

This chapter covers the following key topics:

•

Operating Systems Basics

•

IOS Architecture Overview

•

Memory Organization

•

IOS Processes

•

IOS Kernel

•

Packet Buffer Management

•

Device Drivers

Ch01i.book Page 2 Tuesday, June 13, 2000 2:43 PM

C

H

A

P

T

E

R

1

Fundamental IOS Software
Architecture

If you were naming the most popular and widely used computer operating systems, which
ones would you choose? Most likely, your list would contain names like UNIX, MS-DOS,
Microsoft Windows, or even IBM’s MVS for mainframes. These are all well-known
operating systems—you might even be using one on a computer at home. Now, think for a
minute; are there any others? Would your list contain Cisco IOS? No, it probably wouldn’t,
even though IOS is one of the most widely deployed operating systems in use today.

Unlike the general-purpose operating systems just mentioned, many people never
encounter IOS directly. Most who use a computer to access the Internet aren’t even aware
IOS is behind the scenes. Even those who are aware of IOS, people who use it directly, often
don’t consider it to be an operating system but instead just the software that runs Cisco
routers.

IOS might not run word processors or accounting applications like others on the list but it
is still, in fact, an operating system—albeit, one specialized for switching data packets. As
you will see, much of the IOS architecture is focused on switching packets as quickly and
efficiently as possible.

Although IOS is constructed of many of the same fundamental components found in
general-purpose operating systems, the components often contain key differences due to
the design goals for IOS. This chapter covers these fundamental operating system
components—the

software infrastructure

 of IOS—and explores the rationale behind their
design.

This chapter begins by introducing a few basic operating system concepts and terms that
are useful in understanding the IOS architecture. If you already have a thorough
understanding of operating systems, you might want to skip this first section and continue
with the section, “IOS Architecture Overview.” The remainder of this chapter deals with the
major elements of the IOS architecture.

Ch01i.book Page 3 Tuesday, June 13, 2000 2:43 PM

4

Chapter 1: Fundamental IOS Software Architecture

Operating Systems Basics

Modern operating systems provide two primary functions: hardware abstraction and
resource management. Hardware abstraction gives software developers a common interface
between their application programs and the computer’s hardware so each individual
programmer doesn’t need to deal with the hardware’s intricacies. Instead, the hardware-
specific programming is developed once, in the operating system, and everyone shares.

The second function that operating systems provide is managing the computer’s resources
(CPU cycles, memory, and disk drive space, for example) so they can be shared efficiently
among multiple applications. Like hardware abstraction, building resource management
into the operating system keeps each application programmer from writing resource
management code for every program.

CPU Resource Management and Multitasking

Although some operating systems only allow one program to run at a time (most versions
of MS-DOS operate this way, for example), it’s more common to find operating systems
managing multiple programs concurrently. Running multiple programs at once is called

multitasking

 and operating systems that support it are typically called

multitasking
operating systems

.

Computer programs written for multitasking operating systems themselves often contain
multiple independent tasks that run concurrently. These little subprograms are called

threads

 because they form a single thread of instruction execution within the program.
Threads each have their own set of CPU register values, called a

context

, but can share the
same memory address space with other threads in the same program. A group of threads
that share a common memory space, share a common purpose, and collectively control a
set of operating system resources is called a

process

. On operating systems and CPUs that
support virtual memory, each process might run in a separate address space that is protected
from other processes.

Because a processor can execute instructions for only one program at a time, the operating
system must manage which set of program instructions (which thread) is allowed to run.
Deciding which process should run is called

scheduling

 and is usually performed by a core
piece of the operating system called the

kernel

. An operating system can use one of several
methods to schedule threads, depending on the type of applications the operating system
has been optimized to support. Different types of applications (batch, interactive,
transactional, real-time, and others) have different CPU utilization characteristics, and their
overall performance is affected by the scheduling method used.

The simplest scheduling method is to assign each thread to the processor in the order its run
request is received and let each thread run to completion. This method is called

FIFO

 (first-
in, first-out)

run-to-completion

 scheduling. FIFO’s advantages are: It is easy to implement,

Ch01i.book Page 4 Tuesday, June 13, 2000 2:43 PM

Operating Systems Basics

5

it has very low overhead, and it’s “fair”—all threads are treated equally, first come, first
served.

FIFO with run-to-completion scheduling is good for batch applications and some
transactional applications that perform serial processing and then exit, but it doesn’t work
well for interactive or real-time applications. Interactive applications need relatively fast,
short duration access to the CPU so they can return a quick response to a user or service
some external device.

One possible solution for these applications is to assign priorities to each thread. Threads
with a critical need for fast access to the CPU, such as real-time threads, can be assigned a
higher priority than other less critical threads, such as batch. The high priority threads can
jump to the head of the line and quickly run on the CPU. If multiple threads are waiting
with the same priority, they are processed in the order in which they’re received (just like
basic FIFO). This method is called

run-to-completion priority scheduling

.

Run-to-completion priority scheduling, though an improvement over FIFO, still has one
drawback that makes it unsuitable for interactive and real-time applications—it’s easy for
one thread to monopolize the processor. High priority threads can get stuck behind a long-
running, low-priority thread already running on the processor. To solve this problem, a
method is needed to temporarily suspend or

preempt

 a running thread so other threads can
access the CPU.

Thread Preemption

Involuntarily suspending one thread to schedule another is called

preemption

. Scheduling
methods that utilize preemption instead of run to completion are said to be

preemptive

, and
operating systems that employ these methods are called

preemptive multitasking

 operating
systems. Preemption relies on the kernel to periodically change the currently running thread
via a

context switch

. The trigger for a context switch can be either a system timer (each
thread is assigned a time slice) or a function call to the kernel itself. When a context switch
is triggered, the kernel selects the next thread to run and the preempted thread is put back
in line to run again at its next opportunity based on the scheduling method being used.

NOTE

A

context switch

 occurs when an operating system’s kernel removes one thread from the
CPU and places another thread on the CPU. In other words, context switches occur when
the computer changes the task on which it is currently working. Context switches can be
quite expensive in terms of CPU time because all of the processor’s registers must be saved
for the thread being taken off the CPU and restored for the thread being put on the CPU.
The context is essential for the preempted thread to know where it left off, and for the thread

being run to know where it was the last time it ran.

Ch01i.book Page 5 Tuesday, June 13, 2000 2:43 PM

6

Chapter 1: Fundamental IOS Software Architecture

There are several advantages to preemptive multitasking, including the following:

•

It’s predictable

—A thread can, within limits, know when it will likely run again. For
instance, given the limits of kernel implementations, a thread can be set up to run once
a second and the programmer can be reasonably certain that the thread will be
scheduled to run at that interval.

•

It’s difficult to break

—No single thread can monopolize the CPU for long periods
of time. A single thread falling into an endless loop cannot stop other threads from
running.

Of course, there are also disadvantages to preemptive multitasking, such as:

•

It’s less efficient than run-to-completion methods

—In general, preemptive
multitasking systems tend to switch contexts more often, which means the CPU
spends more time scheduling threads and switching between them than it does with
run to completion.

•

It adds complexity to application software

—A thread running on a preemptive
system can be interrupted anywhere. Programmers must design and write their
applications to protect critical data structures from being changed by other threads
when preempted.

Memory Resource Management

Operating systems also manage the computer’s memory, typically dividing it into various
parts for storing actual computer instructions (code), data variables, and the

heap

. The heap
is a section of memory from which processes can allocate and free memory dynamically.

Some operating systems provide a means for processes to address more memory than is
physically present as RAM, a concept called

virtual memory

. With virtual memory, the
computer’s memory can be expanded to include secondary storage, such as a disk drive, in
a way that’s transparent to the processes. Operating systems create virtual memory using a
hardware feature, available on some processors, called a

memory map unit

 (MMU). MMU
automatically remaps memory address requests to either physical memory (RAM) or
secondary storage (disk) depending on where the contents actually reside. The MMU also
allows some address ranges to be protected (marked read-only) or to be left totally
unmapped.

Virtual memory also has another benefit: In operating systems that support it, an MMU can
be programmed to create a separate address space for each process. Each process can have
a memory space all to itself and can be prevented from accessing memory in the address
space of other processes.

Ch01i.book Page 6 Tuesday, June 13, 2000 2:43 PM

IOS Architecture Overview

7

Although it has many benefits, virtual memory does not come for free. There are resource
requirements and performance penalties—some of them significant—associated with its
use. For this reason, as you will see, IOS does not employ a full virtual memory scheme.

