fweorvdin/PRACTICE

The Art of

Stéphane Faroult
with Peler Robaen




The Art of SQL
by Stéphane Faroult with Peter Robson

Copyright © 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.
Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our

corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathan Gennick Cover Designer: Mike Kohnke
Production Editors: Jamie Peppard and Interior Designer: Marcia Friedman

Marlowe Shaeffer Illustrators: Robert Romano, Jessamyn Read,
Copyeditor: Nancy Reinhardt and Lesley Borash

Indexer: Ellen Troutman Zaig

Printing History:
March 2006: First Edition.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. The Art of SQL and related trade
dress are trademarks of O'Reilly Media, Inc. Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as trademarks. Where those designations appear in
this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been

printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the

information contained herein.

RepKover, This book uses RepKover™, a durable and flexible lay-flat binding.

=
=S

ISBN: 0-596-00894-5
M]



i,

T M

Wy g

s, e e L, o, bl o3
'f&é\)l%}\\iil{}éé}.‘vm&g:_é\\'nllwzii\\\lIlﬁ;\_'?::' '&;?@‘
W 5 == i}

i3

S e

_‘:‘\ . 3
A gbi:
S 7 oty

Specific Crteria . B

= sk O B

--,:’/-’};mu l‘\\??"-m‘ R %‘y ) g‘-: ;;‘\:

.:_:; e 3 ?—' 4; '-\f_.% }%“1
W =

CHAPTER SIX

The Nine Situations
Recognizing Classic SQL Patterns

Je pense que pour conserver la clarté dans le récit d’'une action de guerre, il faut
se borner a...ne raconter que les faits principaux et décisifs du combat.

To preserve clarity in relating a military action, I think one ought to be content with...
reporting only the facts that affected the decision.

—Général Baron de Marbot (1782-1854)

Mémoires, Book I, xxvi



A ny SQL statement that we execute has to examine some amount of data before

identifying a result set that must be either returned or changed. The way that we have to
attack that data depends on the circumstances and conditions under which we have to
fight the battle. As I discuss in Chapter 4, our attack will depend on the amount of data
from which we retrieve our result set and on our forces (the filtering criteria), together

with the volume of data to be retrieved.

Any large, complicated query can be divided into a succession of simpler steps, some of
which can be executed in parallel, rather like a complex battle is often the combination of
multiple engagements between various distinct enemy units. The outcome of these

different fights may be quite variable. But what matters is the final, overall result.

When we come down to the simpler steps, even when we do not reach a level of detail as
small as the individual steps in the execution plan of a query, the number of possibilities
is not much greater than the individual moves of pieces in a chess game. But as in a chess

game, combinations can indeed be very complicated.

This chapter examines common situations encountered when accessing data in a properly
normalized database. Although I refer to queries in this chapter, these example situations
apply to updates or deletes as well, as soon as a where clause is specified; data must be
retrieved before being changed. When filtering data, whether it is for a simple query or to
update or delete some rows, the following are the most typical situations—I call them the
nine situations—that you will encounter:

e Small result set from a few tables with specific criteria applied to those tables

e Small result set based on criteria applied to tables other than the data source tables

¢ Small result set based on the intersection of several broad criteria

¢ Small result set from one table, determined by broad selection criteria applied to two
or more additional tables

e TLarge result set

e Result set obtained by self-joining on one table

e Result set obtained on the basis of aggregate function(s)

e Result set obtained by simple searching or by range searching on dates

¢ Result set predicated on the absence of other data

This chapter deals with each of these situations in turn and illustrates them with either
simple, specific examples or with more complex real-life examples collected from

different programs. Real-life examples are not always basic, textbook, one- or two-table

affairs. But the overall pattern is usually fairly recognizable.

128 CHAPTER SIX



As a general rule, what we require when executing a query is the filtering out of any data
that does not belong in our final result set as soon as possible; this means that we must
apply the most efficient of our search criteria as soon as possible. Deciding which criterion
to apply first is normally the job of the optimizer. But, as I discuss in Chapter 4, the
optimizer must take into account a number of variable conditions, from the physical
implementation of tables to the manner in which we have written a query. Optimizers do
not always “get it right,” and there are things we can do to facilitate performance in each

of our nine situations.

Small Result Set, Direct Specific Criteria

The typical online transaction-processing query is a query returning a small result set
from a few tables and with very specific criteria applied to those tables. When we are
looking for a few rows that match a selective combination of conditions, our first priority

is to pay attention to indexes.

The trivial case of a single table or even a join between two tables that returns few rows
presents no more difficulty than ensuring that the query uses the proper index. However,
when many tables are joined together, and we have input criteria referring to, for
instance, two distinct tables TA and TB, then we can either work our way from TA to TB or
from TB to TA. The choice depends on how fast we can get rid of the rows we do not want.
If statistics reflect the contents of tables with enough accuracy, the optimizer should,

hopefully, be able to make the proper decision as to the join order.

When writing a query to return few rows, and with direct, specific criteria, we must
identify the criteria that are most efficient at filtering the rows; if some criteria are highly
critical, before anything else, we must make sure that the columns corresponding to

those criteria are indexed and that the indexes can be used by the query.

Index Usability

You've already seen in Chapter 3 that whenever a function is applied to an indexed
column, a regular index cannot be used. Instead, you would have to create a functional
index, which means that you index the result of the function applied to the column

instead of indexing the column.

Remember too that you don’t have to explicitly invoke a function to see a function
applied; if you compare a column of a given type to a column or literal value of a
different type, the DBMS may perform an implicit type conversion (an implicit call to a

conversion function), with the performance hit that one can expect.

Once we are certain that there are indexes on our critical search criteria and that our
query is written in such a way that it can take full advantage of them, we must
distinguish between unique index fetches of a single row, and other fetches—non-unique

index or a range scan of a unique index.

THE NINE SITUATIONS

129



Query Efficiency and Index Usage

Unique indexes are excellent when joining tables. However, when the input to a query is
a primary key and the value of the primary key is not a primitive input to the program,

then you may have a poorly designed program on your hands.

What I call primitive input is data that has been fed into the program, either typed in by a
user or read from a file. If the primary key value has been derived from some primitive
input and is itself the result of a query, the odds are very high that there is a massive
design flaw in the program. Because this situation often means that the output of one
query is used as the input to another one, you should check whether the two queries can

be combined.

Excellent queries don’t necessarily come from excellent programs.

Data Dispersion

When indexes are not unique, or when a condition on a unique index is expressed as a

range, for instance:

where customer id between ... and ...

or:

where supplier name like 'SOMENAME%'

the DBMS must perform a range scan. Rows associated with a given key may be spread
all over the table being queried, and this is something that a cost-based optimizer often
understands. There are therefore cases when an index range scan would require the
DBMS kernel to fetch, one by one, a large number of table data pages, each with very
few rows of relevance to the query, and when the optimizer decides that the DBMS

kernel is better off scanning the table and ignoring the index.

You saw in Chapter 5 that many database systems offer facilities such as table partitions
or clustered indexes to direct the storage of data that we would like to retrieve together.
But the mere nature of data insertion processes may well lead to clumping of data. When
we associate a timestamp with each row and do mostly inserts into a table, the chances
are that most rows will be inserted next to one another (unless we have taken special
measures to limit contention, as I discuss in Chapter 9). The physical proximity of the
inserted rows is not an absolute necessity and, in fact, the notion of order as such is

totally foreign to relational algebra. But, in practice, it is what may happen. Therefore,

130 CHAPTER SIX



when we perform a range scan on the index on the timestamp column to look for index
entries close together in time, the chances are that the rows in question will be close
together too. Of course, this will be even truer if we have tweaked the storage so as to get

such a result.

Now, if the value of a key bears no relation to any peculiar circumstance of insertion nor
to any hidden storage trick, the various rows associated with a key value or with a range
of key values can be physically placed anywhere on disk. The keys in the index are
always, by construction, held in sorted order. But the associated rows will be randomly
located in the table. In practice, we shall have to visit many more blocks to answer a
query involving such an index than would be the case were the table partitioned or the
index clustered. We can have, therefore, two indexes on the same table, with strictly
identical degrees of selectivity, one of which gives excellent results, and the other one,
significantly worse results, a situation that was mentioned in Chapter 3 and that it is now

time to prove.

To illustrate this case I have created a 1,000,000-row table with three columns c1, c2, and
3, c1 being filled with a sequence number (1 to 1,000,000), c2 with all different random
numbers in the range 1 to 2,000,000, and c3 with random values that can be, and usually
are, duplicated. On face value, and from a logical point of view, c1 and c2 are both unique
and therefore have identical selectivity. In the case of the index on column c1, the order
of the rows in the table matches the order in the index. In a real case, some activity
against the table might lead to “holes” left by deletions and subsequently filled with out-
of-order records due to new insertions. By contrast, the order of the rows in the table

bears no relation to the ordering of the keys in the index on c2.
When we fetch c3, based on a range condition of the type:

where column_name between some value and some value + 10

it makes a significant difference whether we use c1 and its associated index (the ordered
index, where keys are ordered as the rows in the table) or c2 and its associated index (the
random index), as you can see in Figure 6-1. Don’t forget that we have such a difference
because additional accesses to the table are required in order to fetch the value of c3;
there would be no difference if we had two composite indexes, on (c1, ¢3) and (c2, c3),

because then we could return everything from an index in which the keys are ordered.

