
chapter

1

1
Information in This Chapter

•	 How Wireless Networks Work

•	 Case Study: TJX Corporation

•	 Understanding WEP Cracking

•	 How to Crack WEP

•	 It Gets Better and Worse

•	 WPA and WPA2 in a Nutshell

•	 How to Crack WPA PSK and WPA2 PSK

802.11 Wireless –
Infrastructure Attacks

Wireless is a term thrown about quite a bit lately. Everything seems to be wireless to
one degree or another, even some things no one ever expected to be, like refrigera-
tors and other appliances. Most often, when the term wireless is used in regards to
computing, it’s to do with 802.11 networks.

Just about every new laptop that hits the market today has an 802.11 network card
built in. It’s a technology that has become ubiquitous in our lives, and we can hardly
remember a time when it wasn’t part of our days. It’s a technology that has grown
in terms of speed and range to provide the capability to be connected to the Internet
from anywhere in our homes or businesses.

This widespread technology would also very quickly become quite an issue from
a security perspective. Users quickly demanded to “cut the cable” and be able to
access the network from anywhere in the office. Home users were quick to adopt the
technology to work from the kitchen, the couch, or (more oddly) the bathroom. This
intense push led to a lot of overworked and underpaid information technology (IT)
administrators and neighborhood computer know-it-alls to install wireless networks
without properly understanding the security risks involved. These early networks
would continue to “just work” with users not realizing that the security arms race
caught up with them and even passed them, making them prime targets for attack.

CHAPTER 1  802.11 Wireless – Infrastructure Attacks2

In November 2003, Toronto, Ontario, police held a press conference to announce
a (at the time) new and unusual crime.A The police report indicates that at around
5:00 a.m. an officer noticed a car slowly driving the wrong way down a one-way
street in a residential neighborhood. The officer pulled the car over, and when he
walked up to the driver, he was greeted with several disturbing sights. The driver
was first of all not wearing any pants, which is probably disturbing in and of itself,
but more alarmingly, on the passenger seat was a laptop clearly displaying child
pornography. The driver had been using open wireless networks in the area to obtain
Internet access to download child pornography, unbeknownst to the owners of those
networks. The owners were victims themselves, twice. First, they were victims of
theft of service since their communications had to compete for bandwidth with the
traffic of the unauthorized user. Second, they were victimized because, for all intents
and purposes, the child pornography was being downloaded through their connec-
tion. Any digital trail left would lead back to them, potentially exposing them to false
accusations of downloading child pornography themselves and all the emotional and
financial damage that accusation can bring. The suspect’s home was searched as a
result, and 10 computers and over 1,000 CDs worth of illegal material were seized.B

This case, along with others through the years, has shown that operating an access
point (AP) without any authentication of client devices is dangerous. If anyone can
connect, there is no restriction on what sort of activities those users can partake
in. Often, it’s simply to check an e-mail or catch up on the latest news, but it may
be someone downloading copyrighted materials, sending threatening messages, or
doing worse.

Sometimes, connecting to an open network without authorization can occur even
without someone realizing he or she is doing it. Windows XP, before Service pack 2,
was notorious for automatically connecting to networks named the same as ones it
had connected to before. A person carrying a laptop down the street configured for
a common network name like “linksys” could drift to any network similarly named
“linksys” and be committing an unauthorized access without knowing or interact-
ing. Many users noticed this behavior and thought it more than helpful in gaining
access to free Wi-Fi. Attackers noticed this and began to exploit it (more on that in
Chapter 2, 802.11 Wireless – Client Attacks).

It’s sad to consider that leaving your APs open for anyone to connect to is a dan-
gerous proposition. The idea of everyone sharing free Internet access anywhere he or
she goes is a tempting one, but society, as a cross section, contains all sorts of people,
some good and some bad, and often the bad ruin such freedoms for everyone.

The Institute of Electrical and Electronics Engineers (IEEE) knew that they had
to establish some mechanism to maintain privacy of communications as they were
broadcast and restrict who can connect and from where. This is why all APs sold
contain various methods of securing communications and limiting who can connect.

A www.ctv.ca/servlet/ArticleNews/story/CTVNews/1069439746264_64848946/?hub=CTVNewsAt
B See http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.116.850 and click on the PDF icon
underneath the cached link on the upper-right side of the page.

How Wireless Networks Work 3

Originally, Wired Equivalent Privacy (WEP) was the only option available, but as
time went on, Wi-Fi Protected Access (WPA) was introduced as an interim solution
when WEP was shown to be weak, and eventually WPA2 was brought forth with the
final ratification of 802.11i.

As with many security technologies, if you give users the option of using it, they
often won’t. If you give them too many options, there’s no way of guaranteeing that
they will keep their systems up to date either.

How Wireless Networks Work
A wireless network typically is made up of two classes of device: APs and client
devices, typically called stations (STAs). This chapter focuses on security of APs
typically found in a home or business. Client security is discussed in Chapter 2,
802.11 Wireless – Client Attacks. These networks can be 802.11a, b, g, or n, but
for the most part, and for discussion purposes in this chapter, it doesn’t matter.
The infrastructure needed is fairly universal, and standards for security are pretty
much the same for all of them.

The APs are something everyone in the IT industry and most home computer
users are probably familiar with. They come in all shapes and sizes and can have
varying features. They are the gateways between the wired and wireless network. If
you don’t have one at home already, you can usually see them bolted to the wall at
many businesses or in public spaces with one or more antennas sticking out of them.
The AP is what the client STA connects to in a wireless network (as opposed to the
other way around). In their default state, most APs will accept connections from any
client STA that asks to join the network. While this is convenient for users, it is also
very convenient for anyone else who wants to connect, for good reasons or bad.

In the early days of wireless, this was seen as something positive. Wireless
brought out ideas of a brave new world with free Internet access and sharing of a new
and useful resource. It didn’t take long for the bad guys to figure out that this was
very useful for them as well.

