
Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8
Blind folio: 273

Chapter
11

Querying

273

11-ch11.indd 273 9/5/11 4:23:56 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

274   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  275

he SQL SELECT statement lets you query data from the database. In many of the
previous chapters, you’ve seen examples of queries. Queries support several
different types of subqueries, such as nested queries that run independently or
correlated nested queries. Correlated nested queries run with a dependency on the
outer or containing query.

This chapter shows you how to work with column returns from queries and how to join tables
into multiple table result sets. Result sets are like tables because they’re two-dimensional data sets.
The data sets can be a subset of one table or a set of values from two or more tables. The SELECT
list determines what’s returned from a query into a result set. The SELECT list is the set of columns
and expressions returned by a SELECT statement. The SELECT list defines the record structure of
the result set, which is the result set’s first dimension. The number of rows returned from the query
defines the elements of a record structure list, which is the result set’s second dimension.

You filter single tables to get subsets of a table, and you join tables into a larger result set to
get a superset of any one table by returning a result set of the join between two or more tables.
Joins expand the SELECT list by adding columns or expressions, and set operations expand the
number of rows returned.

This chapter covers three topics:

	 Query results■■

Join results■■

Views: stored queries■■

The query results section shows you how to manage column values; perform concatenation
or parsing, math, and date calculations; and execute data type casting operations. It also shows
you how to perform conditional logic and aggregation operations.

The join results section shows you how to perform cross, inner, natural, left outer, right outer,
and full outer joins between tables. It demonstrates both the ANSI SQL-89 and ANSI SQL-92 syntax
for joins. This section also covers how to expand Oracle’s nested tables into two-dimensional result
sets and how to use the INTERSECT, UNION, UNION ALL, and MINUS set operators.

You’ll examine the basic flow of operation for SELECT statements, which applies to both
databases. The biggest difference between SELECT statements in Oracle and MySQL databases
involve their built-in functions. Built-in functions let you perform specialized behaviors such as
casting from one type to another, date mathematics, and null replacements. You’ll also understand
how to create views, which are stored queries.

Query Results
A SELECT statement (query) reads differently from how it acts. In English, a query selects something
from a table, or a set of tables, where certain conditions are true or untrue. Translating that English
sentence into programming instructions is the beauty and complexity of SQL. Although English
seems straightforward, queries work in a different event order. The event order also changes with
different types of queries.

Queries can be divided into three basic types:

	 Queries that return columns or results from columns■■

Queries that aggregate, or queries that return columns or results from columns by adding, ■■
averaging, or counting between rows

T

11-ch11.indd 274 9/5/11 4:23:57 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  275

Queries that return columns or results selectively (filtered by conditional expressions ■■
such as if statements), and these types of queries may or may not aggregate result sets

You can return column values or expressions in the SELECT list. Column values are
straightforward, because they’re the values in a column. Expressions aren’t quite that simple.
Expressions are the results from calculations. Some calculations involve columns and string literal
values, such as concatenated results (strings joined together to make a big string), parsed results
(substrings), or the mathematical result of the columns, literal values, and function returns.
Mathematical results can be calculated on numeric or date data types and returned as function
results from several built-in functions in both databases.

You can also be selective in your SELECT list, which means you can perform if-then-else logic
in any column. The selectivity determines the resulting value in the final result set. Result sets are
also formally called aggregate results because they’ve been assembled by SELECT statements.

Here’s the basic prototype for a SELECT list:

SELECT {column_name | literal_value | expression } AS alias [, {...}]]
WHERE [NOT] column_name {{= | <> | > | >= | < | <=} |
 [NOT] {{IN | EXISTS} | IS NULL}} 'expression'
[{AND | OR } [NOT] comparison_operation] [...];

You can return three things as an element in the SELECT list: a column value from a table or
view, a literal value, and an expression. The column value is easy to understand, because it’s the
value from the column—but what is its data type? A column returns the value in its native data
type when you call the query from a procedural programming language, such as C, C#, C++,
Java, PL/SQL, or SQL/PSM, or as a subquery. Subqueries are queries within queries and are
covered in the “Subqueries” section later in this chapter. A column returns a string when you call
the query from SQL*Plus or MySQL Monitor, and it is written to a console or a file. Literal values
must have a column alias when you want to reuse the value in a procedural program or as a
subquery result, and in those cases the values must be a string or number. Expressions are more
difficult because they’re the result of processing operations, such as concatenation or calculation,
or they return results from built-in or user-defined functions.

The next three examples show you how the types of queries work. All examples use queries
from a single table to let you focus on the differences between types.

Queries that Return Columns or Results from Columns
Figure 11-1 shows how a query returns a result set of column values in the SELECT list. You can see
how the elements are labeled and processed and the figure helps you visualize table aliases, column
aliases, basic comparison operations, and the basic order of clauses within the SELECT statement.

The following list qualifies the ANSI SQL pattern for processing a single table query:

	 It finds a table in the ■■ FROM clause.

It ■■ optionally assigns a table alias as a runtime placeholder for the table name.

It gets the table definition from the data catalog to determine the valid column names ■■
(not shown in the figure because it’s a hidden behavior).

If a table alias is present (and it is), it optionally maps the alias to the table’s data catalog ■■
definition.

It filters rows into the result set based on the value of columns in the ■■ WHERE clause.

11-ch11.indd 275 9/5/11 4:23:57 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

276   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  277

The list of columns in the ■■ SELECT clause filters the desired columns from the complete
set of columns in a row.

If an ■■ ORDER BY clause occurs in the query, rows are sorted by the designated columns.

Figure 11-1 also demonstrates table and column aliases. The table alias is generally unnecessary
when writing a query against a single table. It is useful and necessary when you want to avoid
typing complete table names to disambiguate column names that are the same in two or more
tables. Because the FROM clause is read first, all references to the item table are mapped to i in the
rest of the query. This means that a reference to item.item_title would not be found.

TIP
The AS keyword is optional when setting column aliases but ensures
clarity that an alias follows it. Consistent use increases typing but
decreases support costs.

Column aliases shorten the item_title and item_rating column names to title and
rating, respectively. Aliases let you use shorter or more descriptive words for columns in a
specific use case. Sometimes the shorter words aren’t appropriate as column names because
they’re too general, such as title. The AS keyword is optional in both Oracle and MySQL
databases, but I recommend that you use it, because the clarity can simplify maintenance of
queries. Just note that AS works only with column aliases and would create a statement parsing
error if you tried to use it before a table alias.

NOTE
The AS keyword cannot precede a table alias in Oracle; it can
precede only a column alias. MySQL supports an AS keyword for
a table alias.

In our example, we can modify the SELECT list to return an expression by concatenating a
string literal of “MPAA:” (Motion Picture Association of America) to the item_rating column.

1

2

3

4

The FROM clause finds the sources (tables
or views) and then the WHERE clause filters
the number of rows returned by the query.

Orders the returned rows by the number of
the column returned in the SELECT clause.

The SELECT clause filters
the columns that should be
returned by the query.

An equality comparison
between a column and
string literal value.

A LIKE comparison operator
between a column and string
literal value with a multiple
character wildcard operator.

Column aliases.

SELECT i.item_title AS title
, i.item_rating AS rating
FROM item i
WHERE i.item_rating = 'PG'
AND i.item_title LIKE 'Star Wars%'
ORDER BY 1, 2;

Figure 11-1.  Queries that return columns or results from columns

11-ch11.indd 276 9/5/11 4:23:59 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  277

Concatenating strings is like gluing them together to form a big string. It would look like this in
Oracle using a piped concatenation:

SELECT i.item_title AS title
, 'MPAA: ' || i.item_rating AS rating

The two vertical bars (||) are pipes, and when you use them to glue strings together, it’s
known as piped concatenation. MySQL doesn’t support piped concatenation, so you use a
built-in function to glue strings together, like so:

SELECT i.item_title AS title
, CONCAT('MPAA: ',i.item_rating) AS rating

The CONCAT built-in function returns a string by concatenating the call parameters sequentially.
Notice that literals and column values are equal call parameters to the function. Both of these
would return results like these:

TITLE RATING
------------------------- ----------
Star Wars I MPAA: PG
Star Wars II MPAA: PG
Star Wars III MPAA: PG

In another context, you can perform mathematical operations and string formatting. The
following SELECT list retrieves a transaction_date and a transaction_amount column
from the transaction table:

SQL> SELECT t.transaction_date
 2 , TO_CHAR(t.transaction_amount,'90.00') AS price
 3 , TO_CHAR(t.transaction_amount * .0875,'90.00') AS tax
 4 , TO_CHAR(t.transaction_amount * 1.0875,'90.00') AS total
 5 FROM transaction t
 6 WHERE t.transaction_date = '10-JAN-2009';

The TO_CHAR function formats the final number as a string. The 90.00 format mask instructs the
display as follows: a 9 means display a number when present and ignore the number when it is
not present; 0 means display a number when it is present and display a 0 when no number is
present. Inside the TO_CHAR function on lines 3 and 4, the column value is multiplied by numeric
literals that represent sales tax and price plus sales tax. The query would produce output like so:

Date Price Tax Total
--------- ------ ------ ------
10-JAN-09 9.00 0.79 9.79
10-JAN-09 3.00 0.26 3.26
10-JAN-09 6.00 0.53 6.53

The output is left-aligned, which means it’s formatted as a number, because strings are displayed
as right-aligned.

The equivalent formatting function in MySQL is the FORMAT function, which performs like this:

, FORMAT(t.transaction_amount * .0875,2) AS tax

The FROM clause takes a single table or a comma-separated list of tables when writing queries
in ANSI SQL-89 format. The FROM clause takes tables separated by join keywords and their join
criterion or criteria in ANSI SQL-92 syntax.

11-ch11.indd 277 9/5/11 4:23:59 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

278   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  279

The WHERE clause performs two types of comparisons. One is an equality comparison of two
values, which can come from columns, literals, or expressions. The other is an inequality comparison,
which can check when one value is found in another (such as a substring of a larger string); when
one value is greater than, greater than or equal to, less than, or less than or equal to another;
when one value isn’t equal to another value; when one value is in a set of values; or when one
value is between two other values. You can also state a negative comparison, such as WHERE
NOT. The WHERE NOT comparison acts like a not equal to operation.

Two specialized operators let you limit the number of rows returned by a query. Oracle
supports a ROWNUM pseudo column and MySQL supports the LIMIT function. You use ROWNUM
in Oracle to retrieve only the top five rows, like this:

WHERE rownum <= 6;

Here’s the LIMIT function in MySQL:

WHERE LIMIT 5;

These are handy tools when you’ve presorted the data and know where to cut off the return set.
When you forget to sort, the results generally don’t fit what you’re looking for.

The data set in the table determines whether the query returns unique or non-unique data—that
is, there could be multiple rows with an item_title of “Star Wars: A New Hope,” and they would
be returned because they match the criteria in the WHERE clause. You can use the DISTINCT
operator to suppress duplicates without altering the logic of the WHERE clause (see Figure 11-2).

Regular Expression Alternatives
Both Oracle and MySQL databases provide regular expression alternatives to the LIKE
comparison operator. They aren’t cross-portable, which makes the LIKE comparison
operator the more generic or application-neutral approach.

Oracle Regular Expression Alternative  Oracle provides a variation on the generic
SQL LIKE comparison with the REGEXP_LIKE function. The last line of the query in
Figure 11-1 could use the following in an Oracle database:

AND REGEXP_LIKE(i.item_title,'^Star Wars.+');

More information on the regular expression functions provided by the Oracle Database
is in Appendix E of Oracle Database 11g PL/SQL Programming.

MySQL Regular Expression Alternative  MySQL also provides a variation on the
generic SQL LIKE comparison operator. It uses the REGEXP operator. The last line of the
query in Figure 11-1 could use the following in a MySQL database:

AND i.item_title REGEXP '^Star Wars.+';

The regular expression match in both cases uses the carat (^) symbol (above the 6 on
most keyboards) at the beginning to indicate the beginning of the string. They both likewise
use the dot-plus (.+), which says look for any number of other trailing characters.

11-ch11.indd 278 9/5/11 4:24:00 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  279

There is no difference between Oracle and MySQL when using the DISTINCT operator,
which sorts the set to return a unique set—one copy of every row. Other than an incremental sort
and disposal of duplicate rows, the query in Figure 11-2 performs more or less the same steps as
the query shown in Figure 11-1. The next two subsections discuss subqueries and in-line views,
also known as runtime or derived tables.

Subqueries
Subqueries are any SELECT statement nested within another DML statement, such as INSERT,
UPDATE, DELETE, and SELECT statements. Subqueries have been demonstrated in earlier chapters
because they’re very useful.

Four types of basic subqueries can be used:

	 Scalar subqueries■■   Return only one column and one row of data

Single-row subqueries■■   Return one or more columns in one row of data

Multiple-row subqueries, ordinary subqueries, or subqueries■■   Return one or more
columns in one or more rows of data

Correlated subqueries■■   Return nothing, but they effect a join between the outer DML
statement and correlated subquery

Another subquery can be used inside the FROM clause of a SELECT statement. This type of
subquery is actually a runtime view, or derived table. It isn’t technically a subquery. The
following sections describe the uses and occurrences of subqueries in DML statements.

Scalar Subqueries  Scalar subqueries return only one thing: one column from one row. They
return a single value from a query. That’s because scalar variables are numbers, dates, strings, and
timestamps. Scalar data types are like primitive data types in the Java programming language.

Scalar subqueries are much like functions. You put comparative statements in the WHERE clause
to find a single row, similar to defining formal parameters in a function. Then you return a single
column in the SELECT clause, which inherits its data type from the data catalog. The SELECT
clause designates the return data type of a function just like the return keyword in procedural
programming languages.

You can use scalar subqueries in the following places in DML statements:

	 The ■■ VALUES clause of an INSERT statement

The ■■ SELECT clause of a SELECT statement

Figure 11-2.  Query that returns distinct columns or results from columns

Guarantees a unique set of rows.

SELECT DISTINCT
 i.item_title AS title
, i.item_rating AS rating
FROM item i
WHERE i.item_rating = 'PG'
AND i.item_title LIKE 'Star Wars%'
ORDER BY 1, 2;

11-ch11.indd 279 9/5/11 4:24:01 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

280   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  281

The ■■ SET clause of an UPDATE statement

The ■■ WHERE clause of a SELECT, UPDATE, or DELETE statement

Note
Chapter 8 shows you how to use scalar subqueries in the VALUES
clause. Chapter 9 shows you how to use scalar subqueries in the SET
and WHERE clauses of an UPDATE statement, and Chapter 10 shows
you how to use them in the WHERE clause of a DELETE statement.

