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Chapter 1C H A P T E R O N E C H A P T E R 1

Introduction

rofessionals in any discipline need to know the foundations of their field. So if you’re

a database professional, you need to know the relational model, because that model is the

foundation (or a huge part of the foundation, anyway) of the database field in particular.

Now, every course in database management, be it academic or commercial, does at least

pay lip service to the idea of teaching the relational model—but most of that teaching

seems to be done very badly, if results are anything to go by. The relational model cer-

tainly isn’t very well or very widely understood in the database community at large. Here

are some possible reasons for this state of affairs:

• The model is taught in a vacuum. That is, for beginners at least, it’s hard to see the

relevance of the material, or it’s hard to understand the problems it’s meant to solve,

or both.

• The instructors themselves don’t fully understand or appreciate the significance of the

material.

• (Most likely in practice.) The model as such isn’t taught at all—the SQL language or

some specific dialect of that language, such as the Oracle dialect, is taught instead.

So this book is aimed at database professionals, especially commercial database

practitioners, who have had some exposure to the relational model but don’t know as

P
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much about it as they ought to. It’s definitely not meant for beginners; however, it isn’t a

refresher course, either. To be more specific: I’m sure you know something about SQL,

but—and I apologize if my tone is somewhat offensive here—if your knowledge of the

relational model derives only from your knowledge of SQL, then I’m afraid you won’t

know the relational model as well as you should, and you’ll probably know “some things

that ain’t so.”

N O T E
SQL ≠ the relational model!

Here by way of illustration are some relational issues that SQL isn’t too clear on (to put

it mildly):

• What databases, relations, and tuples really are

• The difference between relations and types

• The difference between relation values and relation variables

• The relevance of predicates and propositions

• The legitimacy of relation-valued attributes

• The crucial role of integrity constraints

and so on (this isn’t an exhaustive list). All of these issues, and of course many others, are

addressed in this book.

I say again: if your knowledge of the relational model derives only from your knowledge

of SQL, then you might know “some things that ain’t so.” One unfortunate consequence

of this state of affairs is that you might find, in reading this book, that there are some

things you have to unlearn—and unlearning something is notoriously hard to do. And a

related point...I’d like to recommend, politely, that you not skip the discussion of some

topic because you think you’re thoroughly familiar with that topic already. For example,

are you sure you know exactly what a key is, in relational terms? Or a join?

A Remark on Terminology
In that list of relational issues in the foregoing section, you probably noticed right away

that I used the formal terms relation, tuple,* and attribute. SQL doesn’t use these terms, of

course—it uses the more “user-friendly” terms table, row, and column instead. And I’m

generally sympathetic to the idea of more user-friendly terms if they can help make the

ideas more palatable. In the case at hand, however, it seems to me that, regrettably, they

don’t make the ideas more palatable; instead, they distort them, and in fact do the cause

of genuine understanding a grave disservice. The truth is, a relation is not a table, a tuple

* Usually pronounced to rhyme with couple.
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is not a row, and an attribute is not a column. And while it might be acceptable to pretend

otherwise in informal contexts—indeed, I’ve done so myself, in many of my books and

other writings—I would argue that it’s acceptable only if we all understand that the more

user-friendly terms are just an approximation to the truth and fail overall to capture the

essence of what’s really going on. To put it another way: if you do understand the true

state of affairs, then judicious use of the user-friendly terms can be a good idea; but in

order to learn and appreciate that true state of affairs in the first place, you really do need

to come to grips with the more formal terms. In this book, therefore, I’ll use those more

formal terms most of the time—and of course I’ll give precise definitions for them when

we need them (mostly not in this first chapter, though, where I’m just trying to lay a

certain amount of elementary groundwork).

And another point on terminology: having said that SQL tries to simplify one set of

terms, I must now add that it does its best to complicate another. I refer to its use of the

terms operator, function, procedure, routine, and method, all of which refer to essentially the

same thing (with, perhaps, very minor differences). In this book I’ll use the term

operator throughout.

Talking of SQL, by the way, please note that I use the term SQL to mean the standard version of

that language exclusively, not some product-specific dialect—barring explicit statements to

the contrary, of course. (I did mention this point in the preface, but I know that few

people actually read prefaces.) In particular, my criticisms of SQL apply to the standard

version specifically. Thus, if some particular criticism happens not to apply to your own

favorite product, well, good, I’m glad to hear it (and bully for you).

Principles, Not Products
It’s worth taking a few moments to examine the question of why, as I claimed earlier, you

as a database professional need to know the relational model. The reason is that the

relational model isn’t product-specific; rather, it is concerned with principles. What do I

mean by principles? Well, here’s a definition (from Chambers Twentieth Century Dictionary):

principle: a source, root, origin: that which is fundamental: essential nature: theo-

retical basis: a fundamental truth on which others are founded or from which they

spring

The point about principles is this: they endure. By contrast, products and technologies

(and the SQL language, come to that) change all the time—but principles don’t. For

example, suppose you know Oracle; in fact, suppose you’re an expert on Oracle. But if

Oracle is all you know, then your knowledge is not necessarily transferable to, say, a DB2

or SQL Server environment (it might even get in the way of your making progress in that

new environment). But if you know the underlying principles—in other words, if you

know the relational model—then you have knowledge and skills that will be transferable:

knowledge and skills that you’ll be able to apply in every environment and that will never

be obsolete.
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In this book, therefore, we’ll be concerned with principles, not products, and foundations,

not fads. Of course, I realize that sometimes you do have to make compromises and

trade-offs in the real world. For one example, sometimes you might have good pragmatic

reasons for not designing the database in the theoretically optimal way (an issue I discuss

in Chapter 7). For another, consider SQL once again. Although it’s certainly possible to

use SQL relationally (for the most part, at any rate), sometimes you’ll find—because

existing implementations are so far from perfect—that there are severe performance

penalties for doing so...in which case you might more or less be forced into doing

something not “truly relational” (like writing a query in some weird and unnatural way

in order to get the implementation to use an index). However, I believe very firmly that

you should always make such compromises and trade-offs from a position of conceptual

strength. That is:

• You should understand what you’re doing when you do have to make such a

compromise.