The type of difference illustrated in Figure 6-1 also explains why sometimes performance
can degrade over time, especially when a new system is put into production with a
considerable amount of data coming from a legacy system. It may happen that the initial
data loading imposes some physical ordering that favors particular queries. If a few
months of regular activity subsequently destroys this order, we may suffer over this
period a mysterious 30-40% degradation of performance.

THE NINE SITUATIONS

131



120

100

Y

s 80
p -

< 60
L]
3

W %0

20

[

Indexed values Indexed values
ordered randomly distriputed

FIGURE 6-1. Difference of performance when the order in the index matches the order of the rows in the
table

It should be clear by now that the solution “can’t the DBAs reorganize the database from
time to time?” is indeed a fudge, not a solution. Database reorganizations were once quite
in vogue. Ever-increasing volumes, 99.9999% uptime requirements and the like have
made them, for the most part, an administrative task of the past. If the physical
implementation of rows really is crucial for a critical process, then consider one of the
self-organizing structures discussed Chapter 5, such as clustered indexes or index-
organized tables. But keep in mind that what favors one type of query sometimes

disadvantages another type of query and that we cannot win on all fronts.

Performance variation between comparable indexes may be due
to physical data dispersion.

Criterion Indexability

Understand that the proper indexing of specific criteria is an essential component of the
“small set, direct specific criteria” situation. We can have cases when the result set is
small and some criteria may indeed be quite selective, but are of a nature that isn’t
suitable for indexing: the following real-life example of a search for differences among
different amounts in an accounting program is particularly illustrative of a very selective

criterion, yet unfit for indexing.

In the example to follow, a table named glreport contains a column named amount_diff
that ought to contain zeroes. The purpose of the query is to track accounting errors, and
identify where amount_diff isn’t zero. Directly mapping ledgers to tables and applying a
logic that dates back to a time when these ledgers where inked with a quill is rather

questionable when using a modern DBMS, but unfortunately one encounters

132 CHAPTER SIX



questionable databases on a routine basis. Irrespective of the quality of the design, a
column such as amount_diff is typical of a column that should not be indexed: ideally
amount_diff should contain nothing but zeroes, and furthermore, it is obviously the result
of a denormalization and the object of numerous computations. Maintaining an index on
a column that is subjected to computations is even costlier than maintaining an index on
a static column, since a modified key will “move” inside the index, causing the index to

undergo far more updates than from the simple insertion or deletion of nodes.

All specific criteria are not equally suitable for indexing. In
particular, columns that are frequently updated increase

maintenance costs.

Returning to the example, a developer came to me one day saying that he had to
optimize the following Oracle query, and he asked for some expert advice about the

execution plan:

select
total.deptnum,
total.accounting_period,
total.ledger,
total.cnt,
error.err_cnt,
cpt_error.bad acct count
from
-- First in-line view
(select
deptnum,
accounting_period,
ledger,
count(account) cnt
from
glreport
group by
deptnum,
ledger,
accounting period) total,
-- Second in-line view
(select
deptnum,
accounting_period,
ledger,
count(account) err cnt
from
glreport
where
amount_diff <> 0

THE NINE SITUATIONS 133



group by
deptnum,
ledger,
accounting_period) error,
-- Third in-line view
(select
deptnum,
accounting period,
ledger,
count(distinct account) bad acct count
from
glreport
where
amount_diff <> 0
group by
deptnum,
ledger,
accounting period
) cpt_error
where
total.deptnum = error.deptnum(+) and
total.accounting_period = error.accounting period(+) and
total.ledger = error.ledger(+) and
total.deptnum = cpt_error.deptnum(+) and
total.accounting_period = cpt_error.accounting period(+) and
total.ledger = cpt error.ledger(+)
order by
total.deptnum,
total.accounting period,
total.ledger

For readers unfamiliar with Oracle-specific syntax, the several occurrences of (+) in the

outer query’s where clause indicate outer joins. In other words:

select whatever
from ta,
tb
where ta.id = tb.id (+)

is equivalent to:
select whatever
from ta

outer join tb
on tb.id = ta.id

The following SQL*Plus output shows the execution plan for the query:

10:16:57 SOL> set autotrace traceonly
10:17:02 SQL> /

37 rows selected.

Elapsed: 00:30:00.06

134 CHAPTER SIX



Execution Plan
0 SELECT STATEMENT Optimizer=CHOOSE
(Cost=1779554 Card=154 Bytes=16170)
0 MERGE JOIN (OUTER) (Cost=1779554 Card=154 Bytes=16170)
1 MERGE JOIN (OUTER) (Cost=1185645 Card=154 Bytes=10780)
2 VIEW (Cost=591736 Card=154 Bytes=5390)
3 SORT (GROUP BY) (Cost=591736 Card=154 Bytes=3388)
4 TABLE ACCESS (FULL) OF 'GLREPORT'
(Cost=582346 Card=4370894 Bytes=96159668)
SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)
VIEW (Cost=593908 Card=154 Bytes=5390)
SORT (GROUP BY) (Cost=593908 Card=154 Bytes=4004)
TABLE ACCESS (FULL) OF 'GLREPORT'
(Cost=584519 Card=4370885 Bytes=113643010)
10 1 SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)

L I e R N

O 00N O
o ~N O N

1 10 VIEW (Cost=593908 Card=154 Bytes=5390)
12 11 SORT (GROUP BY) (Cost=593908 Card=154 Bytes=5698)
13 12 TABLE ACCESS (FULL) OF 'GLREPORT'

(Cost=584519 Card=4370885 Bytes=161722745)

Statistics

193 recursive calls
0 db block gets
3803355 consistent gets
3794172 physical reads
1620 redo size
2219 bytes sent via SQL*Net to client
677 bytes received via SQL*Net from client
4 SQL*Net roundtrips to/from client
17 sorts (memory)
0 sorts (disk)
37 rows processed

I must confess that I didn’t waste too much time on the execution plan, since its most
striking feature was fairly apparent from the text of the query itself: it shows that the
table glreport, a tiny 4 to 5 million-row table, is accessed three times, once per subquery,

and each time through a full scan.

Nested queries are often useful when writing complex queries, especially when you
mentally divide each step, and try to match a subquery to every step. But nested queries
are not silver bullets, and the preceding example provides a striking illustration of how

easily they may be abused.

The very first inline view in the query computes the number of accounts for each
department, accounting period, and ledger, and represents a full table scan that we
cannot avoid. We need to face realities; we have to fully scan the table, because we are
including all rows when we check how many accounts we have. We need to scan the

table once, but do we absolutely need to access it a second or third time?

THE NINE SITUATIONS 135



If a full table scan is required, indexes on the table become

irrelevant.

What matters is to be able to not only have a very analytic view of processing, but also to
be able to stand back and consider what we are doing in its entirety. The second inline
view counts exactly the same things as the first one—except that there is a condition on
the value of amount_diff. Instead of counting with the count( ) function, we can, at the
same time as we compute the total count, add 1 if amount_diff is not 0, and 0 otherwise.
This is very easy to write with the Oracle-specific decode(u, v, w, x) function or using the

more standard case when u = v then w else x end construct.

The third inline view filters the same rows as the second one; however, here we want to
count distinct account numbers. This counting is a little trickier to merge into the first
subquery; the idea is to replace the account numbers (which, by the way, are defined as
varchar2® in the table) by a value which is totally unlikely to occur when amount_diff is O;
chr(1) (Oracle-speak to mean the character corresponding to the ASCII value 1) seems to be an
excellent choice (I always feel a slight unease at using chr(0) with something written in C
like Oracle, since C terminates all character strings with a chr(0)). We can then count
how many distinct accounts we have and, of course, subtract one to avoid counting the

dummy chr(1) account.
So this is the suggestion that I returned to the developer:

select deptnum,
accounting_period,
ledger,
count(account) nb,
sum(decode(amount_diff, 0, 0, 1)) err cnt,
count(distinct decode(amount diff, 0, chr(1), account)) - 1
bad_acct_count
from
glreport
group by
deptnum,
ledger,
accounting period

My suggestion was reported to be four times as fast as the initial query, which came as no

real surprise since the three full scans had been replaced by a single one.

Note that there is no longer any where clause in the query: we could say that the
condition on amount_diff has “migrated” to both the logic performed by the decode( )

function inside the select list and the aggregation performed by the group by clause. The

* To non-Oracle users, the varchar2 type is, for all practical purposes, the same as the varchar type.

136 CHAPTER SIX



replacement of a filtering condition that looked specific with an aggregate demonstrates
that we are here in another situation, namely a result set obtained on the basis of an

aggregate function.

In-line queries can simplify a query, but can result in excessive
and duplicated processing if used without care.