Single-Row Subqueries  Single-row subqueries return one or more columns from a single
row. This is more or less like returning a record data type. You can apply the same analogy of
comparative statements in the WHERE clause mapping to formal parameter definitions and the
return type mapping to the list of columns in the SELECT clause. When you exclude the scalar
behaviors of a single-row subquery, the following uses remain:

	 The ■■ SET clause of an UPDATE statement

The ■■ WHERE clause of a SELECT, UPDATE, or DELETE statement

Note
Chapter 9 shows the use of single-row subqueries in the SET clause
of UPDATE statements. Chapters 9 and 10 show the respective use of
single-row subqueries in the WHERE clauses of UPDATE and DELETE
statements.

Multiple-Row Subqueries  Multiple-row subqueries are frequently called ordinary subqueries
or just subqueries. These subqueries return one to many columns and rows of data. That means
they return result sets that mimic two-dimensional tables.

You can use multiple-row subqueries only in the WHERE clause of SELECT, UPDATE, or
DELETE statements. You also must use a valid lookup comparison operator, such as the IN, =ANY,
=SOME, or =ALL operators. These operators act like a chain of logical OR comparisons in a WHERE
clause, because they look to see if the leftmost operand in the comparison is found in the list of
possible values. The leftmost operand can be a single column or a record data type comprising
two or more columns.

A couple of quick examples to qualify these behaviors might help. These examples use the
pseudo dual table to keep them bare bones. The list of values inside a set of parentheses is the
same as the value set returned by a multiple-row subquery. Here’s a standard use of a logical or
lookup comparison that deals with a single column:

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' IN ('Arthur','Galahad','Lancelot');

This is equivalent to the chaining of logical or statements in the WHERE clause, like this:

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' = 'Arthur'
OR 'Lancelot' = 'Galahad'
OR 'Lancelot' = 'Lancelot';

11-ch11.indd 280 9/5/11 4:24:02 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  281

The syntax doesn’t change much when you make the comparison of a record type to a list of
record types. The only other change is the substitution of the =ANY lookup operator for the IN
operator. As you can see, the lookup operators work the same way in this example:

SELECT 'True Statement' FROM dual
WHERE ('Harry Potter and the Chamber of Secrets','PG') =ANY
 (('Harry Potter and the Sorcerer's Stone','PG')
 ,('Harry Potter and the Chamber of Secrets','PG')
 ,('Harry Potter and the Prisoner of Azkaban','PG'));

which would work like this with a set of logical OR comparisons:

SELECT 'True Statement' FROM dual
WHERE (('Harry Potter and the Order of the Phoenix','PG-13') =
 ('Harry Potter and the Sorcerer's Stone','PG')
OR ('Harry Potter and the Order of the Phoenix','PG-13') =
 ('Harry Potter and the Chamber of Secrets','PG')
OR ('Harry Potter and the Order of the Phoenix','PG-13') =
 ('Harry Potter and the Prisoner of Azkaban','PG'));

The =ALL lookup operator is different, because it checks whether a scalar or record data
type is found in all instances of a list. This means it works on a logical and comparison basis.
This statement

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' =ALL ('Lancelot','Lancelot','Lancelot');

is roughly equivalent to this:

SELECT 'True Statement' FROM dual
WHERE 'Lancelot' = 'Lancelot'
AND 'Lancelot' = 'Lancelot'
AND 'Lancelot' = 'Lancelot';

Although these examples use lists of literal values, you could substitute multiple-row subqueries.
In many cases, this type of comparison is unnecessary because the same logic can be resolved
through ordinary join statements.

The only problem with lookup comparison operators is that they don’t easily extend the behavior
of the LIKE comparison operator. Figure 11-2 introduced a LIKE operator against a string literal
with a wildcard operator. When the literal value is replaced by a subquery, the comparison no
longer works when the query returns more than one row. It would fail with an ORA-01427 error in
Oracle, which tells you a “single-row subquery returns more than a one row.”

You can fix this behavior by doing two things. Substitute an IN, =ANY, or =SOME lookup
comparison operator for the LIKE comparison operator, and use the SUBSTR function to make the
comparison against exact matches. This allows you to match the substrings that should be the
same. This particular match (shown in Figure 11-3) starts at the first character, which is position 1,
because characters in strings are 1-based, not 0-based, in databases, and use the first nine
characters.

Oracle and MySQL both support the SUBSTR function. MySQL implements the SUBSTR
function as an alias for the SUBSTRING built-in, which works exactly like the equivalent function
in Oracle.

11-ch11.indd 281 9/5/11 4:24:02 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

282   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  283

Correlated Subqueries  Correlated subqueries join the inside query to a value returned by
each row in the outer query. As such, correlated subqueries act as function calls made for each
row returned by the outer query. The rule of thumb on correlated subqueries requires that you
join on uniquely indexed columns for optimal results. Ordinary subqueries typically outperform
correlated subqueries when you can’t join on uniquely indexed columns.

Correlated subqueries appear to return something when they’re inside the SET clause of an
UPDATE statement. If you flip back to Chapter 9, you’ll see that a multiple-row subquery actually
returns the value based on a match between the row being updated and a nested correlated
subquery. The actual update is performed by a multiple-row subquery, not a correlated subquery.
Correlated subqueries can’t return values through the SELECT list; they can only match results in
their WHERE clause.

You can use correlated subqueries in the following:

	 The ■■ SELECT list

The ■■ SET clause of an UPDATE statement

The ■■ WHERE clause of a SELECT, UPDATE, or DELETE statement

The multiple-row subquery example extends the behavior of Figure 11-2. The multiple-row
subquery runs once for the outer query and returns a list of values. The IN, =ANY, or =SOME
lookup operator lets you perform a lookup to determine whether a variable is found in the list
of returned values.

Although less efficient, a correlated subquery can be used to solve this type of comparison
problem with a regular expression. Oracle lets you perform it with the REGEXP_LIKE function,
like this:

AND EXISTS
 (SELECT NULL
 FROM temp_item ti
 WHERE REGEXP_LIKE(i.item_title,'^'||SUBSTR(ti.item_title,1,9)||'.+'));

Or you can do it like this with MySQL’s REGEXP operator:

AND EXISTS
 (SELECT NULL
 FROM temp_item ti
 WHERE i.item_title REGEXP CONCAT('^',SUBSTR(ti.item_title,1,9),'.+'));

Figure 11-3.  Wildcard comparison against multiple row subquery

A match using a combination
of the SUBSTR function and a
lookup comparison operator.SELECT DISTINCT

 i.item_title AS title
, i.item_rating AS rating
FROM item i
WHERE i.item_rating = 'PG'
AND SUBSTR(i.item_title,1,9) =SOME
 (SELECT SUBSTR(ti.item_title,1,9)
 FROM temp_item ti)
ORDER BY 1, 2;

11-ch11.indd 282 9/5/11 4:24:04 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  283

In these correlated query examples, you see Oracle’s piped concatenation model and MySQL’s
CONCAT function. Oracle's resolution is case sensitive while MySQL's is case insensitive.

In-line Views
An in-line view is a query inside the FROM clause of a query or inside a WITH clause. The WITH
clause is newer and was introduced in the ANSI SQL-1999 standard. There’s no implementation
of the WITH clause in MySQL at the time of writing. In-line views are also labeled as runtime or
derived tables, and Microsoft calls them Common Table Expressions (CTE).

The query in a FROM or WITH clause dynamically creates a view at runtime. It’s possible that the
same in-line view can be used in multiple places within a large query. When an in-line view appears
in multiple places within a query, it is run multiple times. This is inefficient and unnecessary
when the WITH clause is supported in the database. The WITH clause provides an in-line view
with a named reference, runs it only once, and lets you use the name reference in more than one
place in the query.

Here’s a sample of an in-line view in the FROM clause:

SQL> SELECT c.first_name||' '||c.last_name AS person
 2 , inline.street_address
 3 , inline.city
 4 , inline.state_province
 5 FROM contact c INNER JOIN
 6 (SELECT a.contact_id
 7 , sa.street_address
 8 , a.city
 9 , a.state_province
 10 FROM address a INNER JOIN street_address sa
 11 ON a.address_id = sa.address_id) inline
 12 ON inline.contact_id = c.contact_id;

The in-line view is on lines 6 through 11 and the join between the inline view and contact table is
on line 12. The in-line view must return the foreign key column in the SELECT list for it to be used
later in the join on line 12. Failure to return the key column in the SELECT list of the in-line view
would leave nothing to use in a join statement.

The only change required to run the preceding example in a MySQL database can be made
on line 1. MySQL doesn’t support piped concatenation as Oracle does, so you need to replace
the concatenating line with the following in MySQL:

mysql> SELECT CONCAT(c.first_name,' ',c.last_name) AS person

Although it’s possible to enable piped concatenation in MySQL, don’t bother. Even when you
enable it, you can’t perform piped concatenation inside call parameters to other functions. That
more or less means it works only some of the time. It’s better just to recognize that the CONCAT
function in MySQL is your friend and use it. It’s recursive and takes however many arguments
you require, as opposed to Oracle’s implementation that takes only two arguments, like this:

SELECT CONCAT('Not ',CONCAT('a recursive ','function.')) AS result
FROM dual;

This prints the following:

RESULT

Not a recursive function.

11-ch11.indd 283 9/5/11 4:24:04 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

284   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  285

The preceding in-line view can be refactored to work with a WITH clause, like this:

SQL> WITH inline AS
 2 (SELECT a.contact_id
 3 , sa.street_address
 4 , a.city
 5 , a.state_province
 6 FROM address a INNER JOIN street_address sa
 7 ON a.address_id = sa.address_id)
 8 SELECT c.first_name||' '||c.last_name AS person
 9 , inline.street_address
 10 , inline.city
 11 , inline.state_province
 12 FROM contact c INNER JOIN inline inline
 13 ON inline.contact_id = c.contact_id;

Line 12 references the inline name of the in-line view, which is on lines 1 to 7. Line 12 identifies
an INNER JOIN between the contact table and in-line view, and line 13 provides the criteria to
match values between the table and view. Large queries have a tendency to reuse in-line views in
multiple places, which isn’t a good thing. In-line views must be run each time they’re encountered
in the query. The WITH clause fixes this performance nightmare, because the query is run once,
given a name, and then the result sets are usable anywhere else in the query. The WITH clause
should always be used unless your code must be portable to MySQL, which doesn’t support it.

It’s also possible to have multiple in-line views. You list them with a designated name in
a comma-delimited list. Figure 11-4 shows a small example of a WITH clause that promotes the
ordinary query to a view. The lines and arrows help you see the use of the names for the in-line
views in the query.

Figure 11-4.  With clause

11-ch11.indd 284 9/5/11 4:24:05 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  285

The benefit of the WITH clause is that it runs once and can be used multiple times in the
scope of the query. The only downside with the syntax is that it’s not portable between Oracle
and MySQL, but that might change someday.

Queries that Aggregate
Aggregation is one of those buzz words in databases. Aggregation means counting, adding, and
grouping results of COUNT, SUM, AVERAGE, MIN, and MAX functions. Aggregation queries add one
or two more clauses than those presented in Figure 11-1. Figure 11-5 shows the GROUP BY and
HAVING clauses.

The GROUP BY clause must refer to all non-aggregated columns in the SELECT list, because
they’re not unique and there’s no sense in returning all the rows when you need only one row
with the non-unique columns and the aggregated result. The GROUP BY instructs the database to
do exactly that: return only distinct versions of non-unique columns with the aggregated result
columns. As you can see in Figure 11-5, the GROUP BY clause runs after the query has identified
all rows and columns. The COUNT function takes an asterisk (*) as its single argument. The *
represents an indirection operator that points to rows returned by the query. The * is equivalent
to the ROWID pseudo column in Oracle. It counts rows whether a row contain any values or not.

NOTE
The ROWID is one of the places where the concept of indirection and
a pointer shows itself in databases.

After the database returns the aggregated result set, the HAVING clause filters the result set.
In the example, it returns only those aggregated results that have two or more non-unique
item_title and item_rating rows in the table. The ORDER BY then sorts the return set.

Figure 11-5.  Order of operation on aggregate queries

1

2

3

4

The GROUP BY must refer to all non-aggregated columns
returned by the SELECT clause, and it must exclude column aliases.

SELECT i.item_title AS title
, i.item_rating AS rating
, COUNT(*) AS copies
FROM item i
WHERE i.item_rating = 'PG'
AND i.item_title LIKE 'Star Wars%'
GROUP BY i.item_title
, i.item_rating
HAVING COUNT(*) > 1
ORDER BY 1, 2;6

5

The HAVING clause acts like the WHERE
clause but applies to aggregated result sets.

11-ch11.indd 285 9/5/11 4:24:06 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

286   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  287

The following list qualifies the ANSI SQL pattern for processing a single table query with
aggregation and a GROUP BY and HAVING clause:

	 It finds a table in the ■■ FROM clause.

It ■■ optionally assigns a table alias as a runtime placeholder for the table name.

It gets the table definition from the data catalog to determine the valid column names.■■

If a table alias is present (and it is), it optionally maps the alias to the table’s data catalog ■■
definition.

It filters rows into the result set based on the value of columns in the ■■ WHERE clause.

The list of columns in the ■■ SELECT clause filters the desired columns from the complete
set of columns in a row.

The aggregation function triggers a check for a ■■ GROUP BY clause when non-aggregated
columns are returned in the SELECT list, and then aggregates results.

The ■■ HAVING operator filters the result set from the aggregation or the GROUP BY aggregation.

If an ■■ ORDER BY clause occurs in the query, rows are sorted by the designated columns.

We’ll work through the basic aggregation steps most developers use frequently. They cover
the COUNT, SUM, AVERAGE, MAX, and MIN functions. The following discussions use two sets of
ordinal and cardinal numbers (some values not displayed to save space) that are stored in the
ordinal table, like so:

 ID LIST_SET LIST_NAME LIST_VALUE
---------- -------------------- ---------- ----------
 1 Value Set A Zero 0
 2 Value Set A One 1
 3 Value Set A Two 2
 4 Value Set A Three 3
 5 Value Set A Four 4
 6 Value Set A Five 5
 7 Value Set A Six 6
 8 Value Set A Seven 7
 9 Value Set A Eight 8
 10 Value Set A Nine 9
 11 Value Set A
 12 Value Set B Zero 0
 13 Value Set B One 1
 ...
 21 Value Set B Nine 9
 22 Value Set B

Oracle’s ROWID Pseudo Column
Oracle also supports a ROWID pseudo column that is the physical address for the row.
If you want, you can substitute the ROWID pseudo column for the asterisk(*) in the COUNT
function.