• You should know what the theoretically correct situation is, and you should have very

good reasons for departing from it.

• You should document those reasons, too, so that if they go away at some future time

(for example, because a new release of the product you’re using does a better job in

some respect), then it might be possible to back off from the original compromise.

The following quote—which is attributed to Leonardo da Vinci (1452–1519) and is thus

some 500 years old!—sums up the situation admirably:

Those who are enamored of practice without theory are like a pilot who goes into a

ship without rudder or compass and never has any certainty where he is going. Prac-

tice should always be based on a sound knowledge of theory.

(OK, I added the italics.)

A Review of the Original Model
You’re a database professional, so you already have some familiarity with the relational

model. The purpose of this section is to serve as a kickoff point for our subsequent

discussions; it reviews some of the most basic aspects of that model as originally defined.

Note the qualifier “as originally defined”! One widespread misconception about the

relational model is that it’s a totally static thing. It’s not. It’s like mathematics in that

respect: mathematics too is not a static thing but changes over time. In fact, the relational

model can itself be seen as a small branch of mathematics; as such, it evolves over time as

new theorems are proved and new results discovered. What’s more, those new

contributions can be made by anyone who’s competent to do so. Like mathematics again,

the relational model, though originally invented by one man, has become a community

effort and now belongs to the world.
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By the way, in case you don’t know, that one man was E. F. Codd, at the time a

researcher at IBM.* It was late in 1968 that Codd, a mathematician by training, first

realized that the discipline of mathematics could be used to inject some solid principles

and rigor into the field of database management, which was all too deficient in such

qualities prior to that time. His original definition of the relational model appeared in an

IBM Research Report in 1969, and I’ll have a little more to say about that paper in

Appendix B.

Structural Features
The original model had three major components—structure, integrity, and

manipulation—and I’ll briefly describe each in turn. Please note right away, however,

that all of the “definitions” I’ll be giving are very loose; I’ll make them more precise as

and when appropriate in later chapters.

First of all, then, structure. The principal structural feature is, of course, the relation itself,

and as everybody knows it’s common to picture relations as tables on paper (see

Figure 1-1 for a self-explanatory example). Relations are defined over types (also known

as domains); a type is basically a conceptual pool of values from which actual attributes in

actual relations take their actual values. With reference to the simple departments-and-

employees database illustrated in Figure 1-1, for example, there might be a type called

DNO (“department numbers”), which is the set of all valid department numbers. The

attribute called DNO in the DEPT relation and the attribute called DNO in the EMP

relation then would each contain values that are taken from that conceptual pool. (By

the way, it isn’t necessary for attributes to have the same name as the corresponding

type, and often they won’t. We’ll see plenty of counterexamples later.)

As I’ve said, tables like those in Figure 1-1 depict relations: n-ary relations, to be precise.

An n-ary relation can be pictured as a table with n columns; the columns in the picture

correspond to attributes of the relation and the rows correspond to tuples. Also, the value n

can be any nonnegative integer. A 1-ary relation is said to be unary; a 2-ary relation,

binary; a 3-ary relation, ternary; and so on.

* E for Edgar and F for Frank—but he always signed with his initials. To his friends, among whom I
was proud to count myself, he was Ted.

FIGURE 1-1. The departments-and-employees database—sample values

DNO DNAME BUDGET ENO ENAME DNO SALARY

DEPT EMP

D1 Marketing 10M
D2 Development 12M
D3 Research 5M

E1 Lopez D1 40K
E2 Cheng D1 42K
E3 Finzi D2 30K
E4 Saito D2 35K

DEPT.DNO referenced by EMP.DNO
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The relational model also supports various kinds of keys. To begin with, every relation has

at least one candidate key.* A candidate key is just a unique identifier; in other words, it’s a

combination of attributes—often, but not always, a “combination” involving just one

attribute—such that every tuple in the relation has a unique value for the combination in

question. In Figure 1-1, for example, every department has a unique department number

and every employee has a unique employee number, so we can say that {DNO} is a

candidate key for DEPT and {ENO} is a candidate key for EMP. Note the braces, by the

way: candidate keys are always combinations, or sets, of attributes—even when the set

contains just one attribute—and braces are conventionally used to enclose sets of things.

Next, a primary key is a candidate key that’s been singled out for special treatment in some

way. If a given relation has just one candidate key, then it obviously makes no real

difference if we say it’s the primary key. But if the relation has two or more candidate

keys, then we’re supposed to choose one of them as primary, meaning it’s somehow

“more equal than the others.” Suppose, for example, that every employee has a unique

employee number and a unique employee name, so that {ENO} and {ENAME} are both

candidate keys for EMP. Then we might choose {ENO}, say, to be the primary key.

Notice I said we’re supposed to choose a primary key. If there’s just one candidate key,

then there’s no choice and no problem. But if there are two or more, then choosing one

and making it primary smacks a little bit of arbitrariness (at least to me); certainly there

are situations where there don’t seem to be any good reasons for making such a choice.

In this book, I usually will follow the primary key discipline—and in pictures like

Figure 1-1 I’ll mark primary key attributes by double underlining—but I stress the point

that it’s really candidate keys, not primary keys, that are significant from a relational

point of view. Partly for this reason, from this point forward I’ll use the term key,

unqualified, to mean a candidate key specifically. (In case you were wondering, the

“special treatment” enjoyed by primary keys over other candidate keys is mainly syntactic

in nature, anyway; it isn’t fundamental, and it isn’t very important.)

