PATH is prepended with AS 2 for updates from AS 100. When AS 100 receives updates
from AS 200, the AS_PATH is prepended with AS 2.

Example 4-28 BGP RIB on R1 When the Link Between R2 and R4 Is Down

R1#show ip bgp
BGP table version is 56, local router ID is 192.168.14.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*>i172.16.0.0 192.168.35.5 100 0 200 400 i
*>i172.16.2.0/24 192.168.35.5 100 0 200 400 i

BGP.book Page 135 Wednesday, November 12, 2003 5:19 PM

136 Chapter 4: Effective BGP Policy Control

Figure 4-5 AS_PATH Updates with Local AS

NOTE Local AS can be used together with peer groups, but it cannot be customized for individual
peers in a peer group. Local AS cannot have the local BGP AS number or the remote peer’s
AS number. The local-as command is valid only if the peer is a true eBGP peer. It does not
work for two peers in different member autonomous systems in a confederation.

Example 4-29 shows a sample BGP configuration in AS 200 border routers for Figure 4-5.
192.168.1.1 is the IP address of a BGP speaker in AS 100. On 192.168.1.1, 2 instead of 200
is configured as the remote AS (not shown).

Figure 4-6 shows another example of Local AS. In this case, AS 200 is configured with
Local AS with two remote autonomous systems, AS 100 and AS 300. When AS 200 border
routers advertise prefix 172.16.0.0/16 to AS 300, the AS_PATH is 2 200 2 100. Because
loop detection is done only for incoming updates from an eBGP peer, this AS_PATH is not
considered a condition of a loop. AS 300 accepts the prefix because it does not detect any
loop of AS 300. Similarly, AS 100 accepts prefix 10.0.0.0/8. Multiple occurrences of the
Local AS number in the eBGP updates indicate more than one point of Local AS sessions.

Figure 4-6 Local AS in Two Connections

Example 4-29 Sample Local AS Configuration in AS 200

router bgp 200
 neighbor 192.168.1.1 remote-as 100
 neighbor 192.168.1.1 local-as 2

AS 100

AS_PATH: 2 100

AS_PATH: 2 200

AS 200
AS 2

Local-AS

AS 2
Local-AS

Local-AS 2

172.16.0.0/16

10.0.0.0/8
AS_PATH: 2 200 2 300

Local-AS 2

172.16.0.0/16
AS_PATH: 2 200 2 100

10.0.0.0/8

AS 100 AS 200 AS 300

BGP.book Page 136 Wednesday, November 12, 2003 5:19 PM

Local AS 137

NOTE When Local AS is used, the AS_PATH length becomes longer. If AS_PATH length is used
as a deciding factor in selecting preference, AS_PATH prepending might be needed on
other paths so that path selection is not affected.

During AS migration, it is possible that some routers are in the original AS and others are
in the new AS. When a border router is migrated to the new AS and is configured with Local
AS to remote peers, the updates from this border router to other routers that are still in the
old AS are denied, because the other routers detect an AS_PATH loop.

Figure 4-7 shows what happens. Before the migration, both R1 and R3 are in AS 2. When
R1 is migrated to AS 200 (the new AS), the Local AS is configured with R2 in AS 100.
When R3 receives the prefix 172.16.0.0/16, it detects its own AS in the AS_PATH, and the
update is denied. Example 4-30 shows the output of debug ip bgp update in on R3.

Figure 4-7 Updates Denied on R3 with Local AS on R1

As mentioned previously, loop detection is performed on the inbound of an eBGP session.
Because the session between R1 and R3 is now eBGP, this detection is enforced.

Example 4-30 Loop Detection on R3 as Captured by debug ip bgp update in

*Apr 22 04:59:32.563 UTC: BGP(0): 192.168.13.1 rcv UPDATE w/ attr: nexthop
 192.168.13.1, origin i, originator 0.0.0.0, path 200 2 100, community , extended
 community
*Apr 22 04:59:32.563 UTC: BGP(0): 192.168.13.1 rcv UPDATE about 172.16.0.0/16 --
 DENIED due to: AS-PATH contains our own AS;

Local-AS 2

172.16.0.0/16

AS 100
AS 200

R2 R1

AS 2

R3
172.16.0.0/16
AS_PATH: 200 2 100

X

path 200 2 100

BGP.book Page 137 Wednesday, November 12, 2003 5:19 PM

138 Chapter 4: Effective BGP Policy Control

The solution to the problem is to add the no-prepend option to the local-as command. With
this option, R1 does not prepend its Local AS number to the update received from R2. For
this example, the AS_PATH to R3 is then 200 100. The update is acceptable to R3. The case
study near the end of this chapter provides a more-detailed discussion of how to migrate an
AS using the Local AS feature.

