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We begin this book with an introduction to the analysis, architecture, and design
processes. Many concepts and terms that are used throughout this book are intro-
duced and defined in this chapter. Some of these concepts may be new to you while
others are presented in a different light. Glossaries of terms and acronyms are pro-
vided at the end of this book for easy reference.

1.1 Objectives
The objectives of this chapter are to:

1. Introduce the fundamental concepts of this book; the processes of network
analysis, architecture, and design; systems and services; as well as their 
characteristics

2. Define several terms used throughout the book

3. Prepare the reader for the analysis process

1.2 Preparation
To be able to understand and apply the concepts in this chapter, you should be famil-
iar with basic networking concepts, including functions and features of the TCP/IP
protocol suite; technologies such as Ethernet, Fast Ethernet, Gigabit Ethernet, asyn-
chronous transfer mode (ATM), synchronous optical network (SONET), and frame
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relay; and the basics of network performance. Some recommended sources of infor-
mation include:

• TCP/IP Illustrated, volume 1, by W. Richard Stevens, Addison-Wesley
Publishing, January 1994

• Essentials of ATM Networks and Services, by Oliver Chukwudi Ibe, Addison-Wesley
Publishing, January 1997

• ATM and SONET Basics, by George Dobrowski and Donald Grise, APDG
Publishing, January 2001

• Switched, Fast, and Gigabit Ethernet, by Sean Riley and Robert A. Breyer, New
Riders Publishing, January 1999

• Frame Relay: Technology and Practice, by Jeff T. Buckwalter, Addison-Wesley
Publishing, December 1999

1.3 Background
Network analysis, architecture, and design have traditionally been considered art,
combining an individual’s particular rules on evaluating and choosing network tech-
nologies; knowledge about how technologies, services, and protocols can be mean-
ingfully combined; experience in what works and what doesn’t; along with (often
arbitrary) selections of network architectures. However, as in other types of art, suc-
cess of a particular network architecture or design often depends primarily on who is
doing the work, with results that are rarely reproducible. This may have been ac-
ceptable in the early days of networking, when networks were more of a hobby
than a critical resource and did not support revenue generation. Today, however,
networks are embedded within our work and home lives. They are considered
“mission-critical” to corporate success and provide near real-time access to infor-
mation throughout the world. As such, a network’s architecture and design must be
logical, reproducible, and defensible. This premise is the foundation for this book.

Traditionally, network analysis, architecture, and design have been based on de-
veloping and applying a set of rules for the network. In developing a set of rules, an
individual may draw from experience or from general rules such as the 80/20 rule
(where 80% of a network’s traffic is local, and 20% is remote) or the adage “bridge
when you can, route when you must” (bridging being simpler, easier, and cheaper at
the time). Both of these rules have been modified, as we will see later in the book.
Such rules were useful when there weren’t many choices in network technologies,
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services, and interconnection strategies and when the differences between choices
were clearly understood. But times have changed, and our notion of architecting and
designing networks must adapt to the variety of options now available to us, the many
different types of services we can offer to our end customers (users), and the subtleties
between technologies.

Network analysis, architecture, and design have traditionally focused on capacity
planning, which is estimating capacity (also known as bandwidth) required in the net-
work to accommodate most short- and long-term traffic fluctuations. As network
traffic grows, this bandwidth “buffer” provided by capacity planning reduces and cus-
tomers experience problems related to congestion. Some common solutions are to
“throw bandwidth at the problem,” increasing the bandwidth buffer to (hopefully) re-
duce congestion, or to overengineer the network, intentionally adding capacity to ac-
commodate network fluctuations. This approach often does not work, as network
bandwidth is only one component of network resources that must be considered. We
now also need to consider how delay performance can be optimized. And, in many
cases, network reliability, maintainability, and availability, also known as RMA (more
on this in Section 1.9), are more important than overall throughput.

In this book we will explore how the analysis, architecture, and design processes
have changed and how they continue to change. We will discuss how these processes
work together in engineering a new or existing network. We will approach networks
from a different perspective—as a system providing services to customers—and we dis-
cuss how networks can be architected and designed to provide many different types
of services to its customers (users). In taking this approach, we will emphasize net-
work analysis, which helps us understand what will be required of a network in sup-
porting its customers and their applications and devices. As we will see, these
processes require an investment of time and effort, but the return on investment is
significant. They are powerful tools that can help you build better networks.

This book begins by applying a systems methodology to networking. This
methodology is relatively new, and you will learn a number of useful definitions for
network analysis, architecture, and design. The rest of the book is logically divided
into three sections. The first section covers the analysis process, consisting of how to
develop requirements, flow, and risk analyses. The analysis process prepares you for
network architecture and design, discussed in the following two sections. The second
section discusses how to understand the relationships between functions within your
network and how to develop an architecture describing these relationships. In the
final section the network architecture is used as input for the network design process,
where technology selection and connectivity are determined. The information flows
between network analysis, architecture, and design are presented in Figure 1.1.
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Network analysis, architecture, and design will help you identify and apply the
services and performance levels that your network must satisfy. Through these
processes, you will be able to architect and design your network to provide the de-
sired services and performance levels and will be able to choose the appropriate net-
work technologies and interconnection strategies to meet your architectural and
design goals.

1.4 Overview of Analysis, Architecture, 
and Design Processes

What are network analysis, architecture, and design? Network analysis is about study-
ing network components (from network devices such as switches and routers, to re-
quirements and performance levels) and their inputs and outputs to understand
network behavior under various situations (Figure 1.2). Network analysis defines, de-
termines, and describes relationships between network components for many condi-
tions. In analyzing a network, we will examine the state of the existing network,
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including whatever problems it is having. We will also examine network goals and re-
quirements, traffic flows, and user and application behavior. Analysis results include
descriptions of requirements and traffic flows, as well as mappings of users, applica-
tions, and devices within the network environment (everything that is external to the
network, for example, users, applications, devices, buildings, business environment).

Network analysis helps us understand what problems we are trying to solve, and
in the process, we compile information that will be used in developing an architec-
ture and design.

Network architecture uses this information to develop a high-level, end-to-end
structure for the network. A network architecture develops the major network func-
tions (e.g., addressing/routing, network management, performance, security) as ar-
chitectural components that will be brought together to form the network; goals for
the architecture; and sets of interactions, trade-offs, dependencies, and constraints
(these will be described in detail later) that will be used to optimize the architecture.
There usually is not a single “right” architecture or design for a network; instead there
are several that will work, some better than others. Architecture and design focus on
finding the best network (optimized across several parameters) for your customer.
Network architecture also provides a set of guidelines that can be used to formulate
the technical design of a network.

Results of the network architecture process include a reference network architecture
(or just reference architecture), which is a description of the complete network, con-
sidering all of its architectural components. It is a compilation of the relationships 
developed during the network architecture process. Results also include descriptions
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of the interactions, trade-offs, dependencies, and constraints used to arrive at that 
architecture.

Network design provides physical detail to the reference architecture. During net-
work design, you evaluate and choose technologies for each area of the network and
develop strategies to connect these technologies across the network. You will learn
how to set design goals, such as minimizing network costs or maximizing perfor-
mance, as well as how to achieve these goals, through mapping network performance
and function to your design goals and evaluating your design against its goals to rec-
ognize when the design varies significantly from these goals. Network design is also
about applying the trade-offs, dependencies, and constraints developed as part of the
network architecture. Trade-offs, such as cost versus performance or simplicity versus
function, occur throughout the design process, and a large part of network design
concerns recognizing such trade-offs (as well as interactions, dependencies, and con-
straints) and optimizing the design between them. As part of the design process, you
will also learn how to develop evaluation criteria for your designs.

As we will see throughout the remainder of this book, network analysis, ar-
chitecture, and design combine several things—requirements, traffic flows, archi-
tectural and design goals, interactions, trade-offs, dependencies, constraints, and
evaluation criteria—to optimize a network’s architecture and design across several
parameters. These parameters are chosen and analyzed during the analysis process
and prioritized and evaluated during the architecture and design processes. Upon
completion of these processes, you should have a thorough understanding of the
network and plenty of documentation to take you forward to implementation,
testing, and integration.
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Example 1.1. A network’s architecture and design are analogous to the architecture and de-
sign of a home. Both the network and home architecture describe the major functional com-
ponents of each (for the network, network management, addressing and routing, security and
privacy, and performance; for the home, plumbing, electrical, HVAC [heating, vacuum, air
conditioning], framing) and the relationships between them (for the network, interactions, de-
pendencies, trade-offs, and constraints; for the home, where each component is placed relative
to one another). The network and home designs are also similar in that they both provide
physical detail to the architecture. For the network, this means where major network devices
are located and, for the home, where ducts, outlets, faucets, drains, and so forth are located.