Finally, a foreign key is a set of attributes in one relation whose values are required to

match the values of some candidate key in some other relation (or possibly in the same

relation). With reference to Figure 1-1, for example, {DNO} is a foreign key in EMP

whose values are required to match values of the candidate key {DNO} in DEPT (as I’ve

tried to suggest by means of a suitably labeled arrow in the figure). By required to match, I

mean that if, for example, EMP includes a tuple in which DNO has the value D2, then

DEPT had better also include a tuple in which DNO has the value D2; otherwise, EMP

would show some employee as being in a nonexistent department, and the database

wouldn’t be “a faithful model of reality.”

* Strictly speaking, this sentence should read “Every relvar has at least one candidate key” (see the
section “Relations Versus Relvars,” later in this chapter). Similar remarks apply at various places
elsewhere in this chapter, too (see Exercise 1-1 at the end of the chapter).
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Integrity Features
An integrity constraint (constraint for short) is basically just a boolean expression that must

evaluate to TRUE. In the case of departments and employees, for example, we might

have a constraint to the effect that SALARY values must be greater than zero. Now, any

given database will be subject to numerous constraints, but those constraints will

necessarily be expressed in terms of the relations in that particular database and will be

specific to that database. By contrast, the relational model (at least as originally

formulated) includes two generic integrity rules—generic in the sense that they apply to

every database, loosely speaking. One has to do with primary keys and the other with

foreign keys:

Entity integrity

Primary key attributes don’t permit nulls.

Referential integrity

There mustn’t be any unmatched foreign key values.

Let me explain the second first. By the term unmatched foreign key value, I mean a foreign

key value for which there doesn’t exist an equal value of the corresponding candidate

key. Thus, for example, the departments-and-employees database would be in violation

of the referential integrity rule if it included an EMP tuple with, say, a DNO value of D2

but no corresponding DEPT tuple. So the referential integrity rule simply spells out the

semantics of foreign keys; the name referential integrity derives from the fact that any

given foreign key value can be regarded as a reference to the tuple with that same value

for the corresponding candidate key. In effect, therefore, the rule just says: “If B

references A, then A must exist.”

As for the entity integrity rule, well, here I have a problem. The fact is, I reject the

concept of “nulls” entirely; that is, it is my very strong opinion that nulls have no place in

the relational model. (Codd thought otherwise, obviously, but I have strong reasons for

taking the position I do.) In order to explain the entity integrity rule, therefore, I need to

suspend disbelief, as it were (at least for the time being), but please understand that I’ll be

revisiting the whole issue of nulls in Chapter 3.

In essence, then, a null is a “marker” that means value unknown (crucially, it’s not itself a

value; it is, to repeat, a marker, or flag). For example, suppose we don’t know employee

E2’s salary. Then, instead of entering some real SALARY value in the tuple for that

employee in relation EMP—we can’t enter a real value, by definition, precisely because

we don’t know what that value should be—we mark the SALARY position within that

tuple as null:

ENO ENAME DNO

E2 Cheng D1

SALARY

,ch01.11210  Page 7  Tuesday, May 17, 2005  12:30 PM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

8 C H A P T E R  O N E

As you can see, this tuple contains nothing at all in the SALARY position. In this book I’ll

use shading as just shown to highlight such empty positions; you can think of that

shading as constituting the null “marker” or flag.

In terms of relation EMP, then, the entity integrity rule says, loosely, that an employee

might have an unknown name, department, or salary, but not an unknown employee

number—because if the employee number were unknown, we wouldn’t even know

which employee (that is, which “entity”) we were talking about.

That’s all I want to say about nulls for now. Forget about them until Chapter 3.

Manipulative Features
The manipulative part of the model consists of:

• A set of relational operators, such as difference (or MINUS), collectively called the rela-

tional algebra, together with

• A relational assignment operator that allows the value of some relational expression,

such as r MINUS s (where r and s are relations), to be assigned to some relation.

The relational assignment operator is fundamentally how updates are done in the

relational model,* and I’ll have more to say about it later, in the section “Relations Versus

Relvars.” As for the relational algebra, it consists of a set of operators that allow “new”

relations to be derived from “old” ones (speaking very loosely). More precisely, each

operator takes at least one relation as input and produces another relation as output; for

example, difference (or MINUS) takes two relations as input and “subtracts” one from the

other to derive another relation as output. And it’s very important that the output is

another relation: that’s the well-known closure property of the relational algebra. The

closure property is what lets us write nested relational expressions; since the output from

every operation is the same kind of thing as the input, the output from one operation can

become the input to another—meaning, for example, that we can take the difference

between r and s, feed the result as input to a union with some relation u, feed that result

as input to an intersection with some relation v, and so on.

Now, any number of operators can be defined that fit the simple definition of “at least

one relation in, exactly one relation out.” In the following list I’ll briefly describe what

are usually thought of as the original eight operators (essentially the ones Codd defined

in his earliest papers); in Chapter 5 I’ll introduce a number of additional operators and

describe them in more detail. Figure 1-2 is a pictorial representation of the original eight

operators. Note: If you’re unfamiliar with any of these operators—especially divide!—

and find the following brief descriptions hard to follow, don’t worry about it; I’ll be

going into much more detail, with lots of examples, later (mostly in Chapter 5).

* I follow convention throughout this book in using the generic term “update” to refer to the INSERT,
DELETE, and UPDATE (and assignment) operators considered collectively. When I want to refer to
the UPDATE operator specifically, I’ll set it in all caps as just shown.
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Restrict

Returns a relation containing all tuples from a specified relation that satisfy a specified

condition. For example, we might restrict relation EMP to just the tuples where the

DNO value is D2.

Project

Returns a relation containing all (sub)tuples that remain in a specified relation after

specified attributes have been removed. For example, we might project relation EMP

on just the ENO and SALARY attributes.