Small Result Set, Indirect Criteria

A situation that is superficially similar to the previous one is when you have a small result
set that is based on criteria applied to tables other than the data source tables. We want data
from one table, and yet our conditions apply to other, related tables from which we don’t
want any data to be returned. A typical example is the question of “which customers have
ordered a particular item” that we amply discussed earlier in Chapter 4. As you saw in

Chapter 4, this type of query can be expressed in either of two ways:

e Asaregular join with a distinct to remove duplicate rows that are the result, for
instance, of customers having ordered the same item several times

¢ By way of either a correlated or uncorrelated subquery

If there is some particularly selective criterion to apply to the table (or tables) from which
we obtain the result set, there is no need to say much more than what has been said in
the previous situation “Small Result Set, Direct Specific Criteria”: the query will be driven
by the selective criterion. and the same reasoning applies. But if there is no such

criterion, then we have to be much more careful.

To take a simplified version of the example in Chapter 4, identifying the customers who

have ordered a Batmobile, our typical case will be something like the following:

select distinct orders.custid
from orders
join orderdetail
on (orderdetail.ordid = orders.ordid)
join articles
on (articles.artid = orderdetail.artid)
where articles.artname = 'BATMOBILE'
In my view it is much better, because it is more understandable, to make explicit the test
on the presence of the article in a customer’s orders by using a subquery. But should that
subquery be correlated or uncorrelated? Since we have no other criterion, the answer
should be clear: uncorrelated. If not, one would have to scan the orders table and fire the
subquery for each row—the type of big mistake that passes unnoticed when we start with

a small orders table but becomes increasingly painful as the business gathers momentum.

THE NINE SITUATIONS 137



The uncorrelated subquery can either be written in the classic style as:

select distinct orders.custid
from orders
where ordid in (select orderdetails.ordid
from orderdetail
join articles
on (articles.artid = orderdetail.artid)
where articles.artname = 'BATMOBILE')

or as a subquery in the from clause:

select distinct orders.custid
from orders,

(select orderdetails.ordid

from orderdetail

join articles
on (articles.artid = orderdetail.artid)

where articles.artname = 'BATMOBILE') as sub q

where sub_q.ordid = orders.ordid

I find the first query more legible, but it is really a matter of personal taste. Don’t forget
that an in( ) condition on the result of the subquery implies a distinct and therefore a

sort, which takes us to the fringe of the relational model.

Where using subqueries, think carefully before choosing either a
& correlated or uncorrelated subquery.

Small Intersection of Broad Criteria

The situation we talk about in this section is that of a small result set based on the
intersection of several broad criteria. Each criterion individually would produce a large
result set, yet the intersection of those individual, large sets is a very small, final result set
returned by the query.

Continuing on with our query example from the preceding section, if the existence test
on the article that was ordered is not selective, we must necessarily apply some other
criteria elsewhere (otherwise the result set would no longer be a small result set). In this
case, the question of whether to use a regular join, a correlated subquery, or an
uncorrelated subquery usually receives a different answer depending on both the relative

“strength” of the different criteria and the existing indexes.

Let’s suppose that instead of checking people who have ordered a Batmobile, admittedly
not our best-selling article, we look for customers who have ordered something that I
hope is much less unusual, in this case some soap, but purchased last Saturday. Our

query then becomes something like this:

138 CHAPTER SIX



select distinct orders.custid
from orders
join orderdetail
on (orderdetail.ordid = orders.ordid)
join articles
on (articles.artid = orderdetail.artid)
where articles.artname = 'SOAP'
and <selective criterion on the date in the orders table>
Quite logically, the processing flow will be the reverse of what we had with a selective
article: get the article, then the order lines that contained the article, and finally the orders.
In the case we're currently discussing, that of orders for soap, we should first get the small
number of orders placed during the relatively short interval of time, and then check which
ones refer to the article soap. From a practical point of view, we are going to use a totally
different set of indexes. In the first case, ideally, we would like to see one index on the
article name and one on the article identifier in the orderdetail table, and then we would
have used the index on the primary key ordid in the orders table. In the case of orders for
soap, what we want to find is an index on the date in orders and then one on orderid in
orderdetail, from which we can use the index on the primary key of articles—assuming,

of course, that in both cases using the indexes is the best course to take.

The obvious natural choice to get customers who bought soap last Saturday would appear

to be a correlated subquery:

select distinct orders.custid
from orders
where <selective criterion on the date in the orders table>
and exists (select 1
from orderdetail
join articles
on (articles.artid = orderdetail.artid)
where articles.artname = 'SOAP'
and orderdetails.ordid = orders.ordid)

In this approach, we take for granted that the correlated subquery executes very quickly.

Our assumption will prove true only if orderdetail is indexed on ordid (we shall then get

the article through its primary key artid; therefore, there is no other issue).

You've seen in Chapter 3 that indexes are something of a luxury in transactional
databases, due to their high cost of maintenance in an environment of frequent inserts,
updates, and deletes. This cost may lead us to opt for a “second-best” solution. The
absence of the vital index on orderdetail and good reason for not creating further indexes

might prompt us to consider the following:

select distinct orders.custid
from orders,
(select orderdetails.ordid
from orderdetail,
articles

THE NINE SITUATIONS 139



where articles.artid = orderdetail.artid
and articles.artname = 'SOAP') as sub_g
where sub_q.ordid = orders.ordid
and <selective criterion on the date in the orders table>
In this second approach, the index requirements are different: if we don’t sell millions of
articles, it is likely that the condition on the article name will perform quite satisfactorily
even in the absence of any index on artname. We shall probably not need any index on
the column artid of orderdetail either: if the article is popular and appears in many
orders, the join between orderdetail and articles is probably performed in a more
efficient manner by hash or merge join, rather than by a nested loop that would need
such an index on artid. Compared to the first approach, we have here a solution that we
could call a low index solution. Because we cannot atford to create indexes on each and
every column in a table, and because we usually have in every application a set of
“secondary” queries that are not absolutely critical but only require a decent response

time, the low index approach may perform in a perfectly acceptable manner.

Adding one extra search criterion to an existing query can
- completely change a previous construct: a modified query is a new
query.

Small Intersection, Indirect Broad Criteria

An indirect criterion is one that applies to a column in a table that you are joining only for
the purpose of evaluating the criterion. The retrieval of a small result set through the
intersection of two or more broad criteria, as in the previous situation “Small Intersection
of Broad Criteria,” is often a formidable assignment. Obtaining the intersection of the
large intermediary result sets by joining from a central table, or even through a chain of
joins, makes a difficult situation even more daunting. This situation is particularly typical
of the “star schema” that I discuss in some detail in Chapter 10, but you’ll also encounter
it fairly frequently in operational databases. When you are looking for that rare
combination of multiple nonselective conditions on the columns of the row, you must
expect to perform full scans at some point. The case becomes particularly interesting

when several tables are involved.

The DBMS engine needs to start from somewhere. Even if it can process data in parallel,
at some point it has to start with one table, index, or partition. Even if the resulting set
defined by the intersection of several huge sets of data is very small, a boot-strapping full
table scan, and possibly two scans, will be required—with a nested loop, hash join, or
merge join performed on the result. The difficulty will then be to identify which

140 CHAPTER SIX



combination of tables (not necessarily the smallest ones) will result in the least number of

rows from which the final result set will be extracted. In other words, we must find the

weakest point in the line of defense, and once we have eliminated it, we must

concentrate on obtaining the final result set.

Let me illustrate such a case with a real-life Oracle example. The original query is a pretty

complicated query, with two tables each appearing twice in the from clause. Although

none of the tables is really enormous (the biggest one contains about 700,000 rows), the

problem is that none of the nine parameters that are passed to the query is really

selective:

select (data from ttex a,

from

where
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and
and

ttex_

b,

ttraoma,
topeoma,
ttypobj,
ttrcap_a,
ttrcap b,
dt,

trgpp
tstg

ttrcapp ttrcap_a,
ttrcapp ttrcap_ b,
tstg tstg a,
topeoma,
ttraoma,
ttex ttex_a,
ttex ttex b,
tbooks,
tpdt,
trgppdt,
ttypobj
( ttraoma.txnum =
( ttraoma.bkcod =
ttex b.trscod =

_a)

t
t
t

ttraoma.trscod =

ttex _a.nttcod =

t

ttypobj.objtyp =
ttraoma.trscod =
ttrcap a.colcod =
ttrcap_b.colcod =
ttraoma.pdtcod =
tpdt.risktyp = trgppdt.risktyp )

tr

opeoma.txnum )
books.trscod )
books . permor )
ttrcap a.valnumcod )
trcap_b.valnumcod )
ttraoma.objtyp )
ttex_a.trscod )
:0 ) -- not selective
:1 ) -- not selective
tpdt.pdtcod )

gppdt.riskflg )

tpdt.pdtcod = trgppdt pdtcod )

trgppdt.risktyp =
trgppdt.riskflg
ttraoma.txnum =
ttrcap a.refcod
ttrcap_b.refcod
tstg a.risktyp =
tstg a.chncod =

(
(
(
(
(
(
(
(
(
( tpdt.riskflg =
(
(
(
(
(
(
(
(
( tstg a.stgnum =

ts

2 ) -- not selective
3 ) - not selective
tg_a.txnum )

:5 ) -- not selective
16 ) -- not selective

14 ) -- not selective
:7) -- not selective
:8 ) -- not selective

THE NINE SITUATIONS 141



When run with suitable parameters (here indicated as :0 to :8), the query takes more than
25 seconds to return fewer than 20 rows, doing about 3,000 physical I/Os and hitting
data blocks 3,000,000 times. Statistics correctly represent the actual contents of tables
(one of the very first things to check), and a query against the data dictionary gives the

number of rows of the tables involved:

TABLE_NAME NUM_ROWS
ttypobj 186
trgppdt 366
tpdt 5370
topeoma 12118
ttraoma 12118
tbooks 12268
ttex 102554
ttrcapp 187759
tstg 702403

A careful study of the tables and of their relationships allows us to draw the enemy position
of Figure 6-2, showing our weak criteria represented as small arrows, and tables as boxes
the size of which approximately indicates the number of rows. One thing is especially
remarkable: the central position of the ttraoma table that is linked to almost every other
table. Unfortunately, all of our criteria apply elsewhere. By the way, an interesting fact to
notice is that we are providing two values to match columns risktyp and riskflg of
trgppdt—which is joined to tpdt on those very two columns, plus pdtcod. In such a case, it
can be worth contemplating reversing the flow—for example, comparing the columns of

tpdt to the constants provided, and only then pulling the data from trgppdt.