Note
It’s hard to imagine a world without wireless networking. It’s absolutely everywhere. Since
2001, Wigle.net, an online repository of data submitted by users, has collected tens of millions
of unique network locations with Global Positioning System (GPS) coordinates and over a bil-
lion points of observations of those networks. The site also includes some automatically gener-
ated maps of that data that can pretty conclusively show that wherever there are people and
computers, there are wireless networks. Figure 1.1 shows Wigle.net’s map of North America.

While this sort of activity may seem odd, companies like Skyhook Wireless
(www.skyhookwireless.com) has made a business out of wardriving themselves. They map
the location of networks throughout the world and use that information to provide GPS-like
location sensing via triangulation of known APs as opposed to satellites, which has the
added benefit of working indoors in many cases, unlike GPS.

CHAPTER 1  802.11 Wireless – Infrastructure Attacks4

As you can see, there are wireless networks everywhere. Wherever there is a
population center, you will be able to find wireless networks there.

Wireless is a shared medium. If you remember the bad old days where Ethernet
networks were all using hubs and not switches, everyone saw everyone else’s traffic.
Well, wireless brings all the fun of those networks back. In those days, hubs were
simple rebroadcasters, and they had no real intelligence as to what was connected
to each port. A client would put a packet onto the wire and the hub would rebroad-
cast that packet to every other computer on the hub. The intended recipient accepts
the packet, whereas the other simply ignores it. As you can imagine, have many
clients on the network trying to communicate simultaneously and it gets pretty
noisy. Network adapters normally filter out packets that come down the wire that
are not intended for their address. If you disable that filter, you can now listen to all
the packets, even the ones not intended for that network card. This is usually called
promiscuous mode and has been a fundamental tool of network diagnosis since the
beginning of networks.

Figure 1.1

Wigle.net’s Map of North America

Case Study: TJX Corporation 5

In a wireless network, promiscuous mode does the same thing if you are
associated to a network. If you want to listen to other networks without associating
or get the management traffic at Layers 1 and 2, then you need to remove the filters
from Layers 1 and 2 and the logical separation of networks. This is where monitor
mode comes in. Monitor mode is useful as it allows the card to listen to any wireless
data, from any network on the same channel in range.

An 802.11 network typically sends out advertising “beacon” frames to
announce its presence. These frames contain the network BSSID (Media Access
Control [MAC] address), ESSID (commonly known as SSID, the logical name
for the network), and various flags about its capabilities (speed, encryption level,
and so on). All this information is sent in clear text. Since it’s a shared medium,
anyone can pick up these beacons and this basic information. This is the essence
of wardriving.

Much has been written about wardriving, but the best definition was coined on the
netstumbler.org forums by a poster named blackwave:

Wardriving (v.) – The benign act of locating and logging wireless access points
while in motion.1

Essentially, it is using a wireless-enabled device to search for others. This can be
as simple as the Wireless Zero Config utility in Windows searching for a network
to programs like Kismet, a full wireless detector and sniffer. Integrating a GPS into
the system, and coordinates of those networks can be used to generate maps of local
areas for reports, or submitted to sites like wigle.net to add to a larger community
data pool.

Case Study: TJX Corporation
In April 2007, U.S. retail giant TJX, owners of TJ Maxx, Marshalls, and other retail
store brands, publicly admitted in their annual Security and Exchange Commission
filings that their network security had been breached and that customer credit
card numbers and other information had been available to criminals roaming the
network for over a year. The fallout for the company is expected to top 1 billion
dollars over 5 years and caused headaches for millions of consumers now open to
identity theft and credit card fraud, as well as credit card companies and financial
institutions having to pay millions to replace consumers, credit cards. In May
2008, authorities arrested Albert Gonzalez in Miami, Florida, related to another
large-scale identity theft. He was eventually charged as the ringleader in the TJX
attacks and several other large corporate penetrations, and on August 28, 2009,
Gonzalez agreed to a plea bargain and stands to serve 15 to 25 years for his role.
There are several other outstanding charges related to similar attacks on other
corporations that, at the time of this writing, are still waiting to work their way
through the courts.

CHAPTER 1  802.11 Wireless – Infrastructure Attacks6

While many details are not fully known, the seemingly biggest and most well-
reported entry point was a St. Paul, Minnesota store’s wireless network. The indictmentC
of Gonzalez and others indicates that Marshalls and TJX stores were penetrated through
wireless networks in Miami from their own parking lots. The full extent may never be
known, but it is clear that wireless networks were a component in these attacks.

Using freely available software, the attackers identified the network and pro
ceeded to crack the WEP key used to secure the network. This provided access to
the store’s network and gave a foothold into the larger corporate network and all the
data it contained. Whether it was a targeted attack of this specific store and chain,
or if it was just that they happened by and noticed the weak security, we probably
won’t know. Various prosecutions of the perpetrators, though, show that many differ-
ent companies were penetrated and were probably all just targets of opportunity rather
than of a specific agenda. The one common element seems to be the presence of these
businesses along U.S. interstate 1 in Florida. Likewise, the attackers just drove down
the interstate and collected data, returning to tempting and weak targets later.

Various reports since then have indicated that the store’s wireless network was
secured using WEP. At the time, WEP was known to be fatally flawed and was
already outmoded by the introduction of WPA encryption. These networks are often
installed for the convenience of bar-code-reading scanner guns used at many stores
for inventory control; these connect back to the store server over wireless. Many
of these systems are only capable of WEP and are non-upgradeable, and given the
amount already invested, companies are often slow to upgrade. Further complicat-
ing matters and contributing to the complacency was that, at the time, stores had to
meet the Payment Card Industry (PCI) security standards in order to be allowed to
take credit and debit cards. Recommendations were made to TJX to upgrade its wire-
less security to WPA; however, it seems from corporate e-mails that upgrades were
delayed in favor of the cost savings associated with not replacing the equipment in

Cwww.justice.gov/usao/ma/Press%20Office%20-%20Press%20Release%20Files/IDTheft/
Gonzalez,%20Albert%20-%20Indictment%20080508.pdf

Epic Fail
An interesting note about Gonzalez is that it appears he began the attacks on TJX while
working as an informant for the U.S. Secret Service.