1.4.1 Hierarchy and Interconnectivity

All of these processes center around two important characteristics of networks: their
levels of hierarchy and interconnectivity. Hierarchy is the degree of concentration of
networks or traffic flows at interconnection points within the network, as well as the
number of tiers of interconnection points within the network. In general, as networks
grow in size and numbers of users, applications, and devices increase, hierarchies pro-
vide separation and structure within the network. Hierarchies are important because
they help us in determining the sizes of networks, including routing and addressing
configurations, and the scaling of network technologies, performance, and service
levels. A key concept of this book is understanding these hierarchies, learning how
and where they will occur, and learning how to take advantage of them.

Along with hierarchy, there must be some consideration for the degree of intercon-
nectivity (or redundancy) in the network design. As hierarchy provides structure in the
network, interconnectivity balances this structure by interconnecting the network at dif-
ferent levels in the design to provide greater performance through parts of the network.
Interconnectivity is important in that it provides a mechanism to achieve performance
within a hierarchical structure. The dynamic between hierarchy and interconnectivity is
perhaps one of the most fundamental trade-offs in network architecture and design, and
it shows up several times in the analysis, architecture, and design processes.

Hierarchy and interconnectivity may be a bit confusing at this point, but they will
become clearer as we progress through the book. Hierarchy is fundamental to net-
working (as it is throughout nature): It provides a separation of the network into seg-
ments. These segments may be separate, smaller networks, or subnets, or broadcast
domains. This is necessary when the amount of traffic on the network grows beyond
the capacity of the network or when interactions between devices on the network re-
sult in congestion (e.g., broadcast storms).

Figure 1.4 illustrates levels of hierarchy and interconnectivity in a network. This
is a typical tree structure for a network, with circles representing networks or routers
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and lines representing the communications links between networks and/or routers.
In this figure there are four levels of hierarchy, from core (or backbone) networks to
access networks closest to users. Note that the end points of this tree (commonly ref-
ereed to as leaves; they represent the end networks, devices, or users) all occur at the
same level of hierarchy. This does not have to be the case; indeed, in most networks
there are leaves at most levels of hierarchy.

An example of adding hierarchy to a network is changing from a flat (bridged or
layer 2 switched) structure to a routed structure. This may be done to reduce the size
of the broadcast domain or the number of devices that are reached by a broadcast
message. Adding routing to the network breaks a broadcast domain into a number of
smaller broadcast domains, and traffic flows are concentrated at routers. Figure 1.5
shows this scenario.

A content delivery network (CDN) is an example of adding interconnectivity to
a network. A CDN bypasses the core of a network, where congestion is most likely
to occur, and directly connects devices or networks lower in the hierarchy (Figure
1.6). This provides better, more predictable performance but can also affect the net-
work hierarchy by modifying its routing behavior.

1.4.2 Importance of Network Analysis

The importance of network analysis is emphasized in this book because experience
has shown that networking personnel find it extremely valuable—once they are con-
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vinced of its importance. Analysis takes work, and when you know that there will be
a payoff, you will be more likely to do that work.

In this book you will learn how to gather and analyze network requirements and
traffic flows. Network requirements are requests for capabilities in the network, usually
in terms of performance and function, which are necessary for the success of that net-
work. Network requirements can be gathered and/or derived from customers, appli-
cations, and devices. Such requirements are fundamental to a network’s architecture
and design—they form the basis for customer expectations and satisfaction.
Requirements, in conjunction with measurements on the existing network (if there is
one), are used to derive traffic flows (sets of network traffic that have some common
attributes, such as source/destination address, information type, routing, or other end-
to-end information). Analysis of these flows imparts location and directional infor-
mation onto requirements. This is where performance requirements and architecture
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start to converge and is often the point in these processes where one can begin to see
where “hot spots”—focal points for network performance—will appear in the network.
As we will see, evaluating security risks is also part of the analysis process.

Results of the analysis process, the requirements and flow specifications, are then
used as input for both network architecture and design. In developing the network ar-
chitecture, a number of component architectures, targeting particular functions of the
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network, will be evaluated. Desired component architectures will then be combined
into the reference architecture, which will provide a high-level view of your network.
This high-level view is then physically detailed during the network design process.

Network analysis is important in that it helps us understand the complexity and
nuances of each network and the systems they support. Analysis also provides data
upon which various decisions are made, and these data can and should be docu-
mented as part of an audit trail for the architecture and design processes. Such data
help ensure that the resulting architecture and design are defensible.

Understanding Network and System Complexity
In general, networks and the systems that they support are becoming increasingly
complex. Part of this complexity lies in the sophistication of the capabilities provided
by that network. Consider, for example, how services can be incorporated into a cur-
rent state-of-the-art network. Infrastructure capacity planning, which often includes
traffic overengineering, may now be expanded to include support for delay-
constrained applications and may contain a variety of capacity and delay control
mechanisms, such as traffic shaping, quality of service at multiple levels in the net-
work, service-level agreements to couple services to customers, and policies to govern
and implement service throughout the network. (Note that quality of service refers to de-
termining, setting, and acting on priority levels for traffic flows. A service-level agreement
is an informal or formal contract between a provider and user that defines the terms
of the provider’s responsibility to the user and the type and extent of accountability if
those responsibilities are not met. Finally, policies are high-level statements about how
network resources are to be allocated among users.) Analysis of these mechanisms—
how they work and interoperate—will be covered in detail later in this book.

Network and system complexity is nonlinear. Network optimization must con-
sider competing and often conflicting needs. In addition, multiple groups with differ-
ing ideas and desires (e.g., users, corporate management, network staff) influence the
network design. The network is either designed by committee or through a system-
atic approach that the groups can agree on.

Networks have evolved to incorporate more sophisticated capabilities. Early
(first-generation) networks focused on supporting basic connectivity between devices
and on how to scale networks to support growing numbers of users (e.g., segmenting
networks using bridges or routers). Second-generation networks focused on interop-
erability to expand the scope and scale of networks to allow connections between
multiple disparate networks. We are currently at the stage in network evolution
where service delivery is important to the success of users and their applications. This
is the generation of network services, which can be considered the third generation
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of networking. Figure 1.7 illustrates the various generations of networking and their
interactions.

We are beginning to see steps toward next-generation capabilities, such as rudi-
mentary decision making within the network. It may be expected that components
of the network will evolve to become self-configurable and manageable, especially for
those networks that must be configured or administered by end users (e.g., telecom-
muters, users of mobility/portability services). Indeed, this will become necessary as
the complexity and performance of networks increase and as services offered by net-
works become more sophisticated.

Along with networks, users, applications, and devices are also evolving more so-
phisticated capabilities. An example of this is the dynamic between hierarchy and in-
terconnectivity as can be seen in the current Internet. As application and device traffic
flows evolve to incorporate information regarding quality, performance, and cost (e.g.,
real-time streaming media), it is expected that these characteristics can be used to en-
sure paths through the Internet that will support high performance or high-quality
delivery of such traffic. Hierarchy in the Internet often forces traffic flows through
nonoptimal paths, hindering high-performance, high-quality delivery. Figure 1.8
shows a hierarchy of multiple levels of networks from core (or backbone) network
providers to access network providers. Traffic flows between end users may travel
across several levels of this hierarchy.

To counteract the impact of hierarchy, interconnectivity can be introduced into
the Internet at strategic points, providing shortcuts that bypass parts of the Internet.
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The result is that, for some select flows, paths are optimized for high-performance,
high-quality delivery (Figure 1.9). The dynamic between hierarchy and interconnec-
tivity exists in all networks to some degree, and part of the analysis process is deter-
mining where and how to apply it. In Figure 1.9, connections are added between
networks at the same level of hierarchy, in essence providing a “shortcut” or “bypass”
around part of the Internet, resulting in better performance characteristics.
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Analysis helps us understand how technologies influence networks, users, appli-
cations, and devices (and vice versa). This is important in understanding how users of
the network will adapt to the network, which affects the overall life cycle of the net-
work. Consider, for example, the evolution of routing protocols, shown in Figure 1.10.
Although the Routing Information Protocol (RIP), an Interior Gateway Protocol
(IGP) deployed as part of early TCP/IP releases, was simple and easy to use, its limi-
tations were stressed as networks expanded to accommodate larger groups of users
(workgroups), even groups of networks (autonomous system [AS]). Routing technol-
ogy adapted by adding hierarchy to routing, in terms of new IGPs such as Open
Shortest Path First (OSPF), as well as in development of Exterior Gateway Protocols
(EGPs) such as Border Gateway Protocol (BGP), which can accommodate hierarchy
in groups of networks (AS hierarchy). This process continues today as high-level poli-
cies are being introduced to control routing at a level above IGPs or EGPs, and BGP4
introduces hierarchy through grouping BGP4 routers into confederations. We will
discuss routing protocols in detail in the addressing and routing architecture (see
Chapter 6).

Similarly, users, applications, and devices also influence their environment. As
new, upgraded, or different users, applications, and devices are added to a network,
the requirements on that network may change. The analysis process should examine
how the impact of high-end compute and applications servers, data storage, analysis
and archival systems, and specialized environment-specific devices such as video cam-
eras or medical equipment changes the network.