QoS Policy Propagation
Cisco Express Forwarding (CEF) and the forwarding information base (FIB) were
discussed in Chapter 2. A FIB leaf has three policy parameters:

• Precedence

• QoS-group ID

• Traffic index

All three parameters can be used to provide differential treatment to an IP packet in
forwarding or accounting. The precedence is as defined in the IPv4 header. After it is reset
in IP packets, it can influence QoS treatment in other routers. The other two parameters are
used by the local router only to differentiate traffic.

BGP can set these parameters when certain BGP prefixes and attributes are matched. With
this information in CEF, policies can be created and accounted. Policy accounting using
BGP is discussed in the section “BGP Policy Accounting.”

QoS Policy Propagation via BGP (QPPB) lets you map BGP prefixes and attributes to CEF
parameters that can be used to enforce traffic policing. Compared to other QoS methods,
QPPB allows BGP policy set in one location of the network to be propagated via BGP to
other parts of the network, where appropriate QoS policies can be created.

Configuring QPPB generally involves the following steps:

Step 1 Identify BGP prefixes that require preferential treatment, and tag them
with appropriate BGP attributes.

Step 2 Set appropriate FIB policy parameters for each type of traffic.

Step 3 Configure FIB address lookups for the tagged prefixes as packets are
received on an interface, and set appropriate QoS policies.

Step 4 Enforce policing based on the lookups and settings done in Step 3 for
packets received or transmitted.

The following sections describe each step in greater detail. Configuration examples appear
later.

BGP.book Page 138 Wednesday, November 12, 2003 5:19 PM

QoS Policy Propagation 139

Identifying and Tagging BGP Prefixes That Require Preferential
Treatment

Figure 4-8 shows how this process works. Assume that AS 100 wants to create a special
forwarding policy for traffic between AS 200 and AS 300 for prefix 172.16.0.0/16. When
the prefix is first received from R1 via BGP, R2 tags the prefix with special BGP attributes,
such as a specific community value.

Figure 4-8 How QoS Policy Propagation via BGP Works

Setting FIB Policy Entries Based on BGP Tagging
As the prefix is propagated via BGP inside AS 100 to R4, the attributes are propagated as
well. When R4 receives the prefix with the matching attributes, it can set various FIB policy
entries using the table-map command in BGP. For QPPB, either or both Precedence and
QoS-group ID (a parameter internal to the router) can be set. The Precedence can have eight
values, 0 to 7, and the QoS-group ID can have 99 values, 1 to 99. Each value or a combina-
tion of both values can represent one class of traffic. Note that these settings have no impact
on traffic forwarding until they are used to classify and police the traffic (as discussed next).

NOTE Changes to the FIB/RIB tables are made when the IP RIB is cleared using clear ip route *,
the BGP session is reset, or a router is reloaded. All of these actions can be disruptive to the
traffic.

Within the FIB entry for the prefix 172.16.0.0/16, the following mappings are possible,
depending on the table map configuration:

• 172.16.0.0 Precedence

• 172.16.0.0 QoS-group ID

• 172.16.0.0 Precedence and QoS-group ID

AS 300

R2

Set BGP
Attributes

R5

AS 200

R1

AS 100

R4

Enable Policy
FIB Lookup

Using BGP
Attributes to Set
FIB Policy Entries

BGP Propagates Attributes
Enforce Policy

172.16.0.0/16

R3

BGP.book Page 139 Wednesday, November 12, 2003 5:19 PM

140 Chapter 4: Effective BGP Policy Control

Configuring Traffic Lookup on an Interface and Setting QoS Policies
The next step is to classify the incoming traffic from an interface based on the FIB policy
entries. The definition of the incoming interface depends on the traffic’s direction. If traffic
is destined for 172.16.0.0/16 from AS 300, the incoming interface is the link between R4
and R5; if the traffic is destined for AS 300 from 172.16.0.0/16 (the return traffic), the
incoming interface is the link between R3 and R4. On the incoming interfaces on R4,
enable FIB policy lookup using the following command:

bgp-policy {source | destination} {ip-prec-map | ip-qos-map}

The keywords source and destination indicate whether to use the source or the destination
IP address of an incoming packet to look up the FIB entries. On the link between R4 and
R5, the incoming traffic is destined for 172.16.0.0/16, so you should use destination. On
the link between R3 and R4, the incoming traffic is sourced from 172.16.0.0/16, so you
should use source.

