Hosted by OSearchNetworking.com

Best Practices for Securing IP Telephony

Irwin Lazar, CISSP Senior Analyst Burton Group

Hosted by OSearchNetworking.com

VoIP overview

- VoIP risks
- Mitigation strategies
- Recommendations

Networking Decisions

Hosted by OSearchNetworking.com

VoIP Overview

VoIP Functional Diagram

O SearchNetworking.com

Hosted by

Hosted by OSearchNetworking.com

Signaling Concepts

What Do These Diagrams Tell Us?

Hosted by OsearchNetworking.com

Voice & data share a common infrastructure

- No different from a risk perspective
- Anything that affects data will affect voice
- This represents a major change in the way voice services are provided
 - Historically functions were separate

Hosted by OSearchNetworking.com

Hypothesis

- Enterprises implementing VoIP have an even greater need to protect their networks than before
 - There is no fallback mechanism if security is compromised
 - Both data and voice will be effected

Protocols to Know

Signaling protocols:

- H.323 used by most vendors
 - Cisco & Siemens use proprietary alternatives

Hosted by OsearchNetworking.com

SIP - Session Initiation Protocol

- Emerging "IP" based protocol
- H.323 relies on gateways, SIP allows direct any-to-any communications
 - Though in reality they are implemented the same way

More Protocols to Know

Voice Bearer Transport Protocols

- RTP Real-Time Protocol
- RTCP Real-Time Control Protocol

Hosted by OSearchNetworking.com

UDP - User Datagram Protocol

Networking Decisions

Hosted by OSearchNetworking.com

VoIP Risks

Specific Risks to VoIP

External threats

Hacks against phones, call control servers, gateways

Hosted by OSearchNetworking.com

- Denial of Service (DoS) attacks
- Trojans, viruses, worms
- Illicit phone system usage
- VoIP spam
- Compromise of call data
- Internal Threats
 - Eavesdroppers
 - Illicit phone system usage
 - Compromise of call data

A Few Possible Scenarios

- DoS attack on inbound calling gateway
- Worm attack takes down call servers
- Worm/Virus causes excessive network congestion
- Unauthorized calls routed through your gateway

Hosted by OsearchNetworking.com

- Calls are secretly recorded
- Improper long distance usage

Scared Yet?

- Well...you should be!
- BUT!
 - You ought to be protecting against most of this stuff already

Hosted by OsearchNetworking.com

- A few of these risks are already out there
 - Unauthorized phone use, outside hacking
- Mitigation strategies are available

Hosted by OSearchNetworking.com

IP Telephony Security

Mitigation Strategies

Basic Secure IP Telephony Design

Hosted by OSearchNetworking.com

Network security principles:

- Logical separation of voice and data via VLANs wherever possible
 - Minimize interconnection points
- VoIP-aware firewalls at interconnection points
- Host-based intrusion detection & virus detection on all call management devices
- Intrusion detection at network exit/entry points

Firewall Concerns

Firewalls must be VoIP-aware

 VoIP relies on dynamic port creation for voice traffic

Hosted by OsearchNetworking.com

- Signaling protocols use well known ports
- NAT may get in the way

Solution: Session Border Controllers

- Kagoor, Acme Packets, Jasomi, Nextone, etc.
- SBCs track call establishment and dynamically handle NAT and port filtering
- May also act as a calling proxy

Hosted by 🕤

O SearchNetworking.com

Security Architecture

Logical Separation Issues

 Requires Ethernet switches to support 802.1Q VLAN Trunking

Hosted by OsearchNetworking.com

- Two implementation methods
 - Ethernet switch in IP phone
 - Ethernet switch in closet performs separation
- Difficult to implement in softphone environments

Phones at 802.1Q Trunks

Hosted by OSearchNetworking.com

Call Security Options

- End-point security:
 - User authentication for hard/soft phones

Hosted by OsearchNetworking.com

- 802.1x based
- Phone authentication to call controller
- Use of MAC address filters to prevent rogue assignment of IP addresses and transfer of configuration files

Call Security Options (2)

Call data security

 SSL/TLS encryption between end-points and call control servers

Hosted by OsearchNetworking.com

- Negative performance impact
- S/MIME signing & encryption of call data
- SRTP Secure RTP

Prevent anonymous in-bound calling

- Inbound calls only accepted from trusted or verifiable sources
 - Use of trusted certificate authority

Call Security Options (3)

- Protection against Denial of Service Attacks
 - Only an issue when there is direct connectivity of VoIP "Islands"

Hosted by OsearchNetworking.com

- Use of DoS mitigation techniques or devices
 - E.g. Arbor Networks, Riverhead (Cisco)

Does it Work?

- "Breaking through IP telephony security" Network World - May 24, 2004
 - Mier test of Avaya & Cisco VoIP Security
 - Findings:
 - Both were secure against hacker attacks against call control infrastructure

Hosted by OSearchNetworking.com

- Both were susceptible to passive probes
- Avaya phones could be disrupted
- Bottom line: Both systems were reasonably secure IF security architectures were fully implemented

Future Developments

Security becoming increasingly important

 Encryption more widely available (Cisco Call Manager 4.0)

Hosted by OSearchNetworking.com

- Better availability of VoIP-aware security products
- Increasing use of softphones presents new challenges
- Remote users also present challenges
 - One solution: Zultys builds IPsec client directly into phones
- Growing concerns as we evolve past "Islands" of VoIP

What About Public Services?

Public VoIP services are rapidly emerging

Hosted by OSearchNetworking.com

 Network complexity transferred to a service provider

Hosted by

O SearchNetworking.com

Service Architecture

Hosted by OsearchNetworking.com

Service Issues

Security

- Risks to corporate data stored on and carried by service providers
- Risks of denial of service attacks on provider infrastructure
- Risks to enterprise data network
- Risks of data carried over the public **Internet (for broadband service providers)**
- Eavesdropping
- Reliance on service provider for security management
- Are services subject to wiretapping laws?

Networking Decisions

Hosted by OSearchNetworking.com

Recommendations

Recommendations

 Conduct security assessment as part of your VoIP planning

Hosted by OSearchNetworking.com

- Recommended evaluation criteria:
 - Corporate security policies
 - Cost vs. Risk
 - Network capabilities (to support 802.1Q for example)
 - Firewall capabilities
 - Need for encryption

Recommended Security Guidelines

Best practices:

Logical separate of voice and data (use VLANs in the LAN)

Hosted by OsearchNetworking.com

- Firewalls/IDS at interconnection points
- Host-based IDS for call control servers
- Authenticate both phone and user
- Implement QoS mechanisms to prioritize voice
- Encrypt where necessary

For users of public services

 Work carefully with providers to understand security methodologies & services

What is your primary area of concern with regard to VoIP security?

- Hackers disrupting system
- Hackers misusing system
- Internal misuse?

Who is responsible for VoIP security in your organization?

- Internal network security team?
- VoIP management team
- Network management team

O SearchNetworking.com

Who manages your VoIP environment?

Audience Response /

