

0315 CH06.fm Page 252 Thursday, March 13, 2003 3:38 PM

C

H

A

P

T

E

R

6

Quality of Service with MPLS TE

Quality of service (QoS) and MPLS are, at a political level, similar. They’re both
technologies that have been gaining popularity in recent years. They both seem to be
technologies that you either love or hate—some people are huge QoS fans, and others can’t
stand it. The same is true of MPLS—some people like it, and others don’t.

At a technical level, though, QoS and MPLS are very different.

QoS is an umbrella term that covers network performance characteristics. As discussed in
Chapter 1, “Understanding Traffic Engineering with MPLS,” QoS has two parts:

•

Finding a path through your network that can provide the service you offer

•

Enforcing that service

The acronym QoS in respect to IP first showed up in RFC 1006, “ISO Transport Service on
Top of the TCP: Version 3,” published in 1987. The term QoS has been around for even
longer, because it is a general term used to describe performance characteristics in
networks. In the IP and MPLS worlds, the term QoS is most often used to describe a set of
techniques to manage packet loss, latency, and jitter. QoS has been rather appropriately
described as “managed unfairness”: If you have contention for system resources, who are
you unfair to, and why?

Two QoS architectures are in use today:

•

Integrated Services (IntServ)

•

Differentiated Services (DiffServ)

For various reasons, IntServ never scaled to the level it needed to get to for Internet-size
networks. IntServ is fine for small- to medium-sized networks, but its need to make end-to-
end, host-to-host, per-application microflows across a network means it can’t grow to the
level that large service provider networks need.

DiffServ, on the other hand, has proven quite scalable. Its use of classification on the edge
and per-hop queuing and discard behaviors in the core means that most of the work is done
at the edge, and you don’t need to keep any microflow state in the core.

0315 CH06.fm Page 253 Thursday, March 13, 2003 3:38 PM

254

Chapter 6: Quality of Service with MPLS TE

This chapter assumes that you understand QoS on an IP network. It concentrates on the
integration of MPLS into the IP QoS spectrum of services. This means that you should be
comfortable with acronyms such as CAR, LLQ, MDRR, MQC, SLA, and WRED in order
to get the most out of this chapter. This chapter briefly reviews both the DiffServ
architecture and the Modular QoS CLI (MQC), but see Appendix B, “CCO and Other
References,” if you want to learn more about the portfolio of Cisco QoS tools.

QoS, as used in casual conversation and in the context of IP and MPLS networks, is a
method of packet treatment: How do you decide which packets get what service?

MPLS, on the other hand, is a switching method used to get packets from one place to
another by going through a series of hops. Which hops a packet goes through can be
determined by your IGP routing or by MPLS TE.

So there you have it—MPLS is about getting packets from one hop to another, and QoS (as
the term is commonly used) is what happens to packets at each hop. As you can imagine,
between two complex devices such as QoS and MPLS, a lot can be done.

This chapter covers five topics:

•

The DiffServ architecture

•

DiffServ’s interaction with IP Precedence and MPLS EXP bits

•

The treatment of EXP values in a label stack as packets are forwarded throughout a
network

•

A quick review of the Modular QoS CLI (MQC), which is how most QoS features on
most platforms are configured

•

Where DiffServ and MPLS TE intersect—the emerging DiffServ-Aware Traffic
Engineering (DS-TE) devices and how they can be used to further optimize your
network performance

DiffServ and MPLS TE

It is important to understand that the DiffServ architecture and the sections of this chapter
that cover DiffServ and MPLS have nothing to do with MPLS TE. DiffServ is purely a
method of treating packets differently at each hop. The DiffServ architecture doesn’t care
what control plane protocol a given label assignment comes from. Whether it’s RSVP or
LDP, or BGP, or something else entirely, the forwarding plane doesn’t care. Why does this
chapter exist then, if it’s not about TE? Partly because MPLS TE and DiffServ treatment of
MPLS packets go hand in hand in many network designs, and partly because of the

existence of something called DS-TE, discussed later in this chapter.

0315 CH06.fm Page 254 Thursday, March 13, 2003 3:38 PM

The DiffServ Architecture

255

The DiffServ Architecture

RFC 2475 defines an architecture for Differentiated Services—how to use DiffServ Code
Point (DSCP) bits and various QoS mechanisms to provide different qualities of service in
your network.

DiffServ has two major components:

•

Traffic conditioning

—Includes things such as policing, coloring, and shaping. Is
done only at the edge of the network.

•

Per-hop behaviors

—Essentially consist of queuing, scheduling, and dropping
mechanisms. As the name implies, they are done at every hop in the network.

Cisco IOS Software provides all sorts of different tools to apply these architecture pieces.
You can configure most services in two ways—a host of older, disconnected, per-platform
methods, and a newer, unified configuration set called the MQC. Only MQC is covered in
this chapter. For information on the older configuration mechanisms, see Appendix B or the
documentation on CCO. Not all platforms support MQC, so there might be times when you
need to configure a service using a non-MQC configuration method; however, MQC is
where all QoS configuration services are heading, so it’s definitely worth understanding.

Traffic conditioning generally involves classification, policing, and marking, and per-hop
behaviors deal with queuing, scheduling, and dropping. Each of these topics are discussed
briefly.

Classification

The first step in applying the DiffServ architecture is to have the capability to classify
packets. Classification is the act of examining a packet to decide what sort of rules it should
be run through, and subsequently what DSCP or EXP value should be set on the packet.

Classifying IP Packets

Classifying IP packets is straightforward. You can match on just about anything in the IP
header. Specific match capabilities vary by platform, but generally, destination IP address,
source IP address, and DSCP values can be matched against. The idea behind DSCP is
discussed in the section “DiffServ and IP Packets.”

0315 CH06.fm Page 255 Thursday, March 13, 2003 3:38 PM

256

Chapter 6: Quality of Service with MPLS TE

Classifying MPLS Packets

The big thing to keep in mind when classifying MPLS packets is that you can’t match on
anything other than the outermost EXP value in the label stack. There’s no way to look past
the MPLS header at the underlying IP packet and do any matching on or modification of
that packet. You can’t match on the label value in the top of the stack, and you can’t match
on TTL (just as you can’t match on IP TTL). Finally, you can’t do any matching of EXP
values on any label other than the topmost label on the stack.

Policing

Policing involves metering traffic against a specified service contract and dealing with
in-rate and out-of-rate traffic differently. One of the fundamental pieces of the DiffServ
architecture is that you don’t allow more traffic on your network than you have designed
for, to make sure that you don’t overtax the queues you’ve provisioned. This is generally
done with policing, although it can also be done with shaping.

Policing is done on the edge of the network. As such, the packets coming into the network
are very often IP packets. However, under some scenarios it is possible to receive MPLS-
labeled packets on the edge of the network. For example, the Carrier Supporting Carrier
architecture (see Appendix B) means that a provider receives MPLS-labeled packets from
a customer.

Marking

The marking configuration is usually very tightly tied to the policing configuration. You can
mark traffic as in-rate and out-of-rate as a result of policing traffic.

You don’t need to police in order to mark. For example, you can simply define a mapping
between the IP packet’s DSCP value and the MPLS EXP bits to be used when a label is
imposed on these packets. Another possibility is to simply mark all traffic coming in on an
interface, regardless of traffic rate. This is handy if you have some customers who are
paying extra for better QoS and some who are not. For those who are not, simply set the
EXP to 0 on all packets from that customer.

Being able to set the EXP on a packet, rather than having to set the IP Precedence, is one
of the advantages of MPLS. This is discussed in more detail in the sections “Label Stack
Treatment” and “Tunnel Modes.”

Queuing

Queuing is accomplished in different ways on different platforms. However, the good news
is that you can treat MPLS EXP just like IP Precedence.

0315 CH06.fm Page 256 Thursday, March 13, 2003 3:38 PM

A Quick MQC Review

257

Multiple queuing techniques can be applied to MPLS, depending on your platform and
code version:

•

First In First Out (FIFO)

•

Modified Deficit Round Robin (MDRR) (GSR platforms only)

•

Class-Based Weighted Fair Queuing (CBWFQ) (most non-GSR platforms)

•

Low-Latency Queuing (LLQ)

FIFO exists on every platform and every interface. It is the default on almost all of those
interfaces.

MDRR, CBWFQ, and LLQ are configured using the MQC, just like most other QoS
mechanisms on most platforms. Just match the desired MPLS EXP values in a class map
and then configure a bandwidth or latency guarantee via the

bandwidth

 or

priority

commands. The underlying scheduling algorithm (MDRR, CBWFQ/LLQ) brings the
guarantee to life.

Queuing is one of two parts of what the DiffServ architecture calls

per-hop behaviors

(PHBs). A per-hop behavior is, surprisingly, a behavior that is implemented at each hop.
PHBs have two fundamental pieces—queuing and dropping.