TIEX
TEX
TOPEOMA
1576 - TPBOOKS, TTRCAPP
TIYPOB J

TTRCAPP

ﬁﬁﬁf ® ‘;P%’T TIRAOMA %? % ?

FIGURE 6-2. The enemy position

Most DBMS allow you to check the execution plan chosen by the optimizer, either
through the explain command or sometimes by directly checking in memory how
something has been executed. When this query took 25 seconds, the plan, although not
especially atrocious, was mostly a full scan of ttraoma followed by a series of nested loops,

142 CHAPTER SIX



using the various indexes available rather efficiently (it would be tedious to detail the
numerous indexes, but suffice to say that all columns we are joining on are correctly
indexed). Is this full scan the reason for slowness? Definitely not. A simple test, fetching
all the rows of ttraoma (without displaying them to avoid the time associated with
displaying characters on a screen) proves that it takes just a tiny fraction, hardly

measurable, of the elapsed time for the overall query.

When we consider the weak criteria we have, our forces are too feeble for a frontal attack
against tstg, the bulk of the enemy troops, and even ttrcap won’t lead us very far,
because we have poor criteria against each instance of this table, which intervenes twice
in the query. However, it should be obvious that the key position of ttraoma, which is
relatively small, makes an attack against it, as a first step, quite sensible—precisely the

decision that the optimizer makes without any prompting.

If the full scan is not to blame, then where did the optimizer go wrong? Have a look at

Figure 6-3, which represents the query as it was executed.

TTRCAPP

TTRCAPP

TST6

T

TR GPPDT

FIGURE 6-3. Whatthe optimizer chose to do

When we check the order of operations, it all becomes obvious: our criteria are so bad, on
face value, that the optimizer chose to ignore them altogether. Starting with a pretty
reasonable full scan of ttraoma, it then chose to visit all the smallish tables gravitating
around ttraoma before ending with the tables to which our filtering criteria apply. This
approach is the mistake. It is likely that the indexes of the tables we first visit look much
more efficient to the optimizer, perhaps because of a lower average number of table rows
per key or because the indexes more closely match the order of the rows in the tables.
But postponing the application of our criteria is not how we cut down on the number of

rows we have to process and check.

THE NINE SITUATIONS 143



Once we have taken ttraoma and hold the key position, why not go on with the tables
against which we have criteria instead? The join between those tables and ttraoma will
help us eliminate unwanted rows from ttraoma before proceeding to apply joins with the
other tables. This is a tactic that is likely to pay dividends since—and this is information
we have but that is unknown to the optimizer—we know we should have, in all cases,
very few resulting rows, which means that our combined criteria should, through the
joins, inflict heavy casualties among the rows of ttraoma. Even when the number of rows
to be returned is larger, the execution path I suggest should still remain relatively

efficient.

How then can we force the DBMS to execute the query as we want it to? It depends on the
SQL dialect. As you’ll see in Chapter 11, most SQL dialects allow directives, or hints, to the
optimizer, although each dialect uses different syntax for such hints—telling the optimizer,
for instance, to take on the tables in the same order as they are listed in the from clause. The
trouble with hints is that they are more imperative than their name suggests, and every
hint is a gamble on the future—a bet that circumstances, volumes, database algorithms,
hardware, and the rest will evolve in such a way that our forced execution path will forever
remain, if not absolutely the best, at least acceptable. In the particular case of our example,
since nested loops using indexes are the most efficient choice, and because nested loops
don’t really benetit from parallelism, we are taking a rather small risk concerning the future
evolution of our tables by ordering tables as we want them processed and instructing the
optimizer to obey. Explicitly forcing the order followed to visit tables was the approach
actually taken in this real-life case, which resulted in a query running in a little less than
one second, with hardly fewer physical I/Os than before (2,340 versus 3,000—not too
surprising since we start with a full scan of the very same table) but since we “suggested” a
more efficient path, logical I/0s fell dramatically—to 16,500, down from over 3,000,000—

with a noticeable result on the response time.

Remember that you should heavily document anything that forces
the hand of the DBMS.

Explicitly forcing the order in which to visit tables by using optimizer directives is a
heavy-handed approach. A more gentle way to obtain the same result from the
optimizer, provided that it doesn’t savagely edit our SQL clauses, may be to nest queries
in the from clause, thus suggesting associations like parentheses would in a numerical

expression:

144 CHAPTER SIX



select (select list)

from (select ttraoma.txnum,
ttraoma.bkcod,
ttraoma.trscod,
ttraoma.pdtcod,
ttraoma.objtyp,

from ttraoma,
tstg tstg a,
ttrcapp ttrcap_ a
where tstg a.chncod = :7
and tstg a.stgnum = :8
and tstg a.risktyp = :4
and ttraoma.txnum = tstg a.txnum
and ttrcap a.colcod = :0
and ttrcap_a.refcod = :5
and ttraoma.trscod = ttrcap a.valnumcod) a,
ttex ttex_a,
ttrcapp ttrcap_ b,
tbooks,
topeoma,
ttex ttex b,
ttypobj,
tpdt,
trgppdt
where ( a.txnum = topeoma.txnum )
and ( a.bkcod = tbooks.trscod )
and ( ttex b.trscod = tbooks.permor )
and ( ttex_a.nttcod = ttrcap_b.valnumcod )
and ( ttypobj.objtyp = a.objtyp )
and ( a.trscod = ttex a.trscod )
and ( ttrcap b.colcod = :1)
and ( a.pdtcod = tpdt.pdtcod )
and ( tpdt.risktyp = trgppdt.risktyp )
and ( tpdt.riskflg = trgppdt.riskflg )
and ( tpdt.pdtcod = trgppdt.pdtcod )
and ( tpdt.risktyp = :2)
and ( tpdt.riskflg = :3 )
and ( ttrcap b.refcod = :6 )

It is often unnecessary to be very specific about the way we want a query to be executed
and to multiply esoteric hints; the right initial guidance is usually enough to put an
optimizer on the right track. Nested queries making explicit some table associations have

the further advantage of being quite understandable to a qualified human reader.

A confused query can make the optimizer confused. Clarity and
1 suggested joins are often enough to help the optimizer provide
good performance.

THE NINE SITUATIONS

145



Large Result Set

The situation of a large result set includes any result, irrespective of how it is obtained
(with the exception of the explicit cases discussed here) that might be described as “large”
or, in other words, a result set which it would be sensible to generate in a batch
environment. When you are looking for a very large number of rows, even if this
number looks like a fraction of the total number of rows stored in the tables involved in
the query, conditions are probably not very selective and the DBMS engine must perform
full scans, except perhaps in some very special cases of data warehousing, which are

discussed in Chapter 10.

When a query returns tens of thousand of rows, whether as the final result or an
intermediate step in a complex query, it is usually fairly pointless to look for a subtle use
of indexes and fast jumps from an index to the table rows of interest. Rather, it’s time to
hammer the data remorselessly through full scans, usually associated with hash or merge
joins. There must, however, be intelligence behind the brute force. We always must try to
scan the objects, whether they are tables, indexes, or partitions of either tables or
indexes, for which the ratio of data returned to data scanned is highest. We must scan
objects for which filtering is the most coarse, because the best justification for the “effort”
of scanning is to make it pay by a rich data harvest. A situation when a scan is
unavoidable is the major exception to the rule of trying to get rid of unnecessary data as
soon as possible; but we must fall back to the usual rule as soon as we are done with the

unavoidable scans.

As ever, if we consider scanning rows of no interest to us as useless work, we must
minimize the number of blocks we access. An approach often taken is to minimize
accesses by hitting indexes rather than tables—even if the total volume of indexes is often
bigger than the volume of data, each individual index is usually much smaller than its
underlying table. Assuming that an index contains all the required information, scanning
the index rather than the table makes a lot of sense. Implementation techniques such as

adding columns to an index to avoid visiting the table can also show their worth.