Gonzalez was a member of the Shadowcrew, an online group that ran a Web site with
over 4,000 members, devoted to the buying, selling, and trading of stolen credit card num-
bers. The group trafficked more than 1.5 million credit card numbers. When members of
the group began to be arrested, Gonzalez turned informant and helped with the indictment
of 19 other members of the Shadowcrew.

As he worked for authorities, he apparently began a new crime spree under the noses of
his FBI handlers. This included the TJX attacks. An obvious black eye for the agency, his
ability to hide his activities for so long is a useful lesson to future investigators. His usage
of remote computers and encryption should be viewed as a testament to the creativity of
online criminals to hide their activities.

Understanding WEP Cracking 7

many stores. In addition, VISA, one of the members of the PCI group, gave TJX a
pass on their compliance with the condition they would do something to improve
their wireless security in time. One can be certain that after the incident, wireless
security was taken much more seriously. Suddenly, the original costs of upgrading
seem a lot smaller than the subsequent costs of cleanup and bad press.

Understanding WEP Cracking
WEP was the original encryption scheme included in the 802.11b wireless standard
from 1997. At the time, strong encryption was considered a defense by the U.S. State
Department (a lot of manufacturers’ head offices were located in the United States) and
since there were restrictions on exportation of strong encryption to foreign countries, the
key length was limited to 40 bits. This was later relaxed to allow 64- and 128-bit keys to
be exported. For many years, this was the only security standard available for wireless.

Note
There have been many proprietary security methods available as well. Some, such as Light-
weight Extensible Authentication Protocol (LEAP), are better than WEP but require end-to-
end solutions from a single company like Cisco. This increased cost and broke much of the
interoperability that made 802.11 so appealing, and never caught on outside homogenous
networks in corporations and almost never for home users.

As early as 2001, implementation problems with the WEP encryption scheme
led to the first real break. The problem revolved around the initialization vector (IV)
field of the scheme, a random number concatenated with the network key, used to
provide some randomization to the scheme. WEP is based on the RC4 stream cipher
algorithm, and as with any stream cipher, identical keys must not be used. The IVs
change with each packet and eventually repeat, giving an attacker two packets with
identical IVs. The counter used for IVs was 24 bits long, which on a fairly busy net-
work meant that there was a good chance that after 5,000 packets, an IV would be
repeated, yielding an IV collision where two packets were encrypted with the same
key, thus providing a basis for cryptanalysis. If more collisions are encountered, this
increases the chances of an attack.

Tools began to emerge like AirsnortD that required 5 to 10 million packets to
be captured for analysis. On a particularly busy network, this would take a couple
of hours to collect. On quieter networks, it could take days, and even then, it was
very much a hit-or-miss situation. These tools were later replaced by the original
AircrackE suite of tools, which introduced some new methods of attack and reduced
the amount of data needed between 200,000 and 500,000 packets for 40- and 64-bit
WEP and a million for 128-bit WEP, a much more manageable amount to capture.

Dhttp://airsnort.shmoo.com/
Ewww.aircrack-ng.org/

CHAPTER 1  802.11 Wireless – Infrastructure Attacks8

Further development of tools allowed for faster and more efficient use of IV data.
The advent of the ARP replay attack really shortened the time needed to perform an
attack. The ARP replay attack is where an encrypted ARP packet (known because of its
unique size, even when encrypted) is captured from a network and retransmitted back
to the AP, which in turn sends back another ARP packet with a different IV. This is done
rapidly and repeatedly and creates a huge amount of IVs to be used and the counter to
roll over and duplicate IVs to be sent. This, along with improvements to Aircrack (by
this time abandoned by the original author and now reimplemented as Aircrack-ng),
reduced the time to execute an attack from hours and days to as little as 10 min.

The Pychkine–Tews–Weinmann (PTW) attack was arguably the final nail in the
coffin for WEP. This attack was able to use more of the packets for analysis and
only needed 20,000 to 50,000 packets to work. In combination with the ARP replay
attack, this could be executed in as little as 60 s, start to finish, yielding the hexadeci-
mal WEP key for the target network.

In the case of TJX at the time of the initial attack, it was widely known WEP had
issues and some of these tools had been around for a few years already (since at least
2005 for Aircrack). It was just a matter of a determined attacker to spend the neces-
sary time and energy along with a laptop, wireless card, and felonious intention to
penetrate the wireless network at that fateful store one night.

How to Crack WEP
Cracking WEP today is actually a frighteningly easy prospect. Original tools were
fairly slow, hit or miss, and generally required a lot of data. After approximately
7 years of development, these tools have reached a point of refinement that makes
breaking WEP a fairly reliable outcome.

There are many tools available that break WEP, but the most popular is Aircrack-ng
(“ng” denoting new or next generation as opposed to the original Aircrack by Chris
Devine that has been since abandoned). This section will be a quick tutorial to the
steps necessary to break WEP and recover a key.

Warning
Under most jurisdictions, any attempt to recover a key from a network you do not own or
have permission to do so is very likely a crime. As noted with the TJX attack, there are very
real consequences to breaking networks, no matter how easy it may seem.

If you want to test this or any other security tool, it is the best and safest thing to do so
with your own equipment or that which you have express permission from the owner. Crack-
ing your neighbor’s WEP key may sound like fun, but it’s a felony. Don’t do it.

This guide assumes several things since there is no way to know what exact configura-
tion of equipment you might be using. Usage should be similar no matter your platform:

•	 Laptop running Ubuntu 9.04
•	 Atheros 802.11b/g wireless card
•	 Madwifi-ng drivers (0.9.4) from http://madwifi-project.org/

How to Crack WEP 9

The first step is to acquire the Aircrack software. This is available from the Web
site www.aircrack-ng.com. It is available in several different packages for Unix sys-
tems and Windows along with bootable Linux distros and VMware images.