Product

Returns a relation containing all possible tuples that are a combination of two tuples,

one from each of two specified relations. Product is also known variously as cartesian

product, cross product, cross join, and cartesian join (in fact, it is just a special case of join, as

we’ll see in Chapter 5).

FIGURE 1-2. The original relational algebra (results shaded)

restrict project

a
b
c

x
y

a
a
b

x
y
x

b y
c x
c y

cartesian product

intersect union difference

a1
a2
a3

b1
b1
b2

b1
b2
b3

c1
c2
c3

a1
a2
a3

b1
b1
b2

c1
c1
c2

(natural) join a
a
a

x
y
z

b x
c y

x
z

a

divide
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Intersect

Returns a relation containing all tuples that appear in both of two specified relations.

(Actually, intersect also is a special case of join.)

Union

Returns a relation containing all tuples that appear in either or both of two specified

relations.

Difference

Returns a relation containing all tuples that appear in the first and not the second of

two specified relations.

Join

Returns a relation containing all possible tuples that are a combination of two tuples,

one from each of two specified relations, such that the two tuples contributing to any

given result tuple have a common value for the common attributes of the two rela-

tions (and that common value appears just once, not twice, in that result tuple).

N O T E
This kind of join was originally called the natural join. Since natural

join is far and away the most important kind, however, it’s become

standard practice to take the unqualified term join to mean the natural

join specifically, and I’ll follow that practice in this book.

Divide

Takes two relations, one binary and one unary, and returns a relation consisting of all

values of one attribute of the binary relation that match (in the other attribute) all val-

ues in the unary relation.

One last point to close this subsection: as you probably know, there’s also something

called the relational calculus. The relational calculus can be regarded as an alternative to

the relational algebra; that is, instead of saying the manipulative part of the relational

model consists of the relational algebra (plus relational assignment), we can equally well

say it consists of the relational calculus (plus relational assignment). The two are

equivalent and interchangeable, in the sense that for every algebraic expression there’s a

logically equivalent expression of the calculus and vice versa. I’ll have a little more to say

about the calculus in Appendix A.

The Running Example
I’ll finish up this brief review by introducing the example I’ll use as the basis for most if

not all of the discussions in the rest of the book: the well-known suppliers-and-parts

database (see Figure 1-3). To elaborate:

Suppliers

Relation S denotes suppliers (more accurately, suppliers under contract). Each supplier

has one supplier number (SNO), which is unique to that supplier (and so {SNO} is the
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primary key); one name (SNAME), not necessarily unique (though the SNAME values

in Figure 1-3 do happen to be unique); one rating or status value (STATUS); and one

location (CITY).

Parts

Relation P denotes parts (more accurately, kinds of parts). Each kind of part has one

part number (PNO), which is unique (so {PNO} is the primary key); one name

(PNAME); one color (COLOR); one weight (WEIGHT); and one location where parts of

that kind are stored (CITY).

Shipments

Relation SP denotes shipments (it shows which parts are supplied by which suppliers).

Each shipment has one supplier number (SNO), one part number (PNO), and one

quantity (QTY). For the sake of the example, I assume there’s at most one shipment at

any given time for a given supplier and a given part (and so {SNO,PNO} is the primary

key; also, {SNO} and {PNO} are both foreign keys, matching the primary keys of S and

P, respectively). Note that the database shown in Figure 1-3 includes one supplier, sup-

plier S5, with no shipments at all.

Model Versus Implementation
Before going any further, there’s one very important point I need to explain, because it

underpins everything else in this book. The relational model is, of course, a data model.

Unfortunately, however, this latter term has two quite distinct meanings in the database

world. The first and more fundamental meaning is this:

Definition: A data model (first sense) is an abstract, self-contained, logical definition of

the data structures, data operators, and so forth, that together make up the abstract

machine with which users interact.

This is the meaning we have in mind when we talk about the relational model in

particular. And, armed with this definition, we can usefully (and importantly) go on to

FIGURE 1-3. The suppliers-and-parts database—sample values

SNO PNO QTY

S1 300
S1 200
S1 400
S1 200

SNO SNAME STATUSS

S1 Smith 20
S2 Jones 10
S3 Blake 30

CITY

S4
S5

Clark
Adams

20
30

London
Paris
Paris
London
Athens S1

S1
S2
S2
S3
S4
S4
S4

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

100
100
300
400
200
200
300
400

SP

PNO PNAME COLORP

P1 Nut Red
P2 Bolt Green
P3 Screw Blue

WEIGHT

P4
P5

Screw
Cam

Red
Blue

12.0
17.0
17.0
14.0
12.0

CITY

London
Paris
Oslo
London
Paris

P6 Cog Red 19.0 London
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distinguish a data model in this first sense from its implementation, which can be defined as

follows:

Definition: An implementation of a given data model is a physical realization on a

real machine of the components of the abstract machine that together constitute

that model.

I’ll illustrate these definitions in terms of the relational model specifically. First, and

obviously enough, the concept of relation is itself part of the model: users have to know

what relations are, they have to know they’re made up of tuples and attributes, they

have to know how to interpret them, and so on. All that is part of the model. But they

don’t have to know how relations are physically stored on the disk, or how individual

data values are physically encoded, or what indexes or other access paths exist; all that is

part of the implementation, not part of the model.

Or consider the concept join: users have to know what a join is, they have to know how

to invoke a join, they have to know what the result of a join looks like, and so on. Again,

all that is part of the model. But they don’t have to know how joins are physically

implemented, or what expression transformations take place under the covers, or what

indexes or other access paths are used, or what physical I/O’s occur;* all that is part of the

implementation, not the model.

In a nutshell, then:

• The model (first meaning) is what the user has to know.

• The implementation is what the user doesn’t have to know.

(Of course, I’m not saying users aren’t allowed to know about the implementation; I’m

just saying they don’t have to. In other words, everything to do with the implementation

should be, at least potentially, hidden from the user.)