With this configuration command, appropriate QoS policies are also set if there is a match
for both the address and QoS parameters. The interface map keyword specifies which of the
two policy FIB entries to set for the packet. If ip-prec-map is specified, the IP precedence
bits are set for the matching packets; if ip-qos-map is specified, the QoS-group ID is set.
Note that setting IP precedence bits here might affect the QoS treatment of these packets
on other routers.

Enforcing Policing on an Interface as Traffic Is Received and
Transmitted

The last step of QPPB configuration is to create traffic policing on the interface to AS 300.
This can be accomplished by using Committed Access Rate (CAR) and Weighted Random
Early Detection (WRED). The policing can be done on the input to the router for traffic
destined for 172.16.0.0 or on the output from the router for the return traffic sourced from
172.16.0.0. The policing is created based on the result of the policy lookup and settings
done previously.

An Example of QPPB
Figure 4-9 shows a simple topology that demonstrates how to configure QPPB. Within AS
100, special treatment is needed for traffic between AS 200 and AS 300 to and from the pre-
fix 172.16.0.0/16. On R2, prefix 172.16.0.0/16 from R1 is tagged with a community of
100:200, and the prefix is propagated to R3 via iBGP. The FastEthernet 10/0 interface on R3
is used to demonstrate how QoS policing can be set for traffic destined for 172.16.0.0/16.

BGP.book Page 140 Wednesday, November 12, 2003 5:19 PM

QoS Policy Propagation 141

Figure 4-9 Example of QoS Policy Propagation

Example 4-31 shows a sample BGP configuration on R3. The router number is used as the
host address. The route map Set-policy sets the FIB QoS-group ID to 2 for prefixes
matching the community 100:200, which is tagged for 172.16.0.0/16 by R2.

Examples 4-32 and 4-33 show the IP RIB and FIB entries, respectively. Note that prefix
172.16.0.0/16 is now set with qos-group 2.

Example 4-31 Sample BGP Configuration on R3

router bgp 100
 table-map Set-policy
 neighbor 192.168.23.2 remote-as 100
 neighbor 192.168.34.4 remote-as 300
!
ip community-list 1 permit 100:200
!
route-map Set-policy permit 10
 match community 1
 set ip qos-group 2

Example 4-32 IP RIB Entry for 172.16.0.0

R3#show ip route 172.16.0.0
Routing entry for 172.16.0.0/16
 Known via "bgp 200", distance 200, metric 0, qos-group 2, type internal
 Last update from 192.168.23.2 00:32:34 ago
 Routing Descriptor Blocks:
 * 192.168.23.2, from 192.168.23.2, 00:32:34 ago
 Route metric is 0, traffic share count is 1
 AS Hops 1, BGP network version 0

AS 300

R2 R4

AS 200

R1

AS 100172.16.0.0/16

R3
GigabitEthernet
6/0

FastEthernet
10/0

qos-group 2

BGP.book Page 141 Wednesday, November 12, 2003 5:19 PM

142 Chapter 4: Effective BGP Policy Control

To enable FIB lookup for the traffic destined for 172.16.0.0/16, policy lookup is enabled on
the interface of FastEthernet 10/0. The keyword destination is used in the command. If
there is a match for the destination address, a check is made into the FIB to determine if
there are any matching QoS entries. In this example, ip-qos-map is configured for the
interface, and QoS-group ID is set to 2 in FIB, which means that the QoS-group ID can be
used to set QoS policies. An input CAR is configured for traffic matching a QoS-group ID
of 2. A sample configuration is shown in Example 4-34.

Example 4-35 shows the IP interface status. Example 4-36 shows traffic policing using
CAR. A similar configuration can be made for the traffic sourced from 172.16.0.0 to AS
300 (not shown). The incoming interface then is GigabitEthernet 6/0. An outbound CAR
should be configured on the interface of FastEthernet 10/0 to enforce the QoS policy.

