Database Tuning Improvements

In this section we will outline the new and improved features regarding database and instance tuning. Oracle has introduced some good features that enhance self-tuning and automated tuning. They are summarized as follows:

· User initiated Buffer Cache Flushing

· Automated Checkpoint Tuning

· CPU Costing

· Dynamic Sampling

· Tuning Transaction Recovery and Easy Monitoring

User initiated Buffer Cache Flushing

In the past, we had a facility to flush the shared pool. The FLUSH SHAREDPOOL clause of ALTER SYSTEM lets you clear all data from the shared pool in the SGA (system global area). This is a useful feature to clear existing data and re-load fresh data. Now, with 10g, it becomes possible for users to flush the cache buffers also.

Before 10g, Oracle used to internally flush the buffer cache blocks as needed. The FLUSH SHAREDPOOL clause is useful if you need to measure the performance of rewritten queries or a suite of queries from identical starting points. Use the following statement to flush the buffer cache.

SQL> ALTER SYSTEM FLUSH BUFFER_CACHE;

System altered.

However, note that this clause is intended for use only on a test database. It is not advisable to use this clause on a production database, because subsequent queries will have no hits, only misses.

The following example shows the effect of flush buffer_cache XE "buffer_cache" . There are 50,000 rows in the table ‘POLICYREC’.

SQL> update POLICYREC set sum_assured = sum_assured + 15;

50000 rows updated.

SQL> commit;

Commit complete.

SQL> select o.OBJECT_TYPE, substr(o.OBJECT_NAME,1,10)

 objname , b.objd , b.status, count(b.objd) from v$bh b,

 dba_objects o where b.objd = o.data_object_id and

 o.owner = 'NYUSER' group by o.object_type,

 o.object_name,b.objd, b.status ;

OBJECT_TYPE OBJNAME OBJD STATUS COUNT(B.OBJD)

----------- ------------- ------ ------ -------

TABLE TEST1 43058 free 6

TABLE POLICYREC 43061 cr 47

TABLE POLICYREC 43061 free 238

TABLE POLICYREC 43061 xcur 376

SQL> alter system flush buffer_cache;

System altered.

SQL> select o.OBJECT_TYPE, substr(o.OBJECT_NAME,1,10)

 objname , b.objd , b.status, count(b.objd) from v$bh b,

 dba_objects o where b.objd = o.data_object_id and

 o.owner = 'NYUSER' group by o.object_type,

 o.object_name,b.objd, b.status ;

OBJECT_TYPE OBJNAME OBJD STATUS COUNT(B.OBJD)

---------- -------------- ----- ----- -------------

TABLE TEST1 43058 free 6

TABLE POLICYREC 43061 free 660
Automated Checkpoint Tuning

Check-pointing is an important Oracle activity which records the highest system change number (SCN,) so that all data blocks less than or equal to the SCN are known to be written out to the data files. If there is a failure and then subsequent cache recovery, only the redo records containing changes at SCN(s) higher than the checkpoint need to be applied during recovery.

As we are aware, instance and crash recovery occur in two steps - cache recovery followed by transaction recovery. During the cache recovery phase, also known as the rolling forward stage, Oracle applies all committed and uncommitted changes in the redo log files to the affected data blocks. The work required for cache recovery processing is proportional to the rate of change to the database and the time between checkpoints.

Fast-start recovery can greatly reduce the mean time to recover (MTTR), with minimal effects on online application performance. Oracle continuously estimates the recovery time and automatically adjusts the check-pointing rate to meet the target recovery time.

Oracle recommends using the fast_start_mttr_target XE "fast_start_mttr_target" initialization parameter to control the duration of startup after instance failure. With 10g, the Oracle database can now self-tune check-pointing to achieve good recovery times with low impact on normal throughput. You no longer have to set any checkpoint-related parameters.