Here are some important consequences of the foregoing definitions. First, note that

performance is fundamentally an implementation issue, not a model issue—despite

extremely common misconceptions to the contrary. We’re often told, for example, that

“joins are slow.” But such remarks make no sense! Join is part of the model, and the

model as such can’t be said to be either fast or slow; only implementations can be said to

possess any such quality. Thus, we might reasonably say that some specific product X has

a faster or slower implementation of some specific join than some other specific product

Y—but that’s all.

* I/O = input/output operation.
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N O T E
I don’t want to give the wrong impression here. It’s true that perfor-

mance is basically an implementation issue; but that doesn’t mean a

good implementation will perform well if you use the model badly!

Indeed, this is precisely one of the reasons why you need to know the

model (I mean, so that you don’t use it badly). If you write an expres-

sion such as S JOIN SP, you’re within your rights to expect the imple-

mentation to do a good job on it; but if you insist on (in effect) hand-

coding the join yourself, perhaps like this:

do for all tuples in S ;
   fetch S tuple into TNO, TN, TS, TC ;
   do for all tuples in SP with SNO = TNO ;
      fetch SP tuple into TNO, TP, TQ ;
      emit tuple TNO, TN, TS, TC, TP, TQ ;
   end ;
end ;

then there’s no way you’re going to get good performance. Relational

systems should not be used like simple access methods.

Second, as you probably realize, it’s precisely the fact that model and implementation are

logically distinct that enables us to achieve data independence. Data independence (not a

great term, by the way, but we’re probably stuck with it) means we have the freedom to

change the way the data is physically stored and accessed without having to make

corresponding changes in the way the data is perceived by the user. The reason we might

want to change those storage and access details is, of course, performance; and the fact

that we can make such changes without having to change the way the data looks to the

user means that existing application programs, queries, and so on can still work. Very

importantly, therefore, data independence means protecting your investment in user training

and applications.

As you can see from the foregoing definitions, the distinction between model and

implementation is really just a special case (a very important special case) of the familiar

distinction between logical and physical. Sadly, however, most of today’s database systems,

even those that claim to be relational, don’t make those distinctions as clearly as they

should. As a direct consequence, they deliver far less data independence than they

should, and far less than relational systems are theoretically capable of. I’ll come back to

this issue in the next section, as well as in Chapter 7.

Now I want to turn to the second meaning of the term data model, which I dare say you’re

very familiar with. It can be defined thus:

Definition: A data model (second sense) is a model of the persistent data of some par-

ticular enterprise.

In other words, a data model in the second sense is just a (possibly somewhat abstract)

database design. For example, we might speak of the data model for some bank, or some

hospital, or some government department.
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Having now explained these two different meanings, I’d like to draw your attention to an

analogy that I think nicely illuminates the relationship between them:

• A data model in the first sense is like a programming language, whose constructs can

be used to solve many specific problems, but in and of themselves have no direct con-

nection with any such specific problem.

• A data model in the second sense is like a specific program written in that language—it

uses the facilities provided by the model, in the first sense of that term, to solve some

specific problem.

By the way, it follows from all of the above that if we’re talking about data models in the

second sense, we might reasonably speak of “relational models” in the plural or “a”

relational model (with an indefinite article). But if we’re talking about data models in the

first sense, then there’s only one relational model, and it’s the model (with the definite

article). I’ll have more to say on this issue in Chapter 8.

For the rest of this book I’ll use the term data model—or usually just model for short—

exclusively in its first sense.

Properties of Relations
Now let’s get back to an examination of basic relational concepts. In this section I want to

focus on some specific properties of relations themselves. First of all, every relation has a

heading and a body: the heading is a set of attributes (where an attribute is an attribute-

name:type-name pair), and the body is a set of tuples that conform to that heading. In

the case of the suppliers relation of Figure 1-3, for example, there are four attributes in

the heading and five tuples in the body. Note, therefore, that a relation doesn’t really

contain tuples—it contains a body, and that body in turn contains the tuples—but we do

usually talk as if relations contained tuples directly, for the sake of simplicity.

By the way, although it’s strictly correct to say that the heading consists of attribute-

name:type-name pairs, it’s usual to omit the type names in pictures like Figure 1-3 and

thereby pretend that the heading is a set of attribute names only. For example, the

STATUS attribute does have a type (INTEGER, let’s say), but I didn’t show it in

Figure 1-3. But you should never forget it’s there!

Next, the number of attributes in the heading is the degree (sometimes the arity), and the

number of tuples in the body is the cardinality. For example, relations S, P, and SP in

Figure 1-3 have degree 4, 5, and 3, respectively, and cardinality 5, 6, and 12, respectively.

Next, relations never contain duplicate tuples. This property follows because a body is a set

of tuples, and sets in mathematics do not contain duplicate elements. By the way, SQL

fails here: SQL tables are allowed to contain duplicate rows, as I’m sure you know, and

SQL tables are thus not relations, in general. Please understand, therefore, that in this

book I always use the term “relation” to mean a relation—without duplicate tuples, by

definition—and not an SQL table. Please understand also that relational operations always

produce a result without duplicate tuples, again by definition. For example, projecting the
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suppliers relation of Figure 1-3 on CITY produces the result shown on the left and not the

one on the right:

(The result on the left can be obtained via the SQL query SELECT DISTINCT S.CITY

FROM S. Omitting DISTINCT leads to the nonrelational result on the right. Note in

particular that the table on the right has no double underlining; that’s because it has no

key, and hence a fortiori no primary key.)

Next, the tuples of a relation are unordered, top to bottom. This property follows because,

again, a body is a set, and sets in mathematics have no ordering to their elements. (Thus,

for example, {a,b,c} and {c,a,b} are the same set in mathematics, and the same kind of thing

is naturally true in the relational model.) Of course, when we draw a relation as a table on

paper, we do have to show the rows in some top-to-bottom order, but that ordering

doesn’t correspond to anything relational. In the case of the suppliers relation of

Figure 1-3, for example, I could have shown the rows in any order—say, supplier S3, then

S1, then S5, then S4, then S2—and the picture would still represent the same relation.