Example 4-33 FIB Entry for 172.16.0.0

R3#show ip cef 172.16.0.0
172.16.0.0/16, version 23, cached adjacency 192.168.12.2
0 packets, 0 bytes, qos-group 2
 via 192.168.23.2, 0 dependencies, recursive
 next hop 192.168.23.2, GigabitEthernet6/0 via 192.168.23.2/32
 valid cached adjacency

Example 4-34 Sample Interface Configuration for QPPB

interface FastEthernet10/0
 ip address 192.168.34.3 255.255.255.0
 no ip directed-broadcast
 bgp-policy destination ip-qos-map
 rate-limit input qos-group 2 5000000 4000 8000 conform-action transmit
 exceed-action drop

Example 4-35 IP Interface Status of FastEthernet 10/0

R3#show ip interface FastEthernet 10/0 | include BGP
 BGP Policy Mapping is enabled (output ip-qos-map)

Example 4-36 Interface CAR Status

R3#show interface FastEthernet 10/0 rate-limit
FastEthernet10/0
 Input
 matches: qos-group 2
 params: 5000000 bps, 4000 limit, 8000 extended limit
 conformed 112 packets, 168448 bytes; action: transmit

qos-group 2

BGP.book Page 142 Wednesday, November 12, 2003 5:19 PM

BGP Policy Accounting 143

BGP Policy Accounting
BGP policy accounting (BPA) is another BGP feature that takes advantage of the FIB
policy parameters. In this case, the parameter is traffic index. Traffic index is a router
internal counter within a FIB leaf with values between 1 and 8. Think of the traffic index as
a table of eight independent buckets. Each can account for one type of traffic matching
certain criteria. The number of packets and bytes in each bucket of an interface is recorded.

You can use this feature to account for IP traffic differentially on an edge router by
assigning counters based on BGP prefixes and attributes on a per-input interface basis.

Configuration of BPA generally involves the following steps:

Step 1 Identify BGP prefixes that require preferential treatment and tag them
with appropriate BGP attributes.

Step 2 Set a FIB traffic index for each type of traffic.

Step 3 Enable BPA on an incoming interface.

Figure 4-10 shows how BGP policy accounting works. As prefix 172.16.0.0/16 is
propagated from AS 200 to AS 300, certain BGP attributes are modified. On R4, a traffic
index number can be set when a match is made for the attributes using the table-map
command. A total of eight traffic classes can be accounted.

Figure 4-10 How BGP Policy Accounting Works

 exceeded 0 packets, 0 bytes; action: drop
 last packet: 1300ms ago, current burst: 0 bytes
 last cleared 00:13:15 ago, conformed 1694 bps, exceeded 0 bps

Example 4-36 Interface CAR Status (Continued)

AS 300

R2

Set BGP
Attributes

R5

AS 200

R1

AS 100

R4

Enable Policy Accounting
Bucket # Packets Bytes
1
2
…
8

Using BGP
Attributes to Set
FIB Traffic Index

BGP Propagates Attributes

172.16.0.0/16

R3

BGP.book Page 143 Wednesday, November 12, 2003 5:19 PM

144 Chapter 4: Effective BGP Policy Control

NOTE Remember that changes to the FIB/RIB tables are updated when the IP RIB is cleared using
clear ip route *, the BGP session is reset, or a router is reloaded. All these actions can be
disruptive to the traffic.

On each incoming interface, you can enable policy accounting by using the command bgp-
policy accounting. With this command, using destination IP addresses, traffic matching the
criteria is accounted for in its respective bucket. The show cef interface policy-statistics
command displays the per-interface table of traffic counters. The counters can be cleared
using the clear cef interface policy-statistics command.

Using the topology shown in Figure 4-9, an example of BGP policy accounting is demon-
strated here. For the prefix 172.16.0.0/16, the BGP community is set as before. On R3, a
route map is created to update the FIB traffic-index, as shown in Example 4-37.

The updated FIB for the prefix is shown in Example 4-38. To account for the prefix, policy
accounting is enabled on FastEthernet 10/0. This is the incoming interface for traffic destined
for 172.16.0.0. Note that this interface doesn’t account for the return traffic, because
the matching is done on the destination address. To account for the return traffic, policy
accounting must be enabled on GigabitEthernet 6/0, and appropriate criteria must be
set using the addresses of AS 300. Example 4-39 shows the accounting statistics on
FastEthernet 10/0.