11-ch11.indd 286 9/5/11 4:24:06 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  287

You’ve been exposed to the data set to help you understand how the aggregation functions
work in the following subsections.

Aggregate Columns Only
The COUNT function has two behaviors: counting by reference and counting by value. They differ
on how they treat null values. You count the number of physical rows when you count by
reference, and you count the physical values when you count by value.

The count by reference example counts the number of rows in the ordinal table, like this:

SQL> SELECT COUNT(*) AS number_of_rows FROM ordinal;

It returns the following:

NUMBER_OF_ROWS

 22

The count by value example counts the values in the list_value column. The list_value
column contains two null values. The column name is substituted for the asterisk, like this:

SQL> SELECT COUNT(list_value) AS number_of_values FROM ordinal;

It returns the following:

NUMBER_OF_VALUES

 20

The return set is 2 less than the number of rows. That’s because the COUNT function doesn’t count
null values. You can also count all values (which is the default performed in the preceding
example) or distinct values only. Both approaches exclude null values.

The following query demonstrates counting using the default, an explicit ALL, and DISTINCT
number of values found in the list_name and list_value columns:

SQL> SELECT COUNT(list_name) AS default_number
 2 , COUNT(ALL list_name) AS explicit_number
 3 , COUNT(DISTINCT list_value) AS distinct_number
 4 FROM ordinal;

Here are the results:

DEFAULT_NUMBER EXPLICIT_NUMBER DISTINCT_NUMBER
-------------- --------------- ---------------
 20 20 10

Notice that the COUNT function returns the same number with or without the ALL keyword.
That’s because the default is ALL, which is provided when you don’t use it. It also counts the
occurrences of strings or numbers. You count each individual element when the ALL is specified,
not just the unique set of elements. The DISTINCT keyword forces a unique sort of the data set
before counting the results.

11-ch11.indd 287 9/5/11 4:24:07 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

288   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  289

The SUM, AVG, MAX, and MIN functions work only with numbers. The following demonstrates
the SUM and AVG functions against the list_value column:

SQL> SELECT SUM(ALL list_value) AS sum_all
 2 , SUM(DISTINCT list_value) AS sum_distinct
 3 , AVG(ALL list_value) AS avg_all
 4 , AVG(DISTINCT list_value) AS avg_distinct
 5 FROM ordinal;

Here’s the result set:

 SUM_ALL SUM_DISTINCT AVG_ALL AVG_DISTINCT
---------- ------------ ---------- ------------
 90 45 4.5 4.5

The sum of two sets of the ordinal numbers is 90, and one set is 45. The average of ALL or the
DISTINCT set is naturally the same.

The next example runs the MAX and MIN functions:

SQL> SELECT MIN(ALL list_value) AS min_all
 2 , MIN(DISTINCT list_value) AS min_distinct
 3 , MAX(ALL list_value) AS max_all
 4 , MAX(DISTINCT list_value) AS max_distinct
 5 FROM ordinal;

It produces these results:

 MIN_ALL MIN_DISTINCT MAX_ALL MAX_DISTINCT
---------- ------------ ---------- ------------
 0 0 9 9

The minimum or maximum of two sets of the same group of numbers is always the same. The
minimum is 0 and the maximum is 9 for ordinal numbers.

Aggregate and Non-aggregate Columns
The principal of returning aggregate and non-aggregate columns starts with understanding that
you get only one row when you add a column of numbers. By extension, you get one row for
every type of thing you count. A real-world example of that would be counting a bag of fruit. You
separate the fruit into groups, such as apples, oranges, pears, and apricots. Then you count the
number of each type of fruit.

The following counts the number of rows and values for each unique value in the list_set
column:

SQL> SELECT list_set AS grouping_by_column
 2 , COUNT(*)
 3 , COUNT(list_value)
 4 FROM ordinal
 5 GROUP BY list_set;

11-ch11.indd 288 9/5/11 4:24:08 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  289

And here are the results of this query:

GROUPING_BY_COLUMN COUNT(*) COUNT(LIST_VALUE)
-------------------- ---------- -----------------
Value Set A 11 10
Value Set B 11 10

The results tells us that we have 11 rows in each group and only 10 values, which means each
group has one row that contains a null value. You change the SELECT list and GROUP BY clause
when you want to identify the rows with the null values.

The following query returns a 0 when the list_value column is null and a 1 otherwise:

SQL> SELECT list_set AS grouping_by_not_null
 2 , list_name AS group_by_null_too
 3 , COUNT(*)
 4 , COUNT(list_value)
 5 FROM ordinal
 6 WHERE list_set = 'Value Set A'
 7 GROUP BY list_set
 8 , list_name;

And here are the results from the query:

GROUPING_BY_NOT_NULL GROUP COUNT(*) COUNT(LIST_VALUE)
-------------------- ----- ---------- -----------------
Value Set A Zero 1 1
Value Set A Five 1 1
Value Set A Three 1 1
Value Set A Four 1 1
Value Set A One 1 1
Value Set A Two 1 1
Value Set A Eight 1 1
Value Set A Nine 1 1
Value Set A Seven 1 1
Value Set A Six 1 1
Value Set A 1 0

The only problem with the return set is that the cardinal numbers aren’t in numeric order. That
requires a special ORDER BY clause with a CASE statement. You could add the following to the
last query to get them sorted into numeric order:

 9 ORDER BY CASE
 10 WHEN list_name = 'Zero' THEN 0
 11 WHEN list_name = 'One' THEN 1
 12 WHEN list_name = 'Two' THEN 2
 13 WHEN list_name = 'Three' THEN 3
 14 WHEN list_name = 'Four' THEN 4
 15 WHEN list_name = 'Five' THEN 5
 16 WHEN list_name = 'Six' THEN 6
 17 WHEN list_name = 'Seven' THEN 7
 18 WHEN list_name = 'Eight' THEN 8
 19 WHEN list_name = 'Nine' THEN 9
 20 END;

11-ch11.indd 289 9/5/11 4:24:08 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

290   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  291

This type of ORDER BY clause lets you achieve numeric ordering without changing any of the data.
Note that null values are always sorted last in an ascending sort and first in a descending sort.

Note
Ascending sorts put nulls last while descending sorts put nulls first.

The following query demonstrates the GROUP BY for the SUM, AVG, MAX, and MIN functions:

SQL> SELECT list_set AS grouping_by_not_null
 2 , SUM(list_value) AS ordinal_sum
 3 , AVG(list_value) AS ordinal_avg
 4 , MIN(list_value) AS ordinal_min
 5 , MAX(list_value) AS ordinal_max
 6 FROM ordinal
 7 GROUP BY list_set;

It displays the following:

GROUPING_BY_NOT_NULL ORDINAL_SUM ORDINAL_AVG ORDINAL_MIN ORDINAL_MAX
-------------------- ----------- ----------- ----------- -----------
Value Set A 45 4.5 0 9
Value Set B 45 4.5 0 9

This returns the expected result set from the functions. They naturally match for each set of
ordinal numbers. If you were to alter the data set, you could get different results.

Queries that Return Columns or Results Selectively
Queries that return columns or results selectively depend on conditional logic. Originally, SQL
wasn’t designed to contain any conditional logic. Oracle introduced conditional logic as an extension
to the definition in the 1980s. It implemented the DECODE function. Other vendors followed Oracle’s
lead, and MySQL implements the IF function. Finally, the ANSI SQL definition added the CASE
operator, which you saw illustrated in an ORDER BY clause in the preceding section.

You need to understand the different proprietary solutions and the CASE operator before you
see an exhibit of selective aggregation. The following sections discuss the Oracle proprietary
DECODE function, the MySQL IF function, and the CASE statement before discussing selective
aggregation.

Oracle Proprietary DECODE Statement
The DECODE function allows you to perform if-then-else logic on equality matches. It doesn’t
support inequalities except as the else condition of an equality comparison. You can nest DECODE
functions as call parameters to a DECODE function. The DECODE function is not portable.
As a best practice, avoid the DECODE function. As a reality check, millions of lines of code use
the DECODE function, which makes its coverage essential and learning it unavoidable.

Here’s the prototype for the DECODE function:

DECODE(expression, search, result
 [, search, result [, ...]]
 [, default])

11-ch11.indd 290 9/5/11 4:24:09 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  291

The function requires at least an expression or column return value, a search value, and a result
before an optional default value. You can also add any number of pairs of search values and
results before the optional default value.

Some SQL*Plus formatting is necessary to get a clean test in Oracle. You can check back to
Chapter 2 for instructions on these formatting commands:

-- Set null to a visible string.
SET NULL "<Null>"
-- Set column formatting for an alphanumeric string.
COLUMN "Test 1" FORMAT A9
COLUMN "Test 2" FORMAT A9
COLUMN "Test 3" FORMAT A9
COLUMN "Test 4" FORMAT A9
COLUMN "Test 5" FORMAT A9
COLUMN "Test 6" FORMAT A9
COLUMN "Test 7" FORMAT A9

The following single test case covers the outcome possibilities of a DECODE function:

SQL> SELECT DECODE('One','One','Equal') AS "Test 1"
 2 , DECODE('One','Two','Equal') AS "Test 2"
 3 , DECODE('One','One','Equal','Not Equal') AS "Test 3"
 4 , DECODE('One','Two','Equal','Not Equal') AS "Test 4"
 5 , DECODE('One','Two','Equal'
 6 ,'Three','Equal') AS "Test 5"
 7 , DECODE('One','Two','Equal'
 8 ,'Three','Equal','Not Equal') AS "Test 6"
 9 , DECODE('One','Two','Equal'
 10 ,'Three','Equal'
 11 ,'One','Equal','Not Equal') AS "Test 7"
 12 FROM dual;

The query returns the following results:

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7
--------- --------- --------- --------- --------- --------- ---------
Equal <Null> Equal Not Equal <Null> Not Equal Equal

Tests 1 and 2  These tests use the DECODE function as an if-then block of code. The first call
parameter to the DECODE function is what you’re trying to match with the second call parameter.
When they match, the third call parameter is returned. When they fail to match, the null value is
returned.

TIP
The mnemonic for an if-then block is three call parameters to the
DECODE function.

11-ch11.indd 291 9/5/11 4:24:10 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

292   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  293

This behavior is handy when you’re counting success in a selective aggregation model,
because the following would count only individuals who are single:

SQL> WITH inline AS
 2 (SELECT 'Single' AS marital_status FROM dual
 3 UNION ALL
 4 SELECT 'Single' AS marital_status FROM dual
 5 UNION ALL
 6 SELECT 'Married' AS marital_status FROM dual)
 7 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 8 FROM inline;

It returns the number of single rows:

 SINGLE

 2

This demonstrates that it selectively counts results based on matches and nonmatches in the
fabricated table of three rows. What it can’t do is provide the count of nonmatches.

Tests 3 and 4  These tests use the DECODE function as an if-then-else block of code. The first,
second, and third call parameters work like tests 1 and 2. The thing that’s different with an else
condition is that something meaningful is returned when the first call argument fails to match the
second call argument.

Note
The mnemonic for an if-then-else block is four call parameters to the
DECODE function.

This behavior is even better than the results from tests 1 and 2 for selective aggregation. It lets
you count matches and nonmatches by using two columns instead of one in the SELECT list. You
can count the single and married rows, like so:

SQL> WITH inline AS
 2 (SELECT 'Single' AS marital_status FROM dual
 3 UNION ALL
 4 SELECT 'Single' AS marital_status FROM dual
 5 UNION ALL
 6 SELECT 'Married' AS marital_status FROM dual)
 7 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 8 , COUNT(DECODE(inline.marital_status,'Married',1)) AS Married
 9 FROM inline;

The two columns now give us this more meaningful result:

 SINGLE MARRIED
---------- ----------
 2 1

This demonstrates that you can ask two sides of the same question by putting the results in
separate columns. This is a form of SQL transformation.

11-ch11.indd 292 9/5/11 4:24:10 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  293

Tests 5, 6, and 7  These tests use the DECODE function as if-then-elseif and if-then-elseif-else
blocks of code. They act more or less like traditional switch statements, except Oracle doesn’t
support fall-through behavior. Fall-through behavior would return a result for the first and every
subsequent case statement where the conditions were met.

The first, second, and third call parameters work like tests 1 through 4, but call parameters 4
and 5, 6 and 7, 8 and 9, and so forth would be cases. The lack of an even number of parameters
means there’s no default case. That means an odd number of parameters 5 and above make a
DECODE function into a switch without a default condition. Likewise, an even number of
parameters 6 and above make a DECODE function into a switch with a default condition.

Note
The mnemonic for an if-then-elseif block is five or any greater odd
number of call parameters, and the mnemonic for an if-then-elseif-
else block is six or any greater even number of call parameters to the
DECODE function.

This behavior allows us to test more than just two cases. The downside is that quickly it
becomes verbose. You can now count the single, divorced, and married rows, like so:

SQL> WITH inline AS
 2 (SELECT 'Single' AS marital_status FROM dual
 3 UNION ALL
 4 SELECT 'Single' AS marital_status FROM dual
 5 UNION ALL
 6 SELECT 'Divorced' AS marital_status FROM dual
 7 UNION ALL
 8 SELECT 'Annulled' AS marital_status FROM dual
 9 UNION ALL
 10 SELECT 'Married' AS marital_status FROM dual)
 11 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 12 , COUNT(DECODE(inline.marital_status,'Divorced',1)) AS Divorced
 13 , COUNT(DECODE(inline.marital_status,'Married',1)) AS Married
 14 FROM inline;

The data set now has four classifications in the in-line view but only three evaluations in the
SELECT list. Any person whose marital status is annulled is excluded from your SQL report.
The results would be the following:

 SINGLE DIVORCED MARRIED
---------- ---------- ----------
 2 1 1

You could capture the annulled marriages by some math operation, such as the following, with
the DECODE function:

 11 SELECT COUNT(DECODE(inline.marital_status,'Single',1)) AS Single
 12 , COUNT(DECODE(inline.marital_status,'Divorced',1)) AS Divorced
 13 , COUNT(DECODE(inline.marital_status,'Married',1)) AS Married
 14 , COUNT(inline.marital_status) -
 15 (COUNT(DECODE(inline.marital_status,'Single',1)) +

11-ch11.indd 293 9/5/11 4:24:11 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

294   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  295

 16 COUNT(DECODE(inline.marital_status,'Divorced',1)) +
 17 COUNT(DECODE(inline.marital_status,'Married',1))) AS Other
 18 FROM inline

It would now give you this:

 SINGLE DIVORCED MARRIED OTHER
---------- ---------- ---------- ----------
 2 1 1 1

This is the limit of what you can do with the DECODE function. Next, you’ll examine the
MySQL IF function, which doesn’t include a case element.