Dropping

Dropping is the other half of DiffServ’s PHB. Dropping is important not only to manage
queue depth per traffic class, but also to signal transport-level backoff to TCP-based
applications. TCP responds to occasional packet drops by slowing down the rate at which
it sends. TCP responds better to occasional drops than to tail drop after a queue is
completely filled up. See Appendix B for more information.

Weighted Random Early Detection (WRED) is the DiffServ drop mechanism implemented
on most Cisco platforms. WRED works on MPLS EXP just like it does on IP Precedence.
See the next section for WRED configuration details.

As you can see, implementing DiffServ behavior with MPLS packets is no more and no less
than implementing the same behavior with IP.

A Quick MQC Review

Over time, various Cisco IOS Software versions and hardware platforms have invented
different ways to control QoS behaviors (policing, marking, queuing, and dropping). There
have been many different CLIs that accomplish very similar things. A GSR QoS
configuration was different from a 7200 configuration was different from a 7500
configuration, and so forth.

0315 CH06.fm Page 257 Thursday, March 13, 2003 3:38 PM

258

Chapter 6: Quality of Service with MPLS TE

Along came MQC. MQC’s goal is to unify all the QoS configuration steps into a single,
flexible CLI that can be used across all IOS platforms.

This chapter covers only the MQC, because that is the preferred way to configure QoS. You
can configure QoS services in other ways, but they are not covered here. If you have
questions about a specific router model or software version, see the relevant documentation.

MQC is very powerful, and it can be a bit complex to the beginner. This section is a quick
review of MQC. This is not a book on QoS, so this chapter doesn’t go into great detail on
the different types of services—merely how you can configure them with MQC.

MQC has three pieces:

•

Class map

—How you define what traffic you’re interested in

•

Policy map

—What you do to the traffic defined in a class map

•

Service policy

—How you enable a policy map on an interface

The options you have within each of these pieces vary between code versions and
platforms, so some of the options shown here might not be available to you. The basic idea
remains constant, though.

Configuring a Class Map

The first step in using MQC is to build a class map. Not surprisingly, you do this with the

class-map

 command:

vxr12(config)#

class-map ?

 WORD class-map name
 match-all Logical-AND all matching statements under this classmap
 match-any Logical-OR all matching statements under this classmapm

The

match-all

and

match-any

 keywords let you specify whether traffic matches this class,
if it matches

all

 the rules in this class or

any

 of them, respectively. The default is

match-all

.

You create a class by giving it a name. This puts you in a submode called config-cmap:

vxr12(config)#

class-map voice

vxr12(config-cmap)#

?

QoS class-map configuration commands:
 description Class-Map description
 exit Exit from QoS class-map configuration mode
 match classification criteria
 no Negate or set default values of a command
 rename Rename this class-mapm

The most useful option under config-cmap is

match

, which lets you define the traffic you
want to match with this class map. Its options are as follows:

vxr12(config-cmap)#

match ?

 access-group Access group
 any Any packets
 class-map Class map

0315 CH06.fm Page 258 Thursday, March 13, 2003 3:38 PM

A Quick MQC Review

259

 cos IEEE 802.1Q/ISL class of service/user priority values
 destination-address Destination address
 fr-de Match on Frame-relay DE bit
 input-interface Select an input interface to match
 ip IP specific values
 mpls Multi Protocol Label Switching specific values
 not Negate this match result
 protocol Protocol
 qos-group Qos-group
 source-address Source addressm

There are a few interesting options here. Note that you can match a class map; this lets you
define hierarchical classes. A class called “Business,” for example, can match an “Email”
class and a “Payroll” class you define so that all business-class e-mail and all traffic to or
from the payroll department gets the same treatment. You can also match

not

, which lets
you match everything

except

 a specific thing. You might now start to understand the
awesome power of MQC.

Table 6-1 lists the matches of interest here.

For the example in this chapter, create a simple LLQ policy matching MPLS EXP 5 traffic,
and assume it is Voice over IP (VoIP) traffic. The necessary configuration is as follows:

class-map match-all voice
 match mpls experimental 5
policy-map llq
 class voice
 priority percent 30

This defines a class that matches any MPLS traffic that has the EXP bits set to 5 and then
defines a policy for that traffic that gives the traffic 30 percent of a link’s bandwidth. The
policy map hasn’t been enabled on an interface yet; you’ll see that in a minute.

You can match multiple values with the same line using the following command sequence:

class-map match-any bronze-service
 match mpls experimental 0 1

This matches any packets that have an MPLS EXP of 0 or 1. As with route maps, multiple
values specified within the same match clause (such as

match mpls experimental 0 1

) are

Table 6-1

Class Map Matches

Match Type Function Configuration Syntax

access-group Matches a named or numbered
access list.

access-group

 {

name

acl-name

 |

acl-number 1-2699

}

ip Matches IP packets of a specific
DSCP or IP Precedence value (or a
range of RTP ports, but that

’

s not
addressed here).

ip

 {

dscp

name-or-number

 |

precedence

name or number

 |

rtp

lower-bound

range

}

mpls Matches MPLS packets that have a
particular EXP value.

mpls experimental

0-7

0315 CH06.fm Page 259 Thursday, March 13, 2003 3:38 PM

260

Chapter 6: Quality of Service with MPLS TE

implicitly ORed together; a packet can’t have both EXP 0

and

 EXP 1, so this implicit
ORing makes sense.

You can also match more than one criteria within a class, and you can use the

match-any

and

match-all

 statements to decide how you want to match traffic. For example, the
following policy matches traffic that has MPLS EXP 5

or

 traffic that entered the router on
interface POS3/0:

class-map match-any gold
 match mpls experimental 5
 match input-interface POS3/0

The following policy matches any traffic that has MPLS EXP 5 and that came in on
interface POS3/0:

class-map match-all gold
 match mpls experimental 5
 match input-interface POS3/0

See the difference? The first class map is match-any (the default), and the second is match-
all.

The output for show class-map {class-map-name} shows you the configured class maps,
as demonstrated in Example 6-1.

Note the class-default class in this list. class-default is a predefined class; it can be used
to match any traffic that doesn’t match any other class. You’ll read more about this in the
next section.

Configuring a Policy Map
After you define the class maps you want to match, you need to associate the class of traffic
with a behavior. You create the behavior with the policy-map command, which, like class-
map, puts you in a special submode:

vxr12(config)#policy-map ?
 WORD policy-map name

vxr12(config)#policy-map llq
vxr12(config-pmap)#?

Example 6-1 Displaying the Configured Class Maps

vxr12#show class-map
 Class Map match-all gold (id 2)
 Match mpls experimental 5
 Match input-interface POS3/0

 Class Map match-any class-default (id 0)
 Match any

 Class Map match-all voice (id 3)
 Match mpls experimental 5

0315 CH06.fm Page 260 Thursday, March 13, 2003 3:38 PM

A Quick MQC Review 261

QoS policy-map configuration commands:
 class policy criteria
 description Policy-Map description
 exit Exit from QoS policy-map configuration mode
 no Negate or set default values of a command
 rename Rename this policy-map

Under the config-pmap submode, you specify the class you want to match. This puts you
in the config-pmap-c submode:

vxr12(config)#policy-map llq
vxr12(config-pmap)#class voice
vxr12(config-pmap-c)#?
QoS policy-map class configuration commands:
 bandwidth Bandwidth
 exit Exit from QoS class action configuration mode
 no Negate or set default values of a command
 police Police
 priority Strict Scheduling Priority for this Class
 queue-limit Queue Max Threshold for Tail Drop
 random-detect Enable Random Early Detection as drop policy
 service-policy Configure QoS Service Policy
 set Set QoS values
 shape Traffic Shaping

You can do all sorts of things here. Table 6-2 shows the options of interest for the purposes
of this chapter.

Table 6-2 policy-map Command Options

Policy Type Function Configuration Syntax

bandwidth Allocates the configured amount
of bandwidth to the matched class.
This is CBWFQ.

bandwidth {bandwidth-kbps |
remaining percent percentage |
percent percentage}

police A token bucket policer that
conforms to RFCs 2697 and 2698.

police {cir cir} [bc conform-burst]
{pir pir} [be peak-burst] [conform-
action action [exceed-action action
[violate-action action]]]

priority Allocates the configured amount
of bandwidth to the matched class.
This differs from the bandwidth
option in that the priority keyword
is LLQ.

priority {bandwidth-kbps | percent
percentage} [burst]

random-detect Sets the WRED parameters for
this policy.

random-detect {prec precedence
min-threshold max-threshold [mark-
probability-denominator]

set Sets IP Precedence, DSCP, or the
EXP value on a packet.

set {ip {dscp value | precedence
value} | {mpls experimental value}}

shape Shapes the matched traffic to a
certain profile.

shape {average value | max-buffers
value | peak value}

0315 CH06.fm Page 261 Thursday, March 13, 2003 3:38 PM

262 Chapter 6: Quality of Service with MPLS TE

The syntax for all those commands makes them look intimidating, but it’s easy. Example
6-2 shows the LLQ policy you read about earlier, using the voice class map that’s already
been defined.