Example 4-37 Sample BGP Configuration on R3

router bgp 100
 table-map Set-policy
 neighbor 192.168.23.2 remote-as 100
 neighbor 192.168.34.4 remote-as 300
!
ip community-list 1 permit 100:200
!
route-map Set-policy permit 10
 match community 1
 set traffic-index 1

Example 4-38 FIB Traffic Index for 172.16.0.0

R3#show ip cef 172.16.0.0
172.16.0.0/16, version 23, cached adjacency 192.168.23.2
0 packets, 0 bytes, traffic_index 1
 via 192.168.23.2, 0 dependencies, recursive
 next hop 192.168.23.2, GigabitEthernet6/0 via 192.168.23.2/32
 valid cached adjacency

traffic_index 1

BGP.book Page 144 Wednesday, November 12, 2003 5:19 PM

Case Study: AS Integration via the Local AS 145

Case Study: AS Integration via the Local AS
This case study shows you how to integrate two existing autonomous systems (AS 100
and AS 2) into one AS (AS 2) using the Local AS feature. A simple topology is shown in
Figure 4-11. AS 100 is multihomed to three different autonomous systems: 200, 300, and 2.
The prefix 172.15.0.0/16 is generated and advertised to neighboring autonomous systems.
AS 100 also receives the prefix 172.16.0.0/16 generated by AS 400.

Figure 4-11 Network Topology for the Case Study

Example 4-39 Policy Accounting Statistics on FastEthernet10/0

R3#show cef interface policy-statistics | begin FastEthernet10/0
FastEthernet10/0 is up (if_number 19)
 Corresponding hwidb fast_if_number 19
 Corresponding hwidb firstsw->if_number 19
BGP based Policy accounting is enabled
 Index Packets Bytes
 1 867256 86725600
 2 0 0
 3 0 0
 4 0 0
 5 0 0
 6 0 0
 7 0 0
 8 0 0

AS 400

R7
172.16.0.0/16

AS 200

R4

AS 300

R5 R6

AS 2
R3

AS 100

R1 R2

172.16.0.0/16

172.15.0.0/16
172.15.0.0/16

172.15.0.0/16

BGP.book Page 145 Wednesday, November 12, 2003 5:19 PM

146 Chapter 4: Effective BGP Policy Control

For the purposes of this case study, the last octet of an IP address indicates the router
number. Basic BGP configurations for R1 and R2 are shown in Examples 4-40 and 4-41,
respectively.

Examples 4-42 and 4-43 show the BGP RIB.

Example 4-40 BGP Configuration on R1

router bgp 100
 no synchronization
 bgp log-neighbor-changes
 network 172.15.0.0
 neighbor 192.168.12.2 remote-as 100
 neighbor 192.168.14.4 remote-as 200
 no auto-summary

Example 4-41 BGP Configuration on R2

router bgp 100
 no synchronization
 bgp log-neighbor-changes
 network 172.15.0.0
 neighbor 192.168.12.1 remote-as 100
 neighbor 192.168.23.3 remote-as 2
 neighbor 192.168.25.5 remote-as 300
 no auto-summary

Example 4-42 BGP RIB on R1

R1#show ip bgp
BGP table version is 3, local router ID is 192.168.14.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* i172.15.0.0 192.168.12.2 0 100 0 i
*> 0.0.0.0 0 32768 i
* i172.16.0.0 192.168.25.5 100 0 300 400 i
*> 192.168.14.4 0 200 400 i

Example 4-43 BGP RIB on R2

R2#show ip bgp
BGP table version is 3, local router ID is 192.168.25.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure

BGP.book Page 146 Wednesday, November 12, 2003 5:19 PM

Case Study: AS Integration via the Local AS 147

Now AS 100 and AS 2 decide to merge into a single AS 2. All BGP speakers in AS 100 are
to be migrated to AS 2. Because a common IGP must be used in the same AS, IGP must be
migrated first (migrating the IGP is outside the scope of this book and thus isn’t covered
here). To reduce migration risk and the impact on the peers, migration is to take a gradual
approach, with R2 being migrated first.

Local AS is configured on R2 on the session with R5. To maintain the current forwarding
architecture, a higher WEIGHT is set on R2 to prefer the path from R5. The outbound
AS_PATH is prepended twice on R3 toward R6 and once on R1 toward R4. The no-
prepend option on R2 is needed so that R1 accepts the path via R5, because now there
is an eBGP session between R1 and R2.