N O T E
The fact that the tuples of a relation are unordered doesn’t mean queries

can’t include an ORDER BY specification, but it does mean that such

queries produce a result that’s not a relation. ORDER BY is useful for the

purpose of displaying results, but it isn’t a relational operator as such.

In similar fashion, the attributes of a relation are also unordered, left to right, because a

heading too is a mathematical set. Again, when we draw a relation as a table on paper,

we have to show the columns in some left-to-right order, but that ordering doesn’t

correspond to anything relational. In the case of the suppliers relation of Figure 1-3, for

example, I could have shown the columns in any left-to-right order—say STATUS,

SNAME, CITY, SNO—and the picture would still represent the same relation in the

relational model. Incidentally, SQL fails here too: SQL tables do have a left-to-right

ordering to their columns (another reason why SQL tables aren’t relations, in general).

For example, the pictures below represent the same relation, but two different SQL tables:

CITY

London
Paris
Athens

CITY

London
Paris
Paris
London

Athens

SNO

S1
S2
S3

CITY

London
Paris
Paris
London

Athens

S4

S5

CITY

London
Paris
Paris
London

Athens

SNO

S1
S2
S3
S4

S5
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(The corresponding SQL queries are, respectively, SELECT S.SNO, S.CITY FROM S and

SELECT S.CITY, S.SNO FROM S. By the way, you might be thinking that the difference

between these two tables is hardly very significant; in fact, however, it has some serious

consequences, some of which I’ll be touching on in later chapters.)

Next, relations are always normalized (equivalently, they’re in first normal form, 1NF).

Informally, this means that, in terms of the tabular picture of a relation, at every row-

and-column intersection we always see just a single value. More formally, it means that

every tuple in every relation contains just a single value, of the appropriate type, in

every attribute position. I’ll have quite a lot more to say on this particular issue in the

next chapter.

Next, we draw a distinction between base and derived relations. As I explained earlier,

the operators of the relational algebra allow us to start with some given relations—

perhaps those of Figure 1-3—and obtain further relations from those given ones. The

given relations are the base ones; the others are derived. Now, a relational system

obviously has to provide a means for defining the base relations in the first place. In

SQL, this task is performed by the CREATE TABLE statement (the SQL counterpart to a

base relation being, of course, a base table). And base relations obviously have to be

named—for example:

CREATE TABLE SP ... ;

But certain derived relations—including in particular what are called views—are also

named. A view (also known as a virtual relation) is a named relation whose value at all

times is the result of evaluating a certain relational expression at the time in question.

Here’s an SQL example:

CREATE VIEW SST_PARIS AS
   SELECT S.SNO, S.STATUS
   FROM   S
   WHERE  S.CITY = 'Paris' ;

You can operate on views as if they were base relations, but they aren’t base relations;

instead, you can think of views as being materialized—in effect, you can think of a base

relation as being dynamically built—at the time they’re referenced. (Though I should

emphasize that thinking of views being materialized when they’re referenced is only a

way of thinking; it’s not what’s really supposed to happen. How views really work is

explained in Chapter 4.)

There’s an important point I need to make here. You’ll often see people describe the

difference between base relations and views like this:

• Base relations really exist—that is, they’re physically stored in the database.

• Views, by contrast, don’t “really exist”—they merely provide different ways of looking

at the base relations.
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But the relational model has nothing to say about what’s physically stored! In particular, it does

not say that base relations are physically stored. The only requirement is that there must

be some mapping between whatever is physically stored and those base relations, so that

those base relations can somehow be constructed when they’re needed (conceptually

speaking, at any rate). If the base relations can be constructed in this way, then so can

everything else. For example, we might physically store the join of suppliers and

shipments, instead of storing them separately; base relations S and SP then could be

constructed, conceptually, by taking appropriate projections of that join. In other words,

base relations are no more (and no less!) “physical” than views are, so far as the

relational model is concerned.

The fact that the relational model says nothing about physical storage is deliberate, of

course. The idea was to give implementers the freedom to implement the model in

whatever way they chose—in particular, in whatever way seemed likely to yield good

performance—without compromising on data independence. The sad fact is, however,

that SQL vendors seem mostly not to have understood this point; instead, they map base

tables fairly directly to physical storage,* and (as noted in the previous section) their

products therefore provide far less data independence than relational systems are

theoretically capable of. Indeed, this state of affairs is reflected in the SQL standard

itself—as well as in most other SQL documentation—which typically (fairly ubiquitously,

in fact) uses expressions such as “tables and views.” Clearly, anyone who uses such an

expression is under the impression that tables and views are different things, and

probably under the impression too that “tables” are physical and views aren’t. But the

whole point about a view is that it is a table (or, as I would prefer to say, a relation); that

is, we can perform the same kinds of operations on views as we can on regular relations

(at least in the relational model), because views are “regular relations”! Throughout this

book, therefore, I’ll reserve the term relation to mean a relation (possibly a base relation,

possibly a view, possibly a query result, and so on); if I mean (for example) a base

relation specifically, then I’ll say “base relation.” And I suggest very strongly that you

adopt the same discipline for yourself. Don’t fall into the common trap of thinking that

the term relation means a base relation specifically.

Relations Versus Relvars
Now, it’s entirely possible that you already knew everything I’ve discussed in this chapter

so far; in fact, I rather hope you did (though I also hope that doesn’t mean you found the

discussions boring). Anyway, now I come to something you might not know already. The

fact is, historically there’s been a lot of confusion between relations—I mean relations as

such—on the one hand, and relation variables on the other.