Processing very large numbers of rows, whether you need to return them or simply have
to check them, requires being very careful about what you do when you process each
row. Calling a suboptimal, user-defined function, for instance, is not extremely important
when you do it in the select list of a query that returns a small result set or when it comes
as an additional criterion in a very selective where clause. But when you call such a
function hundreds of thousands of times, the DBMS is no longer forgiving, and a slight
awkwardness in the code can bring your server to its knees. This is a time for lean and

mean code.

146 CHAPTER SIX



One key point to watch is the use of subqueries. Correlated subqueries are the death toll
of performance when we are processing massive amounts of rows. When we can identify
several subqueries within a query, we must let each of them operate on a distinct and
“self-sufficient” subset, removing any dependence of one subquery on the result set of
another. Dependencies between the various datasets separately obtained must be solved

at the latest stage of query execution through hash joins or set operators.

Relying on parallelism may also be a good idea, but only when there are very few
concurrently active sessions—typically in a batch job. Parallelism as it is implemented by
a DBMS consists in splitting, when possible, one query into multiple subtasks, which are
run in parallel and coordinated by a dedicated task. With a very high number of users,
parallelism comes naturally with many similar tasks being executed concurrently, and
adding DBMS parallelism to de facto parallelism often makes throughput worse rather
than better. Generally speaking, processing very large volumes of information with a very
high number of concurrent sessions qualifies as a situation in which the best you can aim
for is an honorable fight and in which the solution is often to throw more hardware into

the ring.

Response times are, lest we forget about the various waits for the availability of a
resource in the course of processing, mostly dependent on the amount of data we have to
browse through. But don't forget that, as you saw in Chapter 4, the subjective vision of
an end user may be utterly different from a cold analysis of the size of the haystack: the

only interest to the end user is the needle.

Self-Joins on One Table

In a correctly designed relational database (third normal form or above), all non-key
columns are about the key, the whole key, and nothing but the key, to use an excellent
and frequently quoted formula.* Each row is both logically consistent and distinct from all
other rows in the same table. It is this design characteristic that enables join relationships
to be established within the same table. You can therefore select in the same query
different (not necessarily disjoint) sets of rows from the same table and join them as if
those rows came from several different tables. In this section, I'll discuss the simple self-
join and exclude the more complex examples of nested hierarchies that I discuss later in
Chapter 7.

Self-joins—tables joined to themselves—are much more common than hierarchies. In

some cases, it is simply because the data is seen in an identical way, but from two

* Thave seen this elegant formula credited only once—to a 1983 paper by William Kent, available at
http://www.bkent.net.

THE NINE SITUATIONS

147



different angles; for instance, we can imagine that a query listing air flights would refer to
the airports table twice, once to find the name of the departure airport, and once to find

the name of the arrival airport. For example:

select f.flight number,
a.airport name departure airport,
b.airport name arrival airport
from flights f,
airports a,
airports b
where f.dep iata code = a.iata code
and f.arr iata code = b.iata code
In such a case, the usual rules apply: what matters is to ensure that highly efficient index
access takes place. But what if the criteria are such that efficient access is not possible?
The last thing we want is to do a first pass on the table, then a second one to pick up rows
that were discarded during the first pass. In that case, what we should do is a single pass,
collect all the rows of interest, and then use a construct such as the case statement to
display separately rows from the two sets; I show examples of this “single-pass” approach

in Chapter 11.

There are subtle cases that only superficially look like the airport case. Imagine that we
store in some table cumulative values taken at regular intervals* and we want to display
by how much the counter increased between two successive snapshots. In such a case,
we have a relationship between two different rows in the same table, but instead of
having a strong relationship coming from another table, such as the flights table that
links the two instances of airports together, we have a weak, internal relationship: we
define that two rows are related not because their keys are associated in another table,
but because the timestamp of one row happens to be the timestamp which immediately

follows the timestamp of another row.

For instance, if we assume that snapshots are taken every five minutes, with a timestamp

expressed in seconds elapsed since a reference date, we might issue the following query:

select a.timestamp,
a.statistic_id,
(b.counter - a.counter)/5 hits per minute
from hit_counter a,
hit _counter b
where b.timestamp = a.timestamp + 300
and b.statistic_id = a.statistic_id
order by a.timestamp, a.statistic_id

* This is exactly what happens when you collect values from the V$ views in Oracle, which contain
monitoring information.

148 CHAPTER SIX



There is a significant flaw in this script: if the second snapshot has not been taken exactly
five minutes after the first one, down to the second, we may be unable to join the two
rows. We may therefore choose to express the join condition as a range condition. For
example:

select a.timestamp,
a.statistic_id,
(b.counter - a.counter) * 60 /
(b.timestamp - a.timestamp) hits per minute
from hit_counter a,
hit counter b
where b.timestamp between a.timestamp + 200
and a.timestamp + 400
and b.statistic_id = a.statistic_id
order by a.timestamp, a.statistic id

One side effect of this approach is the risk of having bigger data gaps than needed when,
for one reason or another (such as a change in the sampling frequency), two successive
records are no longer collected between 200 and 400 seconds of each other.

We may play it even safer and use an OLAP function that operates on windows of rows.
It is indeed difficult to imagine something less relational in nature, but such a function
can come in handy as the final shine on a query, and it can even make a noticeable
difference in performance. Basically, OLAP functions allow the consideration of different
subsets of the final result set, through the use of the partition clause. Sorts, sums, and
other similar functions can be applied separately to these individual result subsets. We
can use the row_number() OLAP function to create one subset by statistic_id, and then
assign to each different statistic successive integer numbers that increase as timestamps
do. When these numbers are generated by the OLAP function, we can join on both

statistic_id and two sequential numbers, as in the following example:

select a.timestamp,
a.statistic _id,
(b.counter - a.counter) * 60 /
(b.timestamp - a.timestamp)
from (select timestamp,
statistic_id,
counter,
row_number() over (partition by statistic id
order by timestamp) rn
from hit_counter) a,
(select timestamp,
statistic_id,
counter,
row number() over (partition by statistic id
order by timestamp) rn
from hit_counter) b
where b.rn = a.1n + 1
and a.statistic_id = b.statistic id
order by a.timestamp, a.statistic_id

THE NINE SITUATIONS

149



We may even do better—about 25% faster than the previous query—if our DBMS
implements, as Oracle does, a lag(column _name, n) OLAP function that returns the nth

previous value for column_name, on the basis of the specified partitioning and ordering:

select timestamp,
statistic_id,
(counter - prev_counter) * 60 /
(timestamp - prev_timestamp)
from (select timestamp,
statistic id,
counter,
lag(counter, 1) over (partition by statistic_id
order by timestamp) prev_counter,
lag(timestamp, 1) over (partition by statistic id
order by timestamp) prev_timestamp
from hit_counter) a
order by a.timestamp, a.statistic_id

In many cases we don’t have such symmetry in our data, as is shown by the flight
example. Typically, a query looking for all the data associated with the smallest, or the
largest, or the oldest, or the most recent value of a specific column, first needs to find the
actual smallest, largest, oldest, or most recent value in the column used for filtering (this
is the first pass, which compares rows), and then search the table again in a second pass,
using as a search criterion the value identified in the first pass. The two passes can be
made (at least superficially) into one through the use of OLAP functions that operate on
sliding windows. Queries applied to data values associated to timestamps or dates are a
special case of sufficient importance to deserve further discussion later in this chapter as

the situation “Simple or Range Searching on Dates.”

When multiple selection criteria are applied to different rows in
the same table, functions that operate on sliding windows may be
of assistance.

Result Set Obtained by Aggregation

An extremely common situation is the case in which the result set is a dynamically
computed summary of the detailed data from one or more main tables. In other words,
we are facing an aggregation of data. When data is aggregated, the size of the result set
isn’t dependent on the precision of the criteria that are provided, but merely on the
cardinality of the columns that we group by. As in the first situation of the small result set
obtained through precise criteria (and as you'll see again in Chapter 11), aggregate
functions (or aggregates) are also often quite useful for obtaining in a single pass on the

table results that are not truly aggregated but that would otherwise require self-joins and

150 CHAPTER SIX



multiple passes. In fact, the most interesting SQL uses of aggregates are not the cases in
which sums or averages are an obvious part of the requirements, but situations in which

a clever use of aggregates provides a pure SQL alternative to a procedural processing.

I stress in Chapter 2 that one of the keys to efficient SQL coding is a swashbuckling
approach to code execution, testing for success after the deed rather than executing
preliminary queries to check if, by chance, the really useful query we want to execute
may fail: you cannot win a swimming race by tiptoeing carefully into the water. The
other key point is to try to pack as much “action” as possible into an SQL query, and it is

in respect to this second key point that aggregate functions can be particularly useful.

Much of the difficulty of good SQL programming lies in seeing how a problem can
translate, not into a succession of queries to a database, but into very few queries. When,
in a program, you need a lot of intermediate variables to hold values you get from the
database before reinjecting them into the database as input to other queries, and if you
perform against those variables nothing but very simple tests, you can bet that you have
the algorithm wrong. And it is a striking feature of poorly written SQL programs to see
the high number of lines of code outside of SQL queries that are simply devoted to
summing up, multiplying, dividing, and subtracting inside loops what is painfully
returned from the database. This is a totally useless and utterly inefficient job: we have
SQL aggregate functions for that sort of work.