Aircrack is actually a suite of tools. The namesake is the actual tool that does
the cracking. Around it are many helper applications to help you get what you need.
For the most part, you will only need to worry about four programs: Airmon-ng,
Airodump-ng, Aireplay-ng, and Aircrack-ng.

Once you have the Aircrack suite installed or built, you’ll need to start capturing
packets. To do so, you’ll need to put the card into monitor mode in order to listen to
packets.

Tip
Probably the most important part of any wireless tool kit will be a compatible wireless card.
For the most part, Atheros-based work is the best for Linux and wireless penetration test-
ing since the drivers for Linux are very open and capable of doing many of the odd things
necessary to enable some of these attacks.

Check the Aircrack-ng Web site for a list of supported and recommended cards:
www.aircrack-ng.org/doku.php?id=compatibility_drivers

Tip
For the Madwifi drivers used in making this guide, it was necessary to take some additional
steps to prepare the card for monitor mode.

The Madwifi drivers operate as a “parent” device usually named wifi0, wifi1, etc, and
make virtual interfaces (VAPs) that are what programs actually interact with (ath0, ath1,
etc). You can have up to four VAPs off of any one parent device acting in different capaci-
ties but having multiple devices can cause issues. For instance, if you have one VAP in
monitor mode trying to channel hop and another in client (STA) mode, if the STA-VAP
associates with an AP, the parent device cannot keep changing channels, which screws up
the monitor mode VAP.

Unless you need to have multiple VAPs, it’s a good idea to destroy them before creating
a new one to do monitor mode. This is easily done with the command wlanconfig:

wlanconfig ath0 destroy

(where ath0 is the VAP you want to destroy). Otherwise, if you want to start fresh, you can
unload and reload the Atheros driver and force it not to create any VAPs:

modprobe –r ath_pci
modprobe ath_pci autocreate=none

Assuming in this case that you have a compatible card ready to go into monitor
mode, the Airmon-ng program makes it easy to set your card. The program identi-
fies the driver and knows what steps to take to enable monitor mode. In the case of
Madwifi drivers, specify the parent device, wifi0, as the interface:

airmon-ng start wifi0

CHAPTER 1  802.11 Wireless – Infrastructure Attacks10

Airmon-ng will report the name of the interface in monitor mode and look
something like Figure 1.2.

Once the card is in monitor mode, you can collect packets. The program in the
suite to do this is called airodump-ng. Many options can be set from the command
line and are specified before the interface name at the end:

airodump-ng --channel 3 --write foo ath1

This command specifies Airodump to listen on Channel 3 (as opposed to hopping
through all channels), write out the captured data to a file with the prefix “foo,” and
use interface ath1, which is our monitor mode interface from Airmon-ng. If you are
interested in the other options for Airodump or any program in the suite, just run it
with the -help switch.

Once it is running, you should see networks begin to populate the columns and
packet counts start to rise. Figure 1.3 shows a single network being captured; how-
ever, if you are in a noisy area, more networks may show up.

If everything is running fine, you should see one or more networks listed in the
display. Hopefully, your target is one of them. The upper portion lists currently active
APs and some basic information about them. The lower portion lists client devices
and their associations.

Depending on the amount of traffic already on the network, you may start seeing
the data column number for your target that start to rise. If it is rising fast enough to
acquire 50,000 packets in what you deem a reasonable amount of time, then it’s just
a matter of time to wait. If there is no traffic, or no clients, or you are just impatient,
you can try an ARP injection attack to force more data to be generated.

Aireplay-ng handles most of the active attacks for WEP. It should be run at the
same time as your capture program, such as Airodump-ng. It has many command-line

Figure 1.2

Airmon-ng’s Output for a Madwifi-ng Card

How to Crack WEP 11

Figure 1.3

Airodump-ng’s Output Capturing Data from Our Target Network Named WEP

switches, but for the purposes of this guide, we will focus on the ARP replay as it is
the most effective and widespread:

aireplay-ng -3 -b 00:16:B6:1C:91:91 ath1

The above command is specifying Aireplay-ng should use attack number 3,
which is the ARP replay attack, the BSSID of the target, and the interface to listen
and inject on. Since we didn’t specify a “-h” or host option, it defaults to using the
local interface MAC address. For better results, if you can, specify the MAC for
an already associated client. Be careful as some cards are incapable of injection in
monitor mode and may need special drivers or preparation.

Note
For whatever reason, the Aircrack-ng developers decided that for some attacks “-a” would
be the switch to specify the BSSID of the target, for others it’s “-b.” If you use the wrong
one, Aireplay-ng is smart enough to alert you as to which one to use instead.

Aireplay-ng will listen on the interface for an ARP packet. ARP packets have a
specific size (68 or 86 bytes) even when encrypted and stand out. Once it captures
one, it will retransmit it back to the AP causing a reply with another ARP encrypted
with a different IV and Aireplay-ng will begin counting up ARP packets as demon-
strated in Figure 1.4. This will start a flood of data to come in to run the crack on.

Should you be attacking an AP without any clients and using your local MAC for
injection doesn’t seem to be working, you can sometimes force an ARP packet to be
generated by faking an association to the AP from your attacking client.

CHAPTER 1  802.11 Wireless – Infrastructure Attacks12

While the ARP attack continues to run, run Aireplay in another terminal but this
time using attack number 1, the fake association:

aireplay-ng -1 3 -a 00:16:B6:1C:91:91 ath1

This command specifies attack number 1 (association) with a delay of 3 s between
attempts against the specified BSSID using interface ath1 to listen and inject on. Since
no “-h” option was set, the local MAC is used. These will then try and associate to the
AP and hopefully an ARP packet will be generated to bootstrap ARP injection. A suc-
cessful association looks something like Figure 1.5, including the smiley faces.