* I say this knowing full well that today’s SQL products provide a variety of options for hashing, par-
titioning, indexing, clustering, and otherwise organizing the data as stored on the disk. I still con-
sider the mapping to physical storage in those products to be “fairly direct.”
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Forget about databases and relations for a moment; instead, consider the following

simple programming language example. Suppose I say in some arbitrary programming

language:

DECLARE N INTEGER ... ;

Then N here is not an integer. Rather, it’s a variable whose values are integers as such

(different integers at different times). Right? I’m sure we can agree on that. Well, in

exactly the same way, if we say in SQL:

CREATE TABLE T ... ;

then T is not a table; it’s a table variable or (as I would prefer to say, ignoring various SQL

quirks such as nulls and duplicate rows) a relation variable, whose values are relations as

such (different relations at different times).

Consider Figure 1-3 once again. That figure shows three relation values: namely, those

that happen to appear in the database at some particular time. But if we were to look at

the database at some different time, we would probably see three different relation values

appearing in their place. In other words, S, P, and SP in that database are really variables:

relation variables, to be precise. For example, suppose the relation variable S currently

has the value—the relation value—shown in Figure 1-3, and suppose we delete the

tuples (actually there’s only one) for suppliers in Athens:

DELETE S WHERE CITY = 'Athens' ;

Here’s the result:

Conceptually, what’s happened is that the old value of S has been replaced in its entirety

by a new value. Of course, the old value (with five tuples) and the new one (with four)

are very similar, but they certainly are different values. In fact, the DELETE just shown is

logically equivalent to, and indeed shorthand for, the following relational assignment:*

S := S WHERE NOT ( CITY = 'Athens' ) ;

* I can’t show this in SQL because SQL doesn’t directly support relational assignment. Throughout
this book, I’ll show examples in SQL wherever possible—but when it’s not possible for some rea-
son, as here, I’ll use a more or less self-explanatory (and truly relational) language called Tutorial
D instead. Tutorial D is the language Hugh Darwen and I use to illustrate relational ideas in our
book Databases, Types, and the Relational Model: The Third Manifesto, Third Edition (Addison-Wesley,
2006); you can regard it as a realization in concrete syntax of the abstract constructs of the rela-
tional model (which SQL, regrettably, is not).

SNO

S1
S2
S3

SNAME

Smith
Jones
Blake
ClarkS4

STATUS

20
10
30
20

CITY

London
Paris
Paris
London

S
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As with all assignments, the effect here is that (a) the source expression on the right side is

evaluated, and (b) the result of that evaluation is then assigned to the target variable on

the left side, with the overall result already explained.

In like fashion, of course, the familiar INSERT and UPDATE statements are also really

shorthand for certain relational assignments. Thus, as I mentioned in the section “A

Review of the Original Model,” relational assignment is the fundamental update operator

in the relational model, and indeed it’s the only update operator that’s really needed,

logically speaking.

So we have these two different concepts, relation value and relation variable. The trouble

is that the literature has historically used the same term, relation, to stand for both, and

that practice has certainly led to confusion. In this book, therefore, I’ll distinguish very

carefully between the two from this point forward—I’ll talk in terms of relation values

when I mean relation values and relation variables when I mean relation variables.

However, I’ll also abbreviate relation value most of the time to just relation (exactly as we

abbreviate integer value most of the time to just integer). And I’ll abbreviate relation variable

most of the time to just relvar; for example, I’ll say the suppliers-and-parts database

contains three relvars.

As an exercise, you might like to go back over the text of this chapter so far and see

exactly where I used the term relation when I really ought to have used the term relvar

instead (or as well).

Values Versus Variables
The difference between relations and relvars is actually a special case of the difference

between values and variables in general, and I’d like to take a few moments to look at the

more general case. (It’s a bit of a digression, but I think it’s worth taking the time because

clear thinking here can be a tremendous help in so many areas.) Here then are some

definitions:

Definition: A value is an “individual constant”: for example, the individual integer 3.

A value has no location in time or space. However, values can be represented in

memory by means of some encoding, and those representations do have locations in

time and space. Indeed, distinct representations of the same value can appear at any

number of distinct locations in time and space, meaning, loosely, that any number

of different variables—see the definition below—can have the same value, at the

same time or different times. Observe in particular that, by definition, a value can’t be

updated; for if it could, then after such an update it would no longer be that value.

Definition: A variable is a holder for a representation of a value. A variable does have

location in time and space. Also, of course, variables, unlike values, can be updated;

that is, the current value of the variable can be replaced by another value.

Please note very carefully that it isn’t just simple things like the integer 3 that are

legitimate values. On the contrary, values can be arbitrarily complex; for example, a
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value might be a geometric point, or a polygon, or an X ray, or an XML document, or a

fingerprint, or an array, or a stack, or a list, or a relation (and on and on). Analogous

remarks apply to variables too, of course. I’ll have more to say on these matters in the

next two chapters.

Now, it might be hard to imagine people getting confused over a distinction as obvious as

that between values and variables, but in fact it’s all too easy to fall into traps in this area.

By way of illustration, consider the following extract from a tutorial on object-oriented

databases (the italicized portions in brackets are comments by myself):

We distinguish the declared type of a variable from...the type of the object that is

the current value of the variable [so an object is a value]...We distinguish objects from

values [so an object isn’t a value after all]...A mutator [is an operator such that it’s] pos-

sible to observe its effect on some object [so in fact an object is a variable].

Summary
For the most part, the aim of this preliminary chapter has been to tell you what I rather

hope you knew already (and you might therefore have felt it was rather light on

technical substance). Anyway, just to review briefly:

• I explained why we’d be concerned in this book with principles, not products, and why

I’d be using formal terminology such as relations, tuples, and attributes in place of their

more “user-friendly” SQL counterparts.

• Ι claimed that SQL and the relational model aren’t the same thing. We’ve seen a few

differences already—for example, the fact that SQL permits duplicate rows—and we’ll

see many more in later chapters.