MySQL Proprietary IF Function
The IF function allows you to perform an if-then-else logic based on equality, inequality, range,
and element in set comparisons. As conditional functions go, the MySQL IF function is superior to
the Oracle DECODE function, because the IF function isn’t limited to equality comparisons only.

Here’s the prototype for the IF function:

IF(comparison_expression, expression_when_true, expression_when_false)

The IF function evaluates whether a comparison expression is true or false. The IF function
processes and returns the second expression when the comparison expression is true and the third
expression when it isn’t true. You can nest IF functions in all IF function expressions. The
expressions returned for true and false must be returned as strings, floating point, or integer numbers.

The following subsections qualify the most frequent type of use cases with the IF function.

Numeric Comparisons  Numeric comparisons are the easiest place to start. Here’s a query
that tests the most likely numeric comparisons you would use:

SELECT IF((1 = 1),"E: (1 = 1)","NE:(1 = 1)") AS comparison
UNION ALL
SELECT IF((1 = 1.0),"E: (1 = 1.0)","NE:(1 = 1.0)") AS comparison
UNION ALL
SELECT IF((1 = 1.1),"E: (1 = 1.1)","NE:(1 = 1.1)") AS comparison
UNION ALL
SELECT IF((1 > 1),"E: (1 > 1)","NE:(1 > 1)") AS comparison
UNION ALL
SELECT IF((1 <> 2),"E: (1 <> 2)","NE:(1 <> 2)") AS comparison;

The output of these comparisons is in the following result set, where E means equal and NE
means not equal:

+--------------+
| comparison |
+--------------+
| E: (1 = 1) |
| E: (1 = 1.0) |
| NE:(1 = 1.1) |
| NE:(1 > 1) |
| E: (1 <> 2) |
+--------------+

11-ch11.indd 294 9/5/11 4:24:11 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  295

The comparison of two integers of equal values is a true scenario. The comparison of an
integer and decimal is true when the decimal casts as an integer of equal value. The comparison
of an integer to a decimal is false when the decimal integer isn’t equal to the decimal value. The
inequality comparison is false because the integers hold the same values. The not equal
comparison confirms that 1 is not equal to 2.

String Comparisons  String comparisons are straightforward if you come from a MySQL
background, but they can be a bit confusing when you come from an Oracle background. That’s
because MySQL uses case-insensitive comparisons by default, while Oracle uses a case-sensitive
comparison.

The following SELECT statement illustrates how you can perform case-insensitive and
case-sensitive comparisons:

SELECT IF(('One' = 'one')
 ,"E: ('One' = 'one')"
 ,"NE:('One' = 'one')") AS string_comparison
 , IF((BINARY 'One' = 'one')
 ,"E: (BINARY 'One' = 'one')"
 ,"NE:(BINARY 'One' = 'one')") AS binary_comparison; comparisons:

The first column performs a case-insensitive comparison while the second column performs
a binary comparison. Binary comparisons are case-sensitive. Here are the results of the query:

+--------------------+---------------------------+
| string_comparison | binary_comparison |
+--------------------+---------------------------+
| E: ('One' = 'one') | NE:(BINARY 'One' = 'one') |
+--------------------+---------------------------+

Note
A string of “One” is less than a string of “one,” because uppercase
letters have a lower ASCII binary value than their lowercase
equivalents—the opposite of what you might expect.

Range Comparisons  Range comparisons work with the BETWEEN operator. You can perform
range comparisons against dates, numbers, or strings. The first column of the range comparison
example compares whether the UTC_DATE function value is between two literal values (true at
the time of writing). The second column uses a NOT BETWEEN operator to demonstrate a false
result.

SELECT
 IF((UTC_DATE() BETWEEN '2011-05-05' AND '2011-07-04')
 ,"T:(UTC_DATE() BETWEEN date1 AND date2)"
 ,"F:(UTC_DATE() NOT BETWEEN date1 AND date2)") AS in_range
,IF((UTC_DATE() NOT BETWEEN '2011-05-05' AND '2011-07-04')
 ,"T:(UTC_DATE() NOT BETWEEN date1 AND date2)"
 ,"F:(UTC_DATE() BETWEEN date1 AND date2)") AS out_of_range\G

11-ch11.indd 295 9/5/11 4:24:12 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

296   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  297

Notice the odd formatting? It’s been changed here to fit on the page. The \G execution puts
column labels to the left and results to the right. Here are the results of this query:

************************* 1. row *************************
 in_range: T: (UTC_DATE() BETWEEN date1 AND date2)
out_of_range: F: (UTC_DATE() BETWEEN date1 AND date2)

The UTC_DATE function returned must either be inside or outside the range. You always
evaluate true first and false second. The first column returns true because the value is found within
the range and the second column returns false because the value is not outside of the range. More
or less, the first column’s truth is whether the value is between the others and the second column’s
truth is whether it isn’t.

In-set Comparisons  Determining whether a value is within a set is also possible with the IF
function. The following demonstrates an in-set and not in-set comparison operation by
performing one against strings and the other against binary strings:

SELECT
 IF(('bat' IN ('BAT','BALL'))
 ,"T: ('bat' IN ('BAT','BALL'))"
 ,"F: ('bat' NOT IN ('BAT','BALL'))") AS in_set
, IF((BINARY 'bat' NOT IN ('BAT','BALL'))
 ,"T: (BINARY 'bat' NOT IN ('BAT','BALL'))"
 ,"F: (BINARY 'bat' IN ('BAT','BALL'))") AS not_in_set\G

The results confirm what we would suspect—the case-insensitive string is found in the set while
the case-sensitive (binary) string isn’t:

************************* 1. row *************************
 in_set: T: ('bat' IN ('BAT','BALL'))
not_in_set: T: (BINARY 'bat' NOT IN ('BAT','BALL'))

The only problem with this type of comparison is that you can make it only against literal
values or other columns returned in the same row. MySQL offers another possibility. The following
query returns In stock if the subquery finds a match, and Out of stock when it doesn’t:

SELECT
 IF('Star Wars VII' IN (SELECT item_title FROM item)
 ,'In stock','Out of stock') AS data_inlieu_no_row_found;

returns the following:

+--------------------------+
| data_inlieu_no_row_found |
+--------------------------+
| Out of stock |
+--------------------------+

You would get an empty set if you rewrote the query using a WHERE clause that checks
whether the literal value equals any value in the item_title column. The foregoing query
gives you a descriptive result whether or not it’s found.

11-ch11.indd 296 9/5/11 4:24:12 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  297

ANSI SQL CASE Operator
The CASE operator is the most portable, and it allows for equality and inequality evaluation,
range comparisons, and in-set comparisons. It also supports multiple CASE statements, such as a
switch statement without fall-through characteristics. You can likewise use comparisons against
subqueries and correlated subqueries.

In an Oracle database, the following query matches case-insensitive strings from the in-line
view against string literals for the primary colors on the color wheel:

SQL> SELECT inline.color_name
 2 , CASE
 3 WHEN UPPER(inline.color_name) = 'BLUE' THEN
 4 'Primary Color'
 5 WHEN UPPER(inline.color_name) = 'RED' THEN
 6 'Primary Color'
 7 WHEN UPPER(inline.color_name) = 'YELLOW' THEN
 8 'Primary Color'
 9 ELSE
 10 'Not Primary Color'
 11 END AS color_type
 12 FROM (SELECT 'Red' AS color_name FROM dual
 13 UNION ALL
 14 SELECT 'Blue' AS color_name FROM dual
 15 UNION ALL
 16 SELECT 'Purple' AS color_name FROM dual
 17 UNION ALL
 18 SELECT 'Green' AS color_name FROM dual
 19 UNION ALL
 20 SELECT 'Yellow' AS color_name FROM dual) inline
 21 ORDER BY 2 DESC, 1 ASC

This query works in MySQL whether you leave it as is or modify it by removing the UPPER
function around the inline.color_name column. The CASE operator includes several WHEN
clauses that evaluate conditions and an ELSE clause that acts as the default catchall for the CASE
operator. Note that END by itself terminates a CASE operator. If you were to put END CASE,
the word CASE would become the column alias.

Although the sample evaluates only a single logical condition, each WHEN clause supports
any number of AND or OR logical operators. Any comparison phrase can use the standard equality
and inequality comparison operators; the IN, =ANY, =SOME, and =ALL lookup operators; and
scalar, single-row, multiple-row, and correlated subqueries.

You would get the following results from the preceding query in Oracle—at least you would
when you format the color_name column to an alphanumeric 10 character string in SQL*Plus
(check Chapter 2 for syntax):

COLOR_NAME COLOR_TYPE
---------- -----------------
Blue Primary Color
Red Primary Color
Yellow Primary Color
Green Not Primary Color
Purple Not Primary Color

11-ch11.indd 297 9/5/11 4:24:13 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

298   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  299

There’s a lot of power in using the CASE operator, but you need to understand the basics and
experiment. For example, you saw how to get an in-stock or out-of-stock answer with the IF
function in MySQL. You can rewrite that query with a CASE operator that runs in an Oracle or
MySQL database, and it would look like this:

SELECT CASE
 WHEN 'Star Wars VII' IN (SELECT item_title FROM item)
 THEN 'In-stock'
 ELSE 'Out-of-stock'
 END AS yes_no_answer
FROM dual;

The foregoing query is limited, but it mirrors the MySQL query that used the IF function. A
more useful approach that works in Oracle or MySQL databases is the following query with the
CASE operator. It uses an in-line view to fabricate a data set that’s used as the decision-making
parameter to the WHEN clause in the CASE operator.

SELECT inline.query_string
, CASE
 WHEN inline.query_string IN (SELECT item_title FROM item)
 THEN 'In-stock'
 ELSE 'Out-of-stock'
 END AS yes_no_answer
FROM (SELECT 'Star Wars II' AS query_string FROM dual
 UNION ALL
 SELECT 'Star Wars VII' AS query_string FROM dual) inline;

It returns the following output from a MySQL database:

+---------------+---------------+
| query_string | yes_no_answer |
+---------------+---------------+
| Star Wars II | In-stock |
| Star Wars VII | Out-of-stock |
+---------------+---------------+

The CASE operator also allows you to validate complex math or date math. Date math isn’t
very transferable between an Oracle and MySQL database, because of the differences between
their implementations. The following subsections explain Oracle and MySQL date math and
provide a CASE statement that leverages date math in each database.

Oracle Date Math  Oracle’s date math is very straightforward. You simply add or subtract
numbers from a date to get a date in the future or past, respectively. The only twist in the model is
that the DATE data type is a date-time not a date. You can shave off the hours and minutes of any
day with the TRUNC function and make the date-time equivalent to midnight the morning of a
date. This is the closest you have to a true DATE data type in an Oracle database.

The following example looks at yesterday, today, and tomorrow:

SQL> SELECT SYSDATE - 1 AS yesterday
 2 , SYSDATE AS today
 3 , SYSDATE + 1 AS tomorrow
 4 FROM dual;

11-ch11.indd 298 9/5/11 4:24:13 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  299

The results are deceiving, because Oracle automatically prints them as dates, like so:

YESTERDAY TODAY TOMORROW
--------- --------- ---------
19-JUN-11 20-JUN-11 21-JUN-11

If we convert the date-time values to strings with formatting instructions down to the second,
you would see the full date-time stamp. This query uses the Oracle proprietary TO_CHAR function
to do that:

SQL> SELECT TO_CHAR(SYSDATE - 1,'DD-MON-YYYY HH24:MI:SS') AS Yesterday
 2 , TO_CHAR(SYSDATE ,'DD-MON-YYYY HH24:MI:SS') AS Today
 3 , TO_CHAR(SYSDATE + 1,'DD-MON-YYYY HH24:MI:SS') AS Tomorrow
 4 FROM dual;

It yields the following:

 YESTERDAY TODAY TOMORROW
-------------------- -------------------- --------------------
19-JUN-2011 22:59:45 20-JUN-2011 22:59:45 21-JUN-2011 22:59:45

You could use the TRUNC function to shave the decimal portion of time, which would give
you 12 midnight in the morning of each day. The following query truncates the time from the
SYSDATE value:

SQL> SELECT TO_CHAR(TRUNC(SYSDATE)-1,'DD-MON-YYYY HH24:MI') AS Yesterday
 2 , TO_CHAR(TRUNC(SYSDATE) ,'DD-MON-YYYY HH24:MI:SS') AS Today
 3 , TO_CHAR(TRUNC(SYSDATE)+1,'DD-MON-YYYY HH24:MI:SS') AS Tomorrow
 4 FROM dual;

The results show that everything is now 12 midnight the morning of each day:

YESTERDAY TODAY TOMORROW
----------------- -------------------- --------------------
19-JUN-2011 00:00 20-JUN-2011 00:00:00 21-JUN-2011 00:00:00

This means any date plus an integer of 1 yields a day that is 24 hours in the future and any date
minus an integer of 1 yields a day that is 24 hours behind the current date-time value. The TRUNC
function also lets you get the first day of a month or the first day of a year. It works like this:

SQL> SELECT TRUNC(SYSDATE,'MM') AS first_day_of_month
 2 , TRUNC(SYSDATE,'YY') AS first_day_of_year
 3 FROM dual;

Here are the results for any day in June:

FIRST_DAY_OF_MONTH FIRST_DAY_OF_YEAR
------------------ ------------------
01-JUN-11 01-JAN-11

If you subtract two days, you get the number of days between them, like so:

SQL> SELECT TO_DATE('30-MAY-2011') - TO_DATE('14-FEB-2011') AS days
 2 FROM dual;

11-ch11.indd 299 9/5/11 4:24:14 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

300   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  301

This query would tell us the number of days between Valentine’s Day and Memorial Day,
as shown here:

 DAYS

 105

Although you can subtract days, you can’t add them. If you tried to add dates, the following
error would be raised:

SELECT TO_DATE('30-MAY-2011') + TO_DATE('14-FEB-2011')
 *
ERROR at line 1:
ORA-00975: date + date not allowed

Table 11-1 provides additional built-in functions that can help when you’re performing date
math on an Oracle database. Although the table’s not inclusive of timestamp functions, it covers
those functions that work with dates. You can check the Oracle Database SQL Reference for more
information on the timestamp built-ins.