A predefined class called class-default implicitly matches anything not matched by a
specific class; this gives you an easy way to give all unmatched packets the same treatment
if you want to. For example, you can expand this class map to cover two types of service:
voice and business. Business class is any data that has an MPLS EXP of 3 or 4, that is
allocated 60 percent of the link bandwidth, and in which MPLS-based VoIP packets (EXP
5) get 30 percent of the link bandwidth. All other traffic is matched with class-default,
which gets the remaining 10 percent of link bandwidth. This requires both a new class (to
match the EXP 3 and 4 traffic) and a new policy map to define the treatment these classes
get (see Example 6-3).

The show policy-map command gives you a fair amount of detail about the policy maps
defined on a router and the class maps inside them. Example 6-4 shows two policy maps—
llq and business-and-voice; the llq policy matches the voice class, and the business-and-
voice policy matches the voice and business classes.

Example 6-2 LLQ Policy with a Defined voice Class Map

class-map match-any voice
 match mpls experimental 5
policy-map llq
 class voice
 priority percent 30

Example 6-3 Defining a Policy Map with a Business Class

class-map match-all business
 match mpls experimental 3 4
class-map match-all voice
 match mpls experimental 5
policy-map business-and-voice
 class voice
 priority percent 30
 class business
 bandwidth percent 60
 class class-default
 bandwidth percent 10

Example 6-4 Displaying Policy Map Information

vxr12#show policy-map
 Policy Map business-and-voice
 Class voice
 Weighted Fair Queuing
 Strict Priority
 Bandwidth 30 (%)
 Class business

0315 CH06.fm Page 262 Thursday, March 13, 2003 3:38 PM

A Quick MQC Review 263

Configuring a Service Policy
This is the easiest part of the MQC. So far, you’ve seen a few class definitions and a policy
definition. Now all that’s left is to apply the policy to an interface, as shown in Example 6-5.

That’s it. Note that you can have both an inbound and an outbound service policy.

show policy-map interface interface gives you details about which policy maps are
applied to an interface, as demonstrated in Example 6-6.

 Weighted Fair Queuing
 Bandwidth 60 (%) Max Threshold 64 (packets)
 Class class-default
 Weighted Fair Queuing
 Bandwidth 10 (%) Max Threshold 64 (packets)

 Policy Map llq
 Class voice
 Weighted Fair Queuing
 Strict Priority
 Bandwidth 30 (%)

Example 6-5 Applying a Service Policy to a Router Interface

vxr12(config-if)#service-policy ?
 history Keep history of QoS metrics
 input Assign policy-map to the input of an interface
 output Assign policy-map to the output of an interface

vxr12(config-if)#service-policy out
vxr12(config-if)#service-policy output ?
 WORD policy-map name

vxr12(config-if)#service-policy output llq

Example 6-6 Determining Which Policy Maps Are Applied to an Interface

vxr12#show policy-map interface pos3/0
 POS3/0

 Service-policy output: llq

 Class-map: voice (match-all)
 0 packets, 0 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
 Match: mpls experimental 5
 Weighted Fair Queuing
 Strict Priority
 Output Queue: Conversation 264
 Bandwidth 30 (%)
 Bandwidth 46500 (kbps) Burst 1162500 (Bytes)

Example 6-4 Displaying Policy Map Information (Continued)

continues

0315 CH06.fm Page 263 Thursday, March 13, 2003 3:38 PM

264 Chapter 6: Quality of Service with MPLS TE

If you’re still not comfortable with either MQC or the underlying QoS concepts such as
CBWFQ and LLQ, it is highly recommended that you check out the references in Appendix B.

DiffServ and IP Packets
QoS markings in the IP packet have evolved over time. The IP header has always contained
a byte known as the type of service (ToS) byte. The 8 bits within this byte have evolved and
have been redefined over time. It’s a little confusing to start with, because the ToS byte has
contained multiple things, some of which were called ToS bits.

Figure 6-1 shows the first four bytes of the IP header as defined in the original IP header
(RFC 791, circa 1981) and as redefined in RC 1349 (circa 1992), RFC 2474 (circa 1998),
and RFC 3168 (circa 2001).

Figure 6-1 Evolution of the First 4 Bytes of the IP Header

 (pkts matched/bytes matched) 0/0
 (total drops/bytes drops) 0/0

 Class-map: class-default (match-any)
 21 packets, 15744 bytes
 5 minute offered rate 3000 bps, drop rate 0 bps
 Match: any

Example 6-6 Determining Which Policy Maps Are Applied to an Interface (Continued)

0Version IHL PRE ToS Total length0

RFC791
(1981)

Version IHL DSCP 0 0 Total length

RFC2474
(1998)

0Version IHL PRE ToS Total length

RFC1349
(1992)

RFC3168
(2001) Version IHL DSCP Total lengthECN

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

0315 CH06.fm Page 264 Thursday, March 13, 2003 3:38 PM

DiffServ and IP Packets 265

Originally, the IP header had 3 precedence bits and 3 ToS bits, as well as 2 unused bits. The
precedence bits were (and still are) used to make various decisions about packet treatment.
Precedence values 0 through 5 are designated for user data; precedence values 6 and 7 are
reserved to make network control traffic. RFC 1349 reassigned one of the unused bits to the
ToS bits, giving the IP header a total of 3 precedence bits, 4 ToS bits, and one unused bit.

Use of ToS bits was never well-defined or well-deployed. The original intent was to be able
to mark packets that preferred low delay, high throughput, or high-reliability paths, but
service architectures were never designed or built around these bits.

The DiffServ set of RFCs (RFCs 2474 and 2475) redefined the entire ToS byte. The ToS
byte now contains 6 bits of information that declare desired packet treatment—DSCP bits.
The remaining two bits in the ToS byte are used for a TCP mechanism called Explicit
Congestion Notification (ECN), which isn’t addressed here but is defined in RFC 3168.

When discussing QoS and the ToS byte, some people use IP Precedence terminology, and
others use DiffServ terminology. This chapter uses DiffServ terminology, but we recognize
that not everyone is familiar with DiffServ and its code points. If you are familiar with IP
Precedence but are new to DiffServ, two things you should know are

• How to map DSCP bits to IP Precedence bits, and vice versa

• What services DSCP offers above and beyond mapping to IP Precedence

The first part is easy—how to map DSCP bits to IP Precedence bits. See Table 6-3.

If you’re accustomed to dealing with IP Precedence values 0, 1, 2, and 5 (for example), you
just need to refer to them as DSCP values 0, 8, 16, and 40. It’s easy: To convert IP
Precedence to DSCP, just multiply by 8.

Table 6-3 Mapping DSCP Bits to IP Precedence Bits

IP Precedence
(Decimal)

IP Precedence
(Bits) DSCP (Decimal) DSCP (Bits)

0 000 0 000000

1 001 8 001000

2 010 16 010000

3 011 24 011000

4 100 32 100000

5 101 40 101000

6 110 48 110000

7 111 56 111000

0315 CH06.fm Page 265 Thursday, March 13, 2003 3:38 PM

266 Chapter 6: Quality of Service with MPLS TE

The terminology is simple, too. The eight IP Precedence values are called classes, and the
DSCP bits that map to them (in Table 6-3) are called Class Selector Code Points (CSCP).
Sometimes you see these class selectors abbreviated as CS (CS1, CS2, CS5, and so on).
These are referred to simply as class selectors; the term Class Selector Code Point isn’t all
that widely used.

In addition to the eight class selectors that are defined, RFCs 2597 and 2598 define 13
additional DSCP values—12 Assured Forwarding (AF) values and an Expedited
Forwarding (EF) value (see Table 6-4). The decimal values are shown for reference only;
almost all discussions of DSCP use the names given in the Name column.

There are 12 AF values, all in the format Afxy, where x is the class number and y is the drop
precedence. There are four classes (AF1y through AF4y), each of which has three drop
precedences (AFx1 through AFx3). AF is a method of providing low packet loss within a
given traffic rate, but it makes minimal guarantees about latency.

EF is a defined behavior that asks for low-delay, low-jitter, low-loss service. EF is typically
implemented using some form of LLQ. Only one EF class is defined, because it doesn’t
make sense to have more than one class whose goals are minimal delay and jitter. These
two classes would compete with each other for the same resources.