Interrupts

Operating systems usually provide support for CPU interrupts. Interrupts are a hardware
feature that cause the CPU to temporarily suspend its current instruction sequence and to
transfer control to a special program. The special program, called an

interrupt handler

,
performs operations to respond to the event that caused the interrupt, and then returns the
CPU to the original instruction sequence. Interrupts often are generated by external
hardware, such as a media controller requesting attention, but they also can be generated by
the CPU itself. Operating systems support the interrupts by providing a set of interrupt
handlers for all possible interrupt types.

IOS Architecture Overview

IOS was originally designed to be a small, embedded system for early Cisco routers. At that
time, routers themselves were viewed mostly as hardware appliances—little distinction was
made between the hardware and software. In fact, initially IOS wasn’t even called “IOS”;
it was just referred to as “the OS” that ran a Cisco router.

As routed networks gained popularity, demand rose for routers to support an increasing
number of protocols and to provide other functionality, such as bridging. Cisco responded
to this enormous demand by adding new features into the router software, resulting in the
multi-functional routing and bridging software IOS is today. Interestingly, although the
functionality of IOS has grown considerably, the basic operating system architecture has
remained mostly the same.

Compared to other operating systems, IOS has a fairly simple architecture. Like most small,
embedded systems, IOS was designed to be lean and mean to stay within the memory and
speed constraints of the original platforms.

Early routers had limited amounts of memory to share between the software and data (such
as routing tables). To limit the size of the executable image, IOS was designed to provide
only essential services.

Speed was also a major consideration in the design. To maximize the router’s capability to
quickly switch packets, a conscious effort was made to design the operating system with a
minimum of operational overhead and to allow maximum CPU bandwidth for packet

Ch01i.book Page 7 Tuesday, June 13, 2000 2:43 PM

8

Chapter 1: Fundamental IOS Software Architecture

switching. Many safeguards, such as inter-thread memory protection mechanisms, found in
other operating systems are missing from IOS because of the CPU and the memory
overhead they introduce. In general, the IOS design emphasizes speed at the expense of
extra fault protection.

Figure 1-1 shows a conceptual diagram of the IOS architecture.

Figure 1-1

IOS Architecture

As Figure 1-1 illustrates, IOS has five major elements:

•

Processes

—Individual threads and associated data that perform tasks, such as system
maintenance, switching packets, and implementing routing protocols.

•

Kernel

—Provides basic system services to the rest of IOS, such as memory
management and process scheduling. It provides hardware (CPU and memory)
resource management to processes.

•

Packet Buffers

—Global memory buffers and their associated management functions
used to hold packets being switched.

•

Device Drivers

—Functions that control network interface hardware and peripherals
(such as a flash card). Device drivers interface between the IOS processes, the IOS
kernel, and the hardware. They also interface to the fast switching software.

•

Fast Switching Software

—Highly optimized packet switching functions.

Each of these elements, except fast switching software, is discussed in more detail in the
following sections. The fast switching software is discussed later in Chapter 2, “Packet
Switching Architecture.” Before we investigate these architectural elements, let’s first look
at how IOS organizes memory.

Processes
Packet
buffers

Fa
st

 s
w

itc
hi

ng
so

ftw
ar

e

Device drivers

Hardware

Kernel

Ch01i.book Page 8 Tuesday, June 13, 2000 2:43 PM

Memory Organization

9

Memory Organization

IOS maps the entire physical memory into one large flat virtual address space. The CPU’s
MMU is used when available to create the virtual address space even though IOS doesn’t
employ a full virtual memory scheme. To reduce overhead, the kernel does not perform any
memory paging or swapping, so virtual address space is limited to the bounds of the
physical memory available.

IOS divides this address space into areas of memory called

regions,

which mostly
correspond to the various types of physical memory. For example, SRAM might be present
for storing packets and DRAM might be present for storing software and data on a given
type of router. Classifying memory into regions allows IOS to group various types of
memory so software needn’t know about the specifics of memory on every platform.

Memory regions are classified into one of eight categories, which are listed in Table 1-1.

Memory regions also can be nested in a parent-child relationship. Although there is no
imposed limit on the depth of nesting, only one level is really used. Regions nested in this
manner form

subregions

 of the parent region. Figure 1-2 shows a typical platform virtual
memory layout and the regions and subregions IOS might create.

Table 1-1

Memory Region Classes

Memory
Region
Class Characteristics

Local Normal run-time data structures and local heaps; often DRAM.

Iomem Shared memory that is visible to both the CPU and the network media
controllers over a data bus. Often is SRAM.

Fast Fast memory, such as SRAM, used for special-purpose and speed-critical
tasks.

IText Executable IOS code.

IData Initialized variables.

IBss Uninitialized variables.

PCI PCI bus memory; visible to all devices on the PCI buses.

Flash Flash memory. This region class can be used to store run-from-Flash or run-
from-RAM IOS images. It often also can be used to store backups of the
router configuration and other data, such as crash data. Typically, a file
system is built in the Flash memory region.

Ch01i.book Page 9 Tuesday, June 13, 2000 2:43 PM

10

Chapter 1: Fundamental IOS Software Architecture

Figure 1-2

Memory Regions

The IOS EXEC command

show region

 can be used to display the regions defined on a
particular system as demonstrated in Example 1-1 (taken from a Cisco 7206 router).

On the left, the

Start

 and

End

 addresses correspond to parts of the platform virtual memory
map. On the right are the regions and subregions. Subregions are denoted by a name with
the

:

 separator and no parentheses.

Figure 1-3 illustrates this memory map and its regions.

Example 1-1

show region

 Command Output

router#

show region

Region Manager:
 Start End Size(b) Class Media Name
 0x01A00000 0x01FFFFFF 6291456 Iomem R/W iomem
 0x31A00000 0x31FFFFFF 6291456 Iomem R/W iomem:(iomem_cwt)
 0x4B000000 0x4B0FFFFF 1048576 PCI R/W pcimem
 0x60000000 0x619FFFFF 27262976 Local R/W main
 0x600088F8 0x61073609 17214738 IText R/O main:text
 0x61074000 0x611000FF 573696 IData R/W main:data
 0x61100100 0x6128153F 1578048 IBss R/W main:bss
 0x61281540 0x619FFFFF 7858880 Local R/W main:heap
 0x7B000000 0x7B0FFFFF 1048576 PCI R/W pcimem:(pcimem_cwt)
 0x80000000 0x819FFFFF 27262976 Local R/W main:(main_k0)
 0xA0000000 0xA19FFFFF 27262976 Local R/W main:(main_k1)

DRAM

SRAM Fast

IBSS

IData

IText

Local

Local
(heap)

Physical
memory Regions

Subregions

Ch01i.book Page 10 Tuesday, June 13, 2000 2:43 PM

Memory Organization

11

Figure 1-3

Memory Map and Regions

The gaps between the address ranges—for example,

pcimem

 ends at

0x4B0FFFFF

 and

main

 begins at

 0x60000000

—are intentional. These gaps allow for expansion of the
regions and provide a measure of protection against errant threads. If a runaway thread is
advancing through memory writing garbage, it is forced to stop when it hits a gap.

From the output in Example 1-1 and Figure 1-3, you see that the entire DRAM area from
0x60000000 to 0x619FFFFF has been classified as a

local

 region and further divided into
subregions. These subregions correspond to the various parts of the IOS image itself (text,
BSS, and data) and the heap. The heap fills all the local memory area left over after the
image is loaded.

Some regions appear to be duplicates, only with a different address range, such as

iomem:(iomem cwt)

:

 Start End Size(b) Class Media Name
 0x01A00000 0x01FFFFFF 6291456 Iomem R/W iomem
 0x31A00000 0x31FFFFFF 6291456 Iomem R/W iomem:(iomem_cwt)
....

These duplicate regions are called

aliases.

 Some Cisco platforms have multiple

physical

address ranges that point to the same block of physical memory. These different ranges are
used to provide alternate data access methods or automatic data translation in hardware. For
example, one address range might provide cached access to an area of physical memory
while another might provide uncached access to the same memory.

The duplicate ranges are mapped as alternate views during system initialization and IOS
creates alias regions for them. Aliased regions don’t count toward the memory total on a
platform (because they aren’t really separate memory), so they allow IOS to provide a

DRAM

DRAM iomem

PCI
SRAM pcimem

main:bss

main:data

main:text

main

main:heap

Virtual
memory map Regions

Subregions

0x619FFFFF

0x60000000
0x4B0FFFFF

0x4B000000
0x01FFFFFF

0x01A00000

Ch01i.book Page 11 Tuesday, June 13, 2000 2:43 PM

12

Chapter 1: Fundamental IOS Software Architecture

separate region for alternate memory views without artificially inflating the total memory
calculation.