Finally, the analysis process helps us understand the forces and changes at work
within the system (network and its users, applications, and devices). Networks are
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highly dynamic, changing the rest of the system and being changed by the system.
Some of the factors leading to change in the system include usage behavior and pat-
terns; what, how, where, and when each user impacts the system; the emergence of
new capabilities, for example, optical switching, faster central processing units
(CPUs) and cheaper memory; and changes in scope and scale of the environment, in-
cluding consolidation and outsourcing.

Architecture and Design Defensibility
An important (and often overlooked) part of network analysis is that, when documented
properly, analysis should provide information about decision making in the network ar-
chitecture and design processes. During the analysis process, we are gathering data that
can be used to determine which architectural and design decisions need to be made, de-
tails regarding each decision (including reasons for each decision), dependencies between
decisions, and any background material used to arrive at these decisions.

Data from network analysis, along with any decisions made during the process,
can be documented to form an audit trail, that is, the set of documents, data, and de-
cisions, for the architecture and design. Audit trails are useful in describing and de-
fending a particular network architecture or design. An audit trail helps address
questions such as “Why did you choose that technology?” “Why doesn’t this new
network perform as expected?” or “Why did this network cost so much?” Having
documented your analysis of the existing network, the problems to be addressed, re-
quirements for the new network, and all decisions made regarding that network, you
will be able to answer questions at any time about your new network.

Decisions made regarding the network architecture and design need to be de-
fensible from several perspectives: budgetary, to ensure that network costs are within
budget or to provide good reason why a budget has been exceeded; schedule, to en-
sure that time frames for development, installation, testing, and operations are being
met; and resources, such as personnel or equipment, to ensure that the customer has
everything necessary to build and operate this network.

An audit trail is also useful as a historical document about the network. Over
time, after the network is made operational, new network personnel can review this
document to understand the logic behind the way that network was designed. Ideally,
this document should be periodically reviewed, with new information added regard-
ing changes to the network. Thus, an audit trail becomes a history for that network.

Experience shows that the set of documents, data, and decisions in an audit trail
can be vital in making day-to-day tactical design decisions throughout the project.
The investment in time at this phase of the project can save large amounts of time and
resources later in the project.
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The Web is a great tool to use in building an audit trail. Since an audit trail con-
tains information about the old network, the new network, and decisions made about
the new network, having this information easily accessible by those who use the net-
work makes a lot of sense. Putting such information on internal Web pages allows
easy access by everyone, and changes or additions to the audit trail can be seen im-
mediately. Although there may be some information that your customer might not
want everyone to view, such as the results of a risk analysis, most information usually
can be accessible to everyone. For information that is restricted (need-to-know), hid-
den and password-protected Web pages can be used. Of course, when putting sensi-
tive information at a common location, such as a Web site, sufficient security from
outside attacks (hackers) should be provided.

An audit trail can be developed using standard word processing and spreadsheet
software tools, and software tools specialized for this purpose are available.
Requirements, problem definitions, goals, decisions, and all background data are en-
tered into the audit trail, and all information is time-stamped. Examples of audit trail
information are presented later in this book.

1.4.3 Model for Network Analysis, Architecture, 
and Design

Networking traditionally has had little or no basis in analysis or architectural develop-
ment, with designers often either relying on technologies that they are most familiar
with or those that are new or popular or being influenced by vendors and/or consul-
tants. There are serious problems with this traditional approach, particularly that deci-
sions may be made without the due diligence of analysis or architectural development
and that such decisions made during the early phases of the project are uninformed.

As a result, there may not be an audit trail for the architecture and design; there-
fore, the architecture and design are not defensible. In addition, such an architecture/
design may lack consistency in its technological approach. Lacking data from analysis
and architecture, we may not have a basis for making technology comparisons and
trade-offs. Therefore, network analysis, architecture, and design are fundamental to
the development of a network.

Network analysis, architecture, and design are similar to other development
processes in that they address the following areas:

• Defining the problems to be addressed

• Establishing and managing customer expectations

• Monitoring the existing network, system, and its environment
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• Analyzing data

• Developing a set of options to solve problems

• Evaluating and optimizing options based on various trade-offs

• Selecting one or more options

• Planning the implementation

In defining the problems to be addressed, this should be a quick evaluation of the
environment and project, in essence performing a sanity check on the task at hand, as
well as determining the size and scope of the problems, determining that you are
working on the right problems, and checking the levels of difficulty anticipated in the
technologies, potential architectures and designs, administration, management, and
politics in that environment. As you size up the problems faced in this project, you
should begin to estimate the level of resources needed (e.g., budget, schedule, person-
nel). You should also develop your own view of the problems affecting that environ-
ment. You may find that, from your analysis of the situation, your definition of the
problems may differ from the customer’s definition. Depending on how far apart your
definitions are, you may need to adjust your customer’s expectations about the project.

Example 1.2. Once, in performing an analysis on a customer’s metropolitan-area network
(MAN), I realized that the problem was not what the customer thought—that the technology
chosen at that time, switched multimegabit data service (SMDS), and the routing protocol
(OSPF) were not working properly together. Rather the problem was that the network per-
sonnel had forgotten to connect any of their LANs to the MAN. Of course, when they ran
tests from one LAN to another, no data were being passed. It was an easy problem to fix, but
a lot of work was spent changing the customer’s view on the problem and expectations of
what needed to be done. The customer originally wanted to change vendors for the routing
equipment and replace the SMDS service. Eventually, the customer was convinced that the
equipment and service were fine and that the problem was internal to the organization. 

Although SMDS is not widely available anymore, its behavior as a nonbroadcast multiple-
access (NBMA) technology is similar to other currently available technologies such as ATM
and frame relay.

An early part of every project is determining what your customer’s expectations are
about the project and adjusting these expectations accordingly. The idea here is not to
give customers false expectations or to let them have unrealistic expectations; this will
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only lead to difficulties later in the project. Instead, the goal is to provide an accurate and
realistic view of the technical problems in the network and what it will take to solve
them. Customers’ expectations will likely focus on budget, schedule, and personnel but
may also include their opinions about technologies and methodologies. And, at times,
politics become imbedded within the project and must be dealt with. The key here is to
separate technical from nontechnical issues and focus on technical and resource issues.

Part of determining customers’ expectations is understanding what customers
want to do with their network. This may involve understanding the customer’s
business model and operations. In addition, the customer may expect to have sig-
nificant input into the development of the network. As you set the customer’s ex-
pectations, you may need to establish the lines of communication between the
network architecture/design group, management, users, and network staff.

Having established what the customer’s expectations are, you may need to adjust
and manage these expectations. This can be done by identifying trade-offs and options
for resources, technologies, architectures, and designs and then presenting and dis-
cussing trade-offs and options with your customer. Bringing customers into the
process and working with them to make critical decisions about the network will help
them become comfortable with the process.

If an existing network is part of this project, monitoring this network, as well as
other parts of the system and its environment, can provide valuable information about
the current behavior of users, applications, and devices and their requirements for the
new network. Monitoring can also validate your and your customer’s definitions of
the problems with the existing network. When it is possible to monitor the network,
you will need to determine what data you want to collect (based on what you want
to accomplish with the data), any strategic places in the network where you want to
collect this data, and the frequency and duration of data collection.

At this point in the process you should have several sets of information with
which you can begin your network analysis. You may have historical data from net-
work management; data captured during monitoring; requirements gathered from
users, staff, and management; the customer’s definition of the problem; and your de-
finition. All of these data are used in the network analysis, of which there are three
parts: requirements or needs analysis, flow analysis, and a risk (security) analysis.
Information in these analyses can be placed on the customer’s internal Web page, as
mentioned earlier, although some information (e.g., the results of the risk analysis)
may need to be kept private.

Results of the network analysis are used in the architecture and design processes,
where sets of options are developed, including potential architectures, designs, topolo-
gies, technologies, hardware, software, protocols, and services.
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These sets of options are then evaluated to determine the optimal solutions for
the problems. Criteria will need to be developed throughout the analysis, architec-
ture, and design processes in order to evaluate these options. Along with these crite-
ria, you will use the results of the network analysis, including requirements, trade-offs,
and dependencies between options.

Having selected one or more options, you will able to complete the network ar-
chitecture and design and prepare for implementation. At this point you may consider
developing a project plan to determine schedule, budget, and resources, as well as
major and minor milestones, checkpoints, and reviews.

1.5 A Systems Methodology
We begin the network analysis process with a discussion about the systems method-
ology approach to networking. Applying a systems methodology to network analysis,
architecture, and design is a relatively new approach, particularly in the Internet
Protocol (IP) world. Systems methodology (as applied to networking) is viewing the net-
work that you are architecting and designing, along with a subset of its environment
(everything that the network interacts with or impacts), as a system. Associated with
this system are sets of services (levels of performance and function) that are offered
by the network to the rest of the system. This approach considers the network as part
of the larger system, looking at interactions and dependencies between the network
and its users, applications, and devices. As you will see, the systems methodology re-
veals interesting concepts that will be used throughout this book.