Table 6-4 Additional DSCP Values in RFCs 2597 and 2598

Name DSCP (Decimal) DSCP (Bits)

Default 0 000000

AF11 10 001010

AF12 12 001100

AF13 14 001110

AF21 18 010010

AF22 20 010100

AF23 22 010110

AF31 26 011010

AF32 28 011100

AF33 30 011110

AF41 34 100010

AF42 36 100100

AF43 38 100110

EF 46 101110

0315 CH06.fm Page 266 Thursday, March 13, 2003 3:38 PM

Label Stack Treatment 267

DiffServ would be extremely simple if it weren’t for all the confusing terminology, not all
of which is covered here. If you want to learn more about the full set of DiffServ
terminology and the DiffServ architecture, see the references in Appendix B.

DiffServ and MPLS Packets
One thing you might have noticed is that there are 6 DSCP bits and only 3 EXP bits.
Because only eight possible EXP values and 64 possible DSCP values (21 of which are
currently defined) exist, how do you offer DSCP services over MPLS?

On a frame-mode network (as opposed to a cell-mode network), you are stuck with the 3
EXP bits; you need to map multiple DSCP classes to these EXP bits. However, this has
operationally not yet proven to be an issue in production networks, because hardly any QoS
deployments offer services that can’t be provisioned with the 3 MPLS EXP bits.

Work is being done to define something called L-LSPs (Label-Only Inferred PSC LSPs)
that will help alleviate this problem. The basic idea behind L-LSPs is that you use both the
EXP bits and the label to define different service classes. This is actually how label-
controlled ATM MPLS mode with multi-VC works. However, this book doesn’t cover cell
mode, because, as of this writing, there is no MPLS TE cell mode implementation available.

L-LSPs for frame-mode MPLS aren’t discussed in this chapter because they’re not yet
implemented or even fully defined. See RFC 3270, “Multiprotocol Label Switching
(MPLS) Support of Differentiated Services,” for more details on how L-LSPs work.

Label Stack Treatment
As mentioned earlier in this book, MPLS has 3 EXP bits in the label header that are used
in much the same way as IP Precedence bits or the DSCP CS bits.

You should consider three cases. The first case is when IP packets enter an MPLS network.
This is known as the ip-to-mpls case, often written as ip2mpls.

The second case is when packets that already have one or more labels have their label stack
manipulated. This is known as the mpls-to-mpls case, or mpls2mpls.

The third case is when packets exit an MPLS network and have all their labels removed.
This is known as the mpls-to-ip path, or mpls2ip.

ip2mpls
Packets entering an MPLS network have one or more labels applied to an underlying IP
packet. This is an ip2mpls push, because labels are pushed onto an unlabeled IP packet.

0315 CH06.fm Page 267 Thursday, March 13, 2003 3:38 PM

268 Chapter 6: Quality of Service with MPLS TE

By default, when Cisco IOS Software pushes labels onto an IP packet, the most significant
bits in the DiffServ field (the IP Precedence bits) are copied to the EXP field of all imposed
labels.

Figure 6-2 shows an ip2mpls push.

Figure 6-2 ip2mpls Push

mpls2mpls
Similarly, when a label is pushed onto a packet that already has a label, the EXP value from
the underlying label is copied into the EXP field of the newly imposed label. This is known
as the mpls2mpls path.

Three actions are possible in the mpls2mpls path:

• Push—An mpls2mpls push is when one or more labels are added to an already-
labeled packet.

• Swap—An mpls2mpls swap is when the topmost label on a packet is swapped for
another label.

• Pop—An mpls2mpls pop is when one or more labels are removed from a packet, but
at least one label is left.

Figure 6-3 illustrates these three cases.

IP:
dscp

40

MPLS
exp 5

IP:
dscp

40

MPLS
exp 5

ip2mpls push

0315 CH06.fm Page 268 Thursday, March 13, 2003 3:38 PM

Label Stack Treatment 269

Figure 6-3 mpls2mpls Operations

mpls2ip
Packets leaving an MPLS network have their label stack removed; this is known as the
mpls-to-ip operation, or mpls2ip. The only operation in the mpls2ip case is a pop, as
illustrated in Figure 6-4.

Figure 6-4 mpls2ip Pop

MPLS
exp 5

mpls2mpls push

IP:
dscp

40

MPLS
exp 5

IP:
dscp

MPLS
exp 5

MPLS
exp 5

mpls2mpls swap

IP:
dscp

40

MPLS
exp 5 IP:

dscp
40

MPLS
exp 5

mpls2mpls pop

IP:
dscp

40

MPLS
exp 5

MPLS
exp 5

IP:
dscp

40

MPLS
exp 5

40

mpls2ip pop

IP:
dscp

40

IP:
dscp

40

MPLS
exp 5

0315 CH06.fm Page 269 Thursday, March 13, 2003 3:38 PM

270 Chapter 6: Quality of Service with MPLS TE

EXP and DSCP Are Independent
As you can see, the default Cisco IOS Software behavior is to propagate the IP Precedence
bits (the three most significant DSCP bits) through your network.

NOTE To avoid confusion and to make things simpler, this chapter calls the bits that are copied
from the IP header to the EXP field the “IP Precedence bits.” This is deliberate; there is no
DiffServ term that means “only the three most significant bits of the DSCP field.” There are
CSs, but to talk about copying the DSCP CS to EXP isn’t accurate, because CS definitions
cover all six of the DSCP bits. So, when you see text such as “IP Precedence is copied to
EXP,” this reminds you that only the three most significant DSCP bits are copied to the
MPLS EXP field.

Two things interact to define the basic EXP and IP Precedence interaction:

• Cisco IOS Software allows you to set the EXP value on a label independently of any
IP or EXP values that might already be set.

• In both the ip2mpls and mpls2mpls pop cases, nothing is done to the lower-level
packet when labels are removed.

These two facts, when considered together, mean that if you set a packet’s EXP values
differently from the underlying IP packet, or if you change EXP values on the top of a label
stack midway through your network, these changes are not propagated downward. Figure
6-5 shows this in action, by default, in both the mpls2mpls pop and mpls2ip.

Figure 6-5 Default EXP Treatment When Popping

IP:
dscp

40

IP:
dscp

40

MPLS
exp 3

IP:
dscp

40

MPLS
exp 3

MPLS
exp 0

R1 R2

Topmost label removed, modified EXP value not propagated downward

0315 CH06.fm Page 270 Thursday, March 13, 2003 3:38 PM

Label Stack Treatment 271

Generally, this is acceptable. However, you might want to do things differently in some
cases.

In Figure 6-5, you might want to preserve the fact that the outermost label has an EXP value
of 0, even after that outermost label is removed and the underlying label (with an EXP of
3) is exposed.

This means copying the value of EXP 0 down and overwriting the value of EXP 3 in the
underlying label. The motivation and mechanics of this scenario are explained in the
upcoming “Tunnel Modes” section.

Per-Hop Behaviors in the ip2mpls and mpls2ip Cases
Another thing to consider is how your packets are treated if the outermost label on a packet
has its EXP value set to something other than the EXP or IP Precedence underneath it. If
you push a label of EXP 0 onto a packet with EXP 3 (or IP Precedence 3), how do you treat
the packet as it leaves the box? Is the packet given PHB treatment as if it has EXP 0, or as
if it has IP Precedence 3/DSCP 24? Figure 6-6 illustrates this question.

Figure 6-6 PHB Decision on Label Push

As it turns out, the case of label imposition is an easy one. The router doing the imposition
always treats the packet according to the new outgoing PHB indicator. In Figure 6-6, this
means that the packet is given PHB treatment for EXP 0.

The mpls2mpls and mpls2ip pop cases are not as straightforward. Figure 6-7 illustrates
these cases.

IP:
dscp

MPLS
exp 0

IP:
dscp

24

?

ip2mpls push

24

PHB for EXP0

PHB for DSCP24

0315 CH06.fm Page 271 Thursday, March 13, 2003 3:38 PM

272 Chapter 6: Quality of Service with MPLS TE

Figure 6-7 PHB Decision on Label Pop

In some cases, you will want the resulting packet to receive treatment according to the label
that was removed, and in other cases, you will want the resulting packet to receive treatment
according to the outermost indicator in whatever remains after the POP (MPLS EXP in the
case of mpls2mpls and IP DSCP in the case of mpls2ip).

All these label operations can be confusing. The next section aims to unify them and make
things easier to understand.

Tunnel Modes
So far, you’ve seen two independent questions:

• How is the queuing indicator (IP Precedence or MPLS EXP) propagated up and down
the label stack and upon exit from the MPLS network?

• In the mpls2mpls and mpls2ip pop cases, which PHB does the resulting packet get?

This section covers reasons why you might want to enforce different behaviors, as well as
the mechanisms being defined to standardize those behaviors.