Memory Pools

IOS manages available free memory via a series of

memory pools,

which are essentially
heaps in the generic sense; each pool is a collection of memory blocks that can be allocated
and deallocated as needed. Memory pools are built out of regions and are managed by the
kernel. Often, the pools correspond one-to-one to particular regions, but they are not
required to. A memory pool can be built from memory spanning several regions, allowing
memory to be allocated and reclaimed from various areas for maximum efficiency.

You can obtain information on IOS memory pools by using the

show memory

command
as demonstrated by Example 1-2.

NOTE

The output from

show

memory

 can be very long. It should

not

 be issued while console
output paging is disabled (the terminal length set to 0) because there is no way to stop or

pause the output until it completes.

In Example 1-2, there are three memory pools:

Processor

,

I/O, and PCI. Comparing the
Head column in this output with the Start column from the output of show region in
Example 1-3 allows you to see which regions are contained within each memory pool.

Example 1-2 IOS Memory Pool Information in show memory Command Output

router#show memory
 Head Total(b) Used(b) Free(b) Lowest(b) Largest(b)
Processor 61281540 7858880 3314128 4544752 4377808 4485428
 I/O 1A00000 6291456 1326936 4964520 4951276 4964476
 PCI 4B000000 1048576 407320 641256 641256 641212
...

Example 1-3 show region Command Output

router#show region
Region Manager:
 Start End Size(b) Class Media Name
 0x01A00000 0x01FFFFFF 6291456 Iomem R/W iomem
 0x31A00000 0x31FFFFFF 6291456 Iomem R/W iomem:(iomem_cwt)
 0x4B000000 0x4B0FFFFF 1048576 PCI R/W pcimem
 0x60000000 0x619FFFFF 27262976 Local R/W main
 0x600088F8 0x61073609 17214738 IText R/O main:text
 0x61074000 0x611000FF 573696 IData R/W main:data
 0x61100100 0x6128153F 1578048 IBss R/W main:bss
 0x61281540 0x619FFFFF 7858880 Local R/W main:heap
....

Ch01i.book Page 12 Tuesday, June 13, 2000 2:43 PM

IOS Processes 13

From Example 1-3, you can see the Processor memory pool contains memory from the
subregion of main, called heap, which is in class Local. The Processor memory pool is
common to all IOS systems and always resides in local memory. This is the general
memory pool from which data is allocated (such as routing tables).

The I/O pool is managing memory from the iomem region and the PCI pool is managing
memory from the pcimem region.

The remaining fields in the show memory output in Example 1-2 provide useful statistics
about the pools as documented in the following list. All units are in bytes.

• Total—Total size of the pool.

• Used—Current amount of memory allocated.

• Free—Current amount of memory available.

• Lowest—The least amount of memory ever available since the pool was created.

• Largest—The size of the largest contiguous block of memory currently available.

The show memory command can also display the blocks within each memory pool, as
you’ll see later in this chapter.

IOS Processes
IOS processes are essentially equivalent to a single thread in other operating systems—IOS
processes have one and only one thread each. Each process has its own stack space, its own
CPU context, and can control such resources as memory and a console device (more about
that later). To minimize overhead, IOS does not employ virtual memory protection between
processes. No memory management is performed during context switches. As a result,
although each process receives its own memory allocation, other processes can freely
access that same memory.

IOS uses a priority run-to-completion model for executing processes. Initially, it might
appear that this non-preemptive model is a poor choice for an operating system that must
process incoming packets quickly. In some ways, this is an accurate observation; IOS
switching needs quickly outgrew the real-time response limitations of its process model,
and in Chapter 2, “Packet Switching Architectures,” you’ll see how this apparent problem
was solved. However, this model still holds some advantages that make it a good fit for
support processes that remain outside the critical switching path. Some of these advantages
are as follows:

• Low overhead—Cooperative multitasking generally results in fewer context
switches between threads, reducing the total CPU overhead contributed by
scheduling.

• Less complexity for the programmer—Because the programmer can control where
a process is suspended, it’s easy to limit context switches to places where shared data
isn’t being changed, reducing the possibility for side effects and deadlocks between
threads.

Ch01i.book Page 13 Tuesday, June 13, 2000 2:43 PM

14 Chapter 1: Fundamental IOS Software Architecture

Process Life Cycle
Processes can be created and terminated at any time while IOS is operating except during
an interrupt. A process can be created or terminated by the kernel (during IOS
initialization) or by another running process.

NOTE The term interrupt used here refers to a hardware interrupt. When the CPU is interrupted,
it temporarily suspends the current thread and begins running an interrupt handler function.
New processes cannot be created while the CPU is running the interrupt handler.

One component in particular is responsible for creating many of the processes in IOS: the
parser. The parser is a set of functions that interprets IOS configuration and EXEC
commands. The parser is invoked by the kernel during IOS initialization and EXEC
processes that are providing a command-line interface (CLI) to the console and Telnet
sessions.

Any time a command is entered by a user or a configuration line is read from a file, the
parser interprets the text and takes immediate action. Some configuration commands result
in the setting of a value, such as an IP address, while others turn on complicated
functionality, such as routing or event monitoring.

Some commands result in the parser starting a new process. For example, when the
configuration command router eigrp is entered via the CLI, the parser starts a new process,
called ipigrp (if the ipigrp process hasn’t already been started), to begin processing EIGRP
IP packets. If the configuration command no router eigrp is entered, the parser terminates
the ipigrp process and effectively disables any EIGRP IP routing functionality.

IOS processes actually go through several stages during their existence. Figure 1-4 shows
these stages and their corresponding states.

Ch01i.book Page 14 Tuesday, June 13, 2000 2:43 PM

IOS Processes 15

Figure 1-4 Process Life Cycle

Creation Stage
When a new process is created, it receives its own stack area and enters the new state. The
process can then move to the modification stage. If no modification is necessary, the process
moves to the execution stage.

Modification Stage
Unlike most operating systems, IOS doesn’t automatically pass startup parameters or
assign a console to a new process when it is created, because it’s assumed most processes
don’t need these resources. If a process does need either of these resources, the thread that
created it can modify it to add them.

new ready

run

idle

dead
killed

sc
he

du
le

w
ai

t o
n

ev
en

t

su
sp

en
d

ev
en

t o
cc

ur
s

kil
led

proce
ss

 co
mpletes

Create Modify Execute Terminate

re
so

ur
ce

s
ad

de
d

Ch01i.book Page 15 Tuesday, June 13, 2000 2:43 PM

16 Chapter 1: Fundamental IOS Software Architecture

Execution Stage
After a new process is successfully created and modified, it transitions to the ready state
and enters the execution stage. During this stage, a process can gain access to the CPU
and run.

During the execution stage, a process can be in one of three states: ready, run, or idle. A
process in the ready state is waiting its turn to access the CPU and to begin executing
instructions. A process in the run state is in control of the CPU and is actively executing
instructions. An idle process is asleep, waiting on external events to occur before it can be
eligible to run.

A process transitions from the ready state to the run state when it’s scheduled to run. With
non-preemptive multitasking, a scheduled process continues to run on the CPU until it
either suspends or terminates. A process can suspend in one of two ways. It can explicitly
suspend itself by telling the kernel it wants to relinquish the CPU, transition to the ready
state, and wait its next turn to run. A process can also suspend by waiting for an external
event to occur. When a process begins waiting on an event, the kernel implicitly suspends
it by transitioning it to the idle state, where it remains until the event occurs. After the event
occurs, the kernel transitions the process back to the ready state to await its next turn to run.

Termination Stage
The final stage in the process life cycle is the termination stage. A process enters the
termination stage when it completes its function and shuts down (called self termination)
or when another process kills it. When a process is killed or self terminates, the process
transitions to the dead state. A terminated process remains in the dead state, inactive, until
the kernel reclaims all of its resources. The kernel might also record statistics about the
process’ stack when it terminates. After its resources are reclaimed, the terminated process
transitions out of the dead state and is totally removed from the system.

IOS Process Priorities
IOS employs a priority scheme to schedule processes on the CPU. At creation time, every
process is assigned one of four priorities based on the process’ purpose. The priorities are
static; that is, they’re assigned when a process is created and never changed. The IOS
process priorities are:

• Critical—Reserved for essential system processes that resolve resource allocation
problems.

• High—Assigned to processes that provide a quick response time, such as a process
that receives packets directly from a network interface.

Ch01i.book Page 16 Tuesday, June 13, 2000 2:43 PM

IOS Processes 17

• Medium—The default priority used by most IOS processes.

• Low—Assigned to processes providing periodic background tasks, such as logging
messages.