One of the fundamental concepts of the systems methodology is that network ar-
chitectures and designs take into account the services that each network will provide and
support. This reflects the growing sophistication of networks, which have evolved from
providing basic connectivity and packet-forwarding performance to being a platform for
various services. As discussed earlier, we are currently at the stage in network evolution
where services are important to the success of many networks (third-generation net-
works). Some examples of third-generation networks are service-provider networks
that support multiple levels of performance and pricing to its customers, content-
distribution networks that specialize in high performance transport, and enterprise
networks that incorporate and apply billing and usage models to their customers.

When a network is viewed as part of a system that provides services, the systems
methodology works quite well for a variety of networks, from small and simple to
large, complex networks. It helps in determining, defining, and describing the im-
portant characteristics and capabilities of your network.
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1.6 System Description
A system is a set of components that work together to support or provide connectiv-
ity, communications, and services to users of the system. Generically speaking, com-
ponents of the system include users, applications, devices, and networks. Although
users of the system can be considered outside of the system, they also have require-
ments that include them as part of the system. Throughout this book we will include
users as part of the system. Figure 1.11 shows how these components are connected
within the system.

Figure 1.11 shows the generic components of a system. These components can be
subdivided, if necessary, to focus on a particular part of the system. For example, users
in a corporate network could be further described as network and computer support
personnel, as well as developers and customers of that corporation’s product. In a sim-
ilar sense, applications may be specific to a particular user, customer or group, generic
to a customer base, or generic across the entire network.

If we were to compare this view of a system with the open system interconnect
(OSI) protocol model, it would look like Figure 1.12. Note that in this comparison,
some of the OSI layers are modified. This is to show that there may be multiple proto-
col layers operating at one of the system levels. For example, the OSI physical, data link,
and network layers may be present at the device level and may also be present multiple
times at the network level (e.g., at switches and routers throughout the network).

Figure 1.13 shows that devices can be subdivided by class to show specialized
functions, such as storage, compute, or application servers, or an individual device
may be subdivided to show its operating system (OS), device drivers, peripheral hard-
ware, or application programming interface (API).
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All of these components work together to provide connectivity and communica-
tions across the network, between users, applications, and devices. The connectivity
and communications can be tailored to meet the specific needs of users and applica-
tions, such as real-time delivery of voice or streaming media, best-effort delivery of
noninteractive data, or reliable delivery of mission-critical data.
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The degree of granularity used to describe system components is a trade-off be-
tween the amount of detail and accuracy you want in the description and how much
time and effort you are willing to put into it. If you are the network architect re-
sponsible for a corporate network, you may have the ability to invest time and re-
sources into developing a detailed description of your system’s components, whereas
a consultant or vendor’s design engineer may have little time and resources to spend
on such a description. It is important to note, however, that even a small amount of
time invested here will pay dividends later in the analysis process.

The traditional view of a system focused on the network providing connectivity
between devices (Figure 1.14) and typically did not consider the users or applications.

This traditional view of a system is not complete enough for today’s networks. In
particular, we need to include users and their applications in the system description.
Experience shows that the degree of descriptiveness in the set (users, applications, de-
vices, and networks) is usually sufficient to provide a complete and accurate descrip-
tion of most general-access systems, yet not so large as to be overwhelming to the
network architect. (General-access is a term to describe common access of users to ap-
plications, computing, and storage resources across a network.) Within this set, users
represent the end users, or customers, of the system. These end users are the final re-
cipients of the network services supported by the system.

One reason for identifying components of the system is to understand how these
components interface with each other across component boundaries. By defining
what the components of the system are, we are also setting what is to be expected
across each interface. For example, using the standard set (users, applications, devices,
and networks), Figure 1.15 shows potential interfaces.

Although the description of the system given in Figure 1.15 is usually satisfactory
for the start of most network architectures, there will be times when you will want to
describe more components or have more defined interfaces. For example, the device-
network interface may be simple or complex, depending on what you are trying to
accomplish. For a network that will be providing simple connectivity, the network-
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device interface may be a standard LAN interface (e.g., 100BaseT Ethernet) without
any prioritization or virtual LAN (VLAN 802.1p/q) tagging. For a network that pro-
vides more than simple connectivity, such as quality of service, the device-network in-
terface may be more closely coupled with the device or application. This may be
accomplished by using drivers that bypass portions of the protocol stack and APIs that
can interpret application performance requirements.

To illustrate, consider the difference in network-device interfaces between a net-
work using ATM, a link-layer technology, in the backbone versus a network where
devices directly connect to ATM, sometimes referred to as a native ATM network.
Figure 1.16 shows a system description where ATM is used in the backbone and
Ethernet is used to connect to the devices. In this description, ATM does not directly
interface with the devices, applications, or users and is isolated from them by IP
routers. This is one of the scenarios described in the classical model of IP over ATM,
described in RFC 2225 (RFC is a request for comment, a standards document of the
Internet Engineering Task Force [IETF]) and used in more detail in the design sec-
tion of this book. In this system description, ATM is embedded within the network
component of the set (users, applications, devices, and networks). Why is this impor-
tant? By isolating ATM within the network component of the system, any capabili-
ties specific to ATM that may be directly useful to devices, applications, or users of
the system are lost.

Figure 1.17, on the other hand, shows a native ATM network in which ATM is
integrated into devices and will interface directly with applications. In describing the
system this way, we are explicitly including capabilities, such as quality of service,
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across the network-device interface. In this example the system may be better de-
scribed as the set (users, applications, API, device driver, and network).

You should consider more detailed system descriptions when there is a need to
identify system components that are likely to affect the delivery of services to users.
In Figure 1.17, the ATM-specific API translates application requirements to the ATM
network. As part of the system description, this ATM-specific API is clearly recog-
nized as being important to the delivery of services.

Although the system description is an attempt to identify components across the
entire system, we need to recognize that most systems are not completely homoge-
neous and that components may change in various parts of the system. This usually
occurs in parts of the system that perform specific functions, such as a device-specific
network (e.g., a video distribution network) or a storage-area network (SAN). For ex-
ample, although an SAN may be described as the set (users, applications, devices, and
networks), users may be other devices in the system, and the only application may be
for system storage and archival.

1.7 Service Description
The concept of network services in this book builds upon the services work from the
IETF. This organization has been developing service descriptions for IP networks. In
general, they see network services as sets of network capabilities that can be config-
ured and managed within the network and between networks. We apply this concept
to network analysis, architecture, and design, integrating services throughout the en-
tire system. This will help you take advantage of the services concept by analyzing,
architecting, and designing based on services, and it will also prepare you for the near
future, when services will be configurable and manageable within the network.

Network services, or services, are defined here as levels of performance and function
in the network. We can look at this from two perspectives: as services being offered
by the network to the rest of the system (the devices, applications, and users) or as sets
of requirements from the network that are expected by the users, applications, or de-
vices. Levels of performance are described by the performance characteristics capac-
ity, delay, and RMA (reliability, maintainability, and availability), whereas functions
are described as security, accounting, billing, scheduling, and management (and oth-
ers). This will be described in more detail in the next section.

It is important to note that the concept of services in this book is based on what
networks can deliver to the system. Thus, it is not to be confused with services that
other parts of the system (e.g., applications) can deliver to each other (e.g., graphics
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rendering services). When the term service is used in this book, it is in reference to net-
work service.

Network services in most of today’s networks are based on best-effort (unpre-
dictable and unreliable) delivery. In addition to best-effort delivery, we will examine
some new types of services, including high-performance, predictable (stochastic or
probabilistic), and guaranteed services. These new services will require some differ-
ent ways of looking at networks, and you will see how to incorporate such services
into your architecture and design. We will also examine single-tier and multiple-tier
performance in the network, how to distinguish between them, and how they relate
to best-effort, predictable, and guaranteed services.

Network services are hierarchical, and individual service characteristics can be
grouped together to form higher-level descriptions of a service, as shown in Figure 1.18.

1.8 Service Characteristics
One of the goals of network analysis is to be able to characterize services so that they
can be designed into the network and purchased from vendors and service providers
(e.g., via requests for information [RFI], quote [RFQ], or proposal [RFP], documents
used in the procurement process). In addition to today’s best-effort delivery, we will also
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FIGURE 1.18 Grouping characteristics into service levels and descriptions.



Service Characteristics 27

examine new types of services (predictable and guaranteed), as well as single/multiple-
tier performance.

Service characteristics are individual network performance and functional parameters
that are used to describe services. These services are offered by the network to the sys-
tem (the service offering) or are requested from the network by users, applications, or
devices (the service request). Characteristics of services that are requested from the net-
work can also be considered requirements for that network.

Examples of service characteristics range from estimates of capacity require-
ments based on anecdotal or qualitative information about the network to elaborate
listings of various capacity, delay, and RMA requirements, per user, application,
and/or device, along with requirements for security, manageability, usability, flexi-
bility, and others.

Example 1.3. Examples of service characteristics are:

• Defining a security or privacy level for a group of users or an organization

• Providing 1.5 Mb/s peak capacity to a remote user

• Guaranteeing a maximum round-trip delay of 100 ms to servers in a server farm

Such requirements are useful in determining the need of the system for services,
in providing input to the network architecture and design, and in configuring services
in network devices (e.g., routers, switches, device operating systems). Measurements
of these characteristics in the network to monitor, verify, and manage services are
called service metrics. In this book we focus on developing service requirements for the
network and using those characteristics to configure, monitor, and verify services
within the network.