Currently, a set of behaviors are being defined that give you a set of mechanisms to control
EXP values in various scenarios. These mechanisms are called tunnel modes. Three tunnel
modes are defined in RFC 3270:

• Uniform

• Short-Pipe

• Pipe

?

mpls2mpls pop

PHB for EXP0

PHB for EXP1

IP:
dscp
24

MPLS
exp 1

IP:
dscp
24

MPLS
exp 1

MPLS
exp 0

IP:
dscp

MPLS
exp 0

IP:
dscp

24

?

mpls2ip pop

24

PHB for EXP0

PHB for DSCP24

0315 CH06.fm Page 272 Thursday, March 13, 2003 3:38 PM

Tunnel Modes 273

These modes are defined in the same IETF draft that defines L-LSP—“MPLS Support of
Differentiated Services” (draft-ietf-mpls-diff-ext), which might well be an RFC by the time
you read this. Because this is a developing technology, this chapter does not cover CLI
commands for configuring tunnel modes. However, it’s worth understanding the concepts
behind tunnel modes so that you can design your network accordingly. If you’re interested
in the current state of affairs regarding tunnel mode in Cisco IOS Software, check CCO for
availability.

Uniform Mode
In Uniform mode, any changes made to the EXP value of the topmost label on a label stack
are propagated both upward as new labels are added and downward as labels are removed.
The idea here is that the network is a single DiffServ domain, so any changes made to the
EXP values on the MPLS packet in transit are supposed to be applied to all labels
underneath the packet, as well as to the underlying IP packet.

The rules for Uniform mode are as follows:

• On imposition, copy the DSCP/EXP upward.

• On disposition, copy the removed EXP downward to both IP packet and MPLS (if
stacked).

The question of deciding which PHB is applied on label disposition is irrelevant; no matter
when you apply the PHB according to the received EXP value or the outgoing EXP/DSCP
value, they’re both the same.

Table 6-5 shows the EXP treatment in Uniform mode.

Table 6-5 EXP Manipulation in Uniform Mode

Push Swap Pop

ip2mpls Copies the IP
Precedence into the
newly imposed label.

N/A N/A

mpls2mpls Copies the received EXP
into the newly imposed
EXP.

Copies the received
EXP into the newly
imposed EXP.

Copies the removed
EXP into the newly
revealed label.

mpls2ip N/A N/A Copies the removed
EXP into the DSCP.

0315 CH06.fm Page 273 Thursday, March 13, 2003 3:38 PM

274 Chapter 6: Quality of Service with MPLS TE

Figure 6-8 illustrates a case where a new label is pushed onto the stack with EXP 0 and, as
this label is popped off, the underlying label (previously EXP 3) is changed to EXP 0.

Figure 6-8 Uniform Mode Packet Handling

You would apply Uniform mode when both the IP and the MPLS network are in the same
DiffServ domain. You use Uniform mode if you want a change in EXP somewhere in your
network to affect how the IP packet is treated after it exits the MPLS portion of the network.

Short-Pipe Mode
Short-Pipe mode is useful for ISPs implementing their own QoS policy independent of their
customer’s QoS policy. The IP Precedence bits on an IP packet are propagated upward into
the label stack as labels are added. When labels are swapped, the existing EXP value is kept.
If the topmost EXP value is changed, this change is propagated downward only within the
label stack, not to the IP packet.

Table 6-6 shows EXP treatment in Short-Pipe mode.

Table 6-6 EXP Manipulation in Short-Pipe Mode

Push Swap Pop

ip2mpls Copies the IP
Precedence into the EXP.

N/A N/A

mpls2mpls Copies the received EXP
into the newly imposed
EXP.

Copies the received
EXP into the newly
imposed EXP.

Copies the removed EXP
into the newly revealed
EXP.

mpls2ip N/A N/A Doesn’t modify the
DSCP; selects the PHB
based on the DSCP.

ip2mpls push

IP:
dscp
40

MPLS
exp 3

IP:
dscp
40

MPLS
exp 3

MPLS
exp 0

IP:
dscp

40 IP:
dscp
40

MPLS
exp 3

MPLS
exp 0

IP:
dscp
40

MPLS
exp 0 IP:

dscp
0

mpls2mpls push mpls2mpls swap

mpls2mpls pop
mpls2ip pop

0315 CH06.fm Page 274 Thursday, March 13, 2003 3:38 PM

Tunnel Modes 275

Figure 6-9 illustrates this.

Figure 6-9 Short-Pipe Mode Packet Handling

The only difference between Uniform and Short-Pipe mode is that any changes to the label
stack EXP are propagated throughout the MPLS network, but—in Short-Pipe mode—the
underlying IP packet DSCP is not touched.

What about PHBs? There are two rules in Short-Pipe mode:

• In the mpls2mpls pop case, the received EXP is propagated downward, so the
question of which EXP value decides the PHB is moot.

• In the mpls2ip pop case, the PHB is decided based on the DSCP on the IP packet that’s
revealed after the label stack is removed.

The assumption in Short-Pipe mode is that the link between the provider and the customer
is where the mpls2ip processing happens. Because the customer is paying for the link
between the provider and the customer, the customer is the one in charge of the queuing on
that link, so the outgoing packet in the mpls2ip case is queued according to the DSCP the
customer sent the packet into the network with.

Pipe Mode
Pipe mode is just like Short-Pipe mode, except the PHB on the mpls2ip link is selected
based on the removed EXP value rather than the recently-exposed DSCP value. The
underlying DSCP in the packet is not touched, but the mpls2ip path does not consider the
DSCP for queuing on the egress link.

ip2mpls push

IP:
dscp
40

MPLS
exp 3

IP:
dscp
40

MPLS
exp 3

MPLS
exp 0

IP:
dscp

40 IP:
dscp
40

MPLS
exp 3

MPLS
exp 0

IP:
dscp
40

MPLS
exp 0 IP:

dscp
40

mpls2mpls push mpls2mpls swap

mpls2mpls pop
mpls2ip pop

Scope of short-pipe mode

Packet PHB is decided

based on DSCP (40)

0315 CH06.fm Page 275 Thursday, March 13, 2003 3:38 PM

276 Chapter 6: Quality of Service with MPLS TE

Table 6-7 shows EXP treatment in Pipe mode.

Figure 6-10 illustrates this.

Figure 6-10 Pipe Mode Packet Handling

When might you want to use Pipe mode? Pipe mode is useful if the ISP is the one that
decides what the PHB selection is on the link immediately exiting the MPLS network.
Typically, this is in a managed CPE scenario, in which the ISP does not want to extend
MPLS all the way out to the CPE but wants PHB selection control over the link to the CPE.

DiffServ-Aware Traffic Engineering (DS-TE)
So far, you’ve seen that DiffServ service with MPLS packets is basically the same thing as
with IP packets, with a few differences in configuration. Overall, MPLS packets with a
given EXP setting are treated just like IP packets with a given IP Precedence setting.

Table 6-7 EXP Manipulation in Pipe Mode

Push Swap Pop

ip2mpls Copies the IP Precedence
into the EXP.

N/A N/A

mpls2mpls Copies the received EXP
into the newly imposed
EXP.

Copies the received
EXP into the newly
imposed EXP.

Copies the removed EXP
into the newly revealed
EXP.

mpls2ip N/A N/A Doesn’t modify DSCP;
selects the PHB based on
the EXP.

ip2mpls push

IP:
dscp
40

MPLS
exp 3

IP:
dscp
40

MPLS
exp 3

MPLS
exp 0

IP:
dscp

40 IP:
dscp
40

MPLS
exp 3

MPLS
exp 0

IP:
dscp
40

MPLS
exp 0 IP:

dscp
40

mpls2mpls push mpls2mpls swap

mpls2mpls pop
mpls2ip pop

Scope of pipe mode

Packet PHB is decided

based on EXP (0)

0315 CH06.fm Page 276 Thursday, March 13, 2003 3:38 PM

DiffServ-Aware Traffic Engineering (DS-TE) 277

There’s more to MPLS TE and DiffServ than just applying IP mechanisms to MPLS
packets, though. The rest of this book spends a great deal of time showing you that there’s
benefit in making a headend resource-aware, because the headend can then intelligently
pick paths through the network for its traffic to take. However, after you add QoS, you’re
almost back at square one. Things are better than they were—you can steer IP traffic away
from the IGP shortest path in a resource-aware fashion. What you can’t do is steer traffic
per QoS. If you have traffic destined for a particular router, all that traffic follows the same
path, regardless of the DSCP/EXP settings on that packet.

To expand on this point further, suppose you are a service provider offering four classes of
service: Low latency, Gold, Silver, and Bronze. Low latency being self-explanatory,
suppose Gold is defined as guaranteed delivery. Edge QoS is applied to mark EXP bits to
differentiate your low-latency traffic from Gold and other traffic. Now, if the forwarding is
based on IGP best path alone, all your traffic, regardless of what class it belongs to, is
forwarded to a downstream neighbor dictated by your routing table. Even if you use MPLS
TE and mpls traffic-eng autoroute announce, you are still limited by the routing table and
how it decides to forward traffic.