This method reduces the time required for cache recovery and makes the recovery bounded and predictable by limiting the number of dirty buffers and the number of redo records generated between the most recent redo record and the last checkpoint. Administrators specify a target (bounded) time to complete the cache recovery phase of recovery with the fast_start_mttr_target XE "fast_start_mttr_target" initialization parameter, and Oracle automatically varies the incremental checkpoint writes to meet that target.

The target_mttr XE "target_mttr" field of v$instance_recovery XE "v$instance_recovery" contains the MTTR target in effect. The estimated_mttr XE "estimated_mttr" field of v$instance_recovery contains the estimated MTTR should a crash happen right away.

For example,

SQL> SELECT TARGET_MTTR, ESTIMATED_MTTR, CKPT_BLOCK_WRITES FROM V$INSTANCE_RECOVERY;

TARGET_MTTR ESTIMATED_MTTR CKPT_BLOCK_WRITES

----------- -------------- -----------------

 37 22 209187

Whenever you set fast_start_mttr_target to a nonzero value, and while MTTR advisory is ON, Oracle Corporation recommends that you disable (set to 0) the following parameters:

 LOG_CHECKPOINT_TIMEOUT

 LOG_CHECKPOINT_INTERVAL

 FAST_START_IO_TARGET

Because these initialization parameters either override fast_start_mttr_target or potentially drive checkpoints more aggressively than fast_start_mttr_target does, they can interfere with the simulation.

Easier Transaction Recovery Monitoring

During the second phase of instance recovery, Oracle rolls back uncommitted transactions. Oracle uses two methods: 'Fast-start on-demand rollback' and 'fast-start parallel rollback'. Together, these two features help to increase the efficiency of the recovery phase.

Using the fast-start on-demand rollback feature, the required transaction's recovery is handled first. If a user attempts to access a row that is locked by a terminated transaction, Oracle rolls back only those changes necessary to complete the transaction; in other words, it rolls them back on demand. Consequently, new transactions do not have to wait until all parts of a long transaction are rolled back.

In the fast-start parallel rollback method, the background process SMON acts as a coordinator and rolls back a set of transactions in parallel using multiple server processes. This feature is particularly useful when a system has transactions that run a long time before committing, especially parallel INSERT, UPDATE, and DELETE operations. SMON automatically decides when to begin parallel rollback and disperses the work among several parallel processes.

You can monitor the progress of fast-start parallel rollback by examining the v$fast_start_servers XE "v$fast_start_servers" and v$fast_start_transactions XE "v$fast_start_transactions" views. v$fast_start_servers provides information about all recovery processes performing fast-start parallel rollback. v$fast_start_transactions contains data about the progress of the transactions.

There are three new columns in the 10g release that assist monitoring. They are XID, PXID, and RCVSERVERS, as shown in the description below.

SQL> desc V$FAST_START_TRANSACTIONS

 Name Null? Type

 ---------------------------- -------- ------------

 USN NUMBER

 SLT NUMBER

 SEQ NUMBER

 STATE VARCHAR2(16)

 UNDOBLOCKSDONE NUMBER

 UNDOBLOCKSTOTAL NUMBER

 PID NUMBER

 CPUTIME NUMBER

 PARENTUSN NUMBER

 PARENTSLT NUMBER

 PARENTSEQ NUMBER

 XID RAW(8)

 PXID RAW(8)

 RCVSERVERS NUMBER

The above is an excerpt from the bestselling Oracle10g book Oracle Database 10g New Features by Mike Ault, Madhu Tumma and Daniel Liu, published by Rampant TechPress.

Mike Ault, one of the world's top Oracle experts, has finally consented to release his complete collection of more than 450 Oracle scripts, covering every possible area of Oracle administration and management.
This is the definitive collection of Oracle monitoring and tuning scripts, and it would take thousands of hours to re-create this vast arsenal of scripts from scratch.
Mike has priced his collection of 465 scripts at $39.95, less than a dime per script. You can download them immediately at this link:
http://www.rampant-books.com/download_adv_mon_tuning.htm
