WIRELESS NETWORKS
MADE EASY

It is rather tempting to say that on BSD,
and on OpenBSD in particular, there’s no
need to “make wireless networking simple,”
because it already is. Getting a wireless network
running is not very different from getting a wired one

running, but there are some issues that turn up simply
because we are dealing with radio waves and not wires. We will take some
time to look briefly at some of the issues before moving on to the practical
steps involved in creating a usable setup.

Once we have covered the basics of getting a wireless network up and
running, we will turn to some of the options for making your wireless network
more interesting and harder to break.

A Little IEEE 802.11 Background

Setting up any network interface is, in principle, a two-step process: First,
establish a link, and then move on to configuring the interface for TCP/IP
traffic.

34

NOTE

Chapter 4

In the case of wired, Ethernet-type interfaces, establishing the link
usually consists of plugging in a cable and seeing the link indicator light
up. However, some interfaces require extra steps. Networking over dial-up
connections, for example, requires telephony steps, such as dialing a
number to get a carrier signal.

In the case of IEEE 802.11-style wireless networks, getting the carrier
signal involves quite a few steps at the lowest level. First, you need to select
the proper channel in the assigned frequency spectrum. Once you find a
signal, you need to set a few link-level network identification parameters.
Finally, if the station you want to link to uses some form of link-level
encryption, you need to set the right kind and probably negotiate some
additional parameters.

Fortunately, on BSD systems all configuration of wireless network devices
happens via ifconfig commands and options, just as you would set up any
other network interface.'

Still, since we are introducing wireless networks here, we need to look at
the security at various levels in the networking stack from this new perspective.

There are basically three kinds of popular and simple IEEE 802.11 security
mechanisms, and we will discuss them briefly in the following sections.

For a more complete overview of issues surrounding security in wireless networks
see, for example, Professor Kjell Jgprgen Hole’s articles and slides at his site
(http://www.kjhole.com and http://www.kjhole.com/Standards/WiFi/
WiFiDownloads.html). For fresh developments in the Wi-Fi field, the Wi-Fi Net
News site at http:/ /wifinetnews.com/archives/cat_security.html and “The
Unofficial 802.11 Security Web Page” at http://www.drizzle.com/~aboba/IEEE
come highly recommended.

MAC Address Filtering

The short version of the story about PF and MAC address filtering is that we
don’t do it.

A number of consumer-grade, off-the-shelf wireless access points offer
MAC address filtering, but contrary to common belief, they don’t really add
much security. The marketing succeeds largely because most consumers are
unaware that it is possible to change the MAC address of essentially any
wireless network adapter on the market today.2

If you really want to try MAC address filtering, you could look into using
the bridge(4) facility and the MACHiltering features offered by brconfig(8) on
OpenBSD. We will be looking at bridges and some of the more useful ways to
use them with packet filtering in the next chapter.

1 On some systems, the older, device-specific programs such as wicontrol and ancontrol are still
around, but for the most part they are deprecated and in the process of being replaced with
ifconfig functionality. On OpenBSD, the consolidation into ifconfig has been completed.

2 A quick man page lookup will tell you that the command to change the MAC address for the
interface rumo is simply ifconfig rumo 1laddr 00:ba:ad:f0:0d:11.

WEP

One consequence of using radio waves instead of wires to move data is that
it is comparatively easy for outsiders to capture your data in transit. The
designers of the 802.11 family of wireless network standards seem to have
been aware of this fact, and they came up with a solution, which they went
on to market under the name Wired Equivalent Privacy, or WEP.

Unfortunately, the WEP designers came up with their wired equivalent
encryption without actually reading up on recent research or consulting
active researchers in the field. So, the link-level encryption scheme they
recommended is considered a pretty primitive home brew among cryptog-
raphy professionals. It was no great surprise when WEP encryption was
reverse-engineered and cracked within a few months after the first products
were released.

Even though you can download free tools to descramble WEP-encoded
traffic in a matter of minutes, for a variety of reasons it is still widely supported
and used. Essentially all IEEE 802.11 equipment out there has support for
at least WEP, and a surprising number of products offer MAC address
filtering, too.

You should consider network traffic protected only by WEP to be only
marginally more secure than data broadcast in the clear. Then again, the
token effort needed to crack into a WEP network may be sufficient to deter
lazy and unsophisticated attackers.

WPA

It dawned on the 802.11 designers fairly quickly that their WEP system was
not quite what it was cracked up to be, so they came up with a revised and
slightly more comprehensive solution called Wi-Fi Protected Access, or WPA.