The problem with this implementation is that when you have a congested link at a
downstream node along the forwarding path, even though most low-latency traffic might
get through, some of the Gold traffic might get dropped. This congestion knowledge is
localized at the downstream node and is not propagated back to the edge devices that send
traffic down that path. As a result, your edges continue to send traffic to the same
downstream router that continues to drop some of your Gold traffic. What is needed to fix
this situation is per-class call admission control—and this is exactly what you get when you
combine DiffServ and TE. Surprisingly enough, this combination is called DS-TE.

This might lead you to believe that all you need to do is mark the EXP bits according to
your QoS policy and let them ride over TE tunnels, conquering all the problems.

Not quite. The problem with TE, as it’s been discussed so far, is that it doesn’t do admission
control on a per-QoS class basis.

TE certainly offers call admission control in addition to the PHB offered by DiffServ. This
takes care of the first problem—sending more traffic down a certain path than there is
available bandwidth—while queuing your higher-priority traffic ahead of your low-priority
traffic.

A second problem is that there might be contention between different high-priority traffic
streams. For example, if you sold two voice pipes to two customers, both with a low-latency
requirement, if you forward both streams down the same path which is experiencing
congestion, both streams might be affected. Remember, for voice, it is better to drop a call
than to get degraded service. So how does DS-TE solve this problem?

0315 CH06.fm Page 277 Thursday, March 13, 2003 3:38 PM

278 Chapter 6: Quality of Service with MPLS TE

DS-TE allows you to advertise more than one pool of available resources for a given link—
a global pool and things called subpools. A subpool is a subset of link bandwidth that is
available for a specific purpose.

The current DS-TE implementation allows you to advertise one subpool. Think of this as a
pool with which you can advertise resources for a separate queue. The recommended use
of the DS-TE subpool is to advertise bandwidth in your low-latency queue on a link, but
you can do whatever you like with this subpool. The rest of this chapter assumes that you
are advertising LLQ space using the subpool.

It’s important to understand that DS-TE and its subpools are, like the rest of MPLS TE,
control-plane mechanisms only. If you reserve 10 Mbps of global bandwidth, it’s probably
not a good idea to send 100 Mbps down that LSP. DS-TE behaves the same way. Building
a separate control-plane reservation for a subpool doesn’t mean that any special queuing
policy is enforced as a result of this reservation. The actual queuing behavior at every hop
is still controlled by regular DiffServ mechanisms such as LLQ; what DS-TE buys you is
purely the ability to reserve queue bandwidth, rather than just link bandwidth, in the control
plane. This ability lets you build TE-LSPs that specifically reserve subpool bandwidth and
carry only LLQ traffic, and in effect build a second network on top of the one you already
have. You have a network of physical interfaces and global pools and a network of subpools.
This lets you get better resource utilization out of your network.

Going back to the example of two voice streams that might contend for the same low-
latency bandwidth along the same path, this would not happen with DS-TE. When you try
to build the second LSP requesting low-latency bandwidth and that bandwidth is not
available along a certain path, the LSP is not signaled. If you used dynamic path options to
configure your DS-TE tunnels, using CSPF on the router might find you an alternative path
that meets the subpool reservation.

But how do you configure all this?

Configuring DS-TE
The best way to understand DS-TE is to see it in action. DS-TE is easy to configure. The
configuration pieces provided in this section are for a 7200 series router with an OC-3
interface. The OC-3 interface is advertising 150 MB of global RSVP bandwidth. 45 Mbps
(30 percent) of this is subpool bandwidth. The OC-3 also has 45 Mbps configured in a low-
latency queue. Other configurations vary by platform and according to the goal you’re
trying to achieve.

There are five pieces to configuring DS-TE:

• Per-link subpool bandwidth availability

• Per-link scheduling

• Headend subpool bandwidth requirements

0315 CH06.fm Page 278 Thursday, March 13, 2003 3:38 PM

DiffServ-Aware Traffic Engineering (DS-TE) 279

• Headend tunnel admission control

• Tunnel preemption

Per-Link Subpool Bandwidth Availability
On each hop that you want to advertise a subpool, you configure the following command:

ip rsvp bandwidth interface-kbps sub-pool kbps

This is merely an extension of the ip rsvp bandwidth command discussed in earlier
chapters. The interface-kbps parameter is the amount of bandwidth (in Kbps) on the
interface to be reserved. The range is 1 to 10,000,000. sub-pool kbps is the amount of
bandwidth (in Kbps) on the interface to be reserved as a portion of the total. The range is
from 1 to the value of interface-kbps.

For this specific example of an OC-3 with 150 Mbps in the global pool and 45 Mbps in the
subpool, the necessary configuration is as follows:

ip rsvp bandwidth 150000 sub-pool 45000

Per-Link Scheduling
Advertising a subpool in DS-TE doesn’t change any packet queuing behavior on an
interface. You need to configure the forwarding-plane LLQ mechanisms in addition to the
control-plane subpool mechanisms. The subpool advertisement and LLQ capacity are
usually set to the same value, but you can set them differently if you want to do fancy things
such as oversubscription or undersubscription.

Per-link scheduling is just whatever LLQ mechanism exists in your platform. With MQC,
the priority keyword builds a low-latency queue. The MQC LLQ configuration for this
example is as follows:

class-map match-all voice
 match mpls experimental 5
policy-map llq
 class voice
 priority percent 30
interface POS3/0
 service-policy output llq

Headend Subpool Bandwidth Requirements
On the tunnel headend, you use the following command:

tunnel mpls traffic-eng bandwidth sub-pool kbps

This is the same thing as the tunnel mpls traffic-eng bandwidth kbps command that was
covered earlier in this book, except that you are telling the headend to do its path calculation
and bandwidth reservation based on the advertised subpool bandwidth.

0315 CH06.fm Page 279 Thursday, March 13, 2003 3:38 PM

280 Chapter 6: Quality of Service with MPLS TE

You are allowed to have only one type of reservation per tunnel. If you try to configure a
tunnel with the command tunnel mpls traffic-eng bandwidth followed by the command
tunnel mpls traffic-eng bandwidth sub-pool, the sub-pool command overwrites the
global pool command.

Headend Tunnel Admission Control
The next piece is controlling what traffic goes down the tunnel. There are three steps to this:

Step 1 Make sure no more traffic enters your network than you have sold.

Step 2 Make sure that the only traffic to enter the DS-TE tunnel is traffic that
belongs there.

Step 3 Make sure your TE tunnel reservation accurately matches your traffic
requirements.

The first step is a generic DiffServ architecture component; it has nothing to do with MPLS
TE. You can’t have any kind of QoS guarantees if you provision your network for a certain
amount of traffic and then send to that network far more traffic than you have provisioned
for.

The second step is where things start getting TE-specific. The general idea is that if you’ve
decided that your DS-TE subpool is for EXP 5 traffic, you send only EXP 5 traffic down
the DS-TE tunnel. Why? Because if you send nonsubpool traffic down a DS-TE tunnel, this
traffic interferes with other traffic at every hop. Let’s say you have a tunnel for 10 Mbps of
subpool bandwidth that you’re mapping to a low-latency queue for EXP 5 traffic. If you
send 100 Mbps of EXP 0 traffic down this DS-TE tunnel, that EXP 0 traffic is put into the
same queue as other EXP 0 traffic, but it is not reserved from the network. You’ll read more
about this in the section “Forwarding DS-TE Traffic Down a Tunnel.”

The reason for the third step should be obvious: If you don’t reserve bandwidth in
accordance with what you’re actually sending, and your reservations are designed to track
LLQ capacity at every hop, you run the risk of overloading the LLQ and providing poor
service. One way to make this adjustment is to size your DS-TE tunnels based on the
amount of DS-TE tunnel bandwidth you have provisioned for. The other way is to use
something such as auto-bandwidth (see Chapter 5, “Forwarding Traffic Down Tunnels”) to
adjust tunnel size based not on the provisioned load, but on the real-life traffic load.

Tunnel Preemption
The last thing you have to do is make sure that the subpool tunnel can preempt nonsubpool
tunnels. This is done with the command tunnel mpls traffic-eng priority, which was
covered in Chapter 3, “Information Distribution.” Why do you have to allow DS-TE tunnels
to preempt non-DS-TE tunnels? Because of the way subpool bandwidth is advertised. The
subpool is, as the name implies, a subset of the global bandwidth pool on an interface, not

0315 CH06.fm Page 280 Thursday, March 13, 2003 3:38 PM

DiffServ-Aware Traffic Engineering (DS-TE) 281

a separate bandwidth pool. If you don’t allow the DS-TE LSP to preempt a global LSP, the
global LSP can reserve bandwidth that would then no longer be available for the subpool.

If the subpool bandwidth were advertised as a separate bandwidth pool, rather than as a
subset of existing bandwidth, you could easily end up with bandwidth fragmentation, as the
following example shows.