For services to be useful and effective, they must be described and provisioned
end-to-end at all network components between well-defined demarcation points.
Note that this means that end-to-end is not necessarily from one user’s device to an-
other user’s device. It may be defined between networks, from users to servers, or be-
tween specialized devices (Figure 1.19). When services are not provisioned
end-to-end, some components may not be capable of supporting them, and thus the ser-
vices will fail. The demarcation points determine where end-to-end is in the network.
Determining these demarcation points is an important part of describing a service.

Services also need to be configurable, measurable, and verifiable within the sys-
tem. This is necessary to ensure that end users, applications, and devices are getting the
services they have requested (and possibly paying for), and this leads to accounting and



billing for system, including network, resources. You will see how service metrics can
be used to measure and verify services and their characteristics.

Services are also likely to be hierarchical within the system, with different service
types and mechanisms applied at each layer in the hierarchy. For example, Figure 1.20
shows a service hierarchy that focuses on bulk traffic transport in the core of the net-
work while placing specific services at the access network close to the end users, ap-
plications, and devices.

1.8.1 Service Levels

Service characteristics can be grouped together to form one or more service levels for
the network. This is done to make service provisioning easier in that you can config-
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ure, manage, account, and bill for a group of service characteristics (service level) in-
stead of a number of individual characteristics. For example, a service level (e.g., pre-
mium) may combine capacity (e.g., 1.5 Mb/s) and reliability (as 99.5% uptime).
Service levels are also helpful in billing and accounting. This is a service-provider view
of the network, where services are offered to customers (users) for a fee. This view of
networking is becoming more popular in enterprise networks, displacing the view of
networks as purely infrastructure of cost centers.

There are many ways to describe service levels, including frame relay com-
mitted information rates (CIRs), which are levels of capacity; ATM classes of
service (CoSs), which combine delay and capacity characteristics; and IP types
of service (ToSs) and qualities of service (QoSs), which prioritize traffic for
traffic conditioning functions, which are described in the performance archi-
tecture (see Chapter 8). There can also be combinations of the aforementioned
mechanisms, as well as custom service levels, based on groups of individual ser-
vice characteristics. These combinations depend on which network technology,
protocol, mechanism, or combination is providing the service.

In Figure 1.21 service offerings, requests, and metrics are shown applied to the
system. In this example, demarcation of services is shown between the device and net-
work components. Depending on the service requirement or characteristic, however,
demarcation may also be between the device and application components (as in
Figure 1.17).

Example 1.4. A request from the customer was that each building should have Fast
Ethernet (FE) capacity to the rest of the network. As part of the requirements analysis, this
request became a requirement for 100 Mb/s peak capacity from the users in each building.
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This service request was then matched in the requirements and design processes by a technol-
ogy choice that meets or exceeds the request; in this case, FE was chosen as the technology,
and the service offering is 100 Mb/s to each building. Service metrics were then added, consist-
ing of measuring the FE connections from the IP switch or router at each building to the
backbone.

Services and service levels can be distinguished by their degrees of predictability
or determinism. In the next section we will discuss best-effort delivery, which is not
predictable or deterministic, as well as predictable and guaranteed services.

Services and service levels are also distinguished by their degrees of performance.
You will see how the service performance characteristics capacity, delay, and RMA are
used to describe services and service levels.

1.8.2 System Components and Network Services

Network services are derived from requirements at each of the components in the
system. They are end-to-end (between end points that you define) within the system,
describing what is expected at each component. Service requirements for the network
we are building are derived from each component: There can be user requirements,
application requirements, device requirements, and (existing) network requirements.
Since the network component is what we are building, any requirements from the
network component come from existing networks that the new network will incor-
porate or connect to.

Component requirements add to each other, refining and expanding require-
ments as we move closer to the network. User requirements, which are the most sub-
jective and general, are refined and expanded by requirements from the application
component, which are then refined and expanded by the device and network com-
ponents. Thus, requirements filter down from user to application to device to net-
work, resulting in a set of specific requirements that can be configured and managed
in the network devices themselves. This results in a service offering that is end-to-
end, consisting of service characteristics that are configured in each network device in
the path (e.g., routers, switches, hubs). As in Figure 1.22, service characteristics are
configured and managed within each element and at interfaces between elements.
These services are the most specific of all and have the smallest scope (typically a sin-
gle network device).

Defining network services and service metrics helps keep the system functioning
and can provide extra value or convenience to users and their applications. By defin-
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ing service metrics, we are determining what we will be measuring in the network,
which will help us in network monitoring and management.

Recall that network services are sets of performance and function, so require-
ments may also include functions of one of the components. Examples of functions
include network monitoring and management, security, and accounting. Services
such as these need to be considered an integral part of the network architecture and
design. In this book, security (and privacy) and network management each have their
own architectures. This may seem obvious, but traditionally, services such as security
and network management have been afterthoughts in architecture and design, often
completely forgotten in the architecture, until problems arise.

Example 1.5. The network path shown in Figure 1.23 was designed to optimize perfor-
mance between users and their servers. The graph at the bottom of the figure is an estimate
of the expected aggregate capacity at each segment of the path. In this network, a packet over
SONET (POS) link at the OC-48 level (2.544 Gb/s) connects two routers, which then con-
nect to Gigabit Ethernet (GigE) switches.

After it was implemented, a security firewall was added at the users’ LAN (with FE in-
terfaces), without it being considered part of the original analysis, architecture, or design. The
result was that the firewall changed the capacity characteristics across the path by reducing
throughput between the user PCs and the GigE switch, as shown in Figure 1.24.
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One of our architectural and design goals is to identify such performance bottle-
necks before the network is implemented. By considering security, network manage-
ment, services, and routing and addressing in the analysis process, we are much more
likely to understand their behavior and effect on each other and the network. We will
therefore be able to architect the network to accommodate their requirements and 
interoperability.
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When service characteristics apply to individual network devices, such as routers,
switches, data service units (DSUs), and so on, some of these characteristics may be
vendor specific. In this book we will focus on those characteristics that are part of
public standards and not vendor specific.

It is important to note that although standards-based characteristics are “stan-
dardized” on the basis of having their descriptions either publicly available (e.g., via
an IETF RFC), sanctioned by an organization recognized by the networking com-
munity, or generally accepted and used as a de facto standard, the implementation of
characteristics is open to interpretation and often varies across vendors and vendor
platforms.

1.8.3 Service Requests and Requirements

Service requests and requirements are, in part, distinguished by the degree of pre-
dictability needed from the service by the user, application, or device making the re-
quest. Based on predictability, service requests are categorized as best effort,
predictable, and guaranteed. Service requests and requirements can also be for single
or multiple-tier performance for a network.

Best-effort service means that there is no control over how the network will satisfy
the service request—that there are no guarantees associated with this service. Such re-
quests indicate that the rest of the system (users, applications, and devices) will need
to adapt to the state of the network at any given time. Thus, the expected service for
such requests will be both unpredictable and unreliable, with variable performance
across a range of values (from the network being unavailable to the lowest common
denominator of performance across all of the technologies in the end-to-end path).
Such service requests either have no specific performance requirements for the net-
work or requirements that are based solely on estimates of capacity. When require-
ments are nonspecific, network performance cannot be tuned to satisfy any particular
user, application, or device requirement.

Guaranteed service is the opposite of best-effort service. Where best-effort service
is unpredictable and unreliable, guaranteed service must be predictable and reliable to
such a degree that, when service is not available, the system is held accountable. A
guaranteed service implies a contract between the user and provider. For periods
when the contract is broken (e.g., when the service is not available), the provider must
account for the loss of service and, possibly, appropriately compensate the user.

With best-effort and guaranteed services at opposite ends of the service spectrum,
many services fall somewhere between. These are predictable services, which require
some degree of predictability (more than best effort), yet do not require the account-
ability of a guaranteed service.
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Predictable and guaranteed service requests are based on some a priori knowl-
edge of and control over the state of the system. Such requests may require that the
service operates either predictably or is bounded. Therefore, such services must have
a clear set of requirements. For the network to provision resources to support a pre-
dictable or guaranteed service, the service requirements of that request must be con-
figurable, measurable, and verifiable. This is where service requests, offerings, and
metrics are applied.

Note that there are times when a service could be either best effort, predictable,
or guaranteed, depending on how it is interpreted. Therefore, it is important to un-
derstand the need for a good set of requirements because these will help determine
the types of services to plan for. Also, although the term predictable lies in a gray area
between best effort and guaranteed, it is the type of service that is most likely to be
served by most performance mechanisms, as we will see in Chapter 8.

For example, if a device requests capacity (bandwidth) of between 4 and 10 Mb/s,
there needs to be a way to communicate this request across the network, a way to
measure and/or derive the level of resources needed to support this request, a way to
determine whether the required resources are available, and a method to control the
information flow and network resources to keep this service between 4 and 10 Mb/s.