WPA looks better than WEP, at least on paper, but the specification is
arguably too complicated for widespread implementation. In addition, WPA
has also attracted its share of criticism over design issues and bugs. Combined
with the familiar issues of access to documentation and hardware, free software
support varies. If your project specification includes WPA, look carefully at
your operating system and driver documentation.

It goes almost without saying that you will need further security measures,
such as SSH or SSL encryption, to maintain any significant level of confiden-
tiality for your data stream.

Picking the Right Hardware for the Task

Picking the right hardware is not necessarily a daunting task. On a BSD
system, one simple

$ apropos wireless

Wireless Networks Made Easy 35

command is all you need to enter to see a listing of all manual pages with the
word wireless in their subject lines.?

Even on a freshly installed system, this will give you a complete list of all
wireless network drivers available in the operating system. The next step is to
read the driver manual pages and compare the lists of compatible devices
with what is available as parts or built into the systems you are considering.
Take some time to think through your specific requirements. For testing
purposes, low-end rum or ural USB dongles will work. Later, when you are
about to build a more permanent infrastructure, you may want to look into
higher-end gear. You may also want to read Appendix B.

Setting Up a Simple Wireless Network

To start building our first wireless network, it makes sense to use the basic
gateway configuration from the previous chapter as our starting point. In
your network design, it is likely that the wireless network is not directly
attached to the Internet at large, but the wireless network will require a gate-
way of some sort. For that reason, it makes sense to reuse the working gateway
setup for this wireless access point with some minor modifications we intro-
duce over the next few paragraphs. After all, it is more convenient than
starting a new configuration from scratch.

NOTE We are in infrastructure-building mode here, and we will be setting up the access point
Sirst. If you prefer to look at the client side first, see “The Client Side” on page 40, and
then come back to this page.

As we mentioned earlier, the first step is to make sure you have a
supported card and check that the driver loads and initializes the card
properly. The boot-time system messages scroll by on the console, but they
also get stored in the file /var/run/dmesg.boot. You can view the file itself or
use the output of the dmesg command. With a successfully configured PCI
card, you should see something like this:

atho at pcii dev 4 function 0 "Atheros AR5212" rev Ox01: irq 11
atho: AR5212 5.6 phy 4.1 rf5111 1.7 rf2111 2.3, ETSI1W, address 00:0d:88:c8:a7:c4

If the interface you want to configure is a hot-pluggable type such as a
USB or PCCARD device, you can see the kernel messages by viewing the
/var/log/messages file, for example, by running tail -f on the file before you
plug in the device.

Next, configure the interface to enable the link, and finally, configure
the system for TCP/IP. You can do this from the command line, like so:

$ sudo ifconfig atho up mediaopt hostap mode 11b chan 11 nwid unwiredbsd nwkey Oxldeadbeef9

*In addition, it is possible to look up man pages on the Web. Check http://www.openbsd.org and
the other projects’ websites; they offer keyword-based man page searches.

36 Chapter 4

This command does several things at once. It configures the atho interface,
enables the interface with the up parameter, and specifies that the interface is
an access point for a wireless network with mediaopt hostap; then it explicitly
sets the operating mode to 11b, explicitly sets the channel to 11, and finally,
uses the nwid parameter to set the network name to unwiredbsd, with the WEP
key (nwkey) set to the hexadecimal string oxideadbeef9.

Use ifconfig to check that the command successfully configured the
interface:

$ ifconfig atho
atho: flags=8823<UP,BROADCAST,NOTRAILERS,SIMPLEX,MULTICAST> mtu 1500
1laddr 00:11:95:ca:e6:59
groups: wlan
media: IEEE802.11 autoselect mode 11b hostap
status: no network
ieee80211: nwid unwiredbsd chan 11 bssid 00:11:95:ca:e6:59 nwkey <not displayed>
inet6 fe80::211:95ff:feca:e659%atho prefixlen 64 tentative scopeid 0x5

Note the contents of the media: and ieee80211: lines. They should match
what you entered on the ifconfig command line. With the link part of your
wireless network operational, you can go on to the next step and assign an IP
address to the interface:

sudo ifconfig atho 10.50.90.1

On OpenBSD, you can achieve both by creating a /etc/hostname.athO file,
roughly like this:

up mediaopt hostap mode 11b chan 11 nwid unwiredbsd nwkey Oxideadbeef9
inet 10.50.90.1

and either running /etc/netstart atho (you need to do that as root) or waiting
patiently for your next boot to complete.