• I gave an overview of the original model, touching in particular on the following con-

cepts: type, n-ary relation, tuple, attribute, candidate key, primary key, foreign key, entity integ-

rity, referential integrity, relational assignment, and the relational algebra. With regard to

the algebra, I mentioned closure and very briefly described the operators restrict, project,

product, intersection, union, difference, join, and divide.

• I discussed various properties of relations, introducing the terms heading, body, cardinal-

ity, and degree. Relations have no duplicate tuples, no tuple ordering top to bottom, and

no attribute ordering left to right. I also discussed views.

• I discussed the differences between model and implementation, relations and relvars, and

values and variables in general. The model versus implementation discussion in particu-

lar led to a discussion of data independence.

One last point (I didn’t mention this explicitly before, but I hope it’s obvious from

everything I did say): overall, the relational model is declarative, not procedural, in nature;

that is, we favor declarative solutions over procedural ones, wherever such solutions are

feasible. The reason is obvious: declarative means the system does the work, procedural
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means the user does the work (so we’re talking about productivity, among other things).

That’s why the relational model supports declarative queries, declarative updates,

declarative view definitions, declarative integrity constraints, and so on.*

Exercises
As noted in the preface, you certainly don’t have to do any of the exercises, but I think

it’s a good idea to try at least some of them. Answers, often giving more information

about the subject at hand, can be found online at http://oreilly.com/catalog/databaseid.

Exercise 1-1. (Repeated from the body of the chapter, but slightly reworded here.) If you

haven’t done so already, go through the chapter again and identify all of the places

where I used the term relation when I should by rights have used the term relvar

instead (or as well).

Exercise 1-2. Who was E. F. Codd?

Exercise 1-3. What’s a domain?

Exercise 1-4. What do you understand by the term referential integrity?

Exercise 1-5. The terms heading, body, attribute, tuple, cardinality, and degree, defined in the

body of the chapter for relation values, can all be interpreted in the obvious way to

apply to relvars as well. Make sure you understand this remark.

Exercise 1-6. Distinguish between the two meanings of the term data model.

Exercise 1-7. Explain the difference between model and implementation in your own

words.

Exercise 1-8. In the body of the chapter, I said that tables like those in Figures 1-1 and

1-3 weren’t relations as such but, rather, pictures of relations. What are some of the

specific points of difference between such pictures and the corresponding relations?

Exercise 1-9. Explain data independence in your own words.

Exercise 1-10. (Try this exercise without looking back at the body of the chapter.) What

relvars are contained in the suppliers-and-parts database? What attributes do they

involve? What candidate and foreign keys exist? (The point of this exercise is that it’s

worth making yourself as familiar as possible with the structure, at least, of the

running example. Of course, it’s not so important to remember the actual data values

in detail—though it wouldn’t hurt if you did.)

Exercise 1-11. “There’s only one relational model.” Explain this remark.

* As this book was going to press, I was informed that at least one well-known SQL product appar-
ently uses the term “declarative” to mean the system doesn’t do the work! That is, it allows the user
to state certain things declaratively (for example, the fact that a certain view has a certain key), but
it doesn’t enforce the constraint implied by that declaration—it simply assumes the user is going to
enforce it instead. Such terminological abuses do little to help the cause of genuine understanding.
Caveat lector.

,ch01.11210  Page 21  Tuesday, May 17, 2005  12:30 PM



This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

22 C H A P T E R  O N E

Exercise 1-12. The following is an excerpt from a recent database textbook: “[It] is impor-

tant to make a distinction between stored relations, which are tables, and virtual

relations, which are views...[We] shall use relation only where a table or a view could

be used. When we want to emphasize that a relation is stored, rather than a view, we

shall sometimes use the term base relation or base table.” This text betrays several confu-

sions or misconceptions regarding the relational model. Identify as many as you can.

Exercise 1-13. The following is an excerpt from another recent database textbook: “[The

relational] model...defines simple tables for each relation and many-to-many relation-

ships. Cross-reference keys link the tables together, representing the relationships

between entities. Primary and secondary indexes provide rapid access to data based

upon qualifications.” This text is intended as a definition of the relational model...

what’s wrong with it?

Exercise 1-14. Write SQL CREATE TABLE statements to define an SQL version of the

suppliers-and-parts database.

Exercise 1-15. The following is a typical SQL INSERT statement against the suppliers-

and-parts database:

INSERT INTO SP ( SNO, PNO, QTY )
       VALUES ( SNO('S5'), PNO('P6'), QTY(250) ) ;

Show an equivalent relational assignment operation. Note: I’m assuming here that

attributes SNO, PNO, and QTY are of types SNO, PNO, and QTY, respectively, and the

expressions SNO(‘S5’), PNO(‘P6’), and QTY(250) are literals of those types, with the

obvious interpretation. I’ll have more to say on such matters in the next two chapters.

Also, I realize I haven’t yet explained the syntax of relational assignment in detail, so

don’t worry too much about giving a syntactically correct answer—just do the best

you can.

Exercise 1-16. (Harder.) The following is a typical SQL UPDATE statement against the

suppliers-and-parts database:

UPDATE S
SET    STATUS = 25
WHERE  S.CITY = 'Paris' ;

Show an equivalent relational assignment operation. (The purpose of this exercise is to

get you thinking about what’s involved. I haven’t told you enough in this chapter to

allow you to answer it fully. See Chapter 5 for further discussion.)

Exercise 1-17. In the body of the chapter, I said that SQL doesn’t directly support rela-

tional assignment. Does it support it indirectly? If so, how?

Exercise 1-18. From a practical point of view, why do you think duplicate tuples, top-to-

bottom tuple ordering, and left-to-right attribute ordering are all very bad ideas?

(These questions deliberately weren’t answered in the body of the chapter, and this

exercise might best serve as a basis for group discussion. We’ll take a closer look at

such matters later in the book.)
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