We can consider capacity to be a finite resource within a network. For example,
the performance of a 100 Mb/s FE connection between two routers is bounded by
that technology. If we were to look at the traffic flows across that 100 Mb/s connec-
tion, we would see that, for a common best-effort service, capacity would be distrib-
uted across all of the traffic flows. As more flows were added to that connection, the
resources would be spread out until, at some point, congestion occurs. Congestion
would disrupt the traffic flows across that connection, affecting the protocols and ap-
plications for each flow. What is key here is that, in terms of resource allocation, all
traffic flows have some access to resources.

This is shown in Figure 1.25. In this figure, available capacity (dashed curve) de-
creases as the number of traffic flows increases. Correspondingly, the loading on the
network (solid curve) from all of the traffic flows increases. However, at some point
congestion affects that amount of user traffic that is being carried by the connection,
and throughput of the connection (heavy curve) drops. As congestion interferes with
the end-to-end transport of traffic, some protocols (e.g., TCP) will retransmit traffic.
The difference between the loading and the throughput curves is due to retransmis-
sions. This is undesirable, for while the connection is being loaded, only a percentage
of that loading is successfully delivered to destinations. At some point, all of the traf-
fic on that connection could be due to retransmissions and throughput approaches
zero. This approach is used in best-effort networks.
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In contrast, consider a telephony network. Calls are made on this network, and
resources are allocated to each call. As more calls are added to the network, at the
point where all of the resources have been allocated, additional calls are refused. The
exiting calls on the network may suffer no performance degradation, but no new
calls are allowed until resources are available. Call admission control (CAC) is a mech-
anism to limit the number of calls on a network, thereby controlling the allocation
of resources.

This is shown in Figure 1.26. Individual calls are shown in this figure, and each
call is 10 Mb/s for simplicity. As each call is accepted, resources are allocated to it, so
the availability drops (dotted line) and loading increases (solid line) for each call.
When the resources are exhausted, no further calls are permitted (dashed line).
Congestion is not a problem for the existing calls, and throughput is maximized. This
approach is similar to a guaranteed service.

There is a trade-off between these two approaches to resource allocation in a net-
work. Although a best-effort network will allow access to as many traffic flows as pos-
sible, performance degradation across all of the traffic flows can occur. Admission
control preserves resources for traffic flows that have already been allocated resources
but will refuse additional traffic flows when resources are exhausted. In many net-
works, both approaches (or a hybrid between them) are desired. This will be dis-
cussed in detail in Chapter 8.
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Service requests and requirements can also be low or high performance in terms
of capacity, delay, and RMA. Low- and high-performance requirements depend on
each particular network. A requirement is low or high performance relative to other
requirements for that network. Low performance is an indicator that the service request
or requirement’s performance characteristics are less than a performance threshold
determined for that network. Likewise, high performance is an indicator that the service
request or requirement’s performance characteristics are greater than a performance
threshold determined for that network. Thus, in determining low and high perfor-
mance for a network, we will develop one or more performance thresholds for that
network. Multiple-tier performance indicates that there are multiple tiers of perfor-
mance for that network. Single-tier performance requirements are roughly equivalent
within a network.

Note that low and high performance are not described in terms of best-effort,
predictable, or guaranteed service because they are independent of each other. Best-
effort, predictable, and guaranteed service refer to the degree of predictability of a request
or requirement, whereas low and high performance refer to a relative performance level
for that request or requirement. For example, a network can be entirely best effort
(most current networks are), yet we can often distinguish low- and high-performance
requirements for such a network. And when a network has low- and high-performance
regions for capacity, delay, and RMA, there may be predictable or guaranteed require-
ments in either region.

By their nature, each service has its associated set of requirements. These re-
quirements are based on the levels of performance and function desired by the user,
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application, or device requesting service. Performance requirements are described in
terms of capacity, delay, and RMA, whereas functional requirements describe specific
functions needed in the service, such as multicast, security, management, or account-
ing. We will use requests for performance and function in developing the network ar-
chitecture and design, for example, in describing the overall level of performance
needed in the network.

As mentioned earlier, service performance requirements (capacity, delay, and
RMA) can be grouped together, forming one or more service levels. For example, a
service request may couple a specific capacity (e.g., 1.5 Mb/s) with a bound on end-
to-end delay (e.g., 40 ms). At times, such service levels can be mapped to well-known
service mechanisms such as ATM CoS, frame relay CIR, SMDS CoS, or IP ToS or
QoS. Thus, service levels are a way to map performance and functional requirements
to a well-known or standard network service offering. A properly specified service
will provide insight into which performance characteristics should be measured in the
network to verify service delivery.

1.8.4 Service Offerings

Service requests that are generated by users, applications, or devices are supported by
services that are offered by the network. These service offerings (e.g., via ATM CoS,
frame relay CIR, SMDS CoS, or IP ToS or QoS mentioned in the previous section)
are the network counterparts to user, application, and device requests for service.

Service offerings map to service requests and thus can also be categorized as best
effort, predictable, and guaranteed. Best-effort service offerings are not predictable—
they are based on the state of the network at any given time. There is little or no prior
knowledge about available performance, and there is no control over the network at
any time. Most networks today operate in best-effort mode. A good example of a net-
work that offers best-effort service is the current Internet.

Best-effort service offerings are compatible with best-effort service requests.
Neither the service offering nor request assume any knowledge about the state of or
control over the network. The network offers whatever service is available at that
time (typically just available bandwidth), and the rest of the system adapts the flow of
information to the available service (e.g., via TCP flow control).

Example 1.6. An example of a best-effort service request and offering is when a file trans-
fer (e.g., using FTP) occurs over the Internet. FTP uses TCP as its transport protocol, which,
via a sliding-window flow-control mechanism, adapts to approximate the current state of the
network it is operating across. Thus, the service requirement from FTP over TCP is best 
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effort, and the corresponding service offering from the Internet is best effort. The result 
is that, when the FTP session is active, the performance characteristics of the network
(Internet) and flow control (TCP windows) are constantly interacting and adapting, as well 
as contending with other application sessions for network resources. In addition, as part of
TCP’s service to the applications it supports, it provides error-free, reliable data transmission.

On the other hand, predictable and guaranteed service offerings have some de-
gree of predictability or are bounded. To achieve this, there has to be some knowl-
edge of the network along with control over the network in order to meet
performance bounds or guarantees. Such services must be measurable and verifiable.

Just because a service is predictable or guaranteed does not necessarily imply that
it is also high performance. For example, when using our definition of predictable
service, the telephone network offers this type of service. Although at first look this
may seem unlikely, consider the nature of telephone service. To support voice con-
versations, this network must be able to support fairly strict delay and delay variation
tolerances, even though the capacity per user session (telephone call) is relatively
small, or low performance. What is well known from a telephony perspective is
somewhat new in the current world of data networking. Support for strict delay and
delay variation is one of the more challenging aspects of data network architecture
and design.

Predictable and guaranteed service offerings should be compatible with their cor-
responding service requests. In each case, service performance requirements (capac-
ity, delay, and RMA) in a service request are translated into the corresponding
performance characteristics in the service offering.

Example 1.7. An example of a predictable service request and offering can be seen in a
network designed to support real-time streams of telemetry data. An architectural/design
goal for a network supporting real-time telemetry is the ability to specify end-to-end delay
and have the network satisfy this delay request. A real-time telemetry stream should have an
end-to-end delay requirement, and this requirement would form the basis for the service re-
quest. For example, this service request may be for an end-to-end delay of 25 ms, with a
delay variation of �400 �s. This would form the request and the service level (i.e., a QoS
level) that needs to be supported by the network. The network would then be architected
and designed to support a QoS level of 25 ms end-to-end delay and delay variation of �400
�s. Delay and delay variation would then be measured and verified with service metrics in
the system, perhaps by using common utilities, such as ping (a common utility for measur-
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ing round-trip delay) or TCPdump (a utility for capturing TCP information), or by using a
custom application.

We will use various methods to describe service performance requirements and
characteristics within a network, including thresholds, bounds, and guarantees. We
will also learn how to distinguish between high and low performance for each net-
work project.

This approach does not mean that best-effort service is inherently low perfor-
mance or that predictable or guaranteed services are high performance. What this ap-
proach does is signify that predictability in services is also an important characteristic
and is separate from performance. There are times when a network is best architected
for best-effort service, and other times when best-effort, predictable, and guaranteed
services are needed. We will see that when predictable or guaranteed services are re-
quired in the network, consideration for those requirements will tend to drive the ar-
chitecture and design in one direction while consideration for best-effort service will
drive the architecture and design in another direction. It will be the combination of
all services that will help make the architecture and design complete.

1.8.5 Service Metrics

For service performance requirements and characteristics to be useful, they must be
configurable, measurable, and verifiable within the system. Therefore, we will de-
scribe performance requirements and characteristics in terms of service metrics, which
are intended to be configurable and measurable.