Date Function Description

ADD_MONTHS Lets you add or subtract months, like so:
SELECT ADD_MONTHS(SYSDATE, 3)
FROM dual;

CAST Lets you convert a string that uses the Oracle default date format masks
of DD-MON-RR or DD-MON-YYYY to a DATE data type. The example
uses an INSERT statement to show the conversion:
INSERT INTO some_table
VALUES
(CAST('15-APR-11' AS DATE));

CURRENT_DATE Finds the current system date:
SELECT CURRENT_DATE FROM dual;

GREATEST Finds the most forward date in a set of dates. It works like this to find
tomorrow:
SELECT GREATEST(SYSDATE,SYSDATE + 1)
FROM dual;

EXTRACT Lets you extract the integer that represents a year, month, day, hour,
minute, or second from a DATE data type. The following prototypes
show you how to grab the day, month, or year from a DATE data type:
SELECT EXTRACT(DAY FROM SYSDATE) AS dd
, EXTRACT(MONTH FROM SYSDATE) AS mm
, EXTRACT(YEAR FROM SYSDATE) AS yy
FROM dual;

LEAST Finds the most forward date in a set of dates. It works like this to find
yesterday:
SELECT LEAST(SYSDATE -1,SYSDATE)
FROM dual;

table 11-1.  Oracle Built-in Date Functions

11-ch11.indd 300 9/5/11 4:24:15 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  301

Date Function Description

LAST_DAY Lets you find the last date of the month for any date, like so:
SELECT last_day(SYSDATE)
FROM dual;

LEAST Finds the most forward date in a set of dates. It works like this to find
yesterday:
SELECT LEAST(SYSDATE -1,SYSDATE)
FROM dual;

MONTHS_BETWEEN Lets you find the decimal value between two dates. The function
returns a positive number when the greater date is the first call
parameter and a negative number when it’s the second call parameter.
Here’s an example:
SELECT MONTHS_BETWEEN('25-DEC-11',SYSDATE)
FROM dual;

NEXT_DAY Lets you find the date of the next day of the week, like so:
SELECT next_day(sysdate,'FRIDAY')
FROM dual;

ROUND Shaves off the decimal portion of a DATE when the current date-time
is before noon. Alternatively, it adds the complement of the decimal to
make the day midnight of the next day. Use it like this:
SELECT ROUND(SYSDATE) FROM dual;

SYSDATE Finds the current system date:
SELECT SYSDATE FROM dual;

TO_CHAR Lets you apply a format to a date, like so:
SELECT
 TO_CHAR(SYSDATE,'DD-MON-YYYY HH24:MI:SS')
FROM dual;
Supports the following format syntax:
DD – Two-digit day
MM – Two-digit month
MON – Three-character month, based on NLS_LANG value
YY – Two-digit year
YYYY – Two-digit absolute year
RR – Two-digit relative year
HH – Two-digit hour, values 1 to 12
HH24 – Two-digit hour, values 0 to 23
MI – Two-digit minutes, values 0 to 59
SS – Two-digit seconds, values 0 to 59

TO_DATE Converts a string to a DATE data type. Lets you to convert nonstandard
DATE format masks, which come from external import sources. The
default format masks of DD-MON-RR and DD-MON-YYYY also work
with the TO_DATE function but can be cast to a DATE with the CAST
function. The TO_DATE function would convert a MySQL default format
date string to a DATE with this syntax:
SELECT TO_DATE('2011-07-14','YYYY-MM-DD') FROM dual;

table 11-1.  Oracle Built-in Date Functions (continued)

11-ch11.indd 301 9/5/11 4:24:15 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

302   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  303

The EXTRACT function works in both Oracle and MySQL databases. Blending the conditional
CASE operator with the EXTRACT date function, you can write a statement that finds
transaction_amount values for a given month. The following is such a statement:

SQL> SELECT CASE
 2 WHEN EXTRACT(MONTH FROM transaction_date) = 1 AND
 3 EXTRACT(YEAR FROM transaction_date) = 2011 THEN
 4 transaction_amount
 5 END AS "January"
 6 FROM transaction;

Lines 2 and 3 identify transaction amounts from a month and year, and only transaction_
amount values for January 2011 would be returned by the query. However, it would also return
null value rows for every other month and year present in the table. You need to filter the query
with a WHERE clause to restrict it to the data of interest. The CASE operator in a SELECT list
works in tandem with the WHERE clause of a query.

Another approach could have you return a Y as an active_flag value when the item_
release_date values are less than or equal to 30 days before today, and an N when they’re
greater than 30 days. You would write that CASE operator like this:

SQL> SELECT CASE
 2 WHEN (SYSDATE - i.release_date) <= 30 THEN 'Y'
 3 WHEN (SYSDATE - i.release_date) > 30 THEN 'N'
 4 END AS active_flag
 5 FROM item i;

In conclusion, the CASE operator is more flexible than the DECODE or IF function. The best
practice is to write portable code with the CASE operator.

MySQL Date Math  MySQL’s date math is very different from Oracle’s approach. You can’t
add or subtract numbers from dates. You must use designated functions. The fact that some
functions have aliases makes the list of functions longer. My recommendation is that you choose
the function or its alias and use it consistently, such as the DATE_ADD function or its synonym
ADDDATE.

The DATE_ADD function has the following prototype:

DATE_ADD(date, INTERVAL number date_interval)

The UTC_DATE function returns the current date in MySQL, and you can add 6 days to it like
this:

SELECT DATE_ADD(UTC_DATE(), INTERVAL 6 DAY);

Alternatively, you can add a week by using a different interval data type, like so:

SELECT DATE_ADD(UTC_DATE(), INTERVAL 1 WEEK);

Subtracting units from dates works the same way as adding them. For example, you would
subtract 6 days like this:

SELECT DATE_SUB(UTC_DATE(), INTERVAL 6 DAY);

11-ch11.indd 302 9/5/11 4:24:16 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  303

And you could subtract a week like this:

SELECT DATE_SUB(UTC_DATE(), INTERVAL 1 WEEK);

Table 11-2 shows the available intervals and formats for adding to or subtracting from dates.
Some intervals in the table are integers and others are strings. The strings are enclosed in single
quotes. For clarity, a data type column qualifies which are integers or strings. The format masks
support the function’s internal parser.

The difference between two dates is numeric, as in Oracle. You use the DATEDIFF function
to calculate it. Here’s an example that returns the number of days between Memorial Day and
Valentine’s Day:

SELECT DATEDIFF('2011-05-30','2011-02-14');

It returns 105, which is the same as would be returned by Oracle’s calculation. Date math
functions work solidly in both implementations. Table 11-3 qualifies the date functions you will
most likely use, and you can find the date-time function in the MySQL 5.5 Reference Manual in
Chapter 11.7, “Date and Time Functions.”

Interval Data Type Format Mask

DAY Integer Dd

DAY_HOUR String 'dd hh'

DAY_MICROSECOND String 'dd.nn'

DAY_MINUTE String 'dd hh:mm'

DAY_SECOND String 'dd hh:mm:ss.nn'

HOUR Integer Hh

HOUR_MICROSECOND String 'dd hh'

HOUR_MINUTE String 'dd nn'

HOUR_SECOND String 'dd hh:mm'

MICROSECOND Integer Nn

MINUTE Integer Mm

MINUTE_MICROSECOND String 'mm.nn'

MINUTE_SECOND String 'mm:ss'

MONTH Integer Mm

QUARTER Integer Qq

SECOND Integer Ss

SECOND_MICROSECOND String 'ss.nn'

WEEK Integer Ww

YEAR Integer Yy

YEAR_MONTH String 'yy-mm'

table 11-2.  DATE_ADD and DATE_SUB Interval Values

11-ch11.indd 303 9/5/11 4:24:16 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

304   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  305

table 11-3.  MySQL Built-in Date Functions

Date Function Description

ADDDATE An alias for the DATE_ADD function that lets you add an interval to a date and returns a
new date, like so:
SELECT ADDDATE(UTC_DATE(), INTERVAL 1 DAY);

CAST Lets you convert a string that uses the Oracle default date format masks of YYYY-MM-DD to
a DATE data type. This example uses an INSERT statement to show the conversion:
INSERT INTO some_table
VALUES
(CAST('2011-04-15' AS DATE));

CURDATE Finds the current system date and is synonymous with the CURRENT_DATE function:
SELECT CURDATE();

CURRENT_DATE Finds the current system date and is synonymous with the CURDATE function:
SELECT CURRENT_DATE();

DATE Creates a DATE from a default date or date-time string. The defaults are YYYY-MM-DD for
a date and YYYY-MM-DD HH:MI:SS for a date-time. It works like this with a date format:
SELECT DATE('2011-07-04');
It works like this with a date-time format:
SELECT DATE('2011-07-04 06:00:01');

DATE_ADD The function called when you use the ADDDATE synonym, which lets you add an interval to
a date and returns a new date. It uses the intervals qualified in Table 11-2, like this:
SELECT DATE_ADD(UTC_DATE(), INTERVAL 1 DAY);

DATE_FORMAT Lets you apply a format to a date, like so:
SELECT DATE_FORMAT(UTC_DATE(),'%D %M %Y');
It would return
+------------------------------------+
| DATE_FORMAT(UTC_DATE(),'%D %M %Y') |
+------------------------------------+
| 21st June 2011 |
+------------------------------------+
This function supports the following format syntax:
%b – Abbreviated month name
%c – Two-digit month
%d – Two-digit day, where a zero precedes a single-digit day
%D – One- or two-digit day with English suffix: 1st, 2nd
%e – One- or two-digit day
%h – Two-digit hour, values 1 to 12
%H – Two-digit hour, values 0 to 23
%i – Two-digit minutes, values 0 to 59
%I – Two-digit hour, values 1 to 12
%j – Three-digit day of the year, values 001 to 366
%k – Two-digit hour, values 0 to 23
%l – Two-digit hour, values 1 to 12
%m – Two-digit month, values 1 to 12
%M – Full month name
%p – a.m. or p.m. designation
%s – Two-digit seconds, values 0 to 59
%S – Two-digit seconds, values 0 to 59
%y – Two-digit year
%Y – Four-digit year

11-ch11.indd 304 9/5/11 4:24:17 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  305

table 11-3.  MySQL Built-in Date Functions (continued)

Date Function Description

DATE_SUB Lets you subtract an interval from a date and returns a new date. It uses the intervals
qualified in Table 11-2, like so:
SELECT DATE_SUB(UTC_DATE(), INTERVAL 1 DAY);

DATEDIFF Lets you subtract one date from another. When the first date is greater than the second
date, it returns a positive number. When the first date is less than the second date, it returns
a negative number.
SELECT DATEDIFF(date1, date2);

DAY Synonymous with the DAYOFMONTH function and returns the two-digit value for the current
day:
SELECT DAY(UTC_DATE());

DAYNAME Returns the language representation for the day of the week, such as Monday, Tuesday,
and so on:
SELECT DAYNAME(UTC_DATE());

DAYOFMONTH Synonymous with the DAY function and returns the two-digit value for the current day:
SELECT DAY(UTC_DATE());

DAYOFWEEK The DAYOFWEEK function returns the one digit value for the current day of the week,
values are 1 to 7.
SELECT DAYOFWEEK(UTC_DATE());

DAYOFYEAR Returns the one- to three-digit value for the current day of the year; values are 1 to 366.
SELECT DAYOFYEAR(UTC_DATE());

EXTRACT Lets you extract the integer that represents a year, month, day, hour, minute, or second
from a DATE data type. The following prototypes show how to grab the day, month, or
year from a DATE data type:
SELECT EXTRACT(DAY FROM UTC_DATE()) AS dd
, EXTRACT(MONTH FROM UTC_DATE()) AS mm
, EXTRACT(YEAR FROM UTC_DATE()) AS yy
FROM dual;

LAST_DAY Lets you find the last date of the month for any date, like so:
SELECT last_day(UTC_DATE());

MONTHNAME Returns the name of the month:
SELECT MONTHNAME(UTC_DATE());

NOW Lets you find the current date-time stamp and is equivalent to the Oracle SYSDATE
function.
SELECT NOW();

STR_TO_DATE Lets you apply a format to a date string, like so:
SELECT DATE_FORMAT('11-07-04','%D %M %Y');
Returns this:
+------------------------------------+
| DATE_FORMAT('11-07-04','%D %M %Y') |
+------------------------------------+
| 4th July 2011 |
+------------------------------------+
The function uses the same formatting commands as the DATE_FORMAT function.

SUBDATE Lets you subtract an interval from a date and returns a new date. It uses the intervals
qualified in Table 11-2, like so:
SELECT SUBDATE(UTC_DATE(), INTERVAL 1 DAY);

SYSDATE Finds the current system date:
SELECT SYSDATE FROM dual;

11-ch11.indd 305 9/5/11 4:24:17 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

306   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  307

As mentioned, the EXTRACT function is portable and works the same way in MySQL and
Oracle. Other date math must change to reflect the product-specific date math function. For
example, in the Oracle section, you saw a CASE operator that calculated when to select an
active or inactive flag value. That example compared the number of days between two dates,
where the one date was subtracted from the other.

In MySQL, that would require the DATEDIFF function, like this:

SQL> SELECT CASE
 2 WHEN DATEDIFF(UTC_DATE(),i.release_date) <= 30 THEN 'Y'
 3 WHEN DATEDIFF(UTC_DATE(),i.release_date) > 30 THEN 'N'
 4 END AS active_flag
 5 FROM item i;

The Oracle and MySQL date math sections prepare you to see how selective aggregation
works. They also provide you with some immediate capabilities in your queries.

Selective Aggregation
Selective aggregation uses conditional logic, similar to the DECODE function, IF function, or
CASE operator inside aggregation functions. The conditional decision-making of these if-then-else
functions lets you filter what you count, sum, average, or take the maximum or minimum value
of. Understanding this is the first step toward transforming data into useful data sets for
accountants and other professional data analysts. The second step lets you transform aggregated
rows into column values, which you accomplish through column aliases.

The next example demonstrates transforming rows of data into a financial report where the
columns represents months, quarters, and year-to-date values and the rows represent account
numbers charged for various expenses.

Although the example uses the EXTRACT function, which works the same way both in Oracle
and MySQL, the formatting for a report differs. For convenience, they’re covered in separate
subsections.

Oracle Selective Aggregation  The following query returns a column of data for the month of
January 2011. Since all numbers are stored as positive values, a nested CASE operator evaluates
the transaction_type column in the same row to determine whether to add or subtract the
value. Debits are added and credits are subtracted, because this works with an asset account.