NOTE

Aggregate functions are very useful tools for solving SQL problems (and we will
revisit them in Chapter 11, when I talk about stratagems); however, it often appears
to me that developers use only the least interesting aggregate function of all, namely
count( ), the real usefulness of which is often, at best, dubious in most programs.

Chapter 2 shows that using count(*) to decide whether to update an existing row or insert
a new one is wasteful. You can misuse count(*) in reports as well. A test for existence is

sometimes implemented as a mock-Boolean value such as:

case count(*)

when 0 then 'N'

else 'Y'

end
Such an implementation gets, when rows are found, all the rows that match the condition
in order to obtain a precise count, whereas finding only one is enough to decide whether Y
or N must be displayed. You can usually write a much more effective statement by using a
construct that either limits the number of rows returned or tests for existence, effectively

stopping processing as soon as a row that matches the condition is found.

THE NINE SITUATIONS

151



But when the question at hand is about the most, the least, the greatest, or even the first
or the last, it is likely that aggregate functions (possibly used as OLAP functions) will
provide the best answer. If you believe that aggregate functions should be used only
when counts, sums, maxima, minima, or averages are explicitly required, then you risk

seriously underusing them.

Interestingly, aggregate functions are extremely narrow in scope. If you exclude the
computation of maximum and minimum values, the only thing they can really do is
simple arithmetic; a count( ) is nothing more than adding 1s for each row encountered.
Similarly, the computation of avg( ) is just, on one hand, adding up the values in the

column it is applied to and, on the other hand, adding 1s, and then dividing.

But it is sometimes wonderful what you can do with simple sums. If you're
mathematically inclined, you'll remember how easily you can switch between sums and
products by the magic of logarithms and power functions. And if you're logically inclined,

you know well how much OR owes to sums and AND to products.

I'll show the power of aggregation with a simple example. Assume that we have a
number of shipments to make and that each shipment is made of a number of different
orders, each of which has to be separately prepared; it is only when each order in a
shipment is complete that the shipment itself is ready. The problem is how to detect

when all the orders comprising a shipment are complete.

As is so often the case, there are several ways to determine the shipments that are
complete. The worst approach would probably be to loop on all shipments, inside a
second loop on each shipment count how many orders have N as value for the order_
complete column, and return shipment IDs for which the count is 0. A much better
solution would be to recognize the test on the nonexistence of an N value for what it is,

and use a subquery, correlated or uncorrelated; for instance:

select shipment_id
from shipments
where not exists (select null from orders
where order complete = 'N'
and orders.shipment id = shipments.shipment id)

This approach is pretty bad if we have no other condition on the shipments table.

Following is a query that may be much more efficient if we have a large shipments table

and few uncompleted orders:

select shipment_id
from shipments
where shipment_id not in (select shipment_id
from orders
where order_complete = 'N')

152 CHAPTER SIX



This query can also be expressed as follows, as a variant that an optimizer may like better

but that wants an index on the column shipment_id of the table orders:

select shipments.shipment id
from shipments
left outer join orders
on orders.shipment_id = shipments.shipment_id
and orders.order complete = 'N'
where orders.shipment_id is null
Another alternative is a massive set operation that will operate on the primary key index
of shipments on one hand, and that will perform a full table scan of orders on the other

hand:

select shipment_id

from shipments

except

select shipment_id

from orders

where order complete = 'N'

Be aware that not all DBMS implement the except operator, sometimes known as minus.

But there is still another way to express our query. What we are doing, basically, is to
return the identifiers of all shipments for which a logical AND operation on all orders
which have been completed returns TRUE. This kind of operation happens to be quite
common in the real world. As hinted previously, there is a very strong link between AND
and multiplication, and between OR and addition. The key is to convert flags such as Y and
N to 0s and 1s. This conversion is a trivial operation with the case construct. To get just

order_complete as a 0 or 1 value, we can write:

select shipment id,
case when order complete = 'Y' then 1
else 0
end flag
from orders
So far, so good. If we always had a fixed number of orders per shipment, it would be easy to
sum the calculated column and check if the result is the number of orders we expect.
However, what we want here is to multiply the flag values per shipment and check whether
the result is 0 or 1. That approach works, because even one incomplete order, represented by
a 0, will cause the final result of all the multiplication to also be 0. The multiplication can be
done with the help of logarithms (although 0s are not the easiest values to handle with

logarithms). But in this particular case, our task is even easier.

THE NINE SITUATIONS 153



What we want are the shipments for which the first order is completed and the second
order is completed and...the nth order is completed. Logic and the laws of de Morgan* tell
us that this is exactly the same as stating that we do not have (first order not completed or
second order not completed...or nth order not completed). Since their kinship to sums
makes ORs much easier to process with aggregates than ANDs, checking that a list of

conditions linked by OR is false is much easier than checking that a list of conditions linked

”

by AND is true. What we must consider as our true predicate is “the order is not completed
rather than the reverse, and convert the order complete flag to 1 ifitis N, and o ifitis Y. In
that way, we can easily check that we have Os (or yeses) everywhere by summing up

values—if the sum is 0, then all orders are completed; otherwise, we are at various stages of

incompletion.
Therefore we can also express our query as:

select shipment_id
from (select shipment id,
case when order complete = 'N' then 1
else 0
end flag
from orders) s
group by shipment id
having sum(flag) =0

And it can be expressed in an even more concise way as:

select shipment_id
from orders
group by shipment id
having sum(case when order_complete = 'N' then 1
else 0
end) =0

There is another way to write this query that is even simpler, using another aggregate
function, and without any need to convert flag values. Noticing that Y is, from an
alphabetical point of view, greater than N, it is not too difficult to infer that if all values

are Y then the minimum will necessarily be Y too. Hence:

select shipment id

from orders

group by shipment id

having min(order_complete) = 'Y

* The India-born Augustus de Morgan (1806-1871) was a British mathematician who contributed to
many areas of mathematics, but most significantly to the field of logic. The de Morgan laws state
that the complement of the intersection of any number of sets equals the union of their comple-
ments and that the complement of the union of any number of sets equals the intersection of their
complements. If you remember that SQL is about sets, and that negating a condition returns the
complement of the result set returned by the initial condition (if you have no null values), you'll
understand why these laws are particularly useful to the SQL practitioner.

154 CHAPTER SIX



This approach of depending on Y to be greater than N may not be as well grounded

mathematically as the flag-to-number conversion, but it is just as efficient.

Of course we must see how the query that uses a group by and a condition on the
minimum value for order_complete compares to the other versions that use subqueries or
except instead of an aggregate function. What we can say is that it has to fully sort the
orders table to aggregate the values and check whether the sum is or is not 0. As I've
specified the problem, this solution involving a non-trivial use of an aggregate function is
likely to be faster than the other queries, which hit two tables (shipments and orders), and

usually less efficiently.

I have made an extensive use of the having clause in the previous examples. As already
mentioned in Chapter 4, a common example of careless SQL statements involves the use
of the having clause in aggregate statements. Such an example is illustrated in the
following (Oracle) query, which attempts to obtain the sales per product per week during
the past month:

select product_id,
trunc(sale date, 'WEEK'),
sum(sold gty)
from sales_history
group by product_id, trunc(sale_date, 'WEEK')
having trunc(sale date, 'WEEK') >= add_month(sysdate, -1)
The mistake here is that the condition expressed in the having clause doesn’t depend on
the aggregate. As a result, the DBMS has to process all of the data in sales_history,
sorting it and aggregating against each row, before filtering out ancient figures as the last
step before returning the required rows. This is the kind of mistake that can go unnoticed
until sales_history grows really big. The proper approach is, of course, to put the
condition in a where clause, ensuring that the filtering occurs at an early stage and that we

are working afterwards on a much reduced set of data.

I should note that when we apply criteria to views, which are aggregated results, we may
encounter exactly the same problem if the optimizer is not smart enough to reinject our

filter before aggregation.

You can have slightly more subtle variants of a filter applied later than it should be. For

instance:

select customer id

from orders

where order date < add months(sysdate, -1)
group by customer_id

having sum(amount) > 0

In this query, the following condition looks at first glance like a reasonable use of having:

having sum(amount) > 0

THE NINE SITUATIONS 155



However, this use of having does not really make sense if amount is always a positive

quantity or zero. In that event, we might be better using the following condition:

where amount > 0

We have two possibilities here. Either we keep the group by:

select customer_id
from orders
where order date < add_months(sysdate, -1)
and amount > 0
group by customer_id
or we notice that group by is no longer required to compute any aggregate and replace it
with a distinct that in this case performs the same task of sorting and eliminating

duplicates:

select distinct customer id
from orders
where order date < add months(sysdate, -1)
and amount > 0
Placing the condition in the where clause allows unwanted rows to be filtered at an earlier

stage, and therefore more effectively.

Aggregate as little data as you can.