Figure 1.4

Aireplay-ng’s Output for a Successful ARP Injection

Figure 1.5

Aireplay with a Successful Association

It Gets Better and Worse 13

Once Aireplay-ng is injecting, the Airodump data column total for the target
should start to rise at a great speed. An optimal setup will only take a minute or two
to approach the necessary starting point of 10 to 20,000 packets. You can collect
more, but why not start early?

Airodump continually writes to the specified storage file, which in the guide is
“foo-01.cap.”

Aircrack-ng is run against this file and the packets for various networks are
parsed:

aircrack-ng foo-01.cap

If there are packets for more than one network, you will be prompted to specify
which one by selecting it from a list. Once that is done, the attack runs. First it tries
the PTW attack, then the earlier analysis of the data in an effort to retrieve the key.

A successful attack should yield results like Figure 1.6 but with a different key.
If no key is retrieved or there are not enough packets, you can quit the program

and run it later, or just leave it while more are captured and it will retry at periodic
intervals.

Once Aircrack-ng gets a key, you can shut down the other programs and use the
key to connect or do whatever you want with it.

It Gets Better and Worse
Over time, people have slowly started to get the message that they need to secure
their networks. Security experts and the wardriving community took every opportu-
nity to warn people of the dangers of operating open networks.

Figure 1.6

Aircrack-ng Found the Key

CHAPTER 1  802.11 Wireless – Infrastructure Attacks14

Note the bump in the curve starting just before the marker for May 2007. It is
pretty telling that people started paying more attention right after the TJX breach
announcement.

Since the disclosure of the TJX penetration, corporate and individual attention to
wireless security has increased for the better. Companies and individuals not wanting
to be the next poster child for wireless security took efforts to upgrade from WEP to
WPA and WPA2 security. While this is a definite step up in security, it is not without
its issues.

Cryptographically speaking, WPA and WPA2 solve a lot of the issues of WEP.
The IV counter is now larger (48 bits) and various countermeasures are in place to
prevent the problems that plagued WEP. Further improvements include replacing the
simple cyclic redundancy check (CRC) on each packet with the message integrity
check (MIC), or Michael checksum and packet sequence enforcement, to prevent
ARP replays and similar attacks.

There is one problem that designers have so far been unable to engineer away.
A problem that has been plaguing computer security since the beginning: human
stupidity. People are just not very good at choosing hard-to-crack passphrases.

Note
Interestingly, wigle.net, in their graph of crypto usage over time from submitted networks,
shows a marked “jump” of almost 1 percent centered on the period of April 2007 when
TJX announced they had a problem and the subsequent media attention to the issue of
wireless security. Figure 1.7 shows the graph of encryption usage from wigle.net over time.

Figure 1.7

Wigle.net Graph of Encryption Usage

WPA and WPA2 in a Nutshell 15

WPA and WPA2 in a Nutshell
WPA version 1 was an interim solution created by the IEEE when it was clear WEP
was on a path to ruin. Fearing mass obsolescence and the backlash from consumers
feeling they were being forced to buy new equipment only a short time after invest-
ing in it to achieve security, WPA was designed to operate on the limited hardware
resources of APs designed for WEP. To do this, WPA still uses RC4 as its stream
cipher which limits the load on the equipment. WPA2 (also known as 802.11i) is the
final and more secure version of WPA. WPA2 uses Advanced Encryption Standard
(AES) as its stream cipher, which is vastly more secure but requires resources only
found on the newer generations of APs and is not available on older equipment.

Note
Both versions of WPA can operate in two modes. These are Pre-Shared Key (PSK) and
Enterprise or RADIUS mode. There are different settings within each mode, but these are
the major functions.

In PSK mode, the AP itself handles the authentication and contains a secret key that
both the client STA and AP use to set up a secure connection. In Enterprise mode, a
connecting client has all traffic blocked except to the authentication server. There the AP
can pass further credentials such as usernames and passwords or certificates, which can be
integrated with a larger authentication scheme such as Active Directory.

For the most part, PSK is the most common solution for home and small businesses.
Enterprise mode requires further infrastructure and more complexity but has the added
benefit of central control and integration with directory services for things like single sign on.

In the process, the designers of WPA and WPA2 set about to solve other problems
besides security. One of the problems with WEP was the keys themselves, though,
not from a security standpoint but from a standpoint of users getting annoyed and
turning off security.

WEP keys are usually 26-digit hexadecimal numbers (shorter if you are using less
than 128 bits) that had to be typed into the client manager software to connect. These
keys were long, complicated, and easy to mistype causing no end of headaches trying
to get a system connected. In addition, they were very difficult to remember and thus
ended up almost always being written on a sticky note somewhere near the AP or the
users’ desk. To make things worse, most operating systems (OSs) made you type it
manually twice, while masking what you typed behind stars or black circles.

To make things worse, there was no standard definition as to how keys should be
entered. Some equipment defaulted to using the key in hexadecimal; others used it
in ASCII format. It was not always apparent which format was needed. This caused
no end of problems, particularly for people using different manufacturer’s APs and
client adapters. Often someone would buy an Apple Airport, which used an ASCII
key, and would attempt to use their non-Apple computer with its built in wireless
to connect. The other OS would request the key in hexadecimal and the AP would

CHAPTER 1  802.11 Wireless – Infrastructure Attacks16

expect an ASCII key causing the connection to fail. More often, this leads many
users to set the AP to the last known working conditions: no security.

To solve this annoyance, the IEEE included detailed guidance in the specifications
on generating the hexadecimal key from an easier to remember passphrase. Both
WPA version 1 and version 2 in PSK mode use 256-bit hexadecimal keys (as opposed
to WEPs 128-bit maximum) generated with the PBKDF2 algorithm.

The PBKDF2 algorithm generates a key called the Pairwise Master Key (PMK)
that is then used to drive a four-way handshake to authenticate client devices to the
network.