Process priorities provide a mechanism to give some processes preferential access to the
CPU based on their relative importance to the entire system. Remember though, IOS
doesn’t employ preemption, so a higher priority process can’t interrupt a lower priority
process. Instead, having a higher priority in IOS gives a process more opportunities to
access the CPU, as you’ll see later when you investigate the operation of the kernel’s
scheduler.

Process Examples
You can use the show process command to see a list of all the processes in a system along
with some run-time data about each one, as demonstrated in Example 1-4.

Example 1-4 show process Command Output

router#show process
CPU utilization for five seconds: 0%/0%; one minute: 0%; five minutes: 0%
 PID QTy PC Runtime (ms) Invoked uSecs Stacks TTY Process
 1 M* 0 400 55 727210020/12000 0 Exec
 2 Lst 6024E528 201172 33945 5926 5752/6000 0 Check heaps
 3 Cwe 602355E0 0 1 0 5672/6000 0 Pool Manager
 4 Mst 6027E128 0 2 0 5632/6000 0 Timers
 5 Mwe 602F3E60 0 1 0 5656/6000 0 OIR Handler
 6 Msi 602FA560 290744 1013776 286 5628/6000 0 EnvMon
 7 Lwe 60302944 92 17588 5 5140/6000 0 ARP Input
 8 Mwe 6031C188 0 1 0 5680/6000 0 RARP Input
 9 Mwe 60308FEC 15200 112763 13410748/12000 0 IP Input
 10 Mwe 6033ADC4 420 202811 2 5384/6000 0 TCP Timer
 11 Lwe 6033D1E0 0 1 011644/12000 0 TCP Protocols
 12 Mwe 60389D6C 10204 135198 75 5392/6000 0 CDP Protocol
 13 Mwe 6035BF28 66836 1030665 6411200/12000 0 IP Background
 14 Lsi 60373950 0 16902 0 5748/6000 0 IP Cache Ager
 15 Cwe 6023DD60 0 1 0 5692/6000 0 Critical Bkgnd
 16 Mwe 6023DB80 0 13 0 4656/6000 0 Net Background
 17 Lwe 6027456C 0 11 011512/12000 0 Logger
 18 Msp 6026B0CC 100 1013812 0 5488/6000 0 TTY Background
 19 Msp 6023D8F8 8 1013813 0 5768/6000 0 Per-Second Jobs
 20 Msp 6023D854 405700 1013812 400 4680/6000 0 Net Periodic
 21 Hwe 6023D9BC 5016 101411 49 5672/6000 0 Net Input
 22 Msp 6023D934 135232 16902 8000 5640/6000 0 Per-minute Jobs

Ch01i.book Page 17 Tuesday, June 13, 2000 2:43 PM

18 Chapter 1: Fundamental IOS Software Architecture

The following list describes each of the show process command output fields found in
Example 1-4.

• PID—Process identifier. Each process has a unique process identifier number to
distinguish it from other processes.

• Qty—Process priority and process state. The first character represents the process’
priority as follows:

— K—No priority, process has been killed.

— D—No priority, process has crashed.

— X—No priority, process is corrupted.

— C—Critical priority.

— H—High priority.

— M—Medium priority.

— L—Low priority.

The remaining two characters in this field represent the current state of the
process as follows:

— *—Process is currently running on the CPU.

— E—Process is waiting for an event (event dismiss).

— S—Process is suspended.

— rd—Process is ready to run.

— we—Process is idle, waiting on an event.

— sa—Process is idle, waiting until a specific absolute time occurs.

— si—Process is idle, waiting for a specific time interval to elapse.

— sp—Process is idle, waiting for a specific time interval to elapse (periodic).

— st—Process is idle, waiting for a timer to expire.

— hg—Process is hung.

— xx—Process is dead.

• PC—Contents of the CPU program counter register when the process last
relinquished the CPU. This field is a memory address that indicates where the process
begins executing the next time it gets the CPU. A value of zero means the process is
currently running.

• Runtime—Cumulative amount of time (in milliseconds) the process has used the
CPU.

• Invoked—Total number of times the process has run on the CPU since it was created.

Ch01i.book Page 18 Tuesday, June 13, 2000 2:43 PM

IOS Processes 19

• uSecs—Average amount of CPU time (in microseconds) used each time the process
is invoked.

• Stacks—Stack space usage statistic. The number on the right of the slash (/) shows
the total size of the stack space. The number on the left indicates the low water mark
for the amount of free stack space available.

• TTY—Console device associated with this process. Zero indicates the process does
not own a console or communicates with the main system console.

• Process—Name of the process. Process names need not be unique (multiple copies
of a process can be active simultaneously). However, process IDs are always unique.

If you issue the show process command on several different IOS systems, you’ll notice
some processes appear on every one. Most of these are processes that perform
housekeeping or provide services to other processes. Table 1-2 describes the most common
of these processes and the tasks they perform.

All the processes in Table 1-2, except EXEC, are created by the kernel during system
initialization and normally persist until IOS is shut down.

Table 1-2 Common System Processes and Their Functions

System Process Function

EXEC Command-line interface (CLI) for the console and directly connected
asynchronous TTY lines. The EXEC process accepts user input and
provides an interface to the parser.

Pool manager Manages buffer pools (more on this in the “Packet Buffer
Management” section in this chapter).

Check heaps Periodically validates the integrity of the runtime IOS code and the
structure of the memory heap.

Per-minute jobs Generic system process that runs every 60 seconds performing
background maintenance, such as checking the integrity of process
stacks.

Per-second jobs Generic system process that performs tasks that need to be repeated
every second.

Critical background Critical priority process that performs essential system services, such
as allocating additional IOS queue elements when they run out.

Net background Sends interface keepalive packets, unthrottles interfaces, and
processes interface state changes.

Logger Looks for messages (debug, error, and informational) queued via the
kernel by other processes and outputs them to the console and,
optionally, to a remote syslog server.

TTY background Monitors directly connected asynchronous TTY lines for activity and
starts “EXEC” processes for them when they go active.

Ch01i.book Page 19 Tuesday, June 13, 2000 2:43 PM

20 Chapter 1: Fundamental IOS Software Architecture

IOS Kernel
When used within the context of operating systems, the word kernel usually conjures
pictures of an operating system core that runs in a special protected CPU mode and
manages system resources. Although the IOS kernel does help manage system resources,
its architecture differs from those in other operating systems. The IOS kernel is not a single
unit but rather a loose collection of components and functions linked with the rest of IOS
as a peer rather than a supervisor. There’s no special kernel mode. Everything, including
the kernel, runs in user mode on the CPU and has full access to system resources.

The kernel schedules processes, manages memory, provides service routines to trap and
handle hardware interrupts, maintains timers, and traps software exceptions. The major
functions of the kernel are described in more detail in the following sections.

The Scheduler
The actual task of scheduling processes is performed by the scheduler. The IOS scheduler
manages all the processes in the system using a series of process queues that represent each
process state. The queues hold context information for processes in that state. Processes
transition from one state to another as the scheduler moves their context from one process
queue to another. In all, there are six process queues:

• Idle queue—Contains processes that are still active but are waiting on an event to
occur before they can run.

• Dead queue—Contains processes that have terminated but need to have their
resources reclaimed before they can be totally removed from the system.

• Ready queues—Contain processes that are eligible to run. There are four ready
queues, one for each process priority:

— Critical

— High

— Medium

— Low

When a running process suspends, the scheduler regains control of the CPU and uses an
algorithm to select the next process from one of its four ready queues. The steps for this
algorithm are as follows:

Step 1 The scheduler first checks for processes waiting in the critical priority
ready queue. It runs each critical process, one by one, until all have had
a chance to run.

Step 2 After all critical processes have had a chance to run, the scheduler checks
the high priority queue. If there are no high priority processes ready, the
scheduler skips to Step 3 and checks the medium priority queue.

Ch01i.book Page 20 Tuesday, June 13, 2000 2:43 PM

IOS Kernel 21

Otherwise, the scheduler removes each high priority process from the
queue and allows it to run. Between each high priority process, the
scheduler checks for any critical processes that are ready and runs all of
them before proceeding to the next high priority process. After all high
priority processes have had their chance, the scheduler skips the medium
and low process queues and starts over at Step 1.

Step 3 After there are no high priority processes waiting to run, the scheduler
checks the medium priority queue. If there are no medium priority
processes ready, the scheduler skips to Step 4 and checks the low priority
queue. Otherwise, the scheduler removes each medium priority process
from the queue and allows it to run. Between each medium priority
process, the scheduler checks for any high priority processes that are
ready and runs all of them (interleaved with any critical priority
processes) before proceeding to the next medium priority process. After
all medium priority processes have had their chance, the scheduler skips
over the low priority queue and starts over at Step 1 again. The scheduler
skips the low priority queue a maximum of 15 times before proceeding
to Step 4. This threshold is a failsafe mechanism to prevent the low
priority processes from being starved.