Simple or Range Searching on Dates

Among search criteria, dates (and times) hold a particular place that is all their own.
Dates are extremely common, and more likely than other types of data to be subjected to
range conditions, whether they are bounded (“between this date and that date”) or only
partially bounded (“before this date”). Very often, and what this situation describes, the
result set is derived from searches against date values referenced to the current date (e.g.,

“six months earlier than the current date,” etc.).

The example in the previous section, “Result Set Obtained by Aggregation,” refers to a
sales_history table; our condition was on an amount, but it is much more common with
this type of table to have conditions on date, especially to get a snapshot of the data
either at a given date or between two dates. When you are looking for a value on a given
date in a table containing historical data, you must pay particular attention to the way
you identify current data. The way you handle current data may happen to be a special

case of data predicated on an aggregate condition.

156 CHAPTER SIX



I have already pointed out in Chapter 1 that the design of a table destined to store historical
data is a tricky affair and that there is no easy, ready-made solution. Much depends on
what you plan to do with your data, whether you are primarily interested in current values
or in values as of a particular date. The best solution also depends on how fast data becomes
outdated. If you are a retailer and wish to keep track of the wares you sell, it is likely that,
unless your country suffers severe hyper-inflation, the rate of change of your prices will be
pretty slow. The rate of change will be higher, possibly much higher, if you are recording

the price of financial instruments or monitoring network traffic.

To a large extent, what matters most with history tables is how much historical data you
keep on average per item: you may store a lot of historical information for very few
items, or have few historical records for a very large number of items, or anything in
between. The point here is that the selectivity of any item depends on the number of
items being tracked, the frequency of sampling (e.g., either once per day or every change
during the day), and the total time period over which the tracking takes place (infinite,
purely annual, etc.). We shall therefore first consider the case when we have many items
with few historical values, then the opposite case of few items with a rich history, and

then, finally, the problem of how to represent the current value.

Many Items, Few Historical Values

If we don’t keep an enormous amount of historical data per item, the identification of an
item is quite selective by itself. Specifying the item under study restricts our “working set”
to just a few historical rows, and it then becomes fairly easy to identify the value at a given
reference date (the current or a previous date) as the value recorded at the closest date

prior to the reference date. In this case, we are dealing once again with aggregate values.

Unless some artificial, surrogate key has been created (and this is a case where there is no
real need for a surrogate key), the primary key will generally be a composite key on the
identifier of items (item_id) and the date associated with the historical value (record date).
We mostly have two ways of identifying the rows that store values that were current as

of a given reference date: subqueries and OLAP functions.

Using subqueries

If we are looking for the value of one particular item as of a given date, then the situation
is relatively simple. In fact, the situation is deceptively simple, and you'll often encounter

a reference to the value that was current for a given item at a given date coded as:

select whatever
from hist data as outer
where outer.item id = somevalue
and outer.record date = (select max(inner.record date)
from hist data as inner
where inner.item_id = outer.item id
and inner.record date <= reference date)

THE NINE SITUATIONS

157



It is interesting to see what the consequences of this type of construct suggest in terms of
the execution path. First of all, the inner query is correlated to the outer one, since the
inner query references the item_id of the current row returned by the outer query. Our

starting point is therefore the outer query.

Logically, from a theoretical point of view, the order of the columns in a composite
primary key shouldn’t matter much. In practice, it is critical. If we have made the mistake
of defining the primary key as (record date, item id) instead of (item id, record date),
we desperately need an additional index on item id for the inner query; otherwise, we
will be unable to efficiently descend the tree-structured index. And we know how costly

each additional index can be.

Starting with our outer query and finding the various rows that store the history of item_
id, we will then use the current value of item_id to execute the subquery each time. Wait!
This inner query depends only on item id, which is, by definition, the same for all the
rows we check! The logical conclusion: we are going to execute exactly the same query,
returning exactly the same result for each historical row for item_id. Will the optimizer
notice that the query always returns the same value? The answer may vary. It is better

not to take the chance.

There is no point in using a correlated subquery if it always returns the same value for all

the rows for which it is evaluated. We can easily uncorrelate it:

select whatever
from hist data as outer
where outer.item id = somevalue
and outer.record date = (select max(inner.record date)
from hist data as inner
where inner.item id = somevalue
and inner.record date <= reference_date)

Now the subquery can be executed without accessing the table: it finds everything it

requires inside the primary key index.

It may be a matter of personal taste, but a construct that emphasizes the primary key is
arguably preferable to the preceding approach, if the DBMS allows comparing several
columns to the output of a subquery (a feature that isn’t supported by all products):

select whatever
from hist data as outer
where (outer.item id, outer.record date) in
(select inner.item id, max(inner.record date)
from hist data as inner
where inner.item id = somevalue
and inner.record date <= reference date
group by inner.item_id)

The choice of a subquery that precisely returns the columns matching a composite

primary key is not totally gratuitous. If we now need to return values for a list of items,

158 CHAPTER SIX



possibly the result of another subquery, this version of the query naturally suggests a
good execution path. Replace somevalue in the inner query by an in() list or a subquery,
and the overall query will go on performing efficiently under the very same assumptions
that each item has a relatively short history. We have also replaced the equality condition
by an in clause: in most cases the behavior will be exactly the same. As usual, it is at the
fringes that you encounter differences. What happens if, for instance, the user mistyped
the identification of the item? The in() will return that no data was found, while the

equality may return a different error.

Using OLAP functions

With databases, OLAP functions such as row_number( ) that we have already used in the
self-joins situation can provide a satisfactory and sometimes even a more efficient way to
answer the same question “what was the current value for one particular item at a given
date?” (remember that OLAP functionality does, however, introduce a distinctly non-

relational aspect to the proceedings®).

NOTE

OLAP functions belong to the non-relational layer of SQL. They represent the final,
or almost final, step in query execution, since they have to operate on the post-

retrieval result set after the filtering has completed.

With a function such as row_number( ) we can assign a degree of freshness (one meaning

most recent) to the data by ranking on date:

select row_number() over (partition by item id
order by record date desc) as freshness,
whatever
from hist_data
where item id = somevalue
and record date <= reference date

Selecting the freshest data is then simply a matter of only retaining the rows with a value

of one for freshness:

select x.<suitable columns>
from (select row number() over (partition by item id
order by record date desc) as freshness,
whatever
from hist data
where item_id = somevalue
and record date <= reference_date) as x

where x.freshness = 1

* ...even if the term OLAP was coined by Dr. E.F. Codd himself in a 1993 paper.

THE NINE SITUATIONS

159



In theory, there should be hardly any difference between the OLAP function approach
and the use of subqueries. In practice, an OLAP function hits the table only once, even if
the usual sorting happens behind the scene. There is no need for additional access to the
table, even a fast one that uses the primary key. The OLAP function approach may
therefore be faster (albeit only slightly so).

Many Historical Values Per Item

The picture may be different when we have a very large number of historical values—for
instance, a monitoring system in which metrics are collected at a rather high frequency.
The difficulty here lies in the fact that all the intermediate sorting required for identifying

the value at or nearest a given date may have to operate on a really large amount of data.

Sorting is a costly operation. If we apply the principles of Chapter 4, the only way we
have to reduce the thickness of the non-relational layer is by doing a bit more work at
the relational level—by increasing the amount of filtering. In such a case, it is very
important to narrow our scope by bracketing the date (or time) more precisely for which
we want the data. If we only provide an upper boundary, then we shall have to scan and
sort the full history since the beginning of ages. If data is collected at a high frequency, it
is then reasonable to give a lower limit. If we succeed in restraining the “working set” of
rows to a manageable size, we are back to the case in which we have relatively few
historical values per item. If specifying both an upper boundary (such as the current date)
and a lower boundary isn’t an option, our only hope is in partitioning per item; operating

on a single partition will take us closer to the “large result set” situation.

Current Values

When we are predominantly interested in the most recent or current values, it is very
tempting to design a way to avoid either the nested subquery or the OLAP function
(which both entail a sort), and hit the proper values directly. We mentioned in Chapter 1
that one solution to this problem is to associate each value with some “end date”—the
kind of “best before” you find on your cereal boxes—and to say that for current values
that end date is far, far away into the future (let’s say December 31, 2999). We also
mentioned that there were some practical issues associated with such a design and the

time has now come to explore these issues.