Examples 4-44, 4-45, and 4-46 show the configurations on R1, R2, and R3, respectively.

Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* i172.15.0.0 192.168.12.1 0 100 0 i
*> 0.0.0.0 0 32768 i
* 172.16.0.0 192.168.23.3 0 2 300 400 i
* i 192.168.14.4 100 0 200 400 i
*> 192.168.25.5 0 300 400 i

Example 4-44 BGP Configuration on R1

router bgp 100
 network 172.15.0.0
 neighbor 192.168.12.2 remote-as 2
 neighbor 192.168.14.4 remote-as 200
 neighbor 192.168.14.4 route-map Path-200 out
!
route-map Path-200 permit 10
 set as-path prepend 100

Example 4-45 BGP Configuration on R2

router bgp 2
 network 172.15.0.0
 neighbor 192.168.12.1 remote-as 100
 neighbor 192.168.23.3 remote-as 2
 neighbor 192.168.25.5 remote-as 300
 neighbor 192.168.25.5 local-as 100 no-prepend
 neighbor 192.168.25.5 weight 100

Example 4-43 BGP RIB on R2 (Continued)

BGP.book Page 147 Wednesday, November 12, 2003 5:19 PM

148 Chapter 4: Effective BGP Policy Control

The new BGP RIB on R1, R2, and R7 is shown in Examples 4-47, 4-48, and 4-49,
respectively.

Example 4-46 BGP Configuration on R3

router bgp 2
 neighbor 192.168.23.2 remote-as 2
 neighbor 192.168.36.6 remote-as 300
 neighbor 192.168.36.6 route-map Path-300 out
!
route-map Path-300 permit 10
 set as-path prepend 2 2

Example 4-47 BGP RIB on R1

R1#show ip bgp
BGP table version is 3, local router ID is 192.168.14.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* 172.15.0.0 192.168.12.2 0 0 2 i
*> 0.0.0.0 0 32768 i
* 172.16.0.0 192.168.12.2 0 2 300 400 i
*> 192.168.14.4 0 200 400 i

Example 4-48 BGP RIB on R2

R2#show ip bgp
BGP table version is 5, local router ID is 192.168.25.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* 172.15.0.0 192.168.12.1 0 0 100 i
*> 0.0.0.0 0 32768 i
*> 172.16.0.0 192.168.25.5 100 300 400 i
* 192.168.12.1 0 100 200 400 i
* i 192.168.36.6 100 0 300 400 i

Example 4-49 BGP RIB on R7

R7#show ip bgp
BGP table version is 4, local router ID is 192.168.57.7
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure

BGP.book Page 148 Wednesday, November 12, 2003 5:19 PM

Case Study: AS Integration via the Local AS 149

The resulting topology is shown in Figure 4-12.

Figure 4-12 Topology After R2 Is Migrated to AS 2

The next step is to migrate R1 to the new AS. Local AS is configured on R1 on the session
with R4. AS_PATH prepending is now removed on R1. The LOCAL_PREF is modified to
prefer the path via R4. The reason that LOCAL_PREF is used instead of WEIGHT is that
R2 would also prefer the path via R1 for 172.16.0.0/16 if the link between R2 and R5 failed.
The new BGP configurations on R1 and R2 are shown in Examples 4-50 and 4-51,
respectively.

Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* 172.15.0.0 192.168.57.5 0 300 100 2 i
*> 192.168.47.4 0 200 100 100 i
*> 172.16.0.0 0.0.0.0 0 32768 i

Example 4-50 BGP Configuration on R1

router bgp 2
 network 172.15.0.0
 neighbor 192.168.12.2 remote-as 2
 neighbor 192.168.14.4 remote-as 200
 neighbor 192.168.14.4 local-as 100

continues

Example 4-49 BGP RIB on R7 (Continued)

AS 400

R7
172.16.0.0/16

AS 200

R4

AS 300

R5 R6

AS 100
R1

AS 2

R2 R3

172.16.0.0/16

172.15.0.0/16

172.15.0.0/16

172.15.0.0/16

Local-as 100
no-prepend

BGP.book Page 149 Wednesday, November 12, 2003 5:19 PM

150 Chapter 4: Effective BGP Policy Control

The BGP RIB is shown in Examples 4-52, 4-53, and 4-54 for R1, R2, and R7, respectively.