This algorithm basically works like this:

PMK 5 (Passphrase 1 SSID 1 SSID Length),* 4096 SHA1 iterations

The PMK is made up of the user supplied passphrase (from 8 to 63 characters),
concatenated with the SSID of the network as a salt value and the SSID length. This
is then run through 4096 iterations of SHA1 and outputs a 256-bit value, which is the
key used in the handshake.

The nice part about this system is that all a user has to remember is a simple pass-
phrase – the rest is generated for them since the SSID is known and so is the length.
No more having to remember long and ugly hexadecimal strings. You can sit down
at any WPA client manager and generate the same hexadecimal key if you know the
passphrase and SSID.

Around the time WPA version 1 came out, the security community took note of
an interesting statement in the specifications:

A passphrase typically has about 2.5 bits of security per character, so the
passphrase mapping converts an n octet password into a key with about 2.5n 1
12 bits of security. Hence, it provides a relatively low level of security, with keys
generated from short passwords subject to dictionary attack. Use of the key hash
is recommended only where it is impractical to make use of a stronger form
of user authentication. A key generated from a passphrase of less than about
20 characters is unlikely to deter attacks.2

This statement, from the 802.11i specifications, indicates that any passphrase of
fewer than 20 characters was considered weak, as anything less was not random enough
and could be subject to a dictionary attack. This led to Robert Moskowitz writing an
article for wifinetnews.com that explained that since an attacker knew the SSID of the
network they were attacking and the SSID length, they had several of the parts that are
used to make up the key and that the entire security of the key rested on good pass-
phrase selection. Not a good prospect from the security community view of things.

The article also pointed out that nothing was secret about how keys were generated
and that the hashed version of the key is sent between the STA and AP and can be
easily captured. In theory, an attacker could run a dictionary brute force attack where
they insert their dictionary word into the PBKDF2 algorithm and run it through the
4096 SHA1 iterations. The resulting value is compared to the captured hash, and if
they match, then the attack knows the plaintext key.

WPA and WPA2 in a Nutshell 17

The limitation is that there are a staggeringly large number of possible passphrases.
Passphrases can be between 8 and 63 characters long. There are 94 possible characters
(ASCII characters 32 to 126) that can be used for each character of a passphrase – this
includes all the upper- and lowercase letters, numbers, and symbols on a keyboard,
leading to a very large number of possibilities. SHA1 is also very CPU intensive and
takes a comparatively long time to calculate, so to do an exhaustive search would take
thousands of years or longer.

Where the weakness enters the picture is the one element of the formula that is
not in the math; the human operator. Since the key is up to the user to select, they will
often opt for an easy way to remember passphrase based on dictionary words. This
greatly reduces the key space needing to be searched by an attacker. If they know
to limit their search to dictionary words, they can limit the search to a few hundred
thousand words instead of the trillions of possible combinations. Where the real rub
occurs is that the attack only requires that the attacker can obtain the four-way hand-
shake and they can spend all the time in the world to run through world lists offline
and away from the target.

This weakness was first implemented by Josh Wright in his tool coWPAtty.
Provide a list of dictionary words, the SSID of the network you are attacking, and a
capture file containing a hashed version of the key, and coWPAtty will run through
the dictionary and hash all the words out and see if they match the capture. If they
do, you have the passphrase.

First versions of the program were limited to running the attack straight through,
meaning that the hashes had to be calculated each time it was run. This was annoy-
ing if you were testing the key on multiple networks with the same SSID. The CPU
power was being wasted since it was being repeated multiple times.

Shortly after the release of coWPAtty version 2, a wireless research group, the
Church of Wi-Fi, undertook a project to speed up this process.

Note
In the world of password hash breaking, there is a concept of a ‘rainbow table.’ This is a
situation where instead of attacking each password individually each time and starting
the process and it’s resulting CPU cost each time, you simply apply the concept of a time/
space trade-off and calculate the hash for every possible character combination and store
the results for later lookup. In 2005, the Shmoo Group (www.shmoo.com) released their
rainbow tables to the public that contained every possible password for the LanMan hashes
used to store older versions of windows login passwords.

The time/space trade-off is harder to apply to WPA passphrases. Since the SSID and the
SSID length are seeded into the passphrase hash, this means that the passphrase of “pass-
word” will be hashed differently on a network with the SSID of “linksys” then it will on a
network with the SSID of “default.” So in order to generate an exhaustive hash list of all
passphrases possible for all networks, one also has to do so for each SSID possible, which
is obviously a lot and would take a huge amount of storage, literally thousands of terabytes,
if not more.

CHAPTER 1  802.11 Wireless – Infrastructure Attacks18

The Church of Wi-Fi took a different approach to speed up the process. They
figured that if you run the attack against an SSID once, why not store the list of
resulting test hashes to use again later if the same SSID was encountered. For exam-
ple, if you come across the SSID “wireless” and run a dictionary against the key,
even if you are unsuccessful, save the output, and the next time if you encounter that
SSID, you don’t have to spend the CPU time redoing the calculations for the same
dictionary – just look up the previous output.

This concept was further extended to the idea that if you know the SSID of your
target (that is, you are doing a penetration test), you can save your time on site by
spending days, weeks, or months of time generating a hash lookup table for that
SSID to be used on site. You could set up a few spare machines to work 24/7 before
the scheduled test to give you a time advantage on site. In addition, you could save
those tables for the next test as well. The result was the addition of the genpmk pro-
gram to coWPAtty to generate hash lookup tables without the need for a captured
handshake.

To demonstrate this improvement, the Church of Wi-Fi set about to make a set
of tables that would give the greatest chance of recovering the key, rather than try-
ing to build an exhaustive list of all possible passphrases for all possible SSIDs,
which would be absolutely prohibitive to store or calculate in a reasonable time.
Their approach was to apply some psychology to the process to build a targeted list.
You see, people are predictably lazy and tend to choose easy-to-remember pass-
phrases. In addition, people also choose fairly simple SSIDs or just leave them at the
manufacturers default.