SQL> SELECT t.transaction_account AS "Transaction"
 2 LPAD(TO_CHAR
 3 (SUM
 4 (CASE
 5 WHEN EXTRACT(MONTH FROM transaction_date) = 1 AND
 6 EXTRACT(YEAR FROM transaction_date) = 2011 THEN
 7 CASE
 8 WHEN t.transaction_type = 'DEBIT' THEN
 9 t.transaction_amount
 10 ELSE
 11 t.transaction_amount * -1
 12 END
 13 END),'99,999.00'),10,' ') AS "JAN"
 14 FROM transaction t
 15 GROUP BY t.transaction_account;

11-ch11.indd 306 9/5/11 4:24:18 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  307

You would see something like this when you expand beyond a single column, which has
been limited to the first three months of the year and two rows of data:

Transaction Jan Feb Mar
--------------- ---------- ---------- ----------
10-12-551234 2,671.20 4,270.74 5,371.02
10-14-551234 -690.06 -1,055.76 -1,405.56

The value passed to the SUM function is all rows that meet the selectivity criteria. The criteria
are the result of a CASE and nested CASE operator. The business result is the total expense
grouped by the transaction account number. The LPAD function right-aligns the string returned
by the TO_CHAR function, which formats the number always to have two decimal places, even
when it’s zero cents.

Line 5 could be replaced by the following to capture a first quarter result:

 5 WHEN EXTRACT(MONTH FROM transaction_date) IN (1,2,3) AND

Moreover, you could generate a year-to-date or year-end report for a completed year by
eliminating the validation criterion for the month.

MySQL Selective Aggregation  The following query returns the same data as the preceding
Oracle equivalent. The differences are in how the values are converted to strings and formatted
for output.

mysql> SELECT t.transaction_account AS "Transaction"
 2 -> LPAD(FORMAT
 3 -> (SUM
 4 -> (CASE
 5 -> WHEN EXTRACT(MONTH FROM transaction_date) = 1 AND
 6 -> EXTRACT(YEAR FROM transaction_date) = 2011 THEN
 7 -> CASE
 8 -> WHEN t.transaction_type = 'DEBIT' THEN
 9 -> t.transaction_amount
 10 -> ELSE
 11 -> t.transaction_amount * -1
 12 -> END
 13 -> END),2),10,' ') AS "JAN"
 14 -> FROM transaction t
 15 -> GROUP BY t.transaction_account;

The output for the first three months would look like this:

+--------------+------------+------------+------------+
| Transaction | Jan | Feb | Mar |
+--------------+------------+------------+------------+
| 10-12-551234 | 2,957.40 | 4,022.70 | 5,654.04 |
| 10-14-551234 | -750.48 | -992.16 | -1,437.36 |
+--------------+------------+------------+------------+

Like the Oracle example, the selectivity occurs in the value returned to the SUM function.
While the LPAD function works the same way in MySQL, the FORMAT function replaces the
TO_CHAR function. The balance of the FORMAT and LPAD functions are displayed in ordinary
text after the boldface text on line 13.

11-ch11.indd 307 9/5/11 4:24:19 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

308   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  309

Join Results
You can join tables, logical structures that store physical data, or views, logical structures that
store directions on how to find data stored in other views or tables, into larger result sets. Views
can be subsets of tables, filtered to show only some columns and rows, as covered in the “Query
Results” section at the beginning of the chapter. Views can also be the result sets combined from
two or more tables or views. You combine tables through join operations.

Although joins in procedural programming languages would involve an outer and inner loop to
read two sets into memory, SQL doesn’t have loops. As a set-based declarative language, SQL
operates like an automatic transmission that hides the clutch and gear-changing process. Imperative
languages, on the other hand, are like standard transmissions. Imperative languages require the
developer to master the nature of manually switching gears. Managing the clutch and gears would
be equivalent to writing outer and inner loops and conditional logic to join the results from two sets
into one. SQL joins hide the complexity by letting the developer state what he or she wants without
specifying the implementation details.

You can perform several types of joins in SQL. They can be organized into an abstract Unified
Modeling Language (UML) inheritance diagram, which is a hierarchy, as shown in Figure 11-6.

Figure 11-6.  Join inheritance tree

+where() : filtered rows

Cross Join

+on() : matched rows
+using() : matched rows

Inner Join

+using() : matched rows

Natural Join

+query() : unmatched rows

Outer Join

+query() : unmatched rows

Full Outer Join

+query() : unmatched rows

Left Outer Join

+query() : unmatched rows

Right Outer Join

11-ch11.indd 308 9/5/11 4:24:20 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  309

This type of hierarchy is also known as an inverted tree. The top of the hierarchy is the root node
and the bottom nodes are the leaf nodes. The root node is the parent node and is not derivative of
any other node. Nodes below the root (or parent) node are its child nodes. Leaf nodes aren’t
parents yet but may become so later; they are child nodes. Nodes between the root and leaf nodes
are both parent and child nodes.

Inheritance trees indicate that the most generalized behaviors are in the root node, and most
specialized behaviors are in leaf nodes. The inheritance tree tells us the following:

	 A ■■ cross join is the most generalized behavior in joins, and it inherits nothing but
implements the base behaviors for join operations in a set-based declarative language.

An ■■ inner join is the only child of a cross join, and it inherits the behaviors of a cross join
and provides some additional features (specialized behaviors) by extending the parent
class’s behaviors.

A ■■ natural join is a child of an inner join, and it inherits and extends the parent class’s
behaviors. The natural join is also a leaf node, which means no other class extends its
behaviors.

An ■■ outer join is an abstract class, which means its implementations are available only to
subclasses, but it does extend the behavior of the parent class. Through the parent class,
it also extends the behavior of the root node or grandparent class.

A ■■ left join is a concrete class that extends its abstract parent class and all other classes
preceding its parent in the tree. It implements a left outer join behavior beyond the
inherited inner join operations.

A ■■ full join is a concrete class that extends its abstract parent class and all other classes
preceding its parent in the tree. It implements a full outer join behavior beyond the
inherited inner join operations.

A ■■ right join is a concrete class that extends its abstract parent class and all other classes
preceding its parent in the tree. It implements a right outer join behavior beyond the
inherited inner join operations.

The subsections qualify what the various join types do. Each section uses Venn diagrams to
depict the relationship of sets. Unlike basic sets with a list of elements, the rows in tables are
vectors, or record structures. A vector is often visualized as a line, and the line is made up of
points. A record structure is like a line when it’s labeled as a vector but isn’t composed of points.
The points in a record data structure are the elements, and each element of a row belongs to a
column in a table or view.

There are two types of joins between tables: one splices rows from one table together with
rows from another table, and the other splices like collections together. The spliced rows become
larger record structures. Splicing together two collections requires that both original collections
have the same record structure or table definition. The cross, inner, natural, and outer joins work
with splicing rows together. You use set operators to splice together collections of the same
record structure.

The next two subsections cover joins that splice rows together and joins that splice collections
together. They should be read sequentially because there are some dependencies between the
two sections.

11-ch11.indd 309 9/5/11 4:24:20 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

310   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  311

Joins that Splice Together Rows
Tables should contain all the information that defines a single subject when the tables are
properly normalized. This section assumes you’re working with normalized tables. You’ll see the
differences between ANSI SQL-89 and ANSI SQL-92 joins throughout the subsequent sections.

TIP
You should learn both ANSI SQL-89 and ANSI SQL-92 join semantics.

As a refresher, normalized tables typically contain a set of columns that uniquely defines every
row in the table, and collectively these columns are the natural key of the table. Although possible
but rare, a single column can define the natural key. The best example of that use case is a
vehicle table with a vin (vehicle identification number) column. Tables also contain surrogate
key columns, which are artificial numbers generated through sequences. Surrogate key columns
don’t define anything about the data, but they uniquely define rows of a table and should have
a one-to-one relationship to the natural key of a table. Although the surrogate and natural keys are
both candidates to become the primary key of a table, you should always select the surrogate key.

The primary key represents rows of the table externally, and you can copy it to another table
as a foreign key. Matches between the primary and foreign key columns let you join tables into
multiple-subject record structures. Joins between primary and foreign key values are known as
equijoins or joins based on an equality match between columns. Joins that don’t match based on
the equality of columns are non-equijoins, and they’re filtered searches of a Cartesian product.
The “Cross Join” section that follows explains these types of joins.

The natural key differs from a surrogate key because it represents the columns that you use to
find a unique row in a table, and it contains descriptive values that define the unique subject of a
normalized table. When you write a query against a single table, you use the natural key columns
in the WHERE clause to find unique rows.

Cross joins are the most generalized form; outer joins are the most specialized.

Cross Join
A cross join in SQL produces a Cartesian product, which is the rows of one table matched against
all the rows of another table. It is equivalent to a for loop reading one row from one collection
and then a nested for loop appending all rows from another collection to copies of that one row.
The operation is repeated for every row in the outer for loop.

A Venn diagram for a cross join is shown in Figure 11-7. The discrete math represents that
one set is multiplied by the other. For example, a cross join between a customer and address
table would return 32 rows when the customer table holds 4 rows and the address table holds
8 rows.

Figure 11-7.  Cross join Venn diagram

A B×

∀A,B | A × B = {(x,y) | x ∈ A ∧ y ∈ B}

11-ch11.indd 310 9/5/11 4:24:21 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  311

Cross joins are useful when you want to perform a non-equijoin match, such as looking up
transaction amounts based on their transaction dates within a calendar month. In this case, you’d be
filtering a Cartesian product to see when one column in a table holds a value between two columns
in the other table. This is also known as a “filtered cross join” statement.

The difference between ANSI SQL-89 and ANSI SQL-92 syntax for a cross join is that the
tables are comma-delimited in the FROM clause for ANSI SQL-89, whereas, they’re bridged by
a CROSS JOIN operator in ANSI SQL-92.

ANSI SQL-89 Cross Join  The following shows a filtered cross join between the transaction
and calendar tables:

SQL> SELECT c.month_short_name
 2 , t.transaction_amount
 3 FROM calendar c, transaction t
 4 WHERE t.transaction_date BETWEEN c.start_date AND c.end_date
 5 ORDER BY EXTRACT(MONTH FROM t.transaction_date);

Notice that the FROM clause on line 3 lists comma-delimited tables, and the WHERE clause on
line 4 doesn’t have an equality based join between the primary and foreign key columns.

The query would display the following type of result set:

Month
Name Amount
----- ------
JAN 32.87
JAN 38.99
MAR 9.99
APR 43.19

A GROUP BY clause on a line 5 combined with a SUM aggregation formula on line 2 would
return three rows of aggregated data, one row for each distinct month:

SQL> SELECT c.month_short_name
 2 , SUM(t.transaction_amount)
 3 FROM calendar c, transaction t
 4 WHERE t.transaction_date BETWEEN c.start_date AND c.end_date
 5 GROUP BY c.month_short_name
 6 ORDER BY EXTRACT(MONTH FROM t.transaction_date);

This type of cross join logic is extremely useful when you’re creating financial statements with
SQL queries. It filters results based on whether the value of one table’s column is between the
values of two columns of another table.

ANSI SQL-92 Cross Join  Like the prior syntax example, this example shows a filtered cross
join between the transaction and calendar tables:

SQL> SELECT c.month_short_name
 2 , t.transaction_amount
 3 FROM calendar c CROSS JOIN transaction t
 4 WHERE t.transaction_date BETWEEN c.start_date AND c.end_date
 5 ORDER BY EXTRACT(MONTH FROM t.transaction_date);

11-ch11.indd 311 9/5/11 4:24:22 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

312   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  313

This query would return the same result set from the sample data set found in the video store
database (see Introduction for details). Notice that in lieu of the comma-delimited tables on line 3,
two tables are separated by the CROSS JOIN operator.

You also can refactor this query to use the following syntax:

SELECT c.month_short_name
, t.transaction_amount
FROM calendar c INNER JOIN transaction t
ON (t.transaction_date BETWEEN c.start_date AND c.end_date)
ORDER BY EXTRACT(MONTH FROM t.transaction_date);

Although this appears to be an inner join operation, it actually runs as a filtered cross join. The
ON subclause performs a range comparison that determines whether the transaction_date
column value is found between the dates of two columns from the calendar table. Why is the
last syntax important if it’s misleading and does the same thing? Because Oracle has recently
included this on the certification test.

Inner Join
An inner join in SQL produces an intersection between two tables. It lets you splice rows into one
large row. It is equivalent to a for loop reading one row from one collection, then a nested for
loop reading another row, and finally a conditional if statement checking whether they match.
When they match, you have an intersection, and only those rows are returned by an INNER
JOIN operator.

The Venn diagram for an inner join is shown in Figure 11-8. The discrete math represents that
one set intersects the other. For example, when you match a table with a primary and foreign key
value, you get only those rows that match both the primary and foreign key values.

There are two key differences between ANSI SQL-89 and ANSI SQL-92 syntax for an inner
join. One is that tables are comma-delimited in the FROM clause for ANSI SQL-89, and they’re

Cartesian Product
A Cartesian product is the result of a cross join in SQL. The Cartesian product is named after
René Descartes, who is known for penning the phrase, “Cogito ergo sum.” Translated, it
means, “I think therefore I am.” He was also a 17th century mathematician who developed
the theory of analytical geometry, which lays the foundation for calculus and many aspects
of set theory. Set theory is a major foundational element for relational calculus and
databases.

Figure 11-8.  Inner join Venn diagram

A B

∀A,B | A ∩ B = {x ∈ A ∩ B | x ∈ A ∨ x ∈ B}

11-ch11.indd 312 9/5/11 4:24:23 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  313

separated by the INNER JOIN operator in ANSI SQL-92. The other is that the join condition is in
the WHERE clause in ANSI SQL-89 and the FROM clause in ANSI SQL-92. You use a USING clause
when the primary and foreign key column(s) share the same column name and the ON clause
when they don’t. However, you can use the ON clause when the column names are the same.

ANSI SQL-89 Inner Join  The following shows you how to join the member and contact
tables on their respective primary and foreign key columns. Notice that the tables are comma-
delimited and that the join is performed in the WHERE clause.

SQL> SELECT COUNT(*)
 2 FROM member m, contact c
 3 WHERE m.member_id = c.member_id;

The query returns the number of rows where the values in the two member_id columns match
exactly. This is an equijoin (or equality value match) relationship.

For outer join subsections, the parent table will always be on the left side of the operator and
the child table will be on the right side. If you swap their locations, the results would likewise
invert, because the left join of parent to child is the same as the right join of child to parent.