Step 4 After there are no medium or high priority processes waiting to run (or
the low priority queue has been skipped 15 times) the scheduler checks
the low priority queue. The scheduler removes each low priority process
from the queue and allows it to run. Between each low priority process,
the scheduler checks for any ready medium priority processes and runs
them (interleaved with any high and critical priority processes) before
proceeding to the next low priority process.

Step 5 The scheduler finally returns to Step 1 and starts over.

The scheduling algorithm works similar to the operation of a stopwatch. Think of the
seconds as representing the critical processes, the minutes as representing the high priority
processes, the hours as representing medium processes, and the days as representing the
low priority processes. Each pass of the second hand covers all the seconds on the dial. Each
pass of the minute hand covers all the minutes on the dial, including a complete pass of all
seconds for each minute passed, and so on.

Like a stopwatch, the scheduling algorithm also has a built-in reset feature. The algorithm
doesn’t advance to check the medium priority queue until there are no high priority
processes waiting to run. As long as it finds high priority processes, it starts over from the
beginning, checking for critical processes and then high priority processes like a stopwatch
that’s reset to zero when it reaches the first hour.

Ch01i.book Page 21 Tuesday, June 13, 2000 2:43 PM

22 Chapter 1: Fundamental IOS Software Architecture

Process CPU Utilization
Although IOS does not provide any statistics on the operation of the scheduler itself, there
is a way to see how the processes are sharing the CPU. In an earlier example, you saw how
the show process command gives general statistics about all active processes. A variant of
that command, show process cpu, has similar output but focuses more on the CPU
utilization by each process. Example 1-5 provides some sample output from the show
process cpu command.

The first line of the show process cpu output in Example 1-5 shows the overall CPU
utilization for the machine averaged over three different time intervals: 5 seconds, 1 minute,
and 5 minutes. The 5 second usage statistic is reported as two numbers separated by a slash.
The number on the left of the slash represents the total percentage of available CPU
capacity used during the last 5-second interval (total percent CPU busy). The number on
the right of the slash represents the total percentage of available CPU capacity used while
processing interrupts. The 1-minute usage and the 5-minute usage show the total percent
CPU usage as an exponentially decaying average over the last minute and the last 5
minutes, respectively.

Below the general usage statistics, the same three intervals are reported on a per process
basis. Note, the scheduler automatically computes all these usage statistics every 5 seconds
and stores them internally in case someone issues a show process cpu command. So, it’s
possible to see the exact same statistics twice—not updated—if the command is issued
twice within a 5 second period.

Using the show process cpu output, it’s fairly easy to determine what processes are most
active and how much of the CPU capacity they use. In the example, an average of 90 percent
of the CPU capacity was being used during the 5-second interval right before the command
was issued. An average of 82 percent of capacity was being used by interrupt processing
with the other 8 percent being used by scheduled processes (90% – 82% = 8%). Over the
last 60 seconds, an average of 60 percent of the CPU capacity was being used, and over the
last 5 minutes, 40 percent of the CPU capacity was being used, on average. Looking at the

Example 1-5 show process cpu Command Output

router#show process cpu
CPU utilization for five seconds: 90%/82%; one minute: 60%; five minutes: 40%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
 1 1356 2991560 0 0.00% 0.00% 0.00% 0 BGP Router
 2 100804 7374 13670 0.00% 0.02% 0.00% 0 Check heaps
 3 0 1 0 0.00% 0.00% 0.00% 0 Pool Manager
 4 0 2 0 0.00% 0.00% 0.00% 0 Timers
 5 6044 41511000 0.00% 0.00% 0.00% 0 OIR Handler
 6 0 1 0 0.00% 0.00% 0.00% 0 IPC Zone Manager
 7 0 1 0 0.00% 0.00% 0.00% 0 IPC Realm Manager
 8 7700 36331 211 8.00% 0.00% 0.00% 0 IP Input
...

Ch01i.book Page 22 Tuesday, June 13, 2000 2:43 PM

IOS Kernel 23

individual scheduled processes, 8 percent of the CPU capacity was being consumed by the
ip_input process during the last 5 seconds. This accounts for all the process usage; so, the
other processes either weren’t scheduled on the CPU during that interval or they used less
than 0.01 percent of the CPU.

In this example, a relatively large percentage of the CPU capacity is being consumed by
interrupt processing. So what is IOS doing during that 82 percent of the time?
Unfortunately, there’s no detailed account of interrupt processing CPU usage like there is
for processes; so, we really can’t pinpoint the usage to a specific source. However, we can
make a good estimate about how this CPU time is being used. As you’ll see in Chapter 2,
when Fast Switching is being used for packets, most of the packet switching work is
performed during an interrupt. IOS does do some other processing during interrupts, but by
far most of the processing time is used for fast packet switching. A high interrupt CPU
usage statistic usually just means IOS is fast switching a large volume of packets.

The remaining unused CPU capacity (10 percent in our example) is called idle CPU time.
“Idle,” though, is a somewhat misleading term because a CPU is never really idle while it’s
running; it’s always executing instructions for something. In IOS, that idle time actually
represents the time the CPU is spending running the scheduler itself—a very important task
indeed. It’s important for an IOS system to operate with sufficient idle time. As CPU
utilization approaches 100 percent, very little time is left over for the scheduler, creating a
potentially serious situation. Because the scheduler is responsible for running all the
background critical support processes, if it can’t run, neither can the processes and that can
lead to system failure.

As you’ll see, IOS has watchdog timers to prevent runaway processes from consuming all
the CPU capacity. Unfortunately, IOS does not always employ this type of limiting
mechanism for interrupts. Although many platforms do support limiting CPU interrupt time
through interrupt throttling, it’s not always enabled by default.

In any event, watchdog timers and interrupt throttling are just safety mechanisms. When
planning for a system that might encounter a high rate of packets (many busy high speed
network interfaces, for example), it’s best to select a sufficiently fast CPU and configure
IOS with the most efficient switching methods to avoid CPU starvation problems.

Watchdog Timer
To reduce the impact of runaway processes, IOS employs a process watchdog timer to allow
the scheduler to periodically poll the current running process. This feature is not the same
as preemption but is instead a failsafe mechanism to prevent the system from becoming
unresponsive or completely locking up due to a process consuming all of the CPU. If a
process appears to be hung (for example, it’s been running for a long time), the scheduler
can force the process to terminate.

Ch01i.book Page 23 Tuesday, June 13, 2000 2:43 PM

24 Chapter 1: Fundamental IOS Software Architecture

Each time the scheduler allows a process to run on the CPU, it starts a watchdog timer for
that process. After a preset period, two seconds by default, if the process is still running, the
timer expires and the scheduler regains control. The first time the watchdog expires, the
scheduler prints a warning message for the process similar to the following, and then
continues the process on the CPU:

%SNMP-3-CPUHOG: Processing GetNext of ifEntry.17.6
%SYS-3-CPUHOG: Task ran for 2004 msec (49/46), Process = IP SNMP, PC = 6018EC2C
 -Traceback= 6018EC34 60288548 6017E9C8 6017E9B4

If the watchdog expires a second time and the process still hasn’t suspended, the scheduler
terminates the process.

The Memory Manager
The kernel’s memory manager is responsible, at a macro level, for managing all the
memory available to IOS, including the memory containing the IOS image itself. The
memory manager is actually not one single component but three separate components, each
with its own responsibility:

• Region Manager—Defines and maintains the various memory regions on a platform.

• Pool Manager—Manages the creation of memory pools and the allocation/
de-allocation of memory blocks within the pools.

• Chunk Manager—Manages the specially allocated memory blocks that contain
multiple fixed-sized sub-blocks.

Region Manager
The region manager is responsible for maintaining all the memory regions. It provides
services allowing other parts of IOS to create regions and to set their attributes. It also
allows others to query the available memory regions, for example, to determine the total
amount of memory available on a platform.

Pool Manager
The memory pool manager is a very important component of the kernel. Just as the
scheduler manages allocating CPU resources to processes, the pool manager manages
memory allocation for processes. All processes must go through the pool manager, directly
or indirectly, to allocate memory for their use. The pool manager is invoked each time a
process uses the standard system functions malloc and free to allocate or return memory.