Taking lists of common and known-used passphrases, along with wigle.net’s
list of the top 1,000 SSIDs (which accounts for approximately 50 percent of their
database of tens of millions of networks), they computed tables consisting of
approximately 1.2 million common words and passphrases for each of the top
1,000 SSIDs as a proof of concept. These tables can be used if you are attacking or
auditing (arguably the same thing with different intentions) a network configured
with one of the top SSIDs – you can quickly do a lookup and compare the pre-
hashed tables to your captured hash several orders of magnitude faster than doing
the CPU calculations onsite. Tests on a Pentium 3,700 MHz laptop showed at the
time it could test 12 keys/s whereas to just do a lookup from a table it could test
18,000 keys/s.

The Church of Wi-Fi tables are distributed free via bittorrent links on churchof-
wifi.org or by DVD sales from www.renderlab.net/projects/WPA-tables for the band-
width impaired.

Furthering the idea behind this project, the folks at offensive-security.com (the
group behind the Backtrack bootable Linux security distro) generated 500 Gb of
tables using a similar methodology. While they eliminated some of the more extra-
neous SSIDs from the Church of Wi-Fi list, they cover all the very common ones.
Each SSID is 1.9 Gb and uses a 49 million word dictionary. Obviously, this is a
bit hard to distribute, but they are available via bittorrent at www.offensive-security
.com/wpa-tables/

How to Crack WPA PSK and WPA2 PSK 19

How to Crack WPA PSK and WPA2 PSK
Since WPA and WPA2 share the same key generation mechanism, the same attack on
password selection works on both. When coWPAtty was first altered to add support
for WPA2, it was only a few lines of code in the parser that needed to be changed;
the rest of the code was fine as it was.

The ability to crack a WPA key is based on two things: the quality and size of
the dictionary used and the amount of time an attacker is willing to invest. If the
passphrase used is not in the dictionary supplied to coWPAtty, there is no chance of
recovering the key. However, if you use a huge dictionary or try to do an exhaustive
search, you’ll be sitting there somewhere on this side of forever waiting. Depending
on your intentions, on a professional audit it may be easier and more feasible to
simply ask for the passphrase and ensure it would not be in a dictionary likely to be
used by an attacker. In the situation of a penetration test or an actual attack, manually
testing the hashes is the next option.

Your best expectation is to audit a network and make sure that the password is
not (or is, depending on your intentions) in any reasonable-size dictionary available
to an attacker.

The first step is to capture the four-way handshake of a client authenticating to
the network. Every client does this and in the process, a hashed version of the key is
sent through the air. Once we have that, we can attack it.

How you capture the handshake is up to you. Packet capture tools like Wireshark
(www.wireshark.org) can be used, but the Aircrack-ng suite’s Airodump-ng provides
probably the simplest interface. See the WEP cracking tutorial in this chapter on set-
ting up Airodump-ng to listen to a target:

airodump-ng --channel 6 --bssid 00:16:b6:1c:91:94 --write bar ath1

Airodump-ng, in addition to collecting packets for WEP cracking, also can alert
when a four-way handshake has been captured too. When a valid handshake is cap-
tured, in the upper right-hand corner of the Airodump screen will appear a “WPA
Handshake” along with the BSSID of the network it caught, as in Figure 1.8.

It may be a while before a valid client joins the network, and even then the full
handshake may not be exchanged or captured. It may be necessary to force the issue
with a deauthentication attack.

A deauthentication attack (deauth) is where an attacker fakes a message from the
AP to the client asking it to disconnect. Normally, this is used to gracefully close
sessions if the AP was going down or rebooting. Since these sorts of administrative
messages are unencrypted and unauthenticated, anyone can inject them and the client
will obey and disconnect. A few seconds later the client sees that the network is back
(it never left) and then reconnects, thus disclosing the four-way handshake.

Aireplay-ng has an option to perform this attack, along with other tools, but aire-
play has the added advantage of requiring a specific target and avoids collateral dam-
age from unintended disconnects of other networks:

aireplay-ng -0 5 -a 00:16:b6:1c:91:94 -c 00:0e:35:76:53:47 ath1

CHAPTER 1  802.11 Wireless – Infrastructure Attacks20

Figure 1.8

Airodump-ng Captured a Handshake

Figure 1.9

Aireplay-ng Running a Deauthentication Attack

In this case, we are using option “0” to specify the deauth attack. Five is the
number of times to do this attack, just to make sure the client disconnects. The
target network BSSID is specified, as well as the client MAC and the injection
interface. Once this command runs, Aireplay-ng will deauth the client five times,
and hopefully when the client reconnects, Airodump-ng will capture the handshake.
Aireplay displays output similar to Figure 1.9, substituting your target addresses,
of course.

Once you have a valid four-way handshake, you can start the cracking process.
The nice part of this attack is that all it requires is the handshake, which can be

How to Crack WPA PSK and WPA2 PSK 21

captured passively in a few seconds if you are lucky. The rest of the attack can take
place offline elsewhere and does not require the target network.

Tip
Capturing a complete 4-way hash is trickier than it sounds. Differences in client manag-
ers, AP behaviors, and even being on the edge of range can lead to incomplete captures.
If you are having trouble in capturing a complete handshake (if coWPAtty is reporting so),
try adjusting your location relative to the AP and the client and try again. All else fails, wait
for a client to log in normally as some clients behave oddly on reassociation after being
deauthenticated.

CoWPAtty only needs a few pieces of information to begin the attack once the
data has been collected – in this case, the wpa2psk-linksys.dump capture file:

cowpatty -r wpa2psk-linksys.dump -f dict -s linksys

In this case the capture file, which is wpa2psk-linksys.dump, the dictionary file,
dict, and the SSID of the network we are attacking, in this case, linksys. CoWPAtty
will parse the capture file, and if there is a complete handshake, the crack will begin;
otherwise, it will report that the handshake is incomplete and you should try to reac-
quire it. If you have a complete handshake, coWPAtty sets about computing each
word in the dictionary through the PBKDF2 algorithm with the specified SSID and
comparing the output to the capture. If they match, it reports the successful pass-
phrase. If not, it moves on to the next one. Figure 1.10 shows that the PSK on this
network was dictionary.