ANSI SQL-92 Inner Join  Like the preceding example, this example shows you how to join
the member and contact tables on their respective primary and foreign key columns. The
INNER JOIN operator replaces the comma-delimited notation of the older syntax pattern.

Two subclause notations are available for joins: the USING subclause and the ON subclause.
The USING subclause works when the column or columns have the same name. These operators
are required in inner and outer joins but not with the NATURAL JOIN operator.

Here’s the USING prototype:

FROM table [alias] {LEFT | INNER | RIGHT | FULL} JOIN table [alias]
USING (column [, column [, …]])

You can provide as many columns as you need in the USING subclause. You should enter them
as a comma-separated list. They are processed as though they were connected through a series of
logical AND statements.

The ON prototype works when the columns have the same or different names. Here’s its
prototype:

FROM table [alias] {LEFT | INNER | RIGHT | FULL} JOIN table [alias]
 ON {table | alias}.column = {table | alias}.column
[AND {table | alias}.column = {table | alias}.column
[AND ...]

Notice that the following tables aren’t comma-delimited. The INNER JOIN operator replaces
the comma between tables. This join uses the USING subclause to match primary and foreign key
columns that share the same name.

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m INNER JOIN contact c USING(member_id);

11-ch11.indd 313 9/5/11 4:24:24 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

314   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  315

You must use the ON subclause when the column name or column names aren’t the same, but
you can also use them when they’re the same. Here is an example of the ON subclause syntax:

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m INNER JOIN contact c ON m.member_id = c.member_id;

Both of these queries return the number of rows where the values in the two member_id
columns match exactly. Like the older syntax, that means they return the intersection between the
two tables and a result set that potentially includes data from both tables.

Natural Join  A natural join doesn’t exist in the ANSI SQL-89 standard. It exists only in the
ANSI SQL-92 standard. The intent of a natural join is to provide the intersection between two
sets. It’s called a natural join because you don’t have to provide the names of the primary or
foreign key columns. The natural join checks the data catalog for matching column names with
the same data type, and then it creates the join condition implicitly for you.

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m NATURAL JOIN contact c;

The only problem with a natural join occurs when columns share the same column name
and data type but aren’t the primary or foreign keys. A natural join will include them in the join
condition. Attempting to match non-key columns that make up the who-audit columns excludes
rows that should be returned. The who-audit is composed of the created_by, creation_
date, last_updated_by, and last_update_date columns (or like column names).

Outer Joins
Outer joins allow you to return result sets that are found both in the intersection and outside the
intersection. Applying the paradigm of a parent table that holds a primary key and child table that
holds a foreign key, three relationships are possible when foreign key integrity is enforced by the
API rather than database constraints:

	 Scenario 1■■   A row in the parent table matches one or more rows in the child table.

Scenario 2■■   A row in the parent table doesn’t match any row in the child table.

Scenario 3■■   A row in the child table doesn’t match any row in the parent table, which
makes the row in the child table an orphan.

Any or all of the three scenarios can occur. Inner joins help us find the results for scenario 2, but
outer joins help us find rows that meet the criteria of scenarios 1 and 3.

NOTE
The ANSI SQL-89 syntax has no provision for outer joins.

Oracle provided outer join syntax before it was defined by the ANSI SQL-92 definition.
Oracle’s syntax works with joins in the WHERE clause. You append a (+) on the column of a
table in the join, and it indicates that you want the relative complement of that table. A relative
complement contains everything not found in the original set.

11-ch11.indd 314 9/5/11 4:24:24 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  315

For example, the following SELECT statement uses an Oracle proprietary outer join, and you
would get all account_number values from the member table that had a contact or didn’t have
a contact. That’s because any member_id values found in the member table that aren’t found in
the contact table are returned with the inner join result set.

SQL> SELECT m.account_number
 2 FROM member m, contact c
 3 WHERE m.member_id = c.member_id(+);

If you change the SELECT list and switch the (+) from the contact table’s column to the
member table’s member_id column, you would get any orphaned rows from the contact
table. Here’s the syntax to get orphaned contacts’ names:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM member m, contact c
 3 WHERE m.member_id(+) = c.member_id;

Line 3 has the change of the (+) from one side of the join to the other. As mentioned, the (+)
symbol is included on a column of one table in a join and effectively points to its relative
complement in the other table. Having positioned the member table on the left and contact
table on the right in the previous examples, when the (+) is pointing from a contact table’s
column, you get the equivalent of a left join. Switch the (+) to point from a column in the
member table and you get the equivalent of a right join.

Oracle’s proprietary syntax isn’t portable to any other platform. It also doesn’t support full
outer join behavior unless you combine results with a UNION ALL set operator, which is covered
in the “Union” subsection later in this chapter.

Left Outer Join  A left join in SQL extends an inner join because it returns the intersection
between two tables plus the right relative complement of the join. The right relative complement
is everything in the table to the left of the join operation that’s not found in the table on the right.
The Venn diagram for a left join is shown in Figure 11-9.

A left join splices several rows into one large row, and it puts null values in the columns from
the table on the right when nothing is found in those columns. Left joins use join conditions like
those in the inner join section. The ANSI SQL-92 syntax supports a left join operation. That means
JOIN statements are in the FROM clause not the WHERE clause, and you use either the ON or USING
subclauses to qualify the joining columns.

The following lets you find any account_number values in the member table, whether or
not they have valid customer information in the contact table:

SQL> SELECT m.account_number
 2 FROM member m LEFT OUTER JOIN contact c
 3 ON m.member_id = c.member_id;

A B

∀A,B | A ∩ B + A \ B = {x ∈ A ∧ x ∈ B} + {y ∈ A ∧ y ¬∈ B}

Figure 11-9.  Left join Venn diagram

11-ch11.indd 315 9/5/11 4:24:26 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

316   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  317

The LEFT OUTER JOIN phrase is the fully qualified syntax, but the OUTER keyword is
optional in Oracle and MySQL databases. If you were to reverse the relative positions of the
member and contact tables, only the account_number values that meet the conditions of an
INNER JOIN operator are returned. That’s because you would get the right relative complement
of the member table, not the contact table. The right relative complement of the member table
returns the data rows in the contact table that have foreign key values that don’t resolve to
primary key values in the member table. Naturally, this type of data set is possible only when
you’re not maintaining database-level foreign key constraints.

The more frequent use of a LEFT JOIN would be to look for orphaned customers, in order to
delete them from the database. In that use case, you’d write the statement like this:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM contact c LEFT JOIN member m
 3 ON m.member_id = c.member_id;

Notice that the values in the SELECT list should come from the table that holds data not from the
table that may not contain data. Otherwise, you get a bunch of null values. The preceding query
returns rows from the contact table that don’t point back to a row in the member table, and
such rows would be orphans. They are referred to as orphans because their foreign key column
values aren’t found in the list of primary key column values. This can occur when there aren’t
foreign key constraints in the database.

Right Outer Join  Like a left join, a right join in SQL extends an inner join. A right join returns
the intersection between two tables, plus the left relative complement of the join. The left relative
complement is everything in the table to the right of the join operation that’s not found in the
table on the left. This makes the right join a mirror image of the left join, as shown in Figure 11-10.

A right join splices rows into one large row like the inner and left join. It puts null values in the
columns from the table on the left when they don’t match columns that exist in the table on the
right. Right joins use join conditions like those in the inner and left join operations. That means
they adhere to the ANSI SQL-92 syntax rules, and JOIN statements are in the FROM clause not the
WHERE clause. You can choose to use the ON or USING subclauses to qualify joining columns.

The first example, shown next, lets you find all customer names in the contact table—those
tables that have a valid foreign key value that matches a valid primary key value, and those that
have an invalid foreign key value. Invalid foreign key values can exist only when you opt not to
enforce database-level foreign key constraints. Rows holding invalid foreign key values are
known as orphaned rows because the row with a valid primary key doesn’t exist. This follows the
paradigm that the parent holds the primary key and the child holds the foreign key (copy of the
primary key).

Figure 11-10.  Right join Venn diagram

A B

∀A,B | A ∩ B + B \ A = {x ∈ A ∧ x ∈ B} + {y ∈ B ∧ y ¬ ∈ A}

11-ch11.indd 316 9/5/11 4:24:27 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  317

This example returns all customer names from the contact table and really doesn’t require a
join operation at all:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM member m RIGHT JOIN contact c
 3 ON m.member_id = c.member_id;

A more meaningful result would exclude all rows where the primary key value is missing.
That’s easy to do by adding a single filtering WHERE clause statement that says “return rows only
where there’s no valid primary key in the member table.” Here’s the example:

SQL> SELECT c.last_name || ', ' || c.first_name AS customer_name
 2 FROM member m RIGHT JOIN contact c
 3 ON m.member_id = c.member_id
 4 WHERE m.member_id IS NULL;

Line 4 filters the return set so that it returns only the orphaned customer names. You would use
that type of statement to delete orphan records, typically as a subquery in a DELETE FROM
statement. Here’s an example of such a statement:

SQL> DELETE FROM contact
 2 WHERE contact_id IN (SELECT c.contact_id
 3 FROM member m RIGHT JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NULL);

The right and left join semantics are very useful for cleaning up data when foreign key values
have lost their matching primary key values. They help you find the relative complements of outer
joins when you subtract the inner join rows.

Full Outer Join  A full outer join provides the inner join results with the right and left relative
complements of left and right joins, respectively. The combination of the two relative
complements without the intersection is known as the symmetric difference. The Venn diagram
for a full outer join is shown in Figure 11-11.

Like the left and right joins, a full outer join splices rows into one large row, like the inner and
left join. It puts null values in the columns from the table on the left and right. Assume the
following FULL JOIN syntax (by the way, OUTER is an optional keyword and seldom used):

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m FULL JOIN contact c
 4 ON m.member_id = c.member_id;

Figure 11-11.  Full join Venn diagram

A B

∀A,B | A ∩ B + (A \ B + B \ A)

11-ch11.indd 317 9/5/11 4:24:28 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

318   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  319

This query’s result set would return null values for the account_number when there isn’t a
foreign key using a primary key in the member table, and the customer_name when a foreign
key value isn’t found in the primary key list. This type of analysis is done when database-level
foreign key constraints aren’t maintained and the API fails to synchronize primary and foreign
key values properly. You need to figure out which customers should be associated with a member,
because a member row would never be written unless a contact row was also written. This kind
of problem occurs more often than you might expect.

You would filter out the inner join by using the following syntax or the MINUS set operator
(shown later):

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m FULL JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NOT NULL
 6 AND c.member_id IS NOT NULL;

This wraps up joins. Next you’ll see how to work with set operators. The next section builds
on the examples in this section.

Joins that Splice Collections
Set operations often combine or filter row sets. That means they act as the glue that binds together
two queries. The queries must return the same SELECT list, which means the column names and
data types must match.

The basic prototype glues the top query to the bottom query. Both top and bottom queries can
have their own GROUP BY or HAVING clauses, but only one ORDER BY clause can appear at the
end. You can splice more than two queries by using other set operators in sequence. The value
operations are performed top-down unless you use parentheses to group set operations. The default
order of precedence splices the first query result set with the second, and they become a master set
that in turn is spliced by another set operator with a subsequent query. Here’s a prototype with only
a single table in the FROM clause:

SELECT column_list
FROM some_table
[WHERE some_condition [{AND | OR } some_condition [...]]]
[GROUP BY column_list]
[HAVING aggregation_function]
{INTERSECT | UNION | UNION ALL | MINUS}
SELECT column_list
FROM some_table
[WHERE some_condition [{AND | OR } some_condition [...]]]
[GROUP BY column_list]
[HAVING aggregation_function]
[ORDER BY column_list];

As qualified in the prototype, there are four set operators in SQL: INTERSECT, UNION,
UNION ALL, and MINUS. The INTERSECT operator finds the intersection of two sets and returns
a set of unique rows. The UNION set operator finds the unique set of rows, and returns them. The
UNION ALL set operator finds and returns an unsorted merge of all rows from both queries,

11-ch11.indd 318 9/5/11 4:24:29 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  319

which results in two copies of any like rows. The MINUS set operator removes the rows in the
second query from the rows of the first query where they match.

The following sections discuss the set operators in more depth and provide examples and use
cases for them. They’re organized in what is the general frequency of use.

Union
The UNION set operator acts like a union in set math and returns the unique things from two sets.
This is a two step process: first it gathers the rows into one set and then it sorts them and returns
the unique set. Figure 11-12 shows the Venn diagram for a UNION set operation, which looks
exactly like a full outer join Venn diagram. The difference between the two is that a full outer join
returns all the columns from two tables into one new and larger row, while the UNION merges
one set of rows with another (matching set) uniquely.

The UNION set operator lets Oracle achieve a full outer join with its proprietary syntax. One
query (A) gets the left join and the other query (B) gets the right join, and the UNION set operator
sorts the non-unique row set and returns a unique set.

The code for an Oracle proprietary full outer join would look like this:

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m, contact c
 4 WHERE m.member_id = c.member_id(+)
 5 UNION
 6 SELECT m.account_number
 7 , c.last_name || ', ' || c.first_name AS customer_name
 8 FROM member m, contact c
 9 WHERE m.member_id(+) = c.member_id;

The first query returns a left join, which is the inner join between the columns and the right
relative complement (those things in the left table not found in the right table). The second query
returns the right join. The right join holds a copy of the left relative complement and a second
copy of the inner join result set. The UNION set operator sorts the non-unique set and discards the
second copy of the inner join.

This is more or less the use case for the UNION set operator. You use it when you can’t
guarantee that the queries return exclusive sets of rows.

Union All
The UNION ALL set operator differs from the UNION set operator in one key way: it doesn’t sort
and eliminate duplicate rows. That’s a benefit when you can guarantee that two queries return
exclusive row sets, because a sorting operation requires more computing resources. The Venn

A B

∀A,B | A ∩ B + (A \ B + B \ A)

Figure 11-12.  Venn diagram for a UNION set operator

11-ch11.indd 319 9/5/11 4:24:30 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

320   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  321

diagram for a UNION ALL shown in Figure 11-13 looks remarkably like the one for a UNION. The
difference is seen in the discrete math below the figure that indicates that it holds two copies of
the intersection between the row sets.

The UNION ALL set operator is the preferred solution when you can guarantee that queries
one and two return unique rows, which means there’s no intersection. A symmetrical difference
between two sets is the easiest way to demonstrate this set operator, because it is the combined
results of the left and right relative complements. This means it doesn’t include the intersection
between two row sets.