Ch01i.book Page 24 Tuesday, June 13, 2000 2:43 PM

IOS Kernel 25

The pool manager operates by maintaining lists of free memory blocks within each pool.
Initially, of course, each pool contains just one large free block equal to the size of the pool.
As the pool manager services requests for memory, the initial free block gets smaller and
smaller. At the same time, processes can release memory back to the pool, creating a
number of discontiguous free blocks of varying sizes. This scenario is called memory
fragmentation and is illustrated in Figure 1-5.

Figure 1-5 Memory Pool Allocation

As free blocks are returned to a pool, the pool manager adds their size and starting
addresses to one of the pool’s free lists for blocks of similar size. By default, the pool
manager maintains free lists for each of the following block sizes: 24, 84, 144, 204, 264,
324, 384, 444, 1500, 2000, 3000, 5000, 10,000, 20,000, 32,768, 65,536, 131,072, and
262,144 bytes. Note that these sizes have no relation to the system buffers discussed later
in this chapter.

When a process requests memory from a pool, the pool manager first starts with the free list
associated with the size of the request. This method helps make efficient use of memory by
matching requests to recycled blocks that are close in size. If there are no blocks available
on the best-fit list, the pool manager continues with each higher list until a free block is
found. If a block is found on one of the higher lists, the pool manager splits the block and
puts the unused portion back on the appropriate list of smaller blocks.

The pool manager tries to control fragmentation by coalescing returned blocks that are
physically adjacent to one another. When a block is returned and it’s next to an existing free
block, the pool manager combines the two blocks into one larger block and places the
resulting block on the appropriate sized list, as shown in Figure 1-6.

Initial
free

block

Free

Allocated

Allocated

Free

Free

Initial
block

After usage
(mallocs and frees)

Ch01i.book Page 25 Tuesday, June 13, 2000 2:43 PM

26 Chapter 1: Fundamental IOS Software Architecture

Figure 1-6 Free Block Coalesce

Earlier, Example 1-2 demonstrated how the EXEC command show memory displays
names and statistics for the available memory pools in its summary. The show memory
command also lists detail about the individual blocks contained in each of the pools.
Following the pool summary, the command output lists all the blocks, in order, under each
pool, as demonstrated in the output in Example 1-6.

Example 1-6 show memory Command Output with Memory Pool Details

router#show memory
 Head Total(b) Used(b) Free(b) Lowest(b) Largest(b)
Processor 61281540 7858880 3314128 4544752 4377808 4485428
 I/O 1A00000 6291456 1326936 4964520 4951276 4964476
 PCI 4B000000 1048576 407320 641256 641256 641212

Processor memory

 Address Bytes Prev. Next Ref PrevF NextF Alloc PC What
61281540 1460 0 61281B20 1 6035CCB0 List Elements
61281B20 2960 61281540 612826DC 1 6035CCDC List Headers
612826DC 9000 61281B20 61284A30 1 60367224 Interrupt Stack
61284A30 44 612826DC 61284A88 1 60C8BEEC *Init*
61284A88 9000 61284A30 61286DDC 1 60367224 Interrupt Stack
61286DDC 44 61284A88 61286E34 1 60C8BEEC *Init*
61286E34 9000 61286DDC 61289188 1 60367224 Interrupt Stack
61289188 44 61286E34 612891E0 1 60C8BEEC *Init*
612891E0 4016 61289188 6128A1BC 1 602F82CC TTY data
6128A1BC 2000 612891E0 6128A9B8 1 602FB7B4 TTY Input Buf
6128A9B8 512 6128A1BC 6128ABE4 1 602FB7E8 TTY Output Buf

Free

Allocated

Free

Allocated

Free

Allocated

Just freed

Free

Allocated

Initially upon
freeing a block

of memory

After
coalesce

Ch01i.book Page 26 Tuesday, June 13, 2000 2:43 PM

IOS Kernel 27

The memory pool detail fields displayed in Example 1-6 are as follows:

• Address—Starting address of the block.

• Bytes—Size of the block.

• Prev—Address of the preceding block in the pool.

• Next—Address of the following block in the pool.

• Ref—Number of owners of this memory block.

• PrevF—For free blocks only, the address of the preceding block in the free list.

• NextF—For free blocks only, the address of the next block in the free list.

• Alloc PC—Value of the CPU’s program counter register when the block was
allocated. This value can be used to determine which process allocated the block.

• What—Description of how the block is being used.

You can use a variation of this command, show memory free, to display the free blocks in
each pool, as demonstrated in Example 1-7. The command output lists each free block in
order by free list. Empty free lists appear with no memory blocks listed under them.

Example 1-7 show memory free Command Output

router#show memory free
...

Processor memory

 Address Bytes Prev. Next Ref PrevF NextF Alloc PC What
 24 Free list 1
6153E628 52 6153E5F0 6153E688 0 0 615A644 603075D8 Exec
615A6444 44 615A63F8 615A649C 0 6153E62 0 603567F0 (fragment)
 92 Free list 2
 112 Free list 3
 116 Free list 4
 128 Free list 5
61552788 128 6155273C 61552834 0 0 0 603075D8 (coalesced)
 132 Free list 6
 152 Free list 7
 160 Free list 8
 208 Free list 9
 224 Free list 10
 228 Free list 11
6153E460 240 6153E428 6153E57C 0 0 0 6047A960 CDP Protocol
 272 Free list 12
 288 Free list 13
 296 Free list 14
 364 Free list 15
 432 Free list 16
 488 Free list 17
 500 Free list 18

continues

Ch01i.book Page 27 Tuesday, June 13, 2000 2:43 PM

28 Chapter 1: Fundamental IOS Software Architecture

Chunk Manager
The pool manager provides a very effective way for managing a collection of random-sized
blocks of memory. However, this feature does not come without cost. The pool manager
introduces 32 bytes of memory overhead on every block managed. Although this overhead
is insignificant for pools with a few hundred large blocks, for a pool with thousands of small
blocks, the overhead can quickly become substantial. As an alternative, the kernel provides
another memory manager, called the chunk manager, that can manage large pools of small
blocks without the associated overhead.

Unlike the pool manager, the chunk manager does not create additional memory pools with
free lists of varying size. Instead, the chunk manager manages a set of fixed-size blocks
subdivided within a larger block that has been allocated from one of the standard memory
pools. In some ways, the chunk manager can almost be considered a submemory pool
manager.

The strategy most often employed is this: A process requests the allocation of a large
memory block from a particular memory pool. The process then calls on the chunk manager
to subdivide the block into a series of smaller fixed-size chunks and uses the chunk manager
to allocate and free the chunks as needed. The advantage is there are only 32 bytes of
overhead (associated with the one large block) and the pool manager is not burdened with
allocating and reclaiming thousands of little fragments. So, the potential for memory
fragmentation in the pool is greatly reduced.

6153E6D4 544 6153E69C 6153E920 0 0 0 60362350 (coalesced)
 1500 Free list 19
 2000 Free list 20
61552B84 2316 61552954 615534BC 0 0 0 603075D8 (coalesced)
 3000 Free list 21
6153EA14 4960 6153E9D4 6153FDA0 0 0 0 603080BC (coalesced)
 5000 Free list 22
 10000 Free list 23
61572824 15456 6157106C 615764B0 0 0 0 603080BC (coalesced)
 20000 Free list 24
 32768 Free list 25
6159BA64 35876 61598B6C 615A46B4 0 0 0 60371508 (fragment)
 65536 Free list 26
 131072 Free list 27
 262144 Free list 28

Total: > 59616

Example 1-7 show memory free Command Output (Continued)

Ch01i.book Page 28 Tuesday, June 13, 2000 2:43 PM

IOS Kernel 29

Process Memory Utilization
IOS has another variation of the show process CLI command, show process memory, that
shows the memory utilization by each process. This command allows you to quickly
determine how available memory is being allocated by processes in the system. Example
1-8 provides some sample output from a show process memory command.

The first line in Example 1-8 shows the total number of bytes in the pool followed by the
amount used and the amount free. The statistics in the first line represent metrics for the
Processor memory pool and should match the output of the show memory command. The
summary line is followed by detail lines for each scheduled process:

• PID—Process identifier.

• TTY—Console assigned to the process.

• Allocated—The total number of bytes this process has allocated since it was created.

• Freed—The total number of bytes this process has freed since it was created.

• Holding—The number of bytes this process currently has allocated. Note that,
because a process can free memory that was allocated by another process, the
allocated, freed, and holding numbers might not always balance. In other words,
allocated minus freed does not always equal holding.

• Getbufs—The total number of bytes for new packet buffers created on behalf of this
process. Packet buffer pools are described later in the “Packet Buffer Management”
section.