Depending on the CPU you are using and the size of the dictionary, the length
of time to run through the list will vary. If there is a match, however, coWPAtty

Figure 1.10

CoWPAtty Successfully Retrieves the Passphrase

CHAPTER 1  802.11 Wireless – Infrastructure Attacks22

will report the success. In Figure 1.10, the CPU could work through approximately
100 passphrases per second and went through the fairly short dictionary (approxi-
mately 10,000 words) in 37 s. If this is an SSID that you audit regularly, you may not
want to spend all the CPU time each time you want to run through this same list. In
that case, you will want to save the output in a lookup table.

Epic Fail
CoWPAtty expects the dictionary to be a simple list of words in UNIX test file format as
opposed to DOS formatted. DOS-formatted text has a hidden control character at the
end of each word, whereas the UNIX format does not. If you feed coWPAtty a DOS-
formatted list, its parser includes the hidden control character as part of the passphrase
and is computed as such. So the passphrase of “password” used in the list will actually
be computed as “password/r,” and of course, the resulting hash will not match the
capture for a network using the passphrase “password.” The Church of Wi-Fi had this
happen to them twice in the course of generating their tables, and they had to throw out
months of work.

The mathematics behind the lookup table is exactly the same as running a “live”
crack, except instead of comparing to a capture file, the hashed version of the word
and its plaintext version are written to a file. That file can then be looked at later to
quickly look for matches. To generate your own lookup table, coWPAtty comes up
with the program, genpmk:

genpmk -f dict -s linksys -d linksys.hash

Genpmk takes a word list (dict), network SSID (linksys), and outputs the
resulting hashes to a file (linksys.hash). This process takes just about as long as run-
ning coWPAtty directly on the capture as the time taken between Figure 1.10 and
Figure 1.11; however, this file can then be fed back into coWPAtty for much faster
lookups on subsequent tests.

The most likely times you will want to compute a hash file is if you know the
target ahead of time and want to spend off hours (night time or other idle CPU time)
to give yourself a time advantage onsite (spend the time now to save it onsite) or if
you repeat the same operations over and over and want to save the time by investing
it only once and saving the output for later use. If it takes you an hour to compute
through a word list, rather than spend that hour each visit, if you do it once and save
the output, you can effectively save an hour each time.

Once you have a hash file generated, you can enter it in place of, or in addition
to, a dictionary. CoWPAtty will quickly look through the hash file for matches. If
none is found, it will report the failure, or if you specified a word list, it will begin
the CPU intensive crack with that list. If you look at the speed of the crack between
Figure 1.10 and Figure 1.12, you will see the marked improvement in speed:

cowpatty -r wpa2psk-linksys.dump -d linksys.hash -s Linksys

How to Crack WPA PSK and WPA2 PSK 23

In Figure 1.12, doing a live crack onsite would have been done in about 37 s.
Using a hash file, which could be computed ahead of time in off hours or down time
or from one of the publicly available sets, the lookups were done in 0.06 s. Quite the
time savings, if you end up reusing the hash file several times.

Recent developments have helped improve the process of doing the computa-
tionally heavy portions of WPA cracking and hash table generation. The usage of

Figure 1.11

Genpmk Computing a Hash File

Figure 1.12

CoWPAtty Using a Precomputed Hash File Instead of a Dictionary

CHAPTER 1  802.11 Wireless – Infrastructure Attacks24

Field Programmable Gate Arrays (FPGAs), which are programmable processors,
has shown a much faster SHA1 implementation than on generic CPUs since the
algorithm is built into the hardware itself. This means that the FPGA does only one
thing and it does very fast. Additionally, recent advances in video card Graphics
Processing Units (GPUs) from companies like Nvidia and ATI have allowed non-
video processes to be run on their chips. These chips are much better suited for
the type of computations being performed. A sample implementation is available at
http://code.google.com/p/pyrit/

Summary
While WPA-PSK (and WPA2-PSK) is an improvement over WEP, by creating a
simpler method for users to remember and enter passphrases, the IEEE introduced a
human flaw into the equation. WPA-PSK has a 256-bit key, much more substantial
than WEPs 128-bit offering, and the randomness of that key is based on a user’s abil-
ity to choose a random passphrase and a unique SSID, which in general, people are
not very good at.

In short, it’s all down to choosing a good passphrase. There have been no reports
of WPA-PSK passphrases being cracked with such an attack; however, there’s really
no way to detect it being done. Anecdotally from professional pen testers though,
usage of the Church of Wi-Fi tables has enjoyed about a 50 percent success rate if the
SSID is in the list, meaning that an attacker has a decent chance of being able to walk
into a situation and being able to crack a password. It just goes to show that if you
use WPA-PSK, you had better follow the IEEE’s advice from the standard and use a
20-character passphrase that is not based on any dictionary words, and is made up of
uppercase and lowercase letters, numbers, and a few symbols for good measure.

Other measures to reduce your risk of a brute force attack on WPA:

•	 Periodically changing passphrases (maintaining length and randomness)
•	 Periodically changing the SSID, thus changing the salt value
•	 If sensitive or financial data is being sent, consider the installation and use of a

Wireless Intrusion Detection System (WIDS)
•	 If at all possible, migrate to a WPA-Enterprise solution
•	 Educate your users on the need for complex passphrases

Endnotes
1.	 www.netstumbler.org/f22/faq-legalities-concerning-wardriving-netstumbling-nethugging-6430/

#post48649; [retrieved 01.12.09].
2.	 http://standards.ieee.org/getieee802/download/802.11i-2004.pdf; [retrieved 01.12.09].