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m LEFT JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NOT NULL
 6 UNION ALL
 7 SELECT m.account_number
 8 , c.last_name || ', ' || c.first_name AS customer_name
 9 FROM member m RIGHT JOIN contact c
 10 ON m.member_id = c.member_id
 11 WHERE c.member_id IS NOT NULL;

The first query (A) is a left join that excludes the inner join set, and the second query (B) is
a right join that excludes the inner join set. It returns only the symmetric difference between
the two row sets.

Intersect
The INTERSECT set operator returns only the unique rows found in two queries. It’s useful when
you want to find rows that meet the criteria of two different queries. The Venn diagram for the
INTERSECT set operator shown in Figure 11-14 is exactly like that for the inner join. The only
difference is one joins row sets and the other joins column sets.

Figure 11-13.  Venn diagram for UNION ALL operator

A B

∀A,B | 2(A ∩ B) + (A \ B + B \ A)

Figure 11-14.  Venn diagram for INTERSECT operator

A B

∀A,B | A ∩ B = {x ∈ A ∩ B | x ∈ A ∨ x ∈ B}

11-ch11.indd 320 9/5/11 4:24:31 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  321

While it might look like a lot of work to get the unique set of rows with an INTERSECT set
operator, you can verify that the inner join between the member and contact table is the
unique intersection of rows. The INTERSECT operator returns the rows that match between
query one (A) and query two (B), which is the INNER JOIN between the two tables.

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m LEFT JOIN contact c
 4 ON m.member_id = c.member_id
 5 INTERSECT
 6 SELECT m.account_number
 7 , c.last_name || ', ' || c.first_name AS customer_name
 8 FROM member m RIGHT JOIN contact c
 9 ON m.member_id = c.member_id;

This query returns the same set of information as an INNER JOIN between the member and
contact table using the member_id column. The two relative complements are discarded
because the collective values of all columns in the matching rows differ.

Minus
The MINUS set operator lets you subtract the matching rows of the second query from the first
query. It allows you to find the symmetric difference between two sets, or the relative complement
of two sets. Although you can accomplish both of these tasks without set operators by checking
whether the joining columns aren’t null, sometimes it’s a better fit to use set operators to solve this
type of problem.

The Venn diagram for the MINUS set operator shown in Figure 11-15 is different from those
for join statements because it excludes the intersection area. I was tempted to provide two
examples in this section: one that subtracts the inner join from a full join and another that
subtracts the cross join from the same full join. The result would be the same row set, because the
only row matches between a full and inner join are the intersection rows, which is the same for
a full and cross join. That’s because the possible nonjoins in a Cartesian product aren’t found in
a full join result set.

Here’s the full join minus the cross join:

SQL> SELECT m.account_number
 2 , c.last_name || ', ' || c.first_name AS customer_name
 3 FROM member m FULL JOIN contact c
 4 ON m.member_id = c.member_id
 5 WHERE m.member_id IS NOT NULL
 6 MINUS
 7 SELECT m.account_number
 8 , c.last_name || ', ' || c.first_name AS customer_name
 9 FROM member m CROSS JOIN contact c;

You always subtract a cross join from a full join when you want the symmetrical difference
because it is less expensive than subtracting an inner join.

11-ch11.indd 321 9/5/11 4:24:32 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

322   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  323

Views: Stored Queries
Views are stored queries. They can return a subset of one table or a superset of several tables.
They can include columns from tables or columns that are the result of expressions, such as string
operations, numeric or date math results, or calls to built-in or user-defined functions. Some
views are view only (read only) and others are updateable (read-write).

You create views much as you do other things in the database. The next two sections qualify
how you create views in Oracle and MySQL. As you’ll see, there are some syntax differences.

Creating Oracle Views
Oracle supports ordinary views that are read-only or read-writeable. Here’s the basic prototype
for creating a view in Oracle:

CREATE [OR REPLACE] [[NO] FORCE] VIEW view_name
[(column_name [inline_constraint] [, ...]
[,CONSTRAINT constraint_name
 UNIQUE (column_name) RELY DISABLE NONVALIDATE]
[,CONSTRAINT constraint_name
 PRIMARY KEY (column_list) RELY DISABLE NONVALIDATE]
AS select_statement
[WITH {READ ONLY | CHECK OPTION}]

The OR REPLACE clause is very helpful because you don’t have to drop the previous view before
re-creating it with a new definition. Although NO FORCE is the default, FORCE tells the DBMS to
create the view even when the query references things that aren’t in the database. This is handy
when you’re doing a major upgrade, because you can run views concurrently with scripts that
change the definition of tables.

You can query the data catalog to find invalid views. This query returns a list of all invalid
views in a user’s schema:

SQL> SELECT object_name
 2 , object_type
 3 , status
 4 FROM user_objects
 5 WHERE status = 'INVALID';

A read-only view occurs when the query (SELECT statement) contains a subquery, collection
expression, selectivity operator (DECODE function or CASE operator), or DISTINCT operator in
the SELECT list; or when the query uses a join, set operator, aggregate function, or GROUP BY,

Figure 11-15.  Venn diagram for MINUS operator

A B

∀A,B | A \ B = {y ∈ A ∧ y ¬∈ B}

11-ch11.indd 322 9/5/11 4:24:33 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  323

ORDER BY, MODEL, CONNECT BY, or START WITH clause. The last two clauses are hybrid
Oracle clauses that support recursive queries. You can’t write to base rows when views perform
these types of operations. However, you can deploy INSTEAD OF triggers in Oracle that unwind
the logic of the query and let you write to the base rows. Chapter 15 shows a simple example of
an INSTEAD OF trigger.

The following is an example of a read-only view:

SQL> CREATE OR REPLACE VIEW employee_view
 2 (employee_id
 3 , employee_name
 4 , employee_status
 5 , CONSTRAINT pk_employee
 6 PRIMARY KEY (employee_id) RELY DISABLE NOVALIDATE)
 7 AS
 8 SELECT c.contact_id AS employee_id
 9 , c.last_name || ', ' || c.first_name ||
 10 CASE
 11 WHEN c.middle_name IS NULL
 12 THEN ' '
 13 ELSE ' '||c.middle_name
 14 END AS employee_name
 15 , CASE
 16 WHEN c.contact_type = common_lookup_id
 17 THEN 'Active'
 18 ELSE 'Inactive'
 19 END AS employee_status
 20 FROM contact c INNER JOIN common_lookup cl
 21 ON common_lookup_table = 'CONTACT'
 22 AND common_lookup_column = 'CONTACT_TYPE'
 23 AND common_lookup_type = 'EMPLOYEE';

Line 6 has a primary key constraint on employee_id, which maps inside the subquery to the
primary key contact_id column for the contact table. The employee_name column is
selectively concatenated from other columns in the contact table, and the employee_status
column is fabricated through the combination of a join and CASE operator. Since this is a read-
only view, there would be no entry in the user_updatable_columns conceptual view.

A read-write trigger can contain derived columns or expressions, but you cannot write to
those specific columns. The following creates a view with two derived columns:

SQL> CREATE OR REPLACE VIEW transaction_view AS
 2 SELECT t.transaction_id AS id
 3 , t.transaction_account AS account
 4 , t.transaction_type AS purchase_type
 5 , t.transaction_date AS purchase_date
 6 , t.transaction_amount AS retail_amount
 7 , t.transaction_amount * .0875 AS sales_tax
 8 , t.transaction_amount * 1.0875 AS total
 9 , t.rental_id AS rental_id
 10 , t.payment_method_type AS payment_type
 11 , t.payment_account_number AS account_number

11-ch11.indd 323 9/5/11 4:24:34 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

324   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  325

 12 , t.created_by
 13 , t.creation_date
 14 , t.last_updated_by
 15 , t.last_update_date
 16 FROM transaction t;

Lines 7 and 8 contain results from a calculation based on column values multiplied by numeric
constants. You can write to the base table through this view by providing an override signature
that excludes the two derived columns. Chapter 8 discusses the mechanics of using override
signatures in INSERT statements.

You can see which columns are updatable with the following query (formatted with SQL*Plus
commands):

COLUMN column_name FORMAT A20
COLUMN updatable FORMAT A9
SQL> SELECT column_name
 2 , updatable
 3 FROM user_updatable_columns
 4 WHERE table_name = 'TRANSACTION_VIEW'
 5 AND updatable = 'NO';

It would return the two derived columns, where the column names are the aliases assigned in
the query:

COLUMN_NAME UPDATABLE
-------------------- ---------
SALES_TAX NO
TOTAL NO

The WITH CHECK OPTION clause limits the rows that you can change with an UPDATE
statement or DELETE FROM the table, by applying a rule that you can touch only those rows that
you can see in the view. For example, login protocols often set the CLIENT_INFO value when
they validate a user’s privileges in a web application. Adding a WHERE clause on line 17 could
limit the visible rows to those that match the value of the session’s CLIENT_INFO value, like this:

17 WHERE TO_NUMBER(NVL(SYS_CONTEXT('userenv','client_info'),-1)) = 0;

If a view becomes invalid, you can query the USER_DEPENDENCIES concept view. It shows
you which dependencies are missing. Replacing the dependencies allows the next DML against
the view to work.

The following query finds dependencies for a view:

SQL> SELECT name
 2 , referenced_owner||'.'||referenced_name AS reference
 3 , referenced_type
 4 FROM user_dependencies
 5 WHERE type = 'VIEW'
 6 AND name = 'view_name';

Views are powerful and complex. Although the views you’ve seen only store queries and
rules, Oracle also supports materialized views, which are query results stored in the database.

The results in materialized views are often not current with the moment and can be hours or a
day or more old. Materialized views are created when the cost of returning a result set is very high

11-ch11.indd 324 9/5/11 4:24:34 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  325

and places an inordinate load on the server during normal operational windows. Materialized
views are often used in data marts and warehouses.

Creating MySQL Views
MySQL, like Oracle, supports ordinary views that are read-only or read-writeable. Here’s the
basic prototype for creating a view:

CREATE [OR REPLACE]
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name
 [(column_list)]
 AS select_statement
 [WITH [{CASCADED | LOCAL}] CHECK OPTION]

Again, the OR REPLACE clause is helpful because you don’t have to drop the previous view
before re-creating it with a new definition. The OR REPLACE clause was added in MySQL 5.0.1.
Several algorithm and security features are available with views. The ALGORITHM clause instructs
the MySQL engine how to process the view; it’s a SQL extension and UNDEFINED is the default
option. The MERGE algorithm can’t be used when a subquery exists in the SELECT list, an
aggregate function is in the query, or a DISTINCT, GROUP BY, HAVING, LIMIT clause, or a
UNION or UNION ALL set operator exists.

You can set the definer value of the view as a named user or as the current user, at least if you
have super user privileges. CURRENT_USER is the default value for the CREATE VIEW statement.
You can also define a view in a DEFINER or INVOKER mode of operations. The DEFINER mode
means that the view runs with the privileges of the user who defined the view, and the INVOKER
mode means that the view runs with the privileges of the user who calls the view. The WITH
CHECK OPTION works as it does in Oracle, restricting updatable views only to those rows a user
can see.

MySQL imposes several restrictions on views:

	 There can be no subqueries in the ■■ SELECT list.

The ■■ SELECT statement cannot refer to system or user variables—session variables.

The ■■ SELECT statement cannot refer to prepared statement variables. (Prepared
statements are covered in Chapter 14 and they are dynamic SQL statements.)

The ■■ SELECT statement cannot refer to temporary tables or tables that haven’t been
created yet.

You cannot associate a trigger with a view, which means there is no equivalent to an ■■
Oracle INSTEAD OF trigger.

As of MySQL 5.0.52, column aliases have a maximum length of 64, not 256 like tables.■■

Tip
The ORDER BY inside a view is overridden when you put an ORDER
BY clause in a query that calls an ordered view. As a rule, avoid
ordering inside views.

11-ch11.indd 325 9/5/11 4:24:35 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

326   Oracle Database 11g & MySQL 5.6 Developer Handbook

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  327

A view can become obsolete when it refers to a table that was removed. The tables
referenced in the FROM clause of a SELECT statement are dependencies for the view. When a
DML statement against a view fails, you can use the CHECK TABLE statement to find out what
dependency is missing. Here’s the syntax:

CHECK TABLE current_rental;

A dependency table was dropped from the database to populate failure messages. Since the
screen dump doesn’t fit nicely on a page, the following list summarizes the three messages that
appear when the studentdb database is missing the rental_item table:

	 ‘studentdb.rental_item’ doesn■■ ’t exist

‘studentdb.current_rental’ references invalid table(s) or column(s) or function(s) or ■■
definer/invoker of view lack rights to use them

Corrupt■■

The first two explain that the table is missing, and because it’s missing, the columns cannot be
found. The last message says the view is corrupt; Oracle would report it as invalid.

The read-only view requires some modifications to run in MySQL, because it doesn’t support
constraints in a view and uses piped concatenation. Here’s the modified view statement:

CREATE OR REPLACE VIEW employee_view
(employee_id
, employee_name
, employee_status)
AS
SELECT c.contact_id AS employee_id
, CONCAT(c.last_name,', ',c.first_name,
 CASE
 WHEN c.middle_name IS NULL
 THEN ' '
 ELSE CONCAT(' ',c.middle_name)
 END) AS employee_name
, CASE
 WHEN c.contact_type = common_lookup_id
 THEN 'Active'
 ELSE 'Inactive'
 END AS employee_status
FROM contact c INNER JOIN common_lookup cl
ON common_lookup_table = 'CONTACT'
AND common_lookup_column = 'CONTACT_TYPE'
AND common_lookup_type = 'EMPLOYEE';

The read-write view works without any changes.

Note
Be careful when you incorporate user-defined functions in views,
because they can invalidate views when the functions have different
privileges than the views.

11-ch11.indd 326 9/5/11 4:24:35 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

Chapter 11:  Querying  327

Summary
This chapter covered how you query results from tables and examined string concatenation,
numeric, and date mathematics. It explored the various clauses of SELECT statements and the
ways to filter result sets in the WHERE clause. The chapter also explored built-in Oracle and
MySQL date functions; subqueries were also covered.

The chapter also covered how you perform joins between tables by splicing columns together
into new record structures, and how you perform set operations between sets of rows. You should
have learned the difference between cross, inner, left outer, right outer, and full outer joins, as well
as the difference between the UNION, UNION ALL, INTERSECT, and MINUS set operators.

Mastery Check
The mastery check is a series of true or false and multiple choice questions that let you confirm