If you have a link configured with ip rsvp bandwidth 150000 sub-pool 45000, this means
that you are advertising that you have 150 Mbps (150,000 Kbps) of global reservable
bandwidth on the link, and 45 Mbps of that 150 Mbps is subpool bandwidth. At this point,
the link is advertising the output shown in Example 6-7.

This shows a link with no reservations across it, a global pool of 150 Mbps, and a subpool
of 45 Mbps.

Let’s send three reservations across this link: a reservation for 60 Mbps from the global
pool, 20 Mbps from the subpool, and 50 Mbps for the global pool, in that order. After the
first reservation, the router advertises the bandwidth displayed in the output of show mpls
traffic-eng topology, as shown in Example 6-8. All LSPs are set up with the default priority
of 7.

Example 6-7 Available Bandwidth Before Any Reservations Have Been Made

vxr12#show mpls traffic-eng topology 192.168.1.12

IGP Id: 0168.0001.0012.00, MPLS TE Id:192.168.1.12 Router Node id 2
 link[0]:Nbr IGP Id: 0168.0001.0001.00, nbr_node_id:3, gen:1
 frag_id 0, Intf Address:2.3.4.12, Nbr Intf Address:2.3.4.1
 TE metric:10, IGP metric:10, attribute_flags:0x0
 physical_bw: 155000 (kbps), max_reservable_bw_global: 150000 (kbps)
 max_reservable_bw_sub: 45000 (kbps)

 Global Pool Sub Pool
 Total Allocated Reservable Reservable
 BW (kbps) BW (kbps) BW (kbps)
 --------------- ----------- ----------
 bw[0]: 0 150000 45000
 bw[1]: 0 150000 45000
 bw[2]: 0 150000 45000
 bw[3]: 0 150000 45000
 bw[4]: 0 150000 45000
 bw[5]: 0 150000 45000
 bw[6]: 0 150000 45000
 bw[7]: 0 150000 45000

Example 6-8 Available Bandwidth with 60 Mbps Reserved

vxr12#show mpls traffic-eng topology 192.168.1.12

IGP Id: 0168.0001.0012.00, MPLS TE Id:192.168.1.12 Router Node id 2
 link[0]:Nbr IGP Id: 0168.0001.0001.00, nbr_node_id:3, gen:3
 frag_id 0, Intf Address:2.3.4.12, Nbr Intf Address:2.3.4.1

continues

0315 CH06.fm Page 281 Thursday, March 13, 2003 3:38 PM

282 Chapter 6: Quality of Service with MPLS TE

This is because 60 Mbps was reserved from the global pool (at the default setup and holding
priorities of 7/7), leaving 90 Mbps available on the link. Of that 90 Mbps, 45 Mbps can be
reserved as subpool bandwidth should anybody want it.

The next reservation to come across takes 20 Mbps from the subpool. This means that the
available bandwidth on the interface is now as advertised in Example 6-9.

The available bandwidth on the interface is an important point to understand. 20 Mbps of
additional bandwidth is reserved from the available link bandwidth. This brings the total

 TE metric:10, IGP metric:10, attribute_flags:0x0
 physical_bw: 155000 (kbps), max_reservable_bw_global: 150000 (kbps)
 max_reservable_bw_sub: 45000 (kbps)

 Global Pool Sub Pool
 Total Allocated Reservable Reservable
 BW (kbps) BW (kbps) BW (kbps)
 --------------- ----------- ----------
 bw[0]: 0 150000 45000
 bw[1]: 0 150000 45000
 bw[2]: 0 150000 45000
 bw[3]: 0 150000 45000
 bw[4]: 0 150000 45000
 bw[5]: 0 150000 45000
 bw[6]: 0 150000 45000
 bw[7]: 60000 90000 45000

Example 6-9 Available Bandwidth with an Additional 20 Mbps of Subpool Bandwidth Reserved

vxr12#show mpls traffic-eng topology 192.168.1.12

IGP Id: 0168.0001.0012.00, MPLS TE Id:192.168.1.12 Router Node id 2
 link[0]:Nbr IGP Id: 0168.0001.0001.00, nbr_node_id:3, gen:4
 frag_id 0, Intf Address:2.3.4.12, Nbr Intf Address:2.3.4.1
 TE metric:10, IGP metric:10, attribute_flags:0x0
 physical_bw: 155000 (kbps), max_reservable_bw_global: 150000 (kbps)
 max_reservable_bw_sub: 45000 (kbps)

 Global Pool Sub Pool
 Total Allocated Reservable Reservable
 BW (kbps) BW (kbps) BW (kbps)
 --------------- ----------- ----------
 bw[0]: 0 150000 45000
 bw[1]: 0 150000 45000
 bw[2]: 0 150000 45000
 bw[3]: 0 150000 45000
 bw[4]: 0 150000 45000
 bw[5]: 0 150000 45000
 bw[6]: 0 150000 45000
 bw[7]: 80000 70000 25000

Example 6-8 Available Bandwidth with 60 Mbps Reserved (Continued)

0315 CH06.fm Page 282 Thursday, March 13, 2003 3:38 PM

DiffServ-Aware Traffic Engineering (DS-TE) 283

allocated bandwidth from 60 Mbps to 80 Mbps and decreases the total available link
bandwidth from 90 Mbps to 70 Mbps. It just so happens that the 20 Mbps reserved was
taken from the subpool, which means that the available subpool bandwidth is now 25 Mbps.
This is because the subpool is considered a subset of the global pool, rather than a whole
separate pool.

The third reservation for 50 Mbps from the global pool brings the available link bandwidth
down to that advertised in Example 6-10.

The total allocated bandwidth is 130 Mbps (60 Mbps + 20 Mbps + 50 Mbps). 20 Mbps of
that 130 Mbps is allocated from the subpool, and 110 Mbps (60 Mbps + 50 Mbps) is
allocated from the rest of the global pool.

If you ponder this for a while, making the subpool a subset of the global pool rather than a
whole separate pool makes sense. If the global pool and the subpool bandwidth were
segregated, instead of advertising a pool of 150 Mbps available bandwidth (45 Mbps of
which is in a subpool), the router would advertise a 105 Mbps pool and a 45 Mbps pool.

If you then have the same reservations, in the same order as before, the bandwidth
reservations and availability look like what is shown in Table 6-8.

Example 6-10 Available Bandwidth with an Additional 50 Mbps of Subpool Bandwidth Reserved

vxr12#show mpls traffic-eng topology 192.168.1.12

IGP Id: 0168.0001.0012.00, MPLS TE Id:192.168.1.12 Router Node id 2
 link[0]:Nbr IGP Id: 0168.0001.0001.00, nbr_node_id:3, gen:5
 frag_id 0, Intf Address:2.3.4.12, Nbr Intf Address:2.3.4.1
 TE metric:10, IGP metric:10, attribute_flags:0x0
 physical_bw: 155000 (kbps), max_reservable_bw_global: 150000 (kbps)
 max_reservable_bw_sub: 45000 (kbps)

 Global Pool Sub Pool
 Total Allocated Reservable Reservable
 BW (kbps) BW (kbps) BW (kbps)
 --------------- ----------- ----------
 bw[0]: 0 150000 45000
 bw[1]: 0 150000 45000
 bw[2]: 0 150000 45000
 bw[3]: 0 150000 45000
 bw[4]: 0 150000 45000
 bw[5]: 0 150000 45000
 bw[6]: 0 150000 45000
 bw[7]: 130000 20000 20000

0315 CH06.fm Page 283 Thursday, March 13, 2003 3:38 PM

284 Chapter 6: Quality of Service with MPLS TE

But what about the third reservation for 50 Mbps from the global bandwidth pool? It fails
to get through, even though a total of 70 Mbps of bandwidth (45 + 25) is available.

Advertising DS-TE bandwidth as a subpool rather than as a separate pool means that you
can reserve up to 45 Mbps for the subpool, but if it’s not in use, other nonsubpool tunnels
can use it.

If you want subpool tunnels to be able to take up to 45 Mbps of bandwidth no matter what
else is reserved on the link, the subpool tunnels need to be able to preempt other tunnels on
the link. However, see the section in Chapter 9, “Network Design with MPLS TE,” titled,
“The Packing Problem,” before you start messing with tunnel priorities.

Forwarding DS-TE Traffic Down a Tunnel
Chapter 5 covered three different methods of forwarding traffic down a tunnel:

• Static routes

• Policy-based routing (PBR)

• Autoroute

How do you forward traffic down a DS-TE tunnel? The only thing different between regular
TE tunnels and DS-TE tunnels is the subpool from which they reserve bandwidth. How-
ever, there are some things you need to think about when trying to get traffic to a DS-TE
tunnel.