With a fixed date, it certainly becomes extremely easy to find the current value. Our
query simply becomes:

select whatever

from hist data

where item_id = somevalue
and record_date = fixed date in the future

160 CHAPTER SIX



We then hit the right row, spot on, through the primary key. And of course, nothing
prevents us from using either subqueries or OLAP functions whenever we need to refer
to a date other than the current one. There are, however, two main drawbacks to this

approach—an obvious one and a more subtle one:

e The obvious drawback is that each insertion of a new historical value will first require
updating what used to be the current value with, for example, today’s date, to mean
that it used to be the current value until today. Then the new value can be inserted
with the later date, to mean that it is now the current value until further notice. This
process leads to double the amount of work, which is bad enough. Moreover, since in
the relational theory the primary key is what identifies a row, the combination (item_
id, record date) can be unique but cannot be the primary key since we have to par-
tially update it. We therefore need a surrogate key to be referenced by foreign keys
(identity column or sequence), which further complicates programs. The trouble with
big historical tables is that usually, to grow that big, they also undergo a high rate of
insertion. Does the benetfit of faster querying offset the disadvantage of inserting more
slowly? It’s difficult to say, but definitely a question worth asking.

e The subtle drawback has to do with the optimizer. The optimizer relies on statistics
that may be of variable detail, with the result that it is not unusual for it to check the
lowest and highest value in a column to try to assess the spread of values. Let us say
that our historical table contains values since January 1, 2000. Our data will therefore
consist of perhaps 99.9% historical data, spread over several, but relatively few, years,
and 0.1% of current data, officially as of December 31, 2999. The view of the opti-
mizer will be of data spread over one millennium. This skewness on the part of the
optimizer view of the data range is because it is being misled by the upper boundary
date in the query ("and record date = fixed date in the future"). The problem is then
that when you search for something other than current values (for instance if you
want to collect variations over time for statistical purposes), the optimizer may well
incorrectly decide that since you are accessing such a tiny fraction of the millennium,
then using indexes is the thing to do, but what you really need is to scan the data.
Skewness can lead to totally wrong execution plans, which are not easy to correct.

You must understand your data and your data distributions if you
are to understand how the optimizer views your system.

Result Set Predicated on Absence of Data

It is a common occurrence to look for rows in one table for which there is no matching
data in another table—usually for identifying exceptions. There are two solutions people

most often think of when having to deal with this type of problem: using either not in ()

THE NINE SITUATIONS



with an uncorrelated subquery or not exists () with a correlated subquery. Popular
wisdom says that you should use not exists. Since a correlated subquery is efficient when
used to mop up after the bulk of irrelevant data has been cleared out by efficient filtering,
popular wisdom has it right when the subquery comes after the strong forces of efficient
search criteria, and totally wrong when the subquery happens to be the only criterion.

One sometimes encounters more exotic solutions to the problem of finding rows in one
table for which there is no matching data in another. The following example is a real-life
case that monitoring revealed to be one of the costliest queries performed against a
database (note that question marks are placeholders, or bind variables, for constant values

that are passed to the query on successive executions):

insert into ttmpout(custcode,
suistrcod,
cempdtcod,
bkgareacod,
mgtareacod,
risktyp,
riskflg,
usr,
seq,
country,
rating,
sigsecsui)

select distinct custcode,

mgtareacod,
?

()
?
usr,
seq,
country,
rating,
sigsecsui
from ttmpout a
where a.seq = ?
and 0 = (select count(*)
from ttmpout b

where b.suistrcod = ?

and b.cempdtcod = ?
and b.bkgareacod = ?
and b.risktyp = ?
and b.riskflg = ?
and b.seq = ?)

This example must not be understood as an implicit unconditional endorsement of
temporary tables! As a passing remark, I suspect that the insert statement was part of a

loop. Proper performance improvement would probably be achieved by removing the loop.

162 CHAPTER SIX



An insertion into a table based on a select on the very same table as in the current
example is a particular and yet not uncommon case of self-reference, an insertion derived

from existing rows and conditional on the absence of the row to be created.

Using count(*) to test whether something exists or doesn’t exist is a bad idea: to count,
the DBMS must search and find all rows that match. We should use exists in such a case,
which stops as soon as the first match is encountered. Arguably, it does not make much
difference if the filtering criterion happens to be the primary key. But it may make a very
significant difference in other cases—and anyway from a semantic point of view there is

no reason to say this:

and 0 = (select count(*) ...)

when we mean this:

and not exists (select 1 ...)

If we use count(*) as a test for existence, we may be lucky enough to benefit from the
“invisible hand” of a smart optimizer, which will turn our query into something more
suitable. But this will not necessarily be the case, and it will never be the case if the rows
are counted into some variable as an independent step, because then even the smartest of
optimizers cannot guess for which purpose we are counting: the result of the count()

could be a critical value that absolutely has to be displayed to the end user!

In such a case when we want to create new, unique rows derived from rows already
present in the table, however, the right construct to use is probably a set operator such as

except (sometimes known as minus).

insert into ttmpout(custcode,
suistrcod,
cempdtcod,
bkgareacod,
mgtareacod,
risktyp,
riskflg,
usr,
seq,
country,
rating,
sigsecsui)

(select custcode,

THE NINE SITUATIONS 163



country,
rating,
sigsecsui
from ttmpout
where seq = ?
except
select custcode,

mgtareacod,
?

1]
?,
usr,
seq,
country,
rating,
sigsecsui
from ttmpout
where suistrcod = ?
and cempdtcod = ?
and bkgareacod = ?
and risktyp = ?
and riskflg = ?
and seq = ?)

The big advantage of set operators is that they totally break the time frame imposed by
subqueries, whether they are correlated or uncorrelated. What does breaking the time
frame mean? When you have correlated subqueries, you must run the outer query, and
then you must execute the inner query for each row that passes through all other
filtering criteria. Both queries are extremely dependent on each other, since the outer

query feeds the inner one.

The picture is slightly brighter with uncorrelated subqueries, but not yet totally rosy: the
inner query must be executed, and in fact completed, before the outer query can step in
and gather steam (something similar occurs even if the optimizer chooses to execute the
global query as a hash join, which is the smart thing for it to do, because to execute a hash
join, the SQL engine first has to scan one of the tables involved to build a hash array).

With set operators, on the contrary, whether they are union, intersect or except, none of

the components in the query depends on any other. As a result, the different parts of the
query can run in parallel. Of course, parallelism is of hardly any benefit if one of the steps
is very slow while all the others are very fast; and it will be of no benefit at all if much of
the work in one part is strictly identical to the work in another part, because then you are
duplicating, rather than sharing, the work between processes. But in a favorable case, it is
much more efficient to have all parts run in parallel before the final step, which combines

the partial result sets—divide and rule.

164 CHAPTER SIX



There is an additional snag with using set operators: they require each part of the query
to return compatible columns—an identical number of columns of identical types. A case
such as the following (another real-life case, coming from a billing program) is typically

unsuited to set operators:

select whatever, sum(d.tax)
from invoice detail d,
invoice extractor e
where (e.pga status = 0
or e.rd status = 0)
and suitable join condition
and (d.type code in (3, 7, 2)
or (d.type code = 4
and d.subtype code not in
(select trans_code
from trans_description
where trans_category in (6, 7))))
group by what_is required
having sum(d.tax) != 0

I am always fascinated by the final condition:

sum(d.tax) != 0

and the way it evokes yellow brick roads and fantasy worlds where taxes are negative. A

condition such as:

and d.tax > 0

might have been more appropriate in the where clause, as already demonstrated.

In such a case a set operator would be rather awkward, since we would have to hit the
invoice_detail table—as we can guess, not a lightweight table—several times. However,
depending on the selectivity of the various criteria provided, typically if type code=4 is a
rare and therefore selective attribute condition, an exists might be more appropriate than
anot in (). If, however, trans_description happens to be, at least relatively, a small table,
then there is no doubt that trying to improve the query by playing on the existence test

alone is a dead end.

Another interesting way to express nonexistence—and often quite an efficient one—is to
use outer joins. The purpose of outer joins is basically to return, in a join, all information
from one table, including rows for which no match is found in the joined table. As it
happens, when we are looking for data that has no match in another table, it is precisely
these rows that are of interest to us. How can we identify them? By checking the joined

table columns: when there is no match, they are replaced with null values.
Something such as:
select whatever

from invoice_detail
where type_code = 4

THE NINE SITUATIONS

165



and subtype code not in
(select trans_code
from trans_description
where trans_category in (6, 7))

can therefore be rewritten:

select whatever
from invoice detail
outer join trans_description
on trans_description.trans_category in (6, 7)
and trans_description.trans_code = invoice detail.subtype code

where trans description.trans code is null
I have purposely included the condition on trans_category in the join clause. Whether it
should rightly appear in this clause or in the where clause is debatable but, in fact, filtering
before the join or after the join is result-neutral (of course, from a performance point of
view, it can make a difference, depending on the relative selectivity of this condition and
of the join condition itself). However, we have no such latitude with the condition on the

null value, since this is something that can only be checked after the join.

Apart from the fact that the outer join may in some cases require a distinct, in practice
there should be very little difference between checking the absence of data through an
outer join or a not in () uncorrelated subquery, since the column which is used for the
join happens to be the very same column that is compared to the result set of the
subquery. But SQL is famous for being a language in which the manner of the query
expression often has a very real effect on the pattern of execution, even if the theory says
otherwise. It all depends on the degree of sophistication of the optimizer, and whether it
processes both types of queries in a similar way or not. In other words, SQL is not a truly
declarative language, even if the enhancement of optimizers with each new version

slowly improves its reliability.

Before closing this topic, watch out for the perennial SQL party-poopers—null values.
Although in an in () subquery a null value joining the flow of non-null values does not
bother the outer query, with a not in () subquery, any null value returned by the inner
query causes the not in () condition to be evaluated as false. It does not cost much to

ensure that a subquery returns no null value—and doing so will save you a lot of grief.

Data sets can be compared using various techniques, but outer
joins and set operators are likely to be efficient.

166 CHAPTER SIX