Note that the configuration is divided over two lines. The first line
generates an ifconfig command that sets up the interface with the correct
parameters for the physical wireless network. The second command, which
sets the IP address, is executed only after the first one completes. It is worth
noting that since this is our access point, we set the channel explicitly, and we
enable a weak WEP encryption by setting the nwkey parameter.

On FreeBSD and NetBSD, you can normally combine all the parameters
in one rc.confsetting:

ifconfig_atho="mediaopt hostap mode 11b chan 11 nwid unwiredbsd nwkey Oxideadbeef inet 10.50.90.1"

However, on some hardware combinations, setting the link-level options
and the IP address at the same time fails. If your one-liner configuration fails,
you will need to put the two lines in your /etc/start_if.athO and substitute your
interface name for ath0 if required.

Wireless Networks Made Easy 37

38

NOTE

Chapter 4

Be sure to check the most wp-to-date ifconfig man page for other options that may be
more appropriate for your configuration.

The Access Point’s PF Rule Set

With the interfaces configured, it’s time to start configuring the access point
as a packet-filtering gateway.

You can start by copying the basic gateway setup from Chapter 3. Enable
gatewaying via the appropriate entries in the access point’s sysctl.confor rc.conf
file; then copy across the pf.conf file. Depending on the parts of the last
chapter that were most useful to you, the pf.conf file may look something
like this:

ext_if = "re0" # macro for external interface - use tuno or pppoe0 for PPPoE
int_if = "re1" # macro for internal interface
localnet = $int_if:network
client_out = "{ ssh, domain, pop3, auth, nntp, http,\
https, cvspserver, 2628, 5999, 8000, 8080 }"
udp_services = "{ domain, ntp }"
icmp_types = "{ echoreq, unreach }"
ext_if IP address could be dynamic, hence ($ext_if)
nat on $ext_if from $localnet to any -> ($ext_if)
block all
pass quick inet proto { tcp, udp } from $localnet to any port $udp services
pass log inet proto icmp all icmp-type $icmp_types
pass inet proto tcp from $localnet to any port $client out

The only change that is strictly necessary for your access point to work
is to make the definition of int_if to match the wireless interface. In our
example, this means the line should now read

int_if = "atho" # macro for internal interface

More likely than not, you will also want to set up dhcpd to serve addresses
and other relevant network information to clients after they have associated
with your access point. Setting up dhcpd is fairly straightforward if you read
the man pages.

That’s all there is to it. This configuration gives you a functional BSD
access point, with at least token security (actually more like a KEEP OUT sign)
via WEP encryption. If you need to support FTP, you can copy the ftp-proxy
configuration from the machine you set up in Chapter 3 and make similar
changes as for the rest of the rule set.

If Your Access Point Has Three or More Interfaces

If your network design dictates that your access point is also the gateway for
a wired local network or even several wireless networks, you need to make
some minor changes to your rule set. Instead of just changing the value of

the int_if macro, you might want to add another (descriptive) definition
for the wireless interface, such as

air_if = "atho"

In a wireless gateway configuration, your wireless interfaces are likely to
be on separate subnets, so it might be useful for each of them to have its own
nat rule as well:

nat on $ext_if from $air if:network to any -> ($ext_if) static-port

Depending on your policy, you might also want to adjust your localnet
definition or at least include $air_if in your pass rules, where appropriate.
And once again, if you need to support FTP, a separate redirection for the
wireless network to ftp-proxy may be in order.

Handling IPsec, VPN Solutions

The details of setting up Virtual Private Networks (VPNs) using the built-in
IPsec tools, OpenSSH, or other tools are beyond the scope of this chapter.
However, with the relatively poor security profile of wireless networks in
general, you are likely to want to set up some additional security. A VPN
setup may range from useful to essential in your situation.

The options fall roughly into three categories:

SSH
If your VPN is based on SSH tunnels, the baseline rule set already contains
all the filtering you need. Your tunneled traffic will be indistinguishable
from other SSH traffic to the packet filter.

IPsec with udp key exchange (IKE/ISAKMP)
Several IPsec variants depend critically on key exchange via proto udp
port 500 and proto {tcp, udp} port 4500 for NAT Traversal (NAT-T).
You need to let this traffic through in order to let the flows become
established. Some implementations also depend critically on letting
ESP protocol traffic (protocol 50) pass between the hosts: pass proto
esp from $source to $target.