All three of these methods work the same way on DS-TE tunnels as they do on regular TE
tunnels. Out of the three, autoroute is generally the easiest method to use; it requires only
one command on the headend, and all traffic destined for or behind the tail is sent down the
tunnel.

The problem with autoroute and DS-TE is that autoroute is not always granular enough to
do what you need to do. If you have both TE and DS-TE tunnels to the same destination,
you can’t autoroute on them both and have them do what you probably want.

Consider the topology shown in Figure 6-11.

Table 6-8 What If You Advertised Global and Subpool as Separate Pools?

Reservation Global Available Bandwidth Subpool Available Bandwidth

No reservations 105 Mbps 45 Mbps

60 Mbps global 45 Mbps 45 Mbps

20 Mbps subpool 45 Mbps 25 Mbps

50 Mbps global ????? ??????

0315 CH06.fm Page 284 Thursday, March 13, 2003 3:38 PM

Forwarding DS-TE Traffic Down a Tunnel 285

Figure 6-11 Topology in Which You Can’t Enable Autoroute on a DS-TE Tunnel

In Figure 6-11, H2 has VoIP traffic destined for H4, and H1 has regular data traffic destined
for H3. This network has two TE tunnels. Tunnel0 is a regular TE tunnel that follows the
path A→B→D→E→F→G, and Tunnel1 is a DS-TE tunnel from A to G that follows the
path A→B→C→F→G. You want all traffic for H4 to go down Tunnel1 and all other traffic
to go down Tunnel0.

What happens if you enable autoroute on both tunnels? Both H3 and H4 become reachable
over both TE tunnels, as shown in Example 6-11.

Example 6-11 H3 and H4 Can Be Reached Over Both TE Tunnels

RouterA#show ip route 3.3.3.3
Routing entry for 3.3.3.3/32
 Known via “isis”, distance 115, metric 50, type level-2
 Redistributing via isis
 Last update from 192.168.1.1 on Tunnel0, 00:00:19 ago
 Routing Descriptor Blocks:
 * 192.168.1.1, from 192.168.1.1, via Tunnel1
 Route metric is 50, traffic share count is 10
 192.168.1.1, from 192.168.1.1, via Tunnel0
 Route metric is 50, traffic share count is 1

RouterA#show ip route 4.4.4.4
Routing entry for 4.4.4.4/32
 Known via “isis“, distance 115, metric 50, type level-2
 Redistributing via isis
 Last update from 192.168.1.1 on Tunnel0, 00:00:31 ago
 Routing Descriptor Blocks:
 * 192.168.1.1, from 192.168.1.1, via Tunnel1
 Route metric is 50, traffic share count is 10
 192.168.1.1, from 192.168.1.1, via Tunnel0
 Route metric is 50, traffic share count is 1

Tunnel1 - DS-TE tunnel from A to G

Tunnel0 - Regular TE tunnel from A to G

H2

H1

H4

H3

4.4.4.4

3.3.3.3

A

C

D

F

E

G
B

0315 CH06.fm Page 285 Thursday, March 13, 2003 3:38 PM

286 Chapter 6: Quality of Service with MPLS TE

This is not what you want. The only way to solve this problem is with a static route—
something like this:

ip route 3.3.3.3 255.255.255.255 Tunnel1

This gives you the routing table shown in Example 6-12.

But what happens if you have lots of hosts that receive VoIP traffic? Static routes are a
reasonable solution for a small-scale problem, but managing large numbers of static routes
can be a nightmare.

You can try to solve the static route problem by aggregating your VoIP devices into shared
subnets. Instead of 200 VoIP devices and a /32 route for each device, number all the VoIP
devices into the same /24. Then you have only one static route.

Even then, you still have the same problem of scale. It’s not always possible to summarize
all your devices so neatly. Plus, you need to consider the issue of multiple sources. Consider
the network shown in Figure 6-12.

Figure 6-12 Topology in Which You Can’t Enable Autoroute on a DS-TE Tunnel

Example 6-12 Routing Table for Router A After Configuring a Static Route

RouterA#show ip route 3.3.3.3
Routing entry for 3.3.3.3/32
 Known via “static“, distance 1, metric 0 (connected)
 Routing Descriptor Blocks:
 * directly connected, via Tunnel1
 Route metric is 0, traffic share count is 1

Tunnel headends

Tunnel tail

CPE

Voice gateways

DS-TE sub-pool tunnel

(Tunnel1 on every router)

Global tunnel

(Tunnel0 on every router)

V

V

0315 CH06.fm Page 286 Thursday, March 13, 2003 3:38 PM

Forwarding DS-TE Traffic Down a Tunnel 287

Figure 6-12 shows four routers that each have two TE tunnels terminating on the same tail
node. Behind the tunnel tail is a CPE router, behind the CPE are two VoIP gateways and
two routers, and behind the two routers is the rest of the customer network. You can’t enable
autoroute on the headends, because you only want to send traffic to the VoIP gateways down
the subpool tunnels. Managing this network with static routes is messy. You need to have
two static routes on each tunnel headend, and every time you add a new VoIP gateway, you
need to add static routes to every headend.

Luckily, you can more easily manage this routing. You can use recursive routes and route
maps to manipulate the next hop of a given route based on whether the route is for a VoIP
gateway. The procedure is as follows:

Step 1 Configure a second loopback address on the tunnel tail.

Step 2 Have the CPE advertise separate routes for the VoIP routers via BGP to
the tunnel tail, with a different community for the VoIP routes.

Step 3 The tunnel tail changes the next hop for the VoIP routes to be its second
loopback address.

Step 4 All the tunnel headends point to a route to the second loopback address
down their DS-TE subpool tunnels.

Step 5 Recursive routing ensures that the forwarding works properly.

Figure 6-13 illustrates this scenario.

Figure 6-13 Topology in Which You Can’t Enable Autoroute on a DS-TE Tunnel

DS-TE sub-pool tunnel
(Tunnel1 on every router)

Global tunnel
(Tunnel0 on every router)

Tunnel headends

Tunnel tail
loopback0 = 4.4.4.4
loopback1 = 5.5.5.5

CPE

Voice gateways

1.1.1.1
2.2.2.2

1.1.1.1 with community
1:12.2.2.2 with community 1:1

1.1.1.1 via 5.5.5.5
2.2.2.2 via 5.5.5.5
3.0.0.0/8 via 4.4.4.4

3.0.0.0/8

ip route 5.5.5.5 255.255.255.255 Tunnel1

iBGP

iBGP

RouterG

RouterF

RouterA

RouterB

RouterC

RouterD

RID=1.2.3.4

V

V

match community 1:1
set ip next-hop 5.5.5.5

0315 CH06.fm Page 287 Thursday, March 13, 2003 3:38 PM

288 Chapter 6: Quality of Service with MPLS TE

Figure 6-13 is pretty busy, so Example 6-13 shows the necessary configuration snippets.

Doing things this way means that the only one who needs to know which routers are VoIP
routers and which aren’t is the CPE; the administration of any static configuration is limited
to the CPE. As more VoIP and CPE routers are added off RouterG, the tunnel headends
don’t need to change anything. As more tunnel tails are added, the tunnel headends need to
add only a single static route per DS-TE tunnel to that tail.

You can also be more flexible than using a community. RouterG can change the next hop
based on any criteria, because BGP is flexible in what it supports. Rather than a community,
you could change the next hop based on the destination AS, for example, or perhaps a
transit AS. The choice is up to you.

Summary
This chapter covered several things—a brief look at the DiffServ architecture and its
interaction with IP and MPLS packets, the MQC, and DS-TE.

Many tools are available to help you build QoS policies on your network. Here are the two
main points to take away from this chapter:

• Applying the DiffServ architecture to MPLS packets is not much different from
applying it to IP packets.

Example 6-13 Key Configurations for the Network Shown in Figure 6-13

On the CPE:
router bgp 100
 neighbor 4.4.4.4 route-map setcom-voice out

route-map setcom-voice
 match ip address 101
 set community 1:1

access-list 101 permit ip host 1.1.1.1 host 255.255.255.255

On RouterG (the tunnel tail)
router bgp 100
 neighbor 1.2.3.4 route-map set-nh in

route-map set-nh
 match community 1
 set ip next-hop 5.5.5.5

ip community-list 1 permit 1:1

On Routers A, B, C, and D
ip route 5.5.5.5 255.255.255.255 Tunnel1

0315 CH06.fm Page 288 Thursday, March 13, 2003 3:38 PM

Summary 289

• DS-TE helps you solve the same problem for QoS that “regular” MPLS TE solves for
link bandwidth, and in the same manner.

You can put as much or as little work as you like into your QoS policy. Whatever you can
do with IP, you can do with MPLS. The resource awareness and source-based forwarding
that MPLS TE gives you let you do even more with QoS in your network.

0315 CH06.fm Page 289 Thursday, March 13, 2003 3:38 PM