Example 1-8 show process memory Command Output

router#show process memory
Total: 7858880, Used: 3314424, Free: 4544456
 PID TTY Allocated Freed Holding Getbufs Retbufs Process
 0 0 86900 1808 2631752 0 0 *Init*
 0 0 448 55928 448 0 0 *Sched*
 0 0 7633024 2815568 6348 182648 0 *Dead*
 1 0 268 268 3796 0 0 Load Meter
 2 0 228 0 7024 0 0 CEF Scanner
 3 0 0 0 6796 0 0 Check heaps
 4 0 96 0 6892 0 0 Pool Manager
 5 0 268 268 6796 0 0 Timers
...

 65 0 0 14492 6796 0 13248 Per-minute Jobs
 66 0 143740 3740 142508 0 0 CEF process
 67 0 0 0 6796 0 0 xcpa-driver
 3314184 Total

Ch01i.book Page 29 Tuesday, June 13, 2000 2:43 PM

30 Chapter 1: Fundamental IOS Software Architecture

• Retbufs—The total number of bytes for packet buffers trimmed on behalf of this
process. Packet buffer trims are described later in the “Packet Buffer Management”
section.

• Process—The name of the process.

Notice there are three processes appearing in the show process memory output labeled
Init, *Sched*, and *Dead*. These are not real processes at all but are actually summary
lines showing memory allocated by IOS outside the scheduled processes. The following list
describes these summary lines:

• *Init*—Shows memory allocated for the kernel during system initialization before
any processes are created.

• *Sched*—Shows memory allocated by the scheduler.

• *Dead*—Shows memory once allocated by scheduled processes that has now
entered the dead state. Memory allocated to dead processes is eventually reclaimed by
the kernel and returned to the memory pool.

Memory Allocation Problems
In all the examples thus far, we’ve assumed that when a process requests an allocation of
memory its request is granted. However, this might not always be the case. Memory
resources, like CPU resources, are limited; there’s always the chance that there might not
be enough memory to satisfy a request. What happens when a process calls on the pool
manager for a memory block and the request fails? Depending on the severity (that is, what
the memory is needed for), the process might continue to limp along or it might throw up
its hands and quit. In either case, when the pool manager receives a request that it can’t
satisfy, it prints a warning message to the console similar to the following:

%SYS-2-MALLOCFAIL: Memory allocation of 2129940 bytes failed from 0x6024C00C,
 pool I/O, alignment 32
 -Process= “OIR Handler”, ipl= 4, pid= 7
 -Traceback= 6024E738 6024FDA0 6024C014 602329C8 60232A40 6025A6C8 60CEA748

 60CDD700 60CDF5F8 60CDF6E8 60CDCB40 60286F1C 602951

Basically, there are two reasons why a valid request for memory allocation can fail:

• There isn’t enough free memory available.

• Enough memory is available, but it’s fragmented so that no contiguous block is
available of sufficient size.

Failures due to lack of memory usually occur because there is simply not enough memory
on the platform to support all the activities in the system. When this happens, you have two
choices: add more memory to the platform, or reduce configured features, interfaces, and
so on until the problem goes away. In some rare cases, though, these “out of memory”
failures can occur because of a defect called a memory leak in one of the processes. The
term memory leak refers to a scenario where a process continually allocates memory blocks

Ch01i.book Page 30 Tuesday, June 13, 2000 2:43 PM

Packet Buffer Management 31

but never frees any of them; eventually it consumes all available memory. Memory leaks
usually are caused by software defects.

Allocation failures also can occur when there’s seemingly plenty of memory available. For
an example, look at the following sample show memory output in Example 1-9.

This particular system has 2,960,428 bytes of memory free. Yet, what happens when a
process tries to allocate just 9000 bytes? The request fails. The clue to why is in the Largest
field of the show memory output. At the time this command was issued, the largest
contiguous block of memory available was only 8426 bytes long—not large enough to
satisfy a 9000 byte request.

This scenario is indicative of severe memory fragmentation. Severe fragmentation occurs
when many small memory blocks are allocated and then returned in such a way that the
pool manager can’t coalesce them into larger blocks. As this trend continues, the large
contiguous blocks in the pool are chipped away until nothing is left but smaller fragments.
When all the larger blocks are gone, memory allocation failures start to occur.

The kernel’s pool manager is designed to maintain self-healing memory pools that avoid
fragmentation, and in most cases this design works without a problem. However, some
allocation scenarios can break this design; one example being the pool of many small
blocks discussed earlier.

Packet Buffer Management
In packet routing, as in any store-and-forward operation, there must be some place within
the system to store the data while it is being routed on its way. The typical strategy is to
create memory buffers to hold incoming packets while the switching operation is taking
place. Because the capability to route packets is central to the IOS architecture, IOS
contains a special component dedicated to managing just such buffers. This component is
called the buffer pool manager (not to be confused with the memory pool manager
discussed earlier). IOS uses this component to create and manage a consistent series of
packet buffer pools for switching on every platform. The buffers in these pools are
collectively known as the system buffers.

Example 1-9 Sample show memory Command Output

router#show memory
 Head Total(b) Used(b) Free(b) Lowest(b) Largest(b)
Processor 61281540 7858880 4898452 2960428 10507 8426
....

Ch01i.book Page 31 Tuesday, June 13, 2000 2:43 PM

32 Chapter 1: Fundamental IOS Software Architecture

The buffer pool manager provides a convenient way to manage a set (or pool) of buffers of
a particular size. Although it can be used to manage any type of buffer pool, the buffer pool
manager is used primarily to manage pools of packet buffers, so that’s what we’ll focus on
here.

Packet buffer pools are created using memory allocated from one of the available memory
pools: for example, Processor, I/O, and so on. To create a pool, the packet buffer manager
requests a block of memory from the kernel’s memory pool manager and divides it into
buffers. The packet buffer manager then builds a list of all the free buffers and tracks the
allocation and freeing of those buffers.

Packet buffer pools can be either static or dynamic. Static pools are created with a fixed
number of buffers—no additional buffers can be added to the pool. Dynamic pools are
created with a particular base minimum number of buffers, called permanent buffers, but
additional buffers can be added or removed on demand. With dynamic buffer pools, if the
buffer pool manager receives a request while the pool is empty, it attempts to expand the
pool and satisfy the request immediately. If it’s not possible to expand the pool within the
context of the request, it fails the request and expands the pool later in the pool manager
background process.

Packet buffer pools are classified as either public or private. Public pools, as the name
implies, are available for use by any system process, and private pools are created for (and
known only to) a specific subset of processes that use them.

System Buffers
Every IOS system has a predefined set of public buffer pools known as the system buffers.
These buffer pools are used for process switching packets through the platform and for
creating packets that originate in the platform (such as interface keepalive packets and
routing updates). IOS provides statistics about these and other buffer pools through the
show buffer command. For an example, let’s examine the show buffer output in
Example 1-10.

Example 1-10 show buffer Command Output

router#>show buffer
Buffer elements:
 500 in free list (500 max allowed)
 747314 hits, 0 misses, 0 created

Public buffer pools:
Small buffers, 104 bytes (total 50, permanent 50):
 46 in free list (20 min, 150 max allowed)
 530303 hits, 6 misses, 18 trims, 18 created
 0 failures (0 no memory)
Middle buffers, 600 bytes (total 25, permanent 25):
 25 in free list (10 min, 150 max allowed)
 132918 hits, 3 misses, 9 trims, 9 created
 0 failures (0 no memory)

Ch01i.book Page 32 Tuesday, June 13, 2000 2:43 PM

Packet Buffer Management 33

Notice the list of Public buffer pools. These are the standard system buffers for IOS. Each
one has a name, such as Small buffers, Middle buffers, and so on, that identifies the
particular pool. Following the pool name is the byte size of the buffers contained in that
pool. Each buffer pool contains buffers of one and only one size. The sizes vary from 104
bytes up to 18,024 bytes in order to accommodate the various maximum transmission unit
(MTU) sizes encountered on different interface media.

The remainder of the fields in Example 1-10 are as follows:

• total—The total number of buffers in the pool (both allocated and free).

• permanent—The base number of buffers in the pool. For dynamic pools, the total
number of buffers can fluctuate as the pool grows and shrinks. However, there will
never be less than the permanent number of buffers in the pool.

• in free list—Indicates the number of free buffers available.

• min—The minimum number of buffers desired in the free list. If the number of free
buffers drops below min, the buffer pool manager attempts to grow the pool and add
more buffers until the number of free buffers is greater than min.

• max allowed—The maximum number of buffers desired in the free list. If the number
of free buffers increases beyond max allowed, the buffer pool manager attempts to
shrink the pool, deleting free buffers, until the number of free buffers drops below
max allowed. Note that the buffer pool manager never shrinks the size of the pool
below the permanent metric regardless of the value of max allowed.