 neighbor 192.168.14.4 route-map Set-lpref in
!
route-map Set-lpref permit 10
 set local-preference 120

Example 4-51 BGP Configuration on R2

router bgp 2
 network 172.15.0.0
 neighbor 192.168.12.1 remote-as 2
 neighbor 192.168.23.3 remote-as 2
 neighbor 192.168.25.5 remote-as 300
 neighbor 192.168.25.5 local-as 100 no-prepend
 neighbor 192.168.25.5 weight 100

Example 4-52 BGP RIB on R1

R1#show ip bgp
BGP table version is 3, local router ID is 192.168.14.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* i172.15.0.0 192.168.12.2 0 100 0 i
*> 0.0.0.0 0 32768 i
*> 172.16.0.0 192.168.14.4 120 0 100 200 400 i
* i 192.168.25.5 100 0 300 400 i

Example 4-53 BGP RIB on R2

R2#show ip bgp
BGP table version is 5, local router ID is 192.168.25.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* i172.15.0.0 192.168.12.1 0 100 0 i
*> 0.0.0.0 0 32768 i
* i172.16.0.0 192.168.14.4 120 0 100 200 400 i
*> 192.168.25.5 100 300 400 i
* i 192.168.36.6 100 0 300 400 i

Example 4-50 BGP Configuration on R1

BGP.book Page 150 Wednesday, November 12, 2003 5:19 PM

Case Study: AS Integration via the Local AS 151

Now AS 2 can convince AS 300 to change its peering and, thus, R5’s configuration. Local
AS is not needed on R2. However, AS 200 will only honor its previous peering agreement
with AS 100. Local AS is still needed between R1 and R4. To maintain the same forwarding
policy, R2 now needs to prepend its AS_PATH outbound to R5. The final configuration of
R2 is shown in Example 4-55. The BGP RIB on R7 is shown in Example 4-56.

Example 4-54 BGP RIB on R7

R7#show ip bgp
BGP table version is 5, local router ID is 192.168.57.7
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
*> 172.15.0.0 192.168.57.5 0 300 100 2 i
* 192.168.47.4 0 200 100 2 i
*> 172.16.0.0 0.0.0.0 0 32768 i

Example 4-55 BGP Configuration on R2

router bgp 2
 network 172.15.0.0
 neighbor 192.168.12.1 remote-as 2
 neighbor 192.168.23.3 remote-as 2
 neighbor 192.168.25.5 remote-as 300
 neighbor 192.168.25.5 weight 100
 neighbor 192.168.25.5 route-map Path-300 out
!
route-map Path-300 permit 10
 set as-path prepend 2

Example 4-56 BGP RIB on R7

R7#show ip bgp
BGP table version is 10, local router ID is 192.168.57.7
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal,
 r RIB-failure
Origin codes: i - IGP, e - EGP, ? - incomplete

 Network Next Hop Metric LocPrf Weight Path
* 172.15.0.0 192.168.47.4 0 200 100 2 i
*> 192.168.57.5 0 300 2 2 i
*> 172.16.0.0 0.0.0.0 0 32768 i

BGP.book Page 151 Wednesday, November 12, 2003 5:19 PM

152 Chapter 4: Effective BGP Policy Control

Figure 4-13 shows the final topology.

Figure 4-13 Final Topology

Summary
This chapter presented various techniques you can use to create complex and effective BGP
policies. The chapter started with one of the fundamental techniques, regular expressions.
Regular expressions are used extensively in IOS for pattern matching in parsing command
outputs and in defining AS_PATH and community patterns.

A variety of filtering tools also were discussed. They include prefix lists, community lists,
AS_PATH lists, route maps, and policy lists, all of which are used extensively in creating
BGP policies. Additionally, more-complex policy tools were presented, including condi-
tional advertisement, aggregation, deaggregation, Local AS, QoS policy propagation, and
policy accounting. The chapter ended with a case study on AS merging using the Local AS
feature.

AS 400

R7
172.16.0.0/16

AS 200

R4

AS 300

R5 R6

R1

AS 2

R2 R3

172.16.0.0/16

172.15.0.0/16

172.15.0.0/16

172.15.0.0/16

Local-as 100

BGP.book Page 152 Wednesday, November 12, 2003 5:19 PM