Since service metrics are meant to be measurable quantities, they can be used to
measure thresholds and limits of service. Thresholds and limits are used to distinguish
whether performance is in conformance (adheres to) or nonconformance (exceeds)
with a service requirement. A threshold is a value for a performance characteristic that
is a boundary between two regions of conformance and, when crossed in one or both
directions, will generate an action. A limit is a boundary between conforming and
nonconforming regions and is taken as an upper or lower limit for a performance
characteristic. Crossing a limit is more serious than crossing a threshold, and the re-
sulting action is usually more serious (e.g., dropping of packets to bring performance
back to conformance).

For example, a threshold can be defined to distinguish between low and high per-
formance for a particular service. Both low- and high-performance levels are con-
forming to the service, and the threshold is used to indicate when the boundary is
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crossed. This threshold can be measured and monitored in the network, triggering
some action (e.g., a flashing red light on an administrator’s console) when this thresh-
old is crossed. An example of this might be in measuring the round-trip delay of a
path. A threshold of N ms is applied to this measurement. If the round-trip times 
exceed N ms, an alert is generated at a network management station. We will discuss
this in greater detail in the network management architecture.

In a similar fashion, limits can be created with service metrics to provide upper
and lower boundaries on a measured quantity. When a limit is crossed, traffic is con-
sidered nonconforming (it exceeds the performance requirement) and action is taken
to bring the traffic back into conformance (e.g., by delaying or dropping packets).
Figure 1.27 shows how limits and thresholds may be applied in the system. In this fig-
ure, a threshold of 6 Mb/s is the boundary between low and high performance for a
service requirement, and an upper limit of 8 Mb/s is the boundary between confor-
mance and nonconformance for that service. When traffic crosses the 6 Mb/s thresh-
old, a warning is sent to network management (with a color change from green to
yellow). These notices can be used to do trend analysis on the network, for example,
to determine when capacity needs to be upgraded. When traffic crosses the 8 Mb/s
limit, the network takes action to reduce the capacity used by that traffic flow and an
alert is sent to network management (with a color change from yellow to red) until
the capacity level drops below 8 Mb/s and is again conforming.

Thresholds and limits are useful applications of service metrics to understand and
control performance levels in the network, in support of services.

40 CHAPTER 1 Introduction

P
er

fo
rm

an
ce

 C
ha

ra
ct

er
is

tic
(e

.g
., 

C
ap

ac
ity

 in
 M

b/
s)

5

Time

12

0

Threshold Exceeded—Noted
in Network Management

Database

Limit on Capacity8

Threshold on Capacity6

Boundary Exceeded—
Action Taken (e.g.,
Packets Dropped)

Conformance
(e.g., Color—Green)

Conformance—Warning
(e.g., Color—Yellow)

Nonconformance
(e.g., Color—Red)

FIGURE 1.27 Performance limits and thresholds.



1.9 Performance Characteristics
Services may include one or more of the performance characteristics we have men-
tioned so far in this chapter: capacity, delay, and RMA. Each characteristic is actually a
label for a class of characteristics of that type. For example, the term capacity is used as a
label for the class of characteristics that involves moving information from place to
place, including bandwidth, throughput, goodput, and so forth. Similarly, delay is a label
for the class of characteristics that includes end-to-end delay, round-trip delay, and delay
variation. RMA is a label for the class of characteristics that includes reliability, main-
tainability, and availability. Thus, when the terms capacity, delay, and RMA are used in this
book, you can use other terms from each class, depending on your network.

There are times when it makes more sense to describe capacity in terms of
throughput, for example, when developing requirements for applications. Round-trip
delay is commonly used as a measure for delay, although at times delay requirements
are expressed in terms of one-way delay.

1.9.1 Capacity

Capacity is a measure of the system’s ability to transfer information (voice, data, video,
or combinations of these). Several terms are associated with capacity, such as band-
width, throughput, or goodput. Although we will use the generic term capacity
throughout this book to reference this class of characteristics, you may choose to use
another term in place of or along with capacity.

Bandwidth is the theoretical capacity of one or more network devices or commu-
nications links in the system. Theoretical, or raw, capacity does not take into account
overhead from higher-layer protocols or the performance loss related to inefficiencies
in the system (e.g., delays in the operating system or peripheral devices).

Throughput is the realizable capacity of the system or its network devices. Values
for throughput vary, depending on system design, types and configurations of equip-
ment, and where in the protocol stack the measurement for capacity is being taken.

Example 1.8. The bandwidth of a SONET OC-3c link is 155.52 Mb/s, which is three times
the bandwidth of an OC-1 link (51.84 Mb/s). This bandwidth does not include data-link, net-
work, or transport-layer protocol (e.g., ATM, IP, or transport control protocol/user datagram
protocol [TCP/UDP]) overhead or, in the case of wide-area networks, the loss in performance
due to the bandwidth � delay product in the network. When a network or element is per-
forming at its theoretical capacity, it is said to be performing at line rate. When an OC-3c cir-
cuit was tested, values of realizable capacity (throughput) ranged from approximately 80 to
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128 Mb/s (measurements taken at the transport [TCP] layer of the National Research and
Education Network [NREN] and Numerical Aerodynamic Simulation [NAS] networks,
NASA Ames Research Center, March 1996).

A discussion on protocol overhead is presented in Chapter 11.

Both bandwidth and throughput are important terms when describing system,
network, application, and device capacities. Each gives a different and compatible
view of capacity.

1.9.2 Delay

Delay is a measure of the time difference in the transmission of information across the
system. In its most basic sense, delay is the time difference in transmitting a single unit
of information (bit, byte, cell, frame, or packet) from source to destination. As with ca-
pacity, there are several ways to describe and measure delay. There are also various
sources of delay, such as propagation, transmission, queuing, and processing. Delay may
be measured in one direction (end-to-end) and both directions (round-trip). Both end-
to-end and round-trip delay measurements are useful; however, only round-trip delays
can be measured with the use of the practical and universally available utility ping.

Another measure of delay incorporates device and application processing, taking
into account the time to complete a task. As the size of a task increases, the applica-
tion processing times (and thus the response time of the system) also increase. This
response time, termed here latency, may yield important information about the be-
havior of the application and the network. Latency can also be used to describe the
response time of a network device, such as the latency through a switch or router. In
this case the processing time is of that switch or router.

Delay variation, which is the change in delay over time, is an important charac-
teristic for applications and traffic flows that require constant delay. For example, real-
time and near-real-time applications often require strict delay variation. Delay
variation is also known as jitter.

Together, delay (end-to-end and round-trip), latency, and delay variation help de-
scribe network behavior.

1.9.3 RMA

RMA refers to reliability, maintainability, and availability. Reliability is a statistical indica-
tor of the frequency of failure of the network and its components and represents the un-
scheduled outages of service. It is important to keep in mind that only failures that
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prevent the system from performing its mission, or mission-critical failures (more on this
in Chapter 2), are generally considered in this analysis. Failures of components that have
no effect on the mission, at least when they fail, are not considered in these calculations.
Failure of a standby component needs tending to but is not a mission-critical failure.

Reliability also requires some degree of predictable behavior. For a service to be
considered reliable, the delivery of information must occur within well-known time
boundaries. When delivery times vary greatly, users lose confidence in the timely de-
livery of information. In this sense the term reliability can be coupled with confidence in
that it describes how users have confidence that the network and system will meet
their requirements.

A parallel can be seen with the airline industry. Passengers (users) of the airline
system expect accurate delivery of information (in this case the passengers them-
selves) to the destination. Losing or misplacing passengers is unacceptable. In addi-
tion, predictable delivery is also expected. Passengers expect flights to depart and
arrive within reasonable time boundaries. When these boundaries are crossed, pas-
sengers are likely to use a different airline or not fly at all. Similarly, when an appli-
cation is being used, the user expects a reasonable response time from the application,
which is dependent on the timely delivery of information across the system.

Along with reliability is maintainability. Maintainability is a statistical measure of
the time to restore the system to fully operational status after it has experienced a
fault. This is generally expressed as a mean-time-to-repair (MTTR). Repairing a sys-
tem failure consists of several stages: detection; isolation of the failure to a component
that can be replaced; the time required to deliver the necessary parts to the location
of the failed component (logistics time); and the time to actually replace the compo-
nent, test it, and restore full service. MTTR usually assumes the logistics time is zero;
this is an assumption, which is invalid if a component must be replaced to restore ser-
vice but takes days to obtain.

To fully describe this performance class, we add availability to reliability and
maintainability. Availability (also known as operational availability) is the relationship
between the frequency of mission-critical failures and the time to restore service. This
is defined as the mean time between mission-critical failures (or mean time between
failures) divided by the sum of mean time to repair and mean time between mission-
critical failures or mean time between failures. These relationships are shown in the
following equation, where A is availability.