• hits—The number of buffers that have been requested from the pool.

• misses—The number of times a buffer was requested from the pool when there were
fewer than min buffers in the free list.

Big buffers, 1524 bytes (total 50, permanent 50):
 50 in free list (5 min, 150 max allowed)
 47 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)
VeryBig buffers, 4520 bytes (total 10, permanent 10):
 10 in free list (0 min, 100 max allowed)
 26499 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)
Large buffers, 5024 bytes (total 0, permanent 0):
 0 in free list (0 min, 10 max allowed)
 0 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)
Huge buffers, 18024 bytes (total 0, permanent 0):
 0 in free list (0 min, 4 max allowed)
 0 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)
...

Example 1-10 show buffer Command Output (Continued)

Ch01i.book Page 33 Tuesday, June 13, 2000 2:43 PM

34 Chapter 1: Fundamental IOS Software Architecture

• trims—The number of buffers that have been deleted from the pool during pool
shrinkage.

• created—The number of buffers that have been created and added to the pool during
pool growth.

• failures—The number of times a buffer was requested from the pool but the request
could not be satisfied. Failures can occur for two reasons:

— A buffer request occurs during an interrupt and there are no free buffers.
Pools can’t grow during an interrupt.

— A buffer request occurs, there are no free buffers, and there is no more
memory left in the memory pool to grow the buffer pool.

• no memory—The number of times a failure occurred because there was no available
memory in the memory pool. Note that this counter is no longer used in recent
versions of IOS.

To get an understanding of just how the buffer pool manager operates with these system
buffers, let’s step through a packet-switching scenario and monitor how the show buffers
counters change for a particular pool. Consider the following example.

Let’s start with 16 buffers in the free list, as shown in the following output and illustrated
in Figure 1-7.

Small buffers, 104 bytes (total 16, permanent 16):
 16 in free list (8 min, 16 max allowed)
 0 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)

Figure 1-7 Beginning with an Empty Buffer

Now say IOS receives eight packets that fit nicely into the 104-byte small buffers. The
packet receive software requests and receives eight buffers from the small buffer pool and
copies in the packets. The free list now drops from 16 to 8, resulting in a count of eight free
buffers and eight hits, as illustrated in the following output and in Figure 1-8.

Small buffers, 104 bytes (total 16, permanent 16):
 8 in free list (8 min, 16 max allowed)
 8 hits, 0 misses, 0 trims, 0 created
 0 failures (0 no memory)

16 in free list

Ch01i.book Page 34 Tuesday, June 13, 2000 2:43 PM

Packet Buffer Management 35

Figure 1-8 Eight Packets Received

Now IOS receives four more packets before processing any of the eight previously
received. The packet receive software requests four more buffers from the small pool and
copies in the data packets. Figure 1-9 illustrates the pool at this point.

Figure 1-9 Four More Packets Received

Looking at the output of show buffers, we see several counters have incremented. Let’s
inspect them to see what happened to the pool:

Small buffers, 104 bytes (total 16, permanent 16):
 4 in free list (8 min, 16 max allowed)
 12 hits, 4 misses, 0 trims, 0 created
 0 failures (0 no memory)

The number in the free list has now dropped to 4 and there are now 12 hits, reflecting the 4
new buffers requested. Why have the misses incremented to four, though? Because each
time a buffer is requested from a pool where it causes the free list to drop below the
minimum free buffers allowed, a miss is counted. We can see from the output that the
minimum free is eight and we now have only four buffers in the free list; so, IOS counted
four misses.

Because there are now fewer than min buffers in the free list, the buffer pool manager runs
the pool manager process to grow the pool and to create more free buffers, as demonstrated
in the following output and illustrated in Figure 1-10.

8 in
free list

16 total

4 in
free list

16 total

Ch01i.book Page 35 Tuesday, June 13, 2000 2:43 PM

36 Chapter 1: Fundamental IOS Software Architecture

Small buffers, 104 bytes (total 20, permanent 16):
 8 in free list (8 min, 16 max allowed)
 12 hits, 4 misses, 0 trims, 4 created
 0 failures (0 no memory)

Figure 1-10 After Pool Manager Creates New Buffers

We now see that the pool manager process has created four new buffers to bring the number
in the free list back up to a total of eight, the minimum number of buffers desired to be free
at any time in this pool.

Now, Figure 1-11 illustrates what happens when IOS tries to request nine more packet
buffers from this pool before returning any free buffers.

Figure 1-11 Storing Nine More Packets

From the following output, we see that the free list has been completely exhausted—
0 buffers remaining—and there have been 20 hits, 13 misses, and 1 failure. The failure
accounts for the one request that overran the buffer pool.

20 total

8 in
free list

20 total

1 failure

Packet

Ch01i.book Page 36 Tuesday, June 13, 2000 2:43 PM

Packet Buffer Management 37

Small buffers, 104 bytes (total 20, permanent 16):
 0 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 0 trims, 4 created
 1 failures (0 no memory)

Finally, IOS begins processing packets and returning buffers to the pool. IOS processes 17
of the 20 packets and returns the 17 free buffers, as illustrated in Figure 1-12 and the output
that follows.

Figure 1-12 Returning 17 Buffers to the Pool

Small buffers, 104 bytes (total 20, permanent 16):
 17 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 0 trims, 4 created
 1 failures (0 no memory)

The small pool now has 17 in the free list. However, the desired maximum free buffers is
only 16. Because the number in the free list exceeds the max allowed, the next time the
pool manager process runs it shrinks the buffer pool to adjust the number of free buffers,
causing one to be trimmed, as shown in Figure 1-13 and the output that follows.

Figure 1-13 Trimming the Extra Buffer

17 in
free list 20 total

16 in
free list 19 total

Trimmed

Ch01i.book Page 37 Tuesday, June 13, 2000 2:43 PM

38 Chapter 1: Fundamental IOS Software Architecture

Small buffers, 104 bytes (total 20, permanent 16):
 17 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 1 trims, 4 created
 1 failures (0 no memory)

Finally, IOS processes all the remaining packets and returns the buffers to the pool.
Eventually, the pool manager process trims all the remaining buffers above the permanent
pool size, resulting in the following counts:

Small buffers, 104 bytes (total 16, permanent 16):
 16 in free list (8 min, 16 max allowed)
 20 hits, 13 misses, 4 trims, 4 created
 1 failures (0 no memory)

Device Drivers
One of the primary functions of an operating system is to provide hardware abstraction
between platform hardware and the programs that run on it. This hardware abstraction
typically occurs in device drivers that are part of the operating system, making those
components an integral part of the system. IOS is no different in that regard. IOS contains
device drivers for a range of platform hardware devices, such as Flash cards and NVRAM,
but most notable are its device drivers for network interfaces.

IOS network interface device drivers provide the primary intelligence for packet operations
in and out of interfaces. Each driver consists of two main components: a control component
and a data component. The control component is responsible for managing the state and
status of the device (for example, shutting down an interface). The data component is
responsible for all data flow operations through the device and contains logic that assists
with the packet switching operations. IOS device drivers are very tightly coupled with the
packet switching functions, as we discuss in Chapter 2.

IOS device drivers interface with the rest of the IOS system via a special control structure
called the interface descriptor block (IDB). The IDB contains, among other things, entry
points into a device driver’s functions and data about a device’s state and status. For
example, the IP address, the interface state, and the packet statistics are some of the fields
that are present in the IDB. IOS maintains an IDB for each interface present on a platform
and maintains an IDB for each subinterface.

Summary
Cisco IOS began as a small embedded system and has been expanded over time to become
the powerful network operating system it is today. The basic components for IOS are no
different than the ones used to build other operating systems. However, in IOS those
components are optimized to work within the environment in which IOS is used: limited
memory and speed-critical packet switching.

Ch01i.book Page 38 Tuesday, June 13, 2000 2:43 PM

Summary 39

IOS is a cooperative multitasking operating system and operates within a single flat address
space. All program code, buffers, routing tables, and other data, reside in the same address
space, and all processes can address each other’s memory. IOS processes are equivalent to
threads in other operating systems.

IOS has a small kernel that provides CPU scheduling services and memory management
services to processes. Unlike other operating systems, the IOS kernel runs in “user” mode
on the CPU (peer-to-processes) and shares the same address space with the rest of the
system.

IOS device drivers provide a hardware abstraction layer between the media hardware and
the operating system. The network interface device drivers are tightly coupled to the packet
switching software. In Chapter 2, “Packet Switching Architecture,” we examine this packet
switching software in more detail.

Ch01i.book Page 39 Tuesday, June 13, 2000 2:43 PM