Filtering on the IPsec encapsulation interface
With a properly configured IPsec setup, you can set up PF to filter on the
encapsulation interface enco itself: pass on enco proto ipencap from $source
to $target keep state (if-bound).

Check Appendix A for references to some useful literature on the
subject.

Wireless Networks Made Easy 39

40

The Client Side

As long as you have all BSD clients, setup is extremely easy. In order to
connect to the access point we just configured, your OpenBSD clients
would need a hostname.if configuration file with

up media autoselect mode 11b chan 11 nwid unwiredbsd nwkey Oxideadbeef9
dhcp

Try these out from the command line first, with

$ sudo ifconfig atho up mode 11b chan 11 nwid unwiredbsd nwkey Oxldeadbeef9

followed by

$ sudo dhclient atho

The ifconfig command should complete without any output, while the
dhclient command should print a summary of its dialog with the DHCP
server:

DHCPREQUEST on atho to 255.255.255.255 port 67
DHCPREQUEST on atho to 255.255.255.255 port 67
DHCPACK from 10.50.90.1

bound to 10.50.90.11 -- renewal in 1800 seconds.

Again on FreeBSD, you would need to put those lines in your /etc/
start_if.ath0 and substitute your interface name for ath0if required.

Guarding Your Wireless Network with authpf

Chapter 4

As always, there are other ways to configure the security of your wireless
network besides the one we have just seen. What little protection WEP
encryption offers, security professionals tend to agree, is barely enough to
signal to an attacker that you do not intend to let all and sundry use your
network resources.

The configuration we built in “Setting Up a Simple Wireless Network”
on page 36 is functional. It will let all reasonably configured wireless clients
connect, and that may be a problem in itself, since that configuration does
not have any real support built in for letting you decide who uses your
network.

Aswe mentioned earlier, MAC address filtering is not really a solid defense
against attackers. Changing the MAC address is just too easy. The OpenBSD
developers chose a radically different approach to this problem when they
introduced authpf in OpenBSD version 3.1. Instead of tying access to a
hardware identifier such as the network card’s MAC address, the OpenBSD

developers decided that the robust and highly flexible user authentication
mechanisms already in place were more appropriate for the task. The authpf
tool is a user shell that lets the system load PF rules on a per-user basis,
effectively deciding which user gets to do what.

To use authpf, you create users with the authpf program as their shell. In
order to get network access, the user logs in to the gateway using ssh. Once
the user successfully completes ssh authentication, authpf loads the rules you
have defined for the user or the relevant class of users.

These rules, which apply to the IP address the user logged in from,
stay loaded and in force for as long as the user stays logged in via the ssh
connection. Once the ssh session is terminated, the rules are unloaded,
and in most scenarios all non-ssh traffic from the user’s IP address is
denied. With a reasonable setup, only traffic originated by authenticated
users will be let through.

It is worth noting that on OpenBSD, authpf is one of the login classes
that is offered by default, as you will notice the next time you create a user
with the adduser program.

For other systems where the authpf login class is not available by default,
you may need to add the following lines to your login.conf:

authpf:\
:welcome=/etc/motd.authpf:\
:shell=/usx/sbin/authpf:\
:tc=default:

The following sections contain a few examples that may or may not fit
your situation directly, but I hope they will give you ideas you can use.

A Basic Authenticating Gateway

Setting up an authenticating gateway with authpf involves creating and main-
taining a few files besides your basic pf.conf. The main addition is authpf.rules;
the other files are fairly static entities that you will not be spending much
time on once they have been created.

Start with creating an empty /etc/authpf/authpf.conf. It needs to be there
for authpf to work, but it doesn’t actually need any content, so creating an
empty file with touch is appropriate.

The other relevant bits of /etc/pf.conf follow. First, we create the interface
macros:

ext_if = "re0"
int_if = "atho"

In addition, authpf requires a table to fill with the IP addresses of
authenticated users:

table <authpf_users> persist

Wireless Networks Made Easy 41

42

Chapter 4

The nat rules, if you need them, could just as easily go in authpf.rules, but
keeping them in the pf.conf file does not hurt in a simple setup like this:

nat on $ext_if from $localnet to any -> ($ext_if)

Next, we create the authpf anchors, where rules from authpf.rules are
loaded once the user authenticates:

nat-anchor "authpf/*"
rdr-anchor "authpf/*"
binat-anchor "authpf/*"
anchor "authpf/*"

That brings us to the end of the required parts of a pf.conf for an authpf
setup.

For the filtering part, we start with the block all default and then add the
pass rules we need. The only thing we really need at this point is to pass ssh
on the internal network:

pass quick on $int_if inet proto { tcp, udp } to $int_if port ssh

From here on out, it really is up to you. Do you want to let your clients
have name resolution before they authenticate? If so, put the pass rules for
the tcp and udp service domain in your pf.conf, too.

For a relatively simple and egalitarian setup, you could include the rest
of our baseline rule set, but change the pass rules to allow traffic from the
addresses in the <authpf_users> table rather than any address in your local
network:

pass quick inet proto { tcp, udp } from <authpf users> to any port $udp_services
pass inet proto tcp from <authpf_users> to any port $client_out

For a more differentiated setup, you could put the rest of your rule set in
Jetc/authpf/authpf.rules or put per-user rules in customized authpf.rules files in
each user’s directory under /etc/authpf/users/. If your users normally need
some protection, your general /etc/authpf/authpf.rules could have content
like this:

client_out = "{ ssh, domain, pop3, auth, nntp, http, https }"
udp_services = "{ domain, ntp }"

pass quick inet proto { tcp, udp } from $user_ip to any port $udp_services
pass inet proto tcp from $user ip to any port $client_out

The macro $user_ip is built into authpf and expands to the IP address
the user authenticated from. These rules apply to any user who completes
authentication at your gateway.

A nice and relatively easy addition to implement is special-case rules for
users with different requirements than your general user population. If an
authpf.rulesfile exists in the user’s directory under /etc/authpf/users/, the rules
in that file will be loaded for the user.

This means that your naive Windows user Peter, who only needs to surf
the Web and have access to a service that runs on a high port on a specific
machine, could get what he needs with a /etc/authpf/users/peter/authpf.rules
file like this:

client_out = "{ domain, http, https }"
pass inet from $user ip to 192.168.103.84 port 9000
pass quick inet proto { tcp, udp } from $user_ip to any port $client_out

On the other hand, Peter’s colleague Christina runs OpenBSD and
generally knows what she’s doing, even if she sometimes generates traffic
to and from odd ports. You could let her have free rein by putting this in
/etc/ authpf/users/christina/authpf.rules:

pass from $user_ip os = "OpenBSD" to any

This means Christina can do pretty much anything she likes over TCP, as
long as she authenticates from her OpenBSD machines.

Wide Open but Actually Shut

In some situations it makes sense to set up your network to be open and
unencrypted at the link level, while enforcing some restrictions via authpf.
The next example is very similar to Wi-Fi zones you can encounter in air-
ports or other public spaces, in which anyone can associate to the access
points and get an IP address, but any attempt at accessing the Web will be
redirected to one specific web page until the user has cleared some sort of
authentication.?

The following pf.conf file is again based on our baseline, with two
important additions to the basic authpf setup: a macro and a redirection.

ext_if = "re0"

int_if = "atho"

auth_web="192.168.27.20"

dhcp_services = "{ bootps, bootpc }" # DHCP server + client

table <authpf_users> persist

rdr pass on $int_if proto tcp from ! <authpf_users> to any port http ->
$auth_web

nat on $ext_if from $localnet to any -> ($ext_if)

nat-anchor "authpf/*"

rdr-anchor "authpf/*"

binat-anchor "authpf/*"

anchor "authpf/*"

pass quick on $int_if inet proto { tcp, udp } to $int_if port dhcp_services
pass quick inet proto { tcp, udp } from $int_if:network to any port domain
pass quick on $int_if inet proto { tcp, udp } to $int_if port ssh

* Thanks to Vegard Engen for the idea and showing me his configuration, which is preserved
here in spirit, if not in every detail.

Wireless Networks Made Easy 43

44

Chapter 4

The auth_web macro and the redirection make sure all web traffic from
addresses that are not in the <authpf_users> table leads all nonauthenticated
users to a specific address.

At that address you set up a webserver that serves up whatever it is you
need. This could be anything from a single page with instructions on who to
contact in order to get access to the network, all the way up to a system that
accepts credit cards and handles user account creation.

It is worth noting that name resolution will work in this setup, but all
surfing attempts will end up at the auth_web address. Once the users clear
authentication, you can add general rules or user-specific ones to the
authpf.rules files as appropriate for your situation.