A � (MTBCF)/(MTBCF � MTTR) or A � (MTBF)/(MTBF � MTTR)

Capacity, delay, and RMA are dependent on each other. For example, the em-
phasis of a network design may be to bound delay: A system supporting point-of-sale
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transactions may need to guarantee delivery of customer information and completion
of the transaction within 15 seconds (where the network delay is on the order of 100s
of ms); a Web application can have similar requirements. However, in a compute-
intensive application we may be able to optimize the system by buffering data during
periods of computing. In this case, delay may not be as important as a guarantee of
eventual delivery. On the other hand, a system supporting visualization of real-time
banking transactions may require a round-trip delay of less than 40 ms, with a delay
variation of less than 500 �s. If these delay boundaries are exceeded, the visualization
task fails for that application, forcing the system to use other techniques.

1.9.4 Performance Envelopes

Performance requirements can be combined to describe a performance range for the
system. A performance envelope is a combination of two or more performance require-
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ments, with thresholds and upper and/or lower limits for each. Within this envelope,
levels of application, device, and/or network performance requirements are plotted.
Figures 1.28 and 1.29 show two such envelopes. The performance envelope in Figure
1.28 consists of capacity, in terms of data sizes transferred across the network, and
end-to-end delay. In this figure, delay is shown as 1/delay for consistency.

Figure 1.29 is a 3D performance envelope, showing capacity, delay, and RMA.
This envelope also describes two regions of performance, low and high performance,
which are functions of the limits and thresholds for capacity, delay, and RMA.

Performance envelopes such as these are useful for visualizing the regions of
delay, capacity, and RMA in which the network will be expected to operate based on
requirements developed for that network. In Chapter 2 we will discuss how require-
ments are developed for a network.

1.10 Network Supportability
The ability of the customer to sustain the required level of performance (that archi-
tected and designed into the network) over the entire life cycle of the network is an area
of networking that is often neglected. It is a mistake to assume that a successful network
architecture and design meets the requirements only on the day that it is delivered to
the customer and that future requirements are the responsibility of the customer.
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Experience indicates that 80% of the life cycle costs of a system are the operations
and support costs, and only 20% is the cost incurred to develop, acquire, and install it.
Good network architects/designers will take into account the major factors that affect
operability and supportability as they make their decisions. Knowledgeable customers
will insist that they understand the operations and support implications of a network
architecture and design. At times, such issues may be of more concern than the feasi-
bility of a new technology.

The postimplementation phases of a network’s life cycle can be broken into three
elements: operations, maintenance, and human knowledge. The operations element
focuses on ensuring that the network and system are properly operated and managed
and that any required maintenance actions are identified. The maintenance element
focuses on preventive and corrective maintenance and the parts, tools, plans, and pro-
cedures for accomplishing these functions. The human knowledge element is the set
of documentation, training, and skilled personnel required to operate and maintain
the network and system. Design decisions affect each of these factors and have a di-
rect impact on the ability of the customer to sustain the high level of service originally
realized upon implementation of the network.

Failure to consider supportability in the analysis, architecture, and design
processes has a number of serious consequences. First, a smart customer, when
faced with a network architecture/design that obviously cannot be operated or
maintained by his or her organization, will reject the network project or refuse to
pay for it. Second, a customer who accepts the architecture/design and subsequent
implementation will have inadequate resources to respond to network and system
outages, experience unacceptable performance after a period of time, and may suf-
fer adverse effects in his or her operation or business (e.g., a loss of their customers
or revenue). Other customers will be highly dissatisfied with their networks and ei-
ther require the architect/designer to return and repair it by providing adequate ma-
terials to sustain its required performance level or will prematurely replace it. None
of these cases reflects positively on the network architect/designer or implementa-
tion team and often lead to finger pointing that can be more painful than any ac-
ceptance test.

Key characteristics of a network architecture and design that affect the postim-
plementation costs include:

• Network and system reliability

• Network and system maintainability

• Training of the operators to stay within operational constraints

• Quality of the staff required to perform maintenance actions
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Some examples of key network architecture/design decisions that affect these
characteristics include:

• Degree of redundancy of critical-path components in network architecture/design

• Quality of network components selected for installation

• Location and accessibility of components requiring frequent maintenance

• Implementation of built-in test equipment and monitoring techniques

Supportability must be considered throughout the life cycle of the network. An
accurate assessment of the requirements for continuous service at full performance
level must be included in the requirements analysis process, along with a statement of
specific, measurable requirements. During the architecture and design processes,
trade-offs must take into account the impact of supportability and the concept of op-
erations must be formulated. Last, during implementation, two major tasks must be
accomplished to ensure supportability:

1. Conformance to the network architecture and design must be validated and
nonconformance corrected or (at least) documented to ensure that performance
is adequate and that maintenance can be performed.

2. Operations and maintenance personnel must understand and be trained in the
technologies that are being deployed, including how to operate the network
and system properly, when to perform maintenance, and how to most quickly
restore service in the event of a fault.

A detailed discussion of how supportability fits into the overall architecture and
design processes is provided in Chapter 2.

1.11 Conclusion
In this chapter you learned definitions of network analysis, architecture, and design;
the importance of network analysis in understanding the system and providing a de-
fensible architecture and design; and the model for the network analysis, architecture,
and design processes.

You have also learned that networks are not independent entities but rather a part
of the system and that the delivery of network services is a goal of the system.
Network services consist of performance and function and are offered to users, ap-
plications, and devices so that they can accomplish their work on the system. In order
to architect and design a network to support services, you need to know what they
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are, how they work together, and how to characterize them. Once you do this, you
will have a broad view of what the network will need to support, which you can take
to the next levels of detail as you proceed with the network analysis.

By describing the system as a set of components (e.g., user, application, device,
network), you can apply interfaces between these components to help understand the
relationships, inputs, and outputs between each of the components.

You have also learned about different types of services, from best-effort, unpre-
dictable, and unreliable service to predictable, bounded, and somewhat predictable
service, to guaranteed services with accountability.

To go to a level deeper in the discussion about services, we considered the service
performance characteristics capacity, delay, and RMA (reliability, maintainability, and
availability). These characteristics will be useful only if we can measure and verify
their values in the system. We discussed these values, as well as service metrics,
thresholds, and boundaries. We learned that performance characteristics could be
combined into a performance envelope.

Having thought about systems, services, and their characteristics, we are now
ready to quantify what we want from our networks. To do this, we first need to
gather, analyze, and understand the requirements from the system. This is requirements
analysis, the next step in the network analysis process.

1.12 Exercises
1. In Example 1.1, an analogy was drawn between a network’s architecture and de-

sign and a home’s architecture and design. Provide a similar analogy, using a
computer’s architecture and design.

2. Hierarchy and interconnectivity are a fundamental trade-off in networks. Given
the network hierarchy shown in Figure 1.30, with costs assigned to each link,
show how interconnectivity would improve the performance of traffic flowing
between Joe’s computer and Sandy’s computer. Costs are shown as numbers
but could represent the capacity of each link or the costs incurred by using each
link. What is the total cost of traveling the hierarchy between Joe’s computer
and Sandy’s? In this figure, where would you add a link of cost 15 so that the
total cost between Joe’s computer and Sandy’s is less than it is when you travel
the entire hierarchy?

3. In Figure 1.9, connections are added between networks in the Internet to pro-
vide a better performing path for select traffic flows. An example of this is a
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content delivery network (CDN). What is a CDN? Show how a CDN uses 
interconnectivity to provide better performance characteristics to its users.

4. In defining where services can be applied in a network, end-to-end is deter-
mined by where you want a service to start and stop. For example, if your WAN
is supplied by a service provider (e.g., an ATM or frame relay service), you may
want to define the end points and characteristics of that service. If you use IP
routers at each LAN-WAN interface to that service, describe the following: (1) at
which network devices would you define the end points of the service, and (2)
what characteristics (service metrics) would you use to measure the service?

5. Service requirements flow from user to application to device to network, becom-
ing more specific along the way. If you were given an application requirement for
end-to-end delay (e.g., 100 ms) between an application server on one network and
users on another network, for example, how might that translate into delay in the
network and devices? What types of service metrics could you use to measure it?

6. For Example 1.5, the delay characteristics for the segments (including the pro-
cessing at the switches) are as follows: for each GigE segment, 100 �s; for the
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PoS OC-48 segment between routers, 1 ms; for each FE segment, 200 �s; and
for the security firewall, 5 ms. Draw graphs showing the end-to-end delay per-
formance (in the direction from user PC to server) before and after the security
firewall is added.

7. Which of the following applications require best-effort (unpredictable and un-
reliable), guaranteed (predictable and reliable, with accountability), or pre-
dictable service. Give reasons for your choices.

• High-quality (phone company–grade) voice calls

• Voice over IP (VoIP) calls

• File transfers via FTP
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• Audio file downloads

• A commercial video-on-demand service

• User access to servers in a corporation

8. Show how performance boundaries and thresholds could be used in the follow-
ing scenarios.

• An application has a service requirement for round-trip delay to be less than
100 ms. If delay is greater than 100 ms, notify the network administrator.

• A user requires capacity of up to 512 Kb/s but may not exceed 1.5 Mb/s.
You want to keep track of how much time the user’s capacity is between
512 Kb/s and 1.5 Mb/s.
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