
This chapter includes the following topics:

■ Understanding Transport Protocol
Limitations

■ Understanding Transmission Control
Protocol Fundamentals

■ Overcoming Transport Protocol
Limitations

■ Overcoming Link Capacity Limitations

C H A P T E R 6

Overcoming Transport and
Link Capacity Limitations

The previous chapters have discussed how to align network resources with business priority and
application requirements, as well as techniques that can be applied within the network and
accelerator devices to improve the overall performance of an application over the network.
Techniques employed in the network, such as quality of service (QoS), can help align available
network capacity with application throughput requirements or adjust queuing and scheduling
for a specific application that might be latency sensitive. Application data caching, read-ahead,
prediction, and CDN capabilities can help mitigate the unnecessary utilization of bandwidth for
redundant object transfers and also mitigate latency by handling the majority of the workload
locally or in a more optimized fashion.

You can, however, employ more generic layers of optimization, which can work across multiple
applications concurrently. This type of optimization, commonly called WAN optimization,
generally refers to functions that are commonly found in accelerator devices (such as standalone
appliances or router-integrated modules) that overcome performance limitations caused by
transport protocols, packet loss, and capacity limitations.

WAN optimization capabilities make the WAN a more tolerable place for applications to live by
removing the vast majority of performance barriers that the WAN creates. For instance,
advanced network compression can be applied to improve performance by minimizing the
amount of data that needs to traverse the WAN. A secondary benefit of this is that, in many cases,
fewer exchanges of data need to occur over the WAN as well, thereby mitigating the latency
associated with the number of roundtrip exchanges that would have been necessary. TCP
optimization, on the other hand, is commonly used to allow nodes to more efficiently use
available resources and minimize the impact of loss and latency in a WAN.

This chapter examines how WAN optimization capabilities overcome performance barriers
created by WAN conditions. Keep in mind that, in terms of accelerator products, you can use
WAN optimization capabilities in conjunction with other optimization technologies that are
application-specific, as described in Chapter 4, “Overcoming Application-Specific Barriers.”
Furthermore, assuming the architecture of the accelerator is transparent, you can use these
optimization technologies in conjunction with network-oriented functions that provide visibility
and control.

238 Chapter 6: Overcoming Transport and Link Capacity Limitations

Understanding Transport Protocol Limitations

What is a transport protocol and how does it create performance limitations? Most people wonder
how TCP (or other transport protocols) could ever become a bottleneck, simply because it always
seems to just “work.” In an internetwork, a layer must exist between applications and the
underlying network infrastructure. This layer, called the transport layer, not only helps to ensure
that data is moved between nodes, but also helps nodes understand how the network is performing
so that they can adapt accordingly.

While the transport layer is an unlikely candidate for application performance woes, it can become
a problem, primarily because the transport protocols in broad use today were designed in 1981.
Today’s application demands and network topologies differ greatly from the networks of the early
1980s. For instance, 300 baud was considered blazing fast at the time that TCP was created.
Congestion was largely due to a handful of nodes on a shared network of limited scale rather than
the complex, high-speed, hierarchical networks such as the Internet, which is plagued with
oversubscription, aggregation, and millions of concurrent users each contending for available
bandwidth. Applications in 1981 were commonly text-oriented applications (and largely terminal-
oriented), whereas today even the most ill-equipped corporate user can easily move files that are
tens upon hundreds of megabytes in size during a single transfer.

Although the network has changed, TCP remains relevant in today’s dynamic and ever-
changing network environment. TCP has undergone only minor changes in the past 25 years,
and those changes are in the form of extensions rather than wholesale rewrites of the protocol.
Although there are some more modern transport protocols that have roots in TCP, many are
considered developmental projects only and currently have limited deployment in the
mainstream.

Another important consideration relative to today’s enterprise networking and application
environments is the cost and available capacity of LAN technology versus declining WAN
technology costs. In effect, network bandwidth capacity has steadily increased over the past 20
years; however, the cost of LAN bandwidth capacity has dropped at a rate that is more dramatic
per bit/second than the rate at which the cost of an equivalent amount of WAN bandwidth capacity
has dropped.

The ever-increasing disparity between WAN and LAN bandwidth presents challenges in the form
of throughput. Applications and access to content have become more enabled for LAN users as
LAN bandwidth has increased; however, the same level of access to those applications and content
has not become more enabled for WAN users given the far different cost versus bandwidth
capacity increase metrics that the WAN has undergone. Put simply, the rate of bandwidth increase
found in the WAN is not keeping pace with the LAN, and this creates performance challenges for
users who are forced to access information over the WAN. In this way, the LAN has enabled faster

Understanding Transport Protocol Limitations 239

access to a much more network-intensive set of data. At the same time, the WAN has not grown to
the same degree from a capacity perspective or become achievable from a price perspective to
allow the same level of access for nearly the same cost.

WAN optimization techniques (discussed later in this chapter, in the section “Accelerators and
Compression”) are considered adjacent and complementary to the techniques presented in earlier
chapters; that is, they are implemented apart from network optimization (QoS and optimized
routing) and application acceleration (caching, CDN, and other optimizations such as read-ahead).
For instance, an object-layer application cache can leverage compression technologies during
content distribution or pre-position jobs to improve throughput and ensure that the compression
history is populated with the relevant content if the transfer of the objects in question takes place
over the WAN.

In the opposite direction, a user has a read-write type of relationship with an object that has been
opened through an accelerator’s object cache, where that object has been validated against the
origin server (in the case of a cached file). If that file is saved and written back to the origin server,
the compression history and protocol optimizations (such as write-back optimization) can be
leveraged to improve the write performance while saving bandwidth.

Compression techniques can be leveraged to minimize the bandwidth consumed and eliminate
previously seen repetitive byte patterns. This not only helps to ensure that precious WAN
bandwidth is conserved but also serves to improve the performance of the user experience because
less bandwidth is needed. Consequently, fewer packet exchanges must occur before the operation
completes.

Coupling compression and the application acceleration techniques discussed in previous chapters
with optimizations to the transport protocol ensures that the WAN is used efficiently and the user
experience is significantly optimized. In many cases, WAN users experience performance levels
similar to those experienced when operating in a LAN environment. WAN optimization helps to
overcome the constraints of the WAN while maintaining WAN cost metrics, preserving
investment, and providing a solution for consolidating distributed server, storage, and application
infrastructure.

Put simply, the network is the foundation for an application-fluent infrastructure, and an
optimized foundation provides the core for application performance. Transport protocol
optimization and compression (that is, WAN optimization) ensure that resources are used
effectively and efficiently while overcoming performance barriers at the data transmission layer.
Application acceleration works to circumvent application layer performance barriers. These
technologies are all independent but can be combined cohesively to form a solution, as shown
in Figure 6-1.

240 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-1 Application Acceleration and WAN Optimization Hierarchy

Understanding Transmission Control Protocol Fundamentals

TCP is the most commonly used transport protocol for applications that run on enterprise
networks and the Internet today. TCP provides the following functions:

■ Connection-oriented service between application processes on two nodes that are exchanging
data

■ Guaranteed delivery of data between these two processes

■ Bandwidth discovery and congestion avoidance to fairly utilize available bandwidth based on
utilization and WAN capacity

Before data can be sent between two disparate application processes on two disparate nodes, a
connection must first be established. Once the connection is established, TCP provides guaranteed
reliable delivery of data between the two application processes.

NOTE For more information about TCP, see RFC 793, which you can access through the
following link: http://www.rfc-editor.org/rfcsearch.html

WAN

AcceleratorClient

Classification
Quality of Service
Link Optimization
Optimized Routing

Visibility and Reporting

EthernetPhysical

EthernetData Link

IPNetwork

TCP Optimization
Compression

Data Suppression
Transport

Session

Presentation

Application Read-Ahead, Safe
Object Caching,

Multiplexing,
Pipelining, CDN

EthernetPhysical

EthernetData Link

IPNetwork

TCPTransport

CIFS/SMBSession

ASCIIPresentation

Microsoft WordApplication

Router

Understanding Transmission Control Protocol Fundamentals 241

Connection-Oriented Service

The TCP connection is established through a three-way handshake agreement that occurs
between two sockets on two nodes that wish to exchange data. A socket is defined as the network
identifier of a node coupled with the port number that is associated with the application process
that desires to communicate with a peer. The use of TCP sockets is displayed in Figure 6-2.

Figure 6-2 TCP Socket

During the establishment of the connection, the two nodes exchange information relevant to the
parameters of the conversation. This information includes

■ Source and destination TCP ports: The ports that are associated with application processes
on each of the nodes that would like to exchange application data.

■ Initial sequence number: Each device notifies the other what sequence number should be
used for the beginning of the transmission.

■ Window size: The advertised receive window size; that is, the amount of data that the
advertising node can safely hold in its socket receive buffer.

■ Options: Optional header fields commonly used for extensions to TCP behavior. For instance,
this could include features such as window scaling and selective acknowledgment that were not
included as part of the TCP RFC but can augment TCP behavior (an authoritative list of TCP
options can be found at http://www.iana.org/assignments/tcp-parameters).

For instance, if an Internet user wants to use Internet Explorer to access http://www.cisco.com, the
user’s computer would first have to resolve the name www.cisco.com to an IP address, and then
attempt to establish a TCP connection to the web server that is hosting www.cisco.com using the
well-known port for HTTP (TCP port 80) unless a port number was specified. If the web server
that is hosting www.cisco.com is accepting connections on TCP port 80, the connection would

Local Socket
192.168.10.13:1343

Identifies the Local
Application Process

Local Socket
192.168.2.10:80

Identifies the Local
Application Process

Get/ Index.html

HTTP 200/OK

Get/Index.html

HTTP 200/OK

242 Chapter 6: Overcoming Transport and Link Capacity Limitations

likely establish successfully. During the connection establishment, the server and client would tell
one another how much data they can receive into their socket buffer (window size) and what initial
sequence number to use for the initial transmission of data. As data is exchanged, this number
would increment to allow the receiving node to know the appropriate ordering of data. During the
life of the connection, TCP employs checksum functionality to provide a fairly accurate measure
of the integrity of the data.

Once the connection is established between two nodes (IP addresses) and two application process
identifiers (TCP ports), the application processes using those two ports on the two disparate nodes
can begin to exchange application layer data. For instance, once a connection is established, a user
can submit a GET request to the web server that it is connected to in order to begin downloading
objects from a web page, or a user can begin to exchange control messages using SMTP or POP3
to transmit or receive an e-mail message. TCP connection establishment is shown in Figure 6-3.

Figure 6-3 TCP Connection Establishment

Guaranteed Delivery

Once transmission commences, application data is drained from application buffers on the
transmitting process into the node’s socket buffer. TCP then negotiates the transmission of data

GET HTTP/1.1

Acknowledge Connection
Attempt Connection

Src Port, Dst Port
Sequence Number

Acknowledgment Number
Window Size, Checksum

Options (MSS, SACK, etc.)

Attempt Connection
Src Port, Dst Port

Sequence Number
Window Size, Checksum

Options (MSS, SACK, etc.)

Acknowledge Connection
Sequence Number

Acknowledgment Number
Window Size, Checksum

Options (MSS, SACK, etc.)

TCP SYN

TCP ACK

TCP SYN, ACK

Application Data

Understanding Transmission Control Protocol Fundamentals 243

from the socket transmission buffer to the recipient node (that is, the draining of the buffer) based
on the availability of resources on the recipient node to receive the data as dictated by the initially
advertised window size and the current window size. Given that application data blocks may be
quite large, TCP performs the task of breaking the data into segments, each with a sequence number
that identifies the relative ordering of the portions of data that have been transmitted. If the node
receives the segments out of order, TCP can reorder them according to the sequence number. If TCP
buffers become full for one of the following reasons, a blocking condition could occur:

■ TCP transmit buffer becomes full: The transmit buffer on the transmitting node can become
full if network conditions prevent delivery of data or if the recipient is overwhelmed and
cannot receive additional data. While the receiving node is unable to receive more data,
applications may be allowed to continue to add data to the transmit buffer to await service.
With the blockade of data waiting in the transmit buffer, unable to be transmitted, applications
on the transmitting node may become blocked (that is, momentary or prolonged pauses in
transmission). In such a situation, new data cannot be written into the transmit buffer on the
transmitting node unless space is available in that buffer, which generally cannot be freed until
the recipient is able to receive more data or the network is able to deliver data again.

■ TCP receive buffer becomes full: Commonly caused by the receiving application not being
able to extract data from the socket receive buffer quickly enough. For instance, an overloaded
server, i.e. one that is receiving data at a rate greater than the rate at which it can process data,
would exhibit this characteristic. As the receive buffer becomes full, new data cannot be
accepted from the network for this socket and must be dropped, which indicates a congestion
event to the transmitting node.

Figure 6-4 shows how TCP acts as an intermediary buffer between the network and applications
within a node.

Figure 6-4 TCP Buffering Between the Network and Applications

Applications, Operating System

IP

T
x

B
uf

fe
rs

R
x

B
uf

fe
rs

T
x

D
at

a

R
x

D
at

a

TCP

244 Chapter 6: Overcoming Transport and Link Capacity Limitations

When data is successfully placed into a recipient node TCP receive buffer, TCP generates an
acknowledgment (ACK) with a value relative to the tail of the sequence that has just been received.
For instance, if the initial sequence number was “1” and 1 KB of data was transmitted, when the
data is placed into the recipient socket receive buffer, the recipient TCP stack will issue an ACK
with a value of 1024. As data is extracted from the recipient node’s socket receive buffer by the
application process associated with that socket, the TCP stack on the recipient will generate an
ACK with the same acknowledgment number but will also indicate an increase in the available
window capacity. Given that applications today are generally able to extract data immediately
from a TCP receive buffer, it is likely that the acknowledgment and window relief would come
simultaneously.

The next segment that is sent from the transmitting node will have a sequence number equal to the
previous sequence number plus the amount of data sent in the previous segment (1025 in this
example), and can be transmitted only if there is available window capacity on the recipient node
as dictated by the acknowledgments sent from the recipient. As data is acknowledged and the
window value is increased (data in the TCP socket buffer must be extracted by the application
process, thereby relieving buffer capacity and thus window capacity), the sender is allowed to
continue to send additional data to the recipient up to the maximum capacity of the recipient’s
window (the recipient also has the ability to send dynamic window updates indicating increases
or decreases in window size).

This process of transmitting data based on the recipient’s ability to receive and previously
acknowledged segments is commonly referred to as the TCP sliding window. In essence, as the
recipient continues to receive and acknowledge or otherwise notify of an increase in window size,
the window on the transmitting node shifts to allow new data to be sent. If at any point buffers
become full or the window is exhausted, the recipient must first service data that has been
previously received and acknowledge the sender before any new data can be sent. An example of
this process is shown in Figure 6-5.

Additionally, TCP provides a flag that allows an application process to notify TCP to send data
immediately rather than wait for a larger amount of data to accumulate in the socket buffer. This
flag, called a push, or PSH, instructs TCP to immediately send all data that is buffered for a
particular destination. This push of data also requires that previous conditions be met, including
availability of a window on the recipient node. When the data is transmitted, the PSH flag in the
TCP header is set to a value of 1, which also instructs the recipient to send the data directly to the
receiving application process rather than use the socket receive buffer.

Nodes that are transmitting also use the acknowledgment number, sequence number, and window
value as a gauge of how long to retain data that has been previously transmitted. Each segment that
has been transmitted and is awaiting acknowledgment is placed in a retransmission queue and is
considered to be unacknowledged by the recipient application process. When a segment is placed
in the retransmission queue, a timer is started indicating how long the sender will wait for an

Understanding Transmission Control Protocol Fundamentals 245

acknowledgment. If an acknowledgment is not received, the segment is retransmitted. Given that
the window size is generally larger than a single segment, many segments are likely to be
outstanding in the network awaiting acknowledgment at any given time.

Figure 6-5 TCP Operation

From a transport layer perspective, the loss of a segment might not prevent transmission from
continuing. However, given that the application layer is really dictating transport layer behavior
(for instance, an upper-layer protocol acknowledgment), the loss of a segment may indeed prevent
transmission from continuing.

The purpose of this retransmission queue is twofold:

■ It allows the transmitting node to allocate memory capacity to retain the segments that have
been previously transmitted. If a segment is lost (congestion, packet loss), it can be
transmitted from the retransmission queue, and remains there until acknowledged by the
recipient application process (window update).

■ It allows the original segment, once placed in the retransmission queue, to be removed from
the original transmission queue. This in effect allows TCP to be continually extracting data
from the local transmitting application process while not compromising the transmitting
node’s ability to retransmit should a segment become lost or otherwise unacknowledged.

Seq=1, Ack=1, Win=4096,
2048B Data

Seq=1, Ack=4097,
Win=0

Seq=2049, Ack=1, Win=2048,
2048B Data

Seq=1, Ack=2049,
Win=2048

Seq=4097, Ack=1, Win=2048,
1024B Data

Seq=1, Ack=4097,
Win=2048

Application Performs
2 KB Write

Application Performs
2 KB Write

Application Reads
First 2 KB

Receive
Buffer (4 KB)

Application Performs
1 KB Write

Sender Blocked!

Vertical Lines = Data in Buffer
Light Blocks = Empty Buffer Space

246 Chapter 6: Overcoming Transport and Link Capacity Limitations

An example of TCP retransmission management is shown in Figure 6-6.

Figure 6-6 TCP Retransmission Management

Bandwidth Discovery

The TCP sliding window can act as a throttling mechanism to ensure that transmission of data is
done in such a way that it aligns with the available buffer capacity and window of the two devices
exchanging data. There are also mechanisms in TCP that allow it to act as a throttling mechanism
based on the capacity of the network and any situations encountered in the network.

In some cases, the nodes exchanging data are able to send more data than the network can handle,
and in other cases (which is more prominent today), the nodes are not able to send as much data
as the network can handle. In the case of nodes being able to transmit more data than the network
is prepared to handle, congestion and loss occur. TCP has mechanisms built in to account for these
situations. In this way, TCP is adaptive in that it bridges the gap between transmission
requirements and limitations, receive requirements and limitations, congestion, and loss, for both
the application process and the network. This throttling mechanism also provides a balancing act
between applications and the network and works to continually leverage what capacity in the
network is available while attempting to maximize application throughput.

Message

Message

Acknowledgment

Acknowledgment

Message

Receive Message
Acknowledge

Acknowledge Received
Stop Timer

Send Message
Start Timer

Acknowledge Received
Stop Timer

Send Message
Start Timer

Timer Expired!
Retransmit from

Retransmission Buffer
Start New Timer

Receive Message
Acknowledge

Understanding Transmission Control Protocol Fundamentals 247

Discovering the steady state for an application process, meaning the balance between available
network capacity and the rate of data exchange between application processes and socket buffers,
is wholly subjective because application behavior is largely dictated by the function of input,
meaning the rate at which the application attempts to send or receive data from the socket buffers.
Network throughput is generally more deterministic and objective based on a variety of factors
(which would otherwise make it appear nondeterministic and fully subjective), including
bandwidth, latency, congestion, and packet loss.

The terms congestion and loss are used separately here, even though congestion and loss are
generally married. In some situations, congestion can simply refer to a delay in service due to
saturated buffers or queues that are not completely full, but full enough to slightly delay the
delivery of a segment of data. These factors are deterministic based on network utilization and
physics rather than a set of input criteria, as would be the case with an application. In any case,
applications are driving the utilization of network bandwidth, so the argument could be made that
they go hand in hand.

TCP provides capabilities to respond to network conditions, thus allowing it to perform the
following basic but critical functions:

■ Initially find a safe level at which data can be transmitted and continually adapt to changes in
network conditions

■ Respond to congestion or packet loss events through retransmission and make adjustments to
throughput levels

■ Provide fairness when multiple concurrent users are contending for the same shared resource
(bandwidth)

These capabilities are implemented in two TCP functions that are discussed in the next two
sections: TCP slow start and TCP congestion avoidance.

TCP Slow Start

TCP is responsible for initially finding the amount of network capacity available to the connection.
This function, as introduced in Chapter 2, “Barriers to Application Performance,” is provided in a
mechanism found in TCP called slow start (also known as bandwidth discovery) and is also
employed in longer-lived connections when the available window falls below a value known as the
slow-start threshold. Slow start is a perfect name for the function, even though it may appear upon
further examination to be a misnomer.

Slow start uses an exponential increase in the number of segments that can be sent per successful
round trip, and this mechanism is employed at the beginning of a connection to find the initial
available network capacity. In a successful round trip, data is transmitted based on the current

248 Chapter 6: Overcoming Transport and Link Capacity Limitations

value of the congestion window (cwnd) and an acknowledgment is received from the recipient.
(The cwnd correlates to the number of segments that can be sent and remain unacknowledged in
the network and is a dynamic value that cannot exceed the window size of the recipient.) The cwnd
value is bound to an upper threshold defined by the receiver window size and the transmission
buffer capacity of the sender.

With TCP slow start, the transmitting node starts by sending a single segment and waits for
acknowledgment. Upon acknowledgment, the transmitting node doubles the number of segments
that are sent and awaits acknowledgment. This process occurs until one of the following two
scenarios is encountered:

■ An acknowledgment is not received, thereby signaling packet loss or excessive congestion

■ The number of segments that can be sent (cwnd) is equal to the window size of the recipient
or equal to the maximum capacity of the sender

The first case is only encountered in the following circumstances:

■ The capacity of the network is less than the transmission capabilities of the sender and receive
capabilities of the receiver

■ A loss event is detected (no acknowledgment received within the time allocated to the
transmitted segment as it is placed in the retransmission queue)

■ Congestion delays the delivery of the segment long enough to allow the retransmission queue
timer for the transmitted segment to expire

The second case is encountered only when the capacity of the network is equal to (with no loss or
congestion) or greater than the transmission capabilities of the sender and the receive capabilities
of the receiver. In this case, the sender or the receiver cannot fully capitalize on the available
network capacity based on window capacity or buffer sizes.

The result of TCP slow start is an exponential increase in throughput up to the available network
capacity or up to the available transmit/receive throughput of the two nodes dictated by buffer size
or advertised window size. This is a relatively accurate process of finding the initially available
bandwidth, and generally is skewed only in the case of a network that is exhibiting high packet
loss characteristics, which may cut the slow-start process short. When one of the previously listed
two cases presented is encountered, the connection exits TCP slow start, knowing the initially
available network capacity, and enters the congestion avoidance mode. Slow start is never entered
again unless the cwnd of the connection falls below the slow-start threshold value.

If the first case is encountered—loss of a packet, or excessive delay causing the retransmission
timer to expire—standard TCP implementations immediately drop the cwnd value by 50 percent.
If the second case is encountered—no loss—cwnd is in a steady state that is equal to the receiver’s
advertised window size. TCP slow start is shown in Figure 6-7.

Understanding Transmission Control Protocol Fundamentals 249

Figure 6-7 TCP Slow Start

TCP Congestion Avoidance

Once the TCP connection exits slow start (bandwidth discovery), it then enters a mode known as
congestion avoidance. Congestion avoidance is a mechanism that allows the TCP implementation
to react to situations encountered in the network. Packet loss and delay signal congestion in the
network, which could be indicative of a number of factors:

■ Bandwidth allocation change: For instance, change in a variable bandwidth circuit can
result in the network being able to service more or less overall throughput based on the
direction and nature of the change.

■ Network oversubscription: When a shared network connection between upstream devices
is used by multiple concurrent users, it can become congested to the point of loss or delay.

■ Congestion of device queues: Similar to network oversubscription, a shared device such as a
router can have its queues exhausted to the point of not being able to accept new packets. This
could also be equated to a QoS configuration that dictates maximum bandwidth utilization of a
specific traffic class or drop policies for that class when congestion is encountered.

■ Overload of destination: Destination socket buffers can become full because of an
application’s inability to drain data from them in a timely fashion, potentially because of the
server being overwhelmed.

This list only begins to scratch the surface of why packets could be lost or otherwise delayed. The
good news is that TCP was designed to work in a network that is unreliable and lossy (high levels
of packet loss) and uses these events to its advantage to adequately throttle transmission
characteristics and adapt to network conditions.

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Packet Loss

Loss Encountered Before
cwnd == Advertised Window

Loss Not Encountered
cwnd == Advertised Window

250 Chapter 6: Overcoming Transport and Link Capacity Limitations

While in congestion avoidance mode, standard TCP continually increments the number of
segments that can be transmitted without acknowledgment by one for every successful round trip,
up to the point where cwnd has parity with the recipient’s advertised window size. Any time a loss
is detected (the retransmission timer for a segment expires), standard TCP reduces cwnd by
50 percent, thereby minimizing the amount of data that can be unacknowledged in the network
(in other words, in transit), which can directly impact the ability of the sender to transmit data.
TCP congestion avoidance is shown in Figure 6-8.

Figure 6-8 TCP Congestion Avoidance

Through the use of slow start and congestion avoidance mode, TCP can discover available network
capacity for a connection and adapt the transmission characteristics of that connection to the
situations encountered in the network.

Overcoming Transport Protocol Limitations

Now that you understand the fundamentals of how TCP operates, you are ready to examine how
TCP can become a barrier to application performance in WAN environments. If you are wondering
whether TCP can also be a barrier to application performance in LAN environments, the answer
is unequivocally “yes.” However, given that this book focuses on application acceleration and
WAN optimization, which are geared toward improving performance for remote office and WAN
environments, this book will not examine the TCP barriers to application performance in LAN
environments.

You may also be wondering about UDP at this point. UDP, which is connectionless and provides
no means for guaranteed delivery (it relies on application layer semantics), generally is not limited

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Packet Loss

Overcoming Transport Protocol Limitations 251

in terms of throughput on the network (outside of receiver/transmitter buffers). It is also not
considered a good network citizen, particularly on a low-bandwidth WAN, because it consumes
all available capacity that it can with no inherent fairness characteristics. Most enterprise
applications, other than Voice over IP, video, TFTP, and some storage and file system protocols,
do not use UDP. UDP traffic is generally best optimized in other ways, including stream splitting
for video, which is discussed in Chapter 4, or through packet concatenation or header compression
for VoIP. These topics, including UDP in general, are not discussed in the context of WAN
optimization in this work.

The previous section examined at a high level how TCP provides connection-oriented service,
provides guaranteed delivery, and adapts transmission characteristics to network conditions. TCP
does have limitations, especially in WAN environments, in that it can be a significant barrier to
application performance based on how it operates. This section examines ways to circumvent the
performance challenges presented by TCP, including slow start and congestion avoidance, but note
that this will not be an exhaustive study of every potential extension that can be applied.

Of Mice and Elephants: Short-Lived Connections and Long Fat Networks

No, this is not a John Steinbeck novel gone wrong. “Mice” and “elephants” are two of the creatures
that can be found in the zoo known as networking. The term mice generally refers to very short-lived
connections. Mice connections are commonly set up by an application to perform a single task, or a
relatively small number of tasks, and then torn down. Mice connections are often used in support of
another, longer-lived connection. An example of mice connections can be found in HTTP
environments, where a connection is established to download a container page, and ancillary
connections are established to fetch objects. These ancillary connections are commonly torn down
immediately after the objects are fetched, so they are considered short-lived, or mice, connections.

Elephants are not connection related; rather, the term elephant refers to a network that is deemed
to be “long” and “fat.” “Elephant” is derived from the acronym for long fat network, LFN. An
LFN is a network that is composed of a long distance connection (“long”) and high bandwidth
capacity (“fat”).

The next two sections describe mice connections and elephant networks, and the performance
challenges they create.

Mice: Short-Lived Connections

Short-lived connections suffer from performance challenges because each new connection that is
established has to undergo TCP slow start. As mentioned earlier, TCP slow start is a misnomer
because it has very fast throughput ramp-up capabilities based on bandwidth discovery but also
can impede the ability of a short-lived connection to complete in a timely fashion. Slow start
allows a new connection to use only a small amount of available bandwidth at the start, and there

252 Chapter 6: Overcoming Transport and Link Capacity Limitations

is significant overhead associated with the establishment of each of these connections, caused by
latency between the two communicating nodes.

A good example of a short lived connection is a Web browser’s fetch of a 50-KB object from
within an HTTP container page. Internet browsers spawn a new connection specifically to request
the object, and this new connection is subject to TCP slow start. With TCP slow start, the
connection is able to transmit a single segment (cwnd is equal to one segment) and must wait until
an acknowledgment is received before slow start doubles the cwnd value (up to the maximum,
which is the receiver’s advertised window size). Due to TCP slow start, only a small amount of
data can be transmitted, and each exchange of data suffers the latency penalty of the WAN.

Once the connection is in congestion avoidance (assuming it was able to discover a fair amount of
bandwidth), it would be able to send many segments without requiring tedious acknowledgments
so quickly. If the initial segment size is 500 bytes, it would take a minimum of seven roundtrip
exchanges (not counting the connection setup exchanges) to transfer the 50-KB object, assuming
no packet loss was encountered. This is shown in Table 6-1.

In a LAN environment, this series of exchanges would not be a problem, because the latency of
the network is generally around 1–2 ms, meaning that the total completion time most likely would
be under 20 ms. However, in a WAN environment with 100 ms of one-way latency (200 ms round
trip), this short-lived connection would have taken approximately 1.4 seconds to complete. The
challenges of TCP slow start as it relates to short-lived connections is, in effect, what gave birth to
the term “World Wide Wait.”

There are two primary means of overcoming the performance limitations of TCP slow start:

■ Circumvent it completely by using a preconfigured rate-based transmission protocol. A rate-
based transmission solution will have a preconfigured or dynamically learned understanding
of the network capacity to shape the transmission characteristics immediately, thereby
mitigating slow start.

Table 6-1 Bytes per RTT with Standard TCP Slow Start

Roundtrip Time Number cwnd cwnd (Bytes) Bytes Remaining

1 1 500 49,500

2 2 1000 48,500

3 4 2000 46,500

4 8 4000 42,500

5 16 8000 34,500

6 32 16,000 18,500

7 64 32,000 Finished!

Overcoming Transport Protocol Limitations 253

■ Increase the initial permitted segment count (cwnd) to a larger value at the beginning of the
connection, otherwise known as large initial windows. This means of overcoming
performance limitations of TCP slow start is generally the more adaptive and elegant solution,
because it allows each connection to continue to gradually consume bandwidth rather than
start at a predefined rate.

Using a preconfigured rate-based transmission solution requires that the sender, or an intermediary
accelerator device, be preconfigured with knowledge of how much capacity is available in the
network, or have the capability to dynamically learn what the capacity is. When the connection is
established, the node (or accelerator) immediately begins to transmit based on the preconfigured
or dynamically learned rate (that is, bandwidth capacity) of the network, thereby circumventing
the problems of TCP slow start and congestion avoidance.

In environments that are largely static (bandwidth and latency are stable), rate-based transmission
solutions work quite well. However, while rate-based transmission does overcome the
performance challenges presented by TCP slow start and congestion avoidance, it has many other
challenges and limitations that make it a less attractive solution for modern-day networks.

Today’s networks are plagued with oversubscription, contention, loss, and other characteristics
that can have an immediate and profound impact on available bandwidth and measured latency.
For environments that are not as static, a rate-based transmission solution will need to
continually adapt to the changing characteristics of the network, thereby causing excessive
amounts of measurement to take place such that the accelerator can “guesstimate” the available
network capacity. In a dynamic network environment, this can be a challenge for rate-based
transmission solutions because network congestion, which may not be indicative of loss or
changes in bandwidth, can make the sender believe that less capacity is available than what
really is available.

Although rate-based transmission solutions may immediately circumvent slow start and
congestion avoidance to improve performance for short- and long-lived connections, a more
adaptive solution with no restrictions is available by using large initial windows. Large Initial
Windows, originally defined in RFC 3390, “Increasing TCP’s Initial Window,” specifies that the
initial window be increased to minimize the number of roundtrip message exchanges that must
take place before a connection is able to exit slow start and enter congestion avoidance mode,
thereby allowing it to consume network bandwidth and complete the operation much more
quickly. This approach does not require previous understanding or configuration of available
network capacity, and allows each connection to identify available bandwidth dynamically, while
minimizing the performance limitations associated with slow start.

Figure 6-9 shows how using TCP large initial windows helps circumvent bandwidth starvation
for short-lived connections and allows connections to more quickly utilize available network
capacity.

254 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-9 TCP Large Initial Windows

Referring to the previous example of downloading a 50-KB object using HTTP, if RFC 3390
was employed and the initial window was 4000 bytes, the operation would complete in a
matter of four roundtrip exchanges. In a 200-ms-roundtrip WAN environment, this equates
to approximately 800 ms, or roughly a 50 percent improvement over the same transfer where
large initial windows were not employed. (See Table 6-2.) Although this may not circumvent
the entire process of slow start, as a rate-based transmission protocol would, it allows the
connection to retain its adaptive characteristics and compete for bandwidth fairly on
the WAN.

Comparing rate-based transmission and large initial windows, most find that the performance
difference for short-lived connections is negligible, but the network overhead required for
bandwidth discovery in rate-based solutions can be a limiting factor. TCP implementations that
maintain semantics of slow start and congestion avoidance (including Large Initial Windows),
however, are by design dynamic and adaptive with minimal restriction, thereby ensuring fairness
among flows that are competing for available bandwidth.

Table 6-2 Bytes per RTT with TCP Large Initial Windows

RTT Number cwnd cwnd (Bytes) Bytes Remaining

1 1 4000 46,000

2 2 8000 38,000

3 4 16,000 22,000

4 8 32,000 Finished!

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Connection Without
Large Initial Windows

Connection with
Large Initial Windows

Overcoming Transport Protocol Limitations 255

Elephants: High Bandwidth Delay Product Networks

While the previous section examined optimizations primarily geared toward improving
performance for mice connections, this section examines optimizations primarily geared toward
improving performance for environments that contain elephants (LFNs). An LFN is a network that
is long (distance, latency) and fat (bandwidth capacity).

Because every bit of data transmitted across a network link has some amount of travel time
associated with it, it can be assumed that there can be multiple packets on a given link at any point
in time. Thus, a node may be able to send ten packets before the first packet actually reaches the
intended destination simply due to the distance contained in the network that is being traversed.
With IP, there is no concept of send-and-wait at the packet layer. Therefore, network nodes place
packets on the wire at the rate determined by the transport layer (or by the application layer in the
case of connectionless transport protocols) and will continue to send based on the reaction of the
transport layer to network events.

As an example, once a router transmits a packet, the router does not wait for that packet to reach
its destination before the router sends another packet that is waiting in the queue. In this way, the
links between network nodes (that is, routers and switches) are, when utilized, always holding
some amount of data from conversations that are occurring. The network has some amount of
capacity, which equates to the amount of data that can be in flight over a circuit at any given time
that has not yet reached its intended destination or otherwise been acknowledged. This capacity is
called the bandwidth delay product (BDP).

The BDP of a network is easily calculated. Simply convert the network data rate (in bits) to bytes
(remember there is a necessary conversion from power of 10 to power of 2). Then, multiply the
network data rate (in bytes) by the delay of the network (in seconds). The resultant value is the
amount of data that can be in flight over a given network at any point in time. The greater the
distance (latency) and the greater the bandwidth of the network, the more data that can be in flight
across that link at any point in time. Figure 6-10 shows a comparison between a high BDP network
and a low BDP network.

The challenge with LFNs is not that they have a high BDP, but that the nodes exchanging data over
the network do not have buffers or window sizes large enough to adequately utilize the available
link capacity. With multiple concurrent connections, the link can certainly be utilized effectively,
but a single connection has a difficult time taking advantage of (or simply cannot take advantage
of) the large amount of network capacity available because of the lack of buffer space and TCP
window capacity.

256 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-10 Comparing Bandwidth Delay Product—High vs. Low

In situations where a single pair of nodes with inadequate buffer or window capacity is exchanging
data, the sending node is easily able to exhaust the available window because of the amount of
time taken to get an acknowledgment back from the recipient. Buffer exhaustion is especially
profound in situations where the window size negotiated between the two nodes is small, because
this can result in sporadic network utilization (burstiness) and periods of underutilization (due to
buffer exhaustion). Figure 6-11 shows how window exhaustion leads to a node’s inability to fully
utilize available WAN capacity.

Figure 6-11 Window Exhaustion in High BDP Networks

RTT 10 ms

Amount of Data that can
be In-Transit at any Time:
155 Mbps = 19.375 MBps
19.375 MBps * 10 ms
BDP = 193 KB

Bandwidth
155 Mbps

(OC-3)

Amount of Data that can
be In-Transit at any Time:
155 Mbps = 19.375 MBps
19.375 MBps * 200 ms
BDP = 3860 KB

Bandwidth
155 Mbps

(OC-3)

RTT 200 ms

Win=3

Win=2

Win=1

Win=0

Sender is blocked even though
WAN capacity is still available.

High BDP Network

Overcoming Transport Protocol Limitations 257

Bandwidth scalability is a term that is often used when defining an optimization capability
within an accelerator or configuration change that provides the functionality necessary for a
pair of communicating nodes to take better advantage of the available bandwidth capacity.
This is also known as fill-the-pipe optimization, which allows nodes communicating over an
LFN to achieve higher levels of throughput, thereby overcoming issues with buffer or
window exhaustion. This type of optimization can be implemented rather painlessly on a
pair of end nodes (which requires configuration changes to each node where this type of
optimization is desired, which can be difficult to implement on a global scale), or it can be
implemented in an accelerator, which does not require any of the end nodes to undergo a change
in configuration.

Two primary methods are available to enable fill-the-pipe optimization:

■ Window scaling

■ Scalable TCP implementation

The following sections describe both.

Window Scaling

Window scaling is an extension to TCP (see RFC 1323, “TCP Extensions for High Performance”).
Window scaling, which is a TCP option that is negotiated during connection establishment, allows
two communicating nodes to go beyond the 16-bit limit (65,536 bytes) for defining the available
window size.

With window scaling enabled, an option is defined with a parameter advertised that is known as
the window scale factor. The window scale factor dictates a binary shift of the value of the 16-bit
advertised TCP window, thereby providing a multiplier effect on the advertised window. For
instance, if the advertised TCP window is 1111 1111 1111 1111 (that is, decimal 64 KB) and the
window scale factor is set to 2, the binary value of the window size will have two bits added to the
end of it, which would then become 11 1111 1111 1111 1111. The advertised 64-KB window size
would be handled by the end nodes as a 256-KB window size.

Larger scaled windows cause the end nodes to allocate more memory to TCP buffering, which
means in effect that more data can be in flight and unacknowledged at any given time. Having
more data in flight minimizes the opportunity for buffer exhaustion, which allows the
conversing nodes to better leverage the available network capacity. The window scale TCP
option (based on RFC 1323) allows for window sizes up to 1 GB (the scale factor is set to a
value of 14). Figure 6-12 shows how window scaling allows nodes to better utilize available
network capacity.

258 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-12 Using Window Scaling to Overcome High BDP Networks

Scalable TCP Implementation

The second method of enabling fill-the-pipe optimization that is available, but more difficult to
implement in networks containing devices of mixed operating systems, is to use a more purpose-
built and scalable TCP implementation. Many researchers, universities, and technology
companies have spent a significant amount of money and time to rigorously design, test, and
implement these advanced TCP stacks. One common theme exists across the majority of the
implementations: each is designed to overcome performance limitations of TCP in WAN
environments and high-speed environments while improving bandwidth scalability. Many of these
advanced TCP stacks include functionality that helps enable bandwidth scalability and overcome
other challenges related to loss and latency.

Although difficult to implement in a heterogeneous network of workstations and servers, most
accelerator solutions provide an advanced TCP stack natively as part of an underlying TCP proxy
architecture (discussed later in this chapter, in the “Accelerator TCP Proxy Functionality”
section), thereby mitigating the need to make time-consuming and questionable configuration
changes to the network end nodes. Several of the more common (and popular) implementations
will be discussed later in the chapter.

The next section looks at performance challenges of TCP related to packet loss.

Overcoming Packet Loss-Related Performance Challenges

Packet loss occurs in any network and, interestingly enough, occurs most commonly outside
of the network and within the host buffers. TCP has been designed in such a way that it can
adapt when packet loss is encountered and recover from such situations. Packet loss is not
always bad. For instance, when detected by TCP (segments in the retransmission queue
encounter an expired timer, for instance), packet loss signals that the network characteristics

Available window capacity
greater than network capacity.

High BDP Network

Overcoming Transport Protocol Limitations 259

may have changed (for example, if the available bandwidth capacity decreased). Packet loss
could also signal that there is congestion on the network in the form of other nodes trying to
consume or share the available bandwidth. This information allows TCP to react in such a way
that allows other nodes to acquire their fair share of bandwidth on the network, a feature
otherwise known as fairness.

Fairness is defined as a trait exhibited by networks that allow connections to evenly share available
bandwidth capacity. TCP is considered to be a transport protocol that can generally ensure
fairness, because it adapts to changes in network conditions, including packet loss and congestion,
which are commonly encountered when flows compete for available bandwidth.

The result of packet loss in connection-oriented, guaranteed-delivery transport protocols such as
TCP is a shift in the transmission characteristics to ensure that throughput is decreased to allow
others to consume available capacity and also to accommodate potential changes in network
capacity. This shift in transmission characteristics (in the case of TCP, decreasing the cwnd) could
have a detrimental impact on the overall throughput if the cwnd available drops to a level that
prevents the node from fully utilizing the network capacity.

Standard TCP implementations will drop cwnd by 50 percent when a loss of a segment is detected.
In many cases, dropping cwnd by 50 percent will not have an adverse effect on throughput. In
some cases, however, where the BDP of the network is relatively high, decreasing cwnd by
50 percent can have a noticeable impact on the throughput of an application.

TCP is designed to be overly conservative in that it will do its best to provide fairness across
multiple contenders. This conservative nature is rooted in the fact that TCP was designed at a time
when the amount of bandwidth available was far less than what exists today. The reality is that
TCP needs to be able to provide fairness across concurrent connections (which it does), adaptive
behavior for lossy networks (which it does), and efficient utilization of WAN resources (which it
does not). Furthermore, when a loss of a packet is detected, all of the segments within the sliding
window must be retransmitted from the retransmission queue, which proves very inefficient in
WAN environments. Figure 6-13 shows the impact of packet loss on the TCP congestion window,
which may lead to a decrease in application throughput.

When TCP detects the loss of a segment, cwnd is dropped by 50 percent, which effectively
limits the amount of data the transmitting node can have outstanding in the network at any given
time. Given that standard TCP congestion avoidance uses a linear increase of one segment per
successful round trip, it can take quite a long time before the cwnd returns to a level that is
sufficient to sustain high levels of throughput for the application that experienced the loss. In
this way, TCP is overly conservative and packet loss may cause a substantial impact on
application throughput, especially given that bandwidth availability is far greater than it was
20 years ago.

260 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-13 Packet Loss Causing cwnd to Decrease

Overcoming the impact of packet loss through the use of TCP extensions in a node or by
leveraging functionality in an accelerator can provide nearly immediate improvements in
application throughput. Making such changes to each end node may prove to be an administrative
nightmare, whereas deploying accelerators that provide the same capability (among many others)
is relatively simple. There are three primary means of overcoming the impact of packet loss:

■ Selective acknowledgment (SACK)

■ Forward error correction (FEC)

■ Advanced congestion avoidance algorithms

By employing SACK, acknowledgments can be sent to notify the transmitter of the specific blocks
of data that have been received into the receiver’s socket buffer. Upon detecting loss, the
transmitting node can then resend the blocks that were not acknowledged rather than send the
contents of the entire window. Figure 6-14 shows how an accelerator acting as a TCP proxy
(discussed later, in the section “Accelerator TCP Proxy Functionality”) can provide SACK to
improve efficiency in retransmission upon detecting the loss of a segment.

FEC is used to generate parity packets that allow the receiving node to recover the data from a lost
packet based on parity information contained within the parity packets. FEC is primarily useful in
moderately lossy networks (generally between .25 and 1 percent loss). Below this loss boundary,
FEC may consume excessive amounts of unnecessary bandwidth (little return on bandwidth
investment because the loss rate is not substantial). Above this loss boundary, FEC is largely
ineffective compared to the total amount of loss (not enough parity data being sent to adequately

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Packet Loss
cwnd/2

Packet Loss
cwnd/2

Packet Loss
cwnd/2

Overcoming Transport Protocol Limitations 261

re-create the lost packets) and therefore consumes excessive CPU cycles on the transmitting and
receiving nodes or accelerators with little to no performance benefit.

Figure 6-14 Selective Acknowledgment in an Accelerator Solution

Advanced TCP implementations generally decrease cwnd less aggressively upon encountering
packet loss and use more aggressive congestion avoidance algorithms to better utilize network
capacity and more quickly return to previous levels of throughput after encountering packet loss.
This yields a smaller drop in cwnd and faster increase in cwnd after encountering packet loss,
which helps to circumvent performance and throughput challenges. Advanced TCP stacks are
discussed in the next section.

Advanced TCP Implementations

The previous sections have outlined some of the limitations that TCP imposes upon application
performance. Many universities and companies have conducted research and development to find
and develop ways to improve the behavior of TCP (or completely replace it) to improve
performance and make it more applicable to today’s enterprise and Internet network environments.
The result of this research and development generally comes in one of two forms: an extension to
TCP (commonly applied as a negotiated option between two nodes that support the extension) or
an alternative stack that is used as a replacement for TCP. For instance, SACK is an extension to
TCP and is enabled based on negotiation during connection establishment. Advanced stacks,
such as Binary Increase Congestion TCP (BIC-TCP), High Speed TCP (HS-TCP), Scalable TCP
(S-TCP), and others, are an alternative to TCP extensions and generally require that the peer nodes
be running the same TCP implementation to leverage the advanced capabilities.

Accelerator devices commonly use an advanced TCP implementation, which circumvents the need
to replace the TCP stack on each node in the network. When considering an implementation with an
advanced TCP stack, it is important to consider three key characteristics of the implementation:

■ Bandwidth scalability: The ability to fully utilize available WAN capacity, otherwise known
as fill-the-pipe. Figure 6-15 shows how fill-the-pipe optimizations such as window scaling
can be employed in an accelerator to achieve better utilization of existing network capacity.

WAN

Transmit

3 2 1

Receive

ACK

3 2 1

Transmit

3 2 1

Receive

ACK

2 1

2 1

Retransmit

3

ACK

2 3 1

2 3 1

Transmit

3 2 1

Receive

ACK

3 2 1

Client Accelerator Accelerator Server

262 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-15 Accelerator Enables Efficient Utilization of Existing WAN

■ TCP friendliness: The ability to share available network capacity fairly with other
transmitting nodes that may not be using the same advanced TCP implementation. This is
another form of fairness, in that the optimized connections should be able to share bandwidth
fairly with other connections on the network. Over time, the bandwidth allocated to optimized
and unoptimized connections should converge such that resources are shared across
connections.

Figure 6-16 shows the impact of using accelerators that provide TCP optimization
that is not friendly to other nonoptimized connections, which can lead to bandwidth
starvation and other performance challenges. Figure 6-17 shows how accelerators
that provide TCP optimization that is friendly to other nonoptimized connections
will compete fairly for network bandwidth and stabilize with other nonoptimized
connections.

Figure 6-16 TCP Friendliness—Accelerator with No Fairness

Accelerator enables the WAN
capacity to be fully utilized.

High BDP Network

Unoptimized Connection
Starved for Bandwidth

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Optimized Connection
Without Fairness

Overcoming Transport Protocol Limitations 263

Figure 6-17 TCP Friendliness—Accelerator with Fairness

■ Roundtrip time (RTT) fairness: The ability to share bandwidth fairly across connections
even if the RTT between the two communicating node pairs is unequal. RTT fairness is
another component of fairness at large.

With RTT disparity, the nodes that are closer to one another can generally consume
a larger portion of available WAN bandwidth capacity than the nodes that are more
distant when sharing bandwidth. This is due to the way TCP congestion avoidance
relies on acknowledgment messages to increment the cwnd, which increases the
amount of data that can be outstanding in the network. This leads to the two nodes
that are closer to one another being able to transmit data more quickly because
acknowledgments are received more quickly and the congestion window is
advanced more rapidly. Figure 6-18 shows an example of a network of nodes where
RTT disparity is present.

Figure 6-18 Roundtrip Time Differences and Fairness

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Optimized Connection
with Fairness

Unoptimized Connection
Not Starved for Bandwidth

Connections Will
Stabilize Over Time
and Bandwidth Will
Be Shared Fairly

WAN

RTT=120 ms

RTT=40 ms

264 Chapter 6: Overcoming Transport and Link Capacity Limitations

These advanced TCP implementations commonly implement an advanced congestion avoidance
algorithm that overcomes the performance challenge of using a conservative linear search such as
found in TCP. With a conservative linear search (increment cwnd by one segment per successful
RTT), it may take a significant amount of time before the cwnd increments to a level high enough
to allow for substantial utilization of the network. Figure 6-19 shows how TCP’s linear search
congestion avoidance algorithm leads to the inability of a connection to quickly utilize available
network capacity (lack of aggressiveness).

Figure 6-19 Linear Search Impedes Bandwidth Utilization

This section examines some of the advanced TCP implementations and characteristics of each but
is not intended to be an exhaustive study of each or all of the available implementations.

High-Speed TCP

High-Speed TCP (HS-TCP) is an advanced TCP implementation that was developed primarily to
address bandwidth scalability. HS-TCP uses an adaptive cwnd increase that is based on the current
cwnd value of the connection. When the cwnd value is large, HS-TCP uses a larger cwnd increase
when a segment is successfully acknowledged. In effect, this helps HS-TCP to more quickly find
the available bandwidth, which leads to higher levels of throughput on large networks much more
quickly.

HS-TCP also uses an adaptive cwnd decrease based on the current cwnd value. When the cwnd
value for a connection is large, HS-TCP uses a very small decrease to the connection’s cwnd value
when loss of a segment is detected. In this way, HS-TCP allows a connection to remain at very
high levels of throughput even in the presence of packet loss but can also lead to longer

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Available Bandwidth

Linear Congestion Avoidance
cwnd == cwnd+1 per RTT

Bandwidth Region Unusable
Because of Linear Congestion

Avoidance

Overcoming Transport Protocol Limitations 265

stabilization of TCP throughput when other, non-HS-TCP connections are contending for
available network capacity. The aggressive cwnd handling of HS-TCP can lead to a lack of fairness
when non-HS-TCP flows are competing for available network bandwidth. Over time, non-HS-
TCP flows can stabilize with HS-TCP flows, but this period of time may be extended due to the
aggressive behavior of HS-TCP.

HS-TCP also does not provide fairness in environments where there is RTT disparity between
communicating nodes, again due to the aggressive handling of cwnd. This means that when using
HS-TCP, nodes that are communicating over shorter distances will be able to starve other nodes
that are communicating over longer distances due to the aggressive handling of cwnd. In this way,
HS-TCP is a good fit for environments with high bandwidth where the network links are dedicated
to a pair of nodes communicating using HS-TCP as a transport protocol but may not be a good
fit for environments where a mix of TCP implementations or shared infrastructure is required.
Figure 6-20 shows the aggressive cwnd handling characteristics displayed by HS-TCP.

Figure 6-20 High-Speed TCP

You can find more information on HS-TCP at http://www.icir.org/floyd/hstcp.html

Scalable TCP

Scalable TCP (S-TCP) is similar to HS-TCP in that it uses an adaptive increase to cwnd. S-TCP
will increase cwnd by a value of (cwnd × .01) when increasing the congestion window, which
means the increment is large when cwnd is large and the increment is small when cwnd is small.

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Congestion Avoidance

Cwnd Increase Is Large
While cwnd Is a High Value

Cwnd Increase Is Small
While cwnd Is a Low Value

Loss Reaction

Cwnd Decrease Is Small
While cwnd Is a High Value

Cwnd Decrease Is Large
While cwnd Is a Low Value

266 Chapter 6: Overcoming Transport and Link Capacity Limitations

Rather than use an adaptive decrease in cwnd, S-TCP will decrease cwnd by 12.5 percent (1/8)
upon encountering a loss of a segment. In this way, S-TCP is more TCP friendly than HS-TCP in
high-bandwidth environments. Like HS-TCP, S-TCP is not fair among flows where an RTT
disparity exists due to the overly aggressive cwnd handling.

You can find more information on S-TCP at http://www.deneholme.net/tom/scalable/.

Binary Increase Congestion TCP

Binary Increase Congestion TCP (BIC-TCP) is an advanced TCP stack that uses a more adaptive
increase than that used by HS-TCP and S-TCP. HS-TCP and S-TCP use a variable increment to
cwnd directly based on the value of cwnd. BIC-TCP uses connection loss history to adjust the
behavior of congestion avoidance to provide fairness.

BIC-TCP’s congestion avoidance algorithm uses two search modes—linear search and binary
search—as compared to the single search mode (linear or linear relative to cwnd) provided by
standard TCP, HS-TCP, and S-TCP. These two search modes allow BIC-TCP to adequately
maintain bandwidth scalability and fairness while also avoiding additional levels of packet loss
caused by excessive cwnd aggressiveness:

■ Linear search: Uses a calculation of the difference between the current cwnd and the
previous cwnd prior to the loss event to determine the rate of linear search.

■ Binary search: Used as congestion avoidance approaches the previous cwnd value prior to
the loss event. This allows BIC-TCP to mitigate additional loss events caused by the
connection exceeding available network capacity after a packet loss event.

The linear search provides aggressive handling to ensure a rapid return to previous levels of
throughput, while the binary search not only helps to minimize an additional loss event, but also
helps to improve fairness for environments with RTT disparity (that is, two nodes exchanging data
are closer than two other nodes that are exchanging data) in that it allows convergence of TCP
throughput across connections much more fairly and quickly.

Figure 6-21 shows how BIC-TCP provides fast returns to previous throughput levels while
avoiding additional packet loss events.

For more information on BIC-TCP, visit http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
index.htm

NOTE Other advanced TCP implementations exist, including Additive Increase Multiplicative
Decrease (AIMD), Fast AQM Scalable TCP (FAST), and Simple Available Bandwidth Utilization
Library (SABUL). Because the focus of this book is on the advanced TCP implementations
commonly found in accelerator devices, we will not discuss these additional implementations.

Overcoming Transport Protocol Limitations 267

Figure 6-21 Binary Increase Congestion TCP

Accelerator TCP Proxy Functionality

Most accelerator devices provide proxy functionality for TCP. This allows enterprise
organizations to deploy technology that overcomes WAN conditions without having to make
significant changes to the existing clients and servers on the network. In effect, a TCP proxy allows
the accelerator to terminate TCP connections locally and take ownership of providing guaranteed
delivery on behalf of the communicating nodes. With a TCP proxy, the accelerator manages
local TCP transmit and receive buffers and provides TCP-layer acknowledgments and window
management. This also allows the accelerator to effectively shield communicating nodes from
packet loss and other congestion events that occur in the WAN.

Before this type of function can be employed, accelerator devices must either automatically
discover one another or have preconfigured knowledge of who the peer device is. This
allows existing clients and servers to retain their existing configurations and TCP
implementations, and allows the accelerator devices to use an advanced TCP stack between
one another for connections between communicating nodes that are being optimized. The
optimized connections between accelerator devices may also be receiving additional levels
of optimization through other means such as compression (discussed later, in the section
“Accelerators and Compression”), caching, read-ahead, and others as described in Chapters 4
and 5.

Accelerators that use a TCP proxy terminate TCP locally on the LAN segment it is connected to
and use optimized TCP connections to peer accelerators over the WAN. By acting as an

S
eg

m
en

ts
/R

T
T

cw
nd

Time

Binary Search Mitigates
Additional Loss Events
Caused by Congestion
Avoidance Leading to

Better Stability

Linear Search Provides
Fast Return to Original

Throughput Levels

268 Chapter 6: Overcoming Transport and Link Capacity Limitations

intermediary TCP proxy device, an accelerator is uniquely positioned to take ownership of
managing WAN conditions and changes on behalf of the communicating nodes. For instance, if
an accelerator detects the loss of a packet that has been transmitted for an optimized connection,
the accelerator retransmits that segment on behalf of the original node. This stops any WAN
conditions from directly impacting the end nodes involved in the conversation that is being
optimized by the accelerators, assuming the data remains in the socket buffers within the
accelerator. The accelerator provides acceleration and throughput improvements to clients and
servers with legacy TCP stacks, creating near-LAN TCP behavior while managing the connections
over the WAN.

Figure 6-22 shows how accelerators can act as a proxy for TCP traffic, which shields LAN-
attached nodes from WAN conditions.

Figure 6-22 TCP Proxy Architecture

By employing accelerators in the network that provide TCP proxy functionality, clients and
servers communicating over the WAN experience better performance and loss recovery. First, loss

WAN

TCP Connection 1
(Unoptimized)

DATA1

ACK1

DATA2

ACK2

DATA3

ACK3

DATA4

ACK4

DATA1

ACK1

DATA2

ACK2

DATA3

ACK3

DATA4

ACK4

DATA1’

DATA2’

DATA3’

DATA4’

ACK1’

ACK2’

ACK3’

ACK4’

TCP Connection 2
(Optimized)

TCP Connection 3
(Unoptimized)

Accelerator 1 Accelerator 2

Overcoming Transport Protocol Limitations 269

events occurring in the WAN are wholly contained and managed by the accelerators. Second,
acknowledgments are handled locally by the accelerator, thereby allowing the clients and servers
to achieve potentially very high levels of throughput.

When a connection is further optimized through advanced compression (as discussed later in this
chapter), not only are clients and servers able to fill the pipe, but accelerators are able to fill the
pipe with compressed data (or redundancy-eliminated data), which yields exponentially higher
levels of throughput in many situations. Figure 6-23 shows how accelerator-based TCP
optimization can be leveraged in conjunction with advanced compression (discussed later in the
chapter) to fill the pipe with compressed data, providing potentially exponential throughput
increases.

Figure 6-23 TCP Optimization and Compression Combined

A good accelerator solution will include the TCP optimization components discussed earlier in
this chapter and application acceleration capabilities discussed in Chapters 4 and 5, along with the
compression techniques discussed in the next section. All of these factors combined can help
improve efficiency and application performance over the WAN.

Accelerator TCP optimization allows
the WAN capacity to be fully utilized. High BDP Network

Coupled with compression, the accelerator
enables the WAN capacity to be fully utilized
while sending compressed data. This allows
for exponential throughout improvements.

270 Chapter 6: Overcoming Transport and Link Capacity Limitations

Overcoming Link Capacity Limitations

TCP optimization and advanced TCP implementations are useful to help ensure that the network
resources are adequately and efficiently utilized. However, the WAN can still be a bottleneck from
a performance perspective especially when considering the massive amount of bandwidth
disparity that exists between the LAN and the WAN. The most common response to addressing
this bandwidth disparity is to simply add more bandwidth.

There is a severe disparity in terms of available bandwidth capacity when comparing the LAN and
the WAN, and a growing disparity in terms of the cost per bit of service between the two. Yet
another disparity exists between the tremendous amount of latency found in WAN connections
compared to the latency found in a LAN. Put simply, the cost per bit/second of low-latency LAN
bandwidth is decreasing at a faster rate than is the cost per bit/second of high-latency WAN
bandwidth, making it dramatically more expensive to upgrade WAN capacity than it is to upgrade
LAN capacity. This problem is exacerbated when factoring in the additional service and capital
expenditures that accompany a WAN upgrade.

With this in mind, many organizations are looking to accelerator solutions to bridge the divide
between WAN bandwidth and performance, and most are finding that implementing accelerator
solutions (which address more than just bandwidth concerns) costs far less from a total cost of
ownership (TCO) perspective and provides a massive return on investment (ROI) because it
[implementing accelerator solutions] enables infrastructure to be consolidated and improves
productivity and collaboration.

Compression is a technology that helps to minimize the amount of bandwidth consumed by data
in transit over a network and is not a new technology. Advanced compression algorithms and
implementations have come about that are more effective and efficient than the simple
compression algorithms that have been around for years.

This section examines compression at a high level, including the difference between per-packet
implementations and flow-based compression implementations, and then provides a more detailed
overview of advanced compression techniques such as data suppression. Advanced compression
techniques not only compress data in flight but also reduce the frequency of the transfer of
redundant data patterns. Most accelerator devices today provide some form of compression and,
when coupled with TCP optimization and application acceleration, not only can improve
application performance significantly, but can do so while minimizing the amount of network
bandwidth required.

Overcoming Link Capacity Limitations 271

Accelerators and Compression

The key challenge for lower-bandwidth networks (or any WAN where there is a high amount of
contention for available bandwidth) is that the device managing bandwidth disparity (that is, the
router) has to negotiate traffic from a very high-speed network onto a very low-speed network. In
terms of how TCP interacts with this disparity, data is sent at the rate determined by the available
cwnd, and when a bandwidth disparity is present, the ingress interface queues on the router begin
to fill, causing delay to a point where loss is encountered. The detection of this loss results in a
decrease of the cwnd, and the transmitting node, while in congestion avoidance, attempts to
stabilize at a rate that is conducive to transmission without (or nearly without) loss.

In effect, the overloaded queue (or loss in the WAN, or anything that causes loss or delay of
acknowledgment) helps stimulate the transmitting node into finding the right level at which to
send data. When the router receives packets into its queues, it drains the ingress queues at a rate
determined by the available next-hop network capacity and any applicable QoS configuration.

The problem begins to unfold as the client is able to transmit data at a far faster pace than the router
is able to forward onto the lower-bandwidth network. This results in a trickle effect whereby only
a small amount of data is able to traverse the lower-bandwidth network at a given time, and
ultimately the transmitting node will adjust its throughput characteristics to match this rate based
on TCP congestion avoidance. This trickle of data is routed through the network and may
encounter several other points of congestion and loss along the way, all of which can directly
impact the transmission rate of the sender.

When the data is finally placed on the LAN at the distant location, the receiving node ultimately
has the impression that it is dealing with a very slow sender. This is directly caused by the
bandwidth disparity found in the network. Conversely, in the return direction, when the server is
responding to the client, the same issues are encountered, thus leading both nodes to believe that
the other is slow to transmit.

Figure 6-24 shows the bandwidth disparity between the LAN and the WAN and how TCP rate
control stabilizes transmitter throughput to the minimum available end-to-end network capacity.

With accelerators in place and providing compression, bandwidth disparity is largely mitigated. In
effect, through compression the accelerator is able to shrink the amount of data being sent across
the network to minimize bandwidth consumption, and decompress the data to its original state on
the other end of the network. This not only results in bandwidth savings over the WAN, but also
helps to ensure that a larger amount of data can be found in the LAN. From the perspective of the
client and the server, less congestion is encountered, thereby allowing them to send at higher rates,
and improving the performance of the applications in use. Figure 6-25 shows the same
implementation leveraging accelerators and how less congestion is encountered.

272 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-24 TCP Rate Control and Bandwidth Disparity

W
A

N

B
ac

kp
re

ss
ur

e,
 lo

ss
 a

nd
 d

el
ay

fr

om
 th

e
po

in
t o

f b
an

dw
id

th

di
sp

ar
ity

 c
au

se
s

dr
op

 in

se
nd

er
 tr

an
sm

is
si

on
 r

at
e.

C
on

ge
st

io
n!

Overcoming Link Capacity Limitations 273

Figure 6-25 TCP Rate Control and Bandwidth Disparity with Accelerators

Le
ss

 b
ac

kp
re

ss
ur

e,
 lo

ss
 a

nd

de
la

y
le

ad
s

to
 h

ig
he

r
le

ve
ls

of

 tr
an

sm
is

si
on

 th
ro

ug
hp

ut
.

Le
ss

 C
on

ge
st

io
n

W
A

N

274 Chapter 6: Overcoming Transport and Link Capacity Limitations

While numerous compression algorithms exist, this book focuses on the two types that are used
most frequently in accelerator platforms: traditional data compression and data suppression.
Furthermore, this chapter focuses on lossless compression, because data cannot be compromised
when working with enterprise applications the way it can when viewing images, for example.

Traditional Data Compression

Traditional data compression is defined as the process of encoding data using fewer bits than an
unencoded representation would use. This is enabled by having two devices exchanging
information using a common scheme for encoding and decoding data. For instance, a person can
use a popular compression utility to minimize the amount of disk space a file consumes
(encoding), which in turn minimizes the amount of bandwidth consumed and time taken to e-mail
that same file to another person. The person who receives the e-mail with that compressed file
needs to use a utility that understands the compression algorithm to decode the data to its original
form. This again relies on the assumption that the sender and receiver have explicit knowledge
about how to encode and decode the data in the same way.

Data compression can be applied in the network between accelerators assuming that both
accelerators are designed to be compatible with one another and have a fundamental
understanding of the compression algorithms employed. Most accelerators implement a well-
known type of compression algorithm, such as Lempel-Ziv (or one of its variants such as LZ77 or
LZ78) or DEFLATE.

Many algorithms achieve compression by replacing sections of data found within the object with
small references that map to a data table that contains an index of data encountered within the
object and references generated for that data. Such algorithms commonly use a sliding window
with a power-of-two fixed window size (such as 1 KB, 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, or
beyond) to scan through the object, identifying data patterns within the window and referencing
with signatures that point back to the index table. In this way, compression is limited to the
capacity of the sliding window, granularity of the patterns that are identified, and the data table
structures that maintain the mapping between signatures and data structures that have been
previously seen. The limit of how effective the compression itself can be is called the compression
domain.

Data Suppression

Data suppression operates in a similar fashion to standard data compression. Unlike data
compression, however, data suppression is designed to leverage a massive compression domain
that extends beyond the object, packet, or session being examined. In a sense, data compression is
limited to the object, packet, or session being transmitted, whereas data suppression can leverage
a larger, longer-lived compression history that is specific to previous patterns seen between two
accelerator devices.

Overcoming Link Capacity Limitations 275

Data suppression assumes that each accelerator has a storage repository that is used as a
compression history. Data suppression requires that this storage repository, sometimes known as
a “codebook” or “dictionary,” be loosely synchronized between two accelerators that wish to
provide data suppression capabilities. Some accelerators implement data suppression using
memory as a storage repository for compression history. Memory-only data suppression provides
high-performance I/O for compressing and decompressing data, but has a limited capacity in
terms of compression history. Some accelerators use hard disk drives instead of memory, a
technique that has lower I/O performance than memory-only data suppression, but has a much
larger compression history capacity. Many of today’s accelerators leverage a combination of both
disk and memory to achieve high performance without compromising on the length of
compression history for their data suppression algorithms.

Figure 6-26 shows an example of two accelerators, each deployed in separate locations, with a
synchronized compression history.

Much like data compression, most data suppression algorithms use a sliding window to identify
previously seen data patterns from within packets or connections. Each unique data pattern that is
identified is assigned a unique signature, which is a small representation of the original data, or a
reference to the entry in the compression library where the original data resides. Most signatures
are typically only a few bytes in size. Given that a relatively large amount of data can be referenced
by a signature that is only a few bytes in size, it is common for data suppression to be able to
achieve over 1000:1 compression for a fully redundant data segment and up to 50:1 or better
compression for an entire flow.

Many of the data suppression implementations available in accelerators today do not use a simple
single-level data pattern identification process; rather, most use a hierarchical means of identifying
data patterns. A hierarchical data pattern identification process analyzes a block of data at multiple
layers. With hierarchical data pattern recognition, the accelerator is able to not only create
signatures for the most basic data patterns, but also formulate additional signatures that refer to a
large number of data patterns or signatures. In this way, if a greater degree of redundancy is
identified within the data patterns, hierarchical data pattern recognition allows a smaller number
of signatures to be used to refer to the original data being transmitted. If hierarchical data pattern
recognition is not being used, one signature is required for each repeated data pattern, which may
prove less efficient.

Hierarchical data pattern matching can yield far higher levels of data suppression (compression)
than data pattern matching functions that are nonhierarchical. Figure 6-27 shows the difference
between hierarchical and nonhierarchical data pattern recognition algorithms.

276 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-26 Data Suppression and Synchronized Compression History

S
yn

ch
ro

ni
ze

d
C

om
pr

es
si

on
 H

is
to

ry

W
A

N

Overcoming Link Capacity Limitations 277

Figure 6-27 Nonhierarchical and Hierarchical Data Pattern Recognition

D
at

a
P

at
te

rn

O
rig

in
al

 D
at

a

N
on

hi
er

ar
ch

ic
al

 D
at

a
P

at
te

rn
 Id

en
tif

ic
at

io
n

Le
ve

l-0
 D

at
a

P
at

te
rn

Le
ve

l-1
 D

at
a

P
at

te
rn

M

ul
tip

le
 L

ev
el

-0
 P

at
te

rn
s

Le
ve

l-2
 D

at
a

P
at

te
rn

M

ul
tip

le
 L

ev
el

-1
 P

at
te

rn
s

Le
ve

l-3
 D

at
a

P
at

te
rn

M

ul
tip

le
 L

ev
el

-2
 P

at
te

rn
s

O
rig

in
al

 D
at

a

H
ie

ra
rc

hi
ca

l D
at

a
P

at
te

rn
 Id

en
tif

ic
at

io
n

278 Chapter 6: Overcoming Transport and Link Capacity Limitations

During the process of data pattern matching, a signature is generated for each identified data
pattern being transmitted, and in the case of hierarchical data pattern recognition, signatures may
also be generated that identify a large number of data patterns or signatures. Once the signatures
have been generated, the accelerator then begins to perform a pattern-matching function whereby
it compares the signature of the identified patterns (generally starting with the largest data patterns
when hierarchical data pattern matching is employed) with the contents of the local compression
library. This local compression library contains a database containing signatures and data patterns
that have been previously recognized by the two peering accelerators, and can be built
dynamically (as data is handled during the normal course of network operation) or proactively
(using a cache-warming or preposition type of feature before the first user transmission is ever
received).

As repeated data patterns are identified, they are removed from the message, and only the signature
remains. This signature is an instruction for the distant device, notifying it of what data to retrieve
from its compression history to replace the original data pattern back into the flow.

For data patterns that are nonredundant (no entry exists in the compression library for the
signature), the new signature and data pattern are added to the local compression library. In this
case, the newly generated signatures and data pattern are sent across the network to notify the
distant accelerator that it needs to update its compression library with this new information.

Figure 6-28 shows the top-down data pattern matching function applied by an encoding
accelerator when leveraging data suppression.

This entire process of suppressing data into a redundancy-eliminated message is defined as
encoding. When peering accelerators are able to perform data suppression, the only data that needs
to traverse the network is the encoded message, which includes signatures to previously seen data
segments and data segments (with newly generated signatures) for data that has not been seen
before, or otherwise does not exist in the local compression library.

Additionally, accelerators commonly implement data integrity protection mechanisms to ensure
that the rebuild of an encoded message by the recipient accelerator is done without compromising
the integrity of the original message. This commonly includes a hash calculation of the original
message, called a message validity signature, immediately before encoding begins. In most cases,
the hash calculation to generate the message validity signature includes accelerator-specific keys
in the calculation or other means of ensuring that hash collisions cannot occur. Figure 6-29 shows
an example of what an encoded message sent among accelerators may look like.

Overcoming Link Capacity Limitations 279

Figure 6-28 Data Pattern Matching

O
rig

in
al

 M
es

sa
ge

A
dd

5

S
ig

A
dd

3

S
ig

S

ig

S
ig

S

ig

S
ig

C
om

pr
es

si
on

 L
ib

ra
ry

M
at

ch

M
at

ch

M
at

ch

A
dd

A

dd

A
dd

A

dd

P
at

4
3

P
at

5
P

at
6

P
at

7

S
ig

S

ig

S
ig

S

ig

P
at

te
rn

1
P

at
te

rn
2

P
at

te
rn

3

S
ig

na
tu

re

A
dd

A

dd

S
ig

na
tu

re

S
ig

na
tu

re

280 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-29 Data Suppression Encoded Message

When an encoded message is received, the message validity signature attached to the encoded
message is stripped and placed to the side. The remaining message contains signatures without
data attached (for redundant data patterns that should exist in the compression library) and
signatures with data attached (nonredundant data), which the accelerator should add to its
compression library.

The receiving accelerator then begins the process of decoding, whereby the original message is
rebuilt. This is done by replacing each signature sent without attached data with the data pattern
that is identified by that signature within the local compression context. Any data pattern that
has an accompanying signature is added to the local compression library and the signature is
stripped from the encoded message. If any signatures is identified that was generated out of the
process of hierarchical pattern matching, each of the data patterns referenced by the signature
is extracted from the local compression library and put in place of the signature in the encoded
message.

Once the accelerator has fully decoded the encoded message, it then generates a new message
validity signature, that is, the same hash calculation using the same parameters such as accelerator-
specific keys or other factors, and compares the newly generated message validity signature with the
message validity signature that was supplied in the encoded message by the encoding accelerator. If
the two align, the decoding accelerator then knows that the message was rebuilt with data validity
and integrity guaranteed, and the decoded message can then be forwarded to its destination. If any
signature referenced in the encoded message does not appear in the local compression library, the
decoding accelerator can send a nonacknowledgment message to the encoder to notify the encoder
that the data does not exist, thereby forcing a retransmission of the data associated with the signature
that does not appear in the decoding accelerator’s compression history.

Data suppression also works closely with traditional data compression in accelerators. The
signatures and message validity signatures generated by the data suppression function are
commonly compressible, meaning that additional layers of compression can be found above and
beyond the level of compression provided by data suppression on its own. Data suppression
compression libraries are generally peer-specific, and some implementations can share libraries
across peers. Given that the compression library for data suppression is far larger than it is for
data compression and is not tied to a packet, session, or object, it can be far more effective at

Redundant Data Replaced by Signatures

Nonredundant Data with New Signatures

Msg
Sig

Overcoming Link Capacity Limitations 281

freeing up available WAN capacity, and can generally be efficient in reducing redundancy even
across multiple applications.

Because data suppression is commonly implemented as a WAN optimization component in the
network or transport layer, it does not discriminate among applications (for example, downloading
an object from a website could populate the compression library to provide significant compression
for an e-mail upload with that same, or modified, object). Furthermore, a data pattern that is not
deemed to be a repeated pattern can also be sent through the data compression library, which means
that even though a data pattern is being seen for the first time, it may be compressible, meaning that
less bandwidth is used even for those scenarios.

When deploying accelerators, a best practice is to ensure that enough storage capacity is
allocated to provide at least one week’s worth of compression history. For instance, if a branch
office location is connected to the corporate network via a T1 line (1.544 Mbps), the amount
of disk capacity necessary to support that location from a compression history perspective
could be calculated. If the T1 line were utilized at a rate of 75 percent for 50 percent of each
day per week, the raw compression history requirement for one week would equate to the
following:

Convert 1.544 Mbps to bytes (1.544 Mbps is approximately 192 kBps)
192 kBps × 60 = 11.52 MB/minute
11.52 MB/minute × 60 = 69.12 MB/hour
69.12 MB/hour × 24 = 16.59 GB/day
16.59 GB/day × .75 × .50 = 6.2 GB/week

Assuming that the data traversing the link from the branch office back to the corporate network is
75 percent redundant (which is conservative in most branch office scenarios), this equates to a
requirement of around 1.5 GB/week of compression history required to support this particular
branch office location. One week of compression history generally provides enough compression
data to optimize not only immediately interactive user access requirements, but also scenarios
where a user begins interacting with a working set of data that has not been touched in up to a
week. This also provides sufficient coverage for multiuser scenarios—for instance, where
everyone in a remote office receives an e-mail with the same attachment, even if the transmission
of that e-mail happens days later.

Accelerator Compression Architectures

Most accelerators implement both data suppression and traditional data compression functions.
This section examines two commonly found implementations: per-packet compression and
session-based compression. This section also discusses directionality as it relates to the
accelerator’s compression library.

282 Chapter 6: Overcoming Transport and Link Capacity Limitations

Per-Packet Compression

Per-packet compression treats each packet as a compression domain. This means that each
packet is analyzed as an autonomous object and compressed as an autonomous object. With
such an architecture, each packet that is received by an accelerator must be handled individually.

Given that packet sizes are largely limited by the data link layer being traversed, it is safe to
assume that the compression domain for per-packet compression is generally 200 to 1500 bytes
(but can certainly be larger or smaller). Given this limitation, most accelerators that implement
per-packet compression also implement some form of data suppression to increase the
compression history, which allows larger repeatable sequences to be identified, thus providing
better compression and higher degrees of bandwidth savings. However, because the accelerator
processes each packet individually, it does not have the opportunity to examine a larger amount of
data, precluding it from providing higher levels of compression. Per-packet processing also
creates sensitivities to data changes, which are more difficult to detect and isolate when the
window of data being reduced is limited to the size of a packet.

Figure 6-30 shows how per-packet compression would be used on a fully redundant transmission
of the same set of packets. In this figure, the packet stream being sent is fully redundant. The
process shown in this figure follows:

1. A stream of data is sent as a series of packets.

2. The accelerator compares the contents of each packet against the compression history.

3. Redundancy is eliminated and redundant segments are replaced by signatures.

4. The compressed packet is sent across the network and intercepted by the distant
accelerator.

5. The distant accelerator compares the contents of the encoded packet with the compression
history.

6. The distant accelerator replaces signatures with data patterns from the compression
history.

7. The distant accelerator repacketizes and reframes the original data and forwards it to the
intended destination.

The challenge with per-packet compression lies in the ability of an accelerator to identify
repeated data patterns that are directly associated with the position of the data pattern within
the packet being received. Therefore, such forms of compression can be challenged when
attempting to compress packets received from the transmission of a previously seen set of data
when that set of data has undergone slight modification. The challenge is that repeated patterns

Overcoming Link Capacity Limitations 283

are not located in the same position within the subsequently received packets after changes
have been applied to the data as compared to the position where the original data was found.
In this way, data does not have the same locality to the packet boundaries as it did before the
changes were applied.

Figure 6-30 Per-Packet Compression with Large Shared Compression History

In these situations, the compression history must be augmented with the new data on both devices,
which means the first transmission of the changed data can be largely considered nonredundant
and, therefore, only minimal amounts of compression can be applied. The compression history
from the original transfer of the data is mostly unusable in this case, which leads to excessive and
inefficient use of memory and disk capacity for compression history on both accelerator devices
to store the new data and the original patterns.

Figure 6-31 highlights the challenges of per-packet compression when data has been
changed, causing a large number of new compression library entries to be created and thereby
producing minimal compression benefits. This example shows the impact of adding the letter
a to the beginning of the sentence used in Figure 6-30. Notice that a large number of new
entries need to be added to the compression history, and little to no bandwidth savings are
realized.

over fox the the lazy dog jumped brown quick

over fox the the lazy dog jumped brown quick

1

Compression History

1
2
3
4
5
6
7
8

the
quick
brown

fox
jumped

over
lazy
dog

Signature Data
2

3

4

5
6

7

1 2 3 4 5 6 1 7 8

284 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-31 Per-Packet Compression Challenges with Data Locality

Session-Based Compression

An alternative to per-packet compression, which generally provides higher levels of compression
even under significant amounts of data change, is session-based compression, also known as
persistent compression. Session-based compression provides two key functions:

■ The ability to leverage a compression history that extends through the life of the entire TCP
connection when employing traditional data compression algorithms such as LZ or
DEFLATE

■ The ability to extend the compression domain for data suppression functionality by
leveraging a TCP proxy as an intermediary data buffer

Extending the compression library to span the history of the TCP connection provides better
overall compression because the history that can be leveraged is far greater than and not limited
to the packet size.

dove nfo ath rth elaz ydog xjumpe kbrow equic

dove nfo ath rth elaz ydog xjumpe kbrow equic

1

Compression History

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

the
quick
brown

fox
jumped

over
lazy
dog
ath

equic
kbrow

nfo
xjumpe
dove
rth

elaz
ydog

Signature Data
2

3

4

5
6

7

New Entries!

14/dove

12/nfo

9/ath

15/rth

16/elaz

17/ydog

13/xjumpe

11/kbrow

10/equic

Overcoming Link Capacity Limitations 285

Using the TCP proxy as an intermediary data buffer allows the accelerator to temporarily buffer a
large amount of data that can then be delivered en masse to the data suppression function, which
allows it to span boundaries of multiple packets when identifying redundancy. By disconnecting
the data suppression function and the data from the packet boundaries, data suppression
algorithms are able to better identify redundancy and isolate changes to previously encountered
byte patterns. This allows for far higher levels of compression than can be provided with per-
packet compression.

Figure 6-32 shows how session-based compression with hierarchical data suppression provides
location-independent compression capabilities with high levels of compression. Notice how the
hierarchical compression history contains signatures that reference a series of other signatures,
thereby providing higher levels of compression. In this figure, a single signature represents the
entire string of text being sent.

Figure 6-32 Compression with Hierarchical Data Suppression

Compression History

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

the
quick
brown

fox
jumped

over
lazy
dog

Sig1–2
Sig3–4
Sig5–6
Sig7–8
Sig1–4
Sig5–8
Sig1–8

Signature Data

2 1

3

4

5

6

7

thequickbrownfoxjumpedoverthelazydog

thequickbrownfoxjumpedoverthelazydog

Sig15

Sig15

15

over fox the the lazy dog jumped brown quick

over fox the the lazy dog jumped brown quick

286 Chapter 6: Overcoming Transport and Link Capacity Limitations

When coupled with a data suppression function that uses a content-based means of identifying
data patterns and hierarchical pattern matching, this allows the data suppression function to
accurately pinpoint where changes were inserted into the data stream. In essence, when changes
are made to the data and the changed data is transmitted between two nodes, content-based pattern
matching can isolate the new data to allow the previously built compression library entries to still
be leveraged, resulting in high levels of compression even in the face of changed data. Rather than
having to re-update the entire compression library on both devices, the accelerators can
incrementally update the compression libraries with only the new data. This means that the
challenges that plague per-packet compression are nullified.

Figure 6-33 shows that session-based compression with hierarchical data suppression capabilities
provides far better identification of changed byte patterns than do per-packet compression
algorithms, resulting in more efficient use of the compression library, bandwidth savings, and
overall better performance.

Figure 6-33 Session-Based Compression with Changed Data

dove nfo ath rth elaz ydog xjumpe kbrow equic

dove nfo ath rth elaz ydog xjumpe kbrow equic

1 Compression History

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

the
quick
brown

fox
jumped

over
lazy
dog

Sig1–2
Sig3–4
Sig5–6
Sig7–8
Sig1–4
Sig5–8
Sig1–8

a

Signature Data

2

3

4

5

6

7

athequickbrownfoxjumpedoverthelazydog

athequickbrownfoxjumpedoverthelazydog

16/a,2,10,14

16/a,2,10,14

16/a,2,10,14

New Entry!

Overcoming Link Capacity Limitations 287

Directionality

Another subtle architectural implementation that you should consider is the directionality of the
data suppression compression library. Directionality defines whether a single compression library
is used regardless of the direction of traffic flow, called a bidirectional compression library, or
whether a single compression library is used per direction of traffic flow, called a unidirectional
compression library.

In the case of a bidirectional compression library, traffic flowing in one direction populates the
compression library, and this same library can be used for traffic flowing in the reverse direction
through the accelerators. In the case of a unidirectional compression library, traffic flowing in one
direction populates one compression library, and traffic flowing in the reverse direction populates
a separate compression library. With unidirectional compression libraries, there must be one
library per direction of traffic flow.

Having unidirectional compression libraries introduces inefficiencies and performance limitations
that need to be considered. Having a unidirectional compression library–based architecture means
that when a user downloads an object, only the repeated download of that object will pass through
the same library, because the traffic is flowing in the same direction. Even after an object has been
downloaded, the subsequent upload (in the reverse direction) of that object passes through a
completely different compression library, meaning that it will not be suppressed.

The upload of the object effectively receives no benefit from the download because two separate
compression libraries are used. This not only creates the issue of having poor performance until
the object has been transferred in both directions, but also means lower overall efficiency from a
memory and disk utilization perspective, as the data must be stored twice. Having to store the data
twice leads to a lower overall compression history. Figure 6-34 highlights the performance
challenges of unidirectional data suppression libraries in scenarios where data that has been
downloaded is being uploaded.

With a bidirectional compression library, the problem illustrated in Figure 6-34 is not encountered.
Traffic flowing in either direction leverages the same compression library, so the download of an
object can be leveraged to help suppress the repeated patterns found while uploading the same
object. Furthermore, repeated patterns are not stored once per direction of traffic flow, leading to
better efficiency when utilizing disk and memory resources while also extending the overall
effective compression history that the accelerator peers can leverage. Figure 6-35 shows how use
of a bidirectional data suppression library provides compression benefits and is agnostic to the
direction of traffic flow.

288 Chapter 6: Overcoming Transport and Link Capacity Limitations

Figure 6-34 Unidirectional Data Suppression Library Challenges

Figure 6-35 Bidirectional Data Suppression Library

NAS

A.DOC

In Out

In Out

In Out

In Out

In Out

In Out

FID

A.DOC

FID

A.DOC

Save

A.DOC

Save

A.DOC

Open

Save is Not
Compressed

Changes
Made to A.DOC

NAS

A.DOC

Library Library

FID

A.DOC

FID

A.DOC

Save

A.DOC

Save

A.DOC

Open

Save is
Compressed

Changes
Made to A.DOC

Summary 289

Summary

This chapter examined two of the key technologies that are provided in WAN optimization
solutions: transport protocol optimization and compression. These techniques are commonly
implemented in a cohesive accelerator architecture with other application-specific components
and provide the foundation for overcoming WAN performance obstacles. By employing transport
protocol optimization, available WAN capacity can be better leveraged and higher levels of
performance can be sustained in lossy environments. Through advanced compression techniques,
performance constraints related to capacity can be overcome to improve application performance
while also minimizing the amount of bandwidth consumption.

WAN optimization, when combined with other acceleration techniques described in previous
chapters and network control capabilities, helps to enable a globally distributed workforce with
centralized I/T infrastructure, all while minimizing the impact to the existing network and
mitigating costly capacity upgrades in many cases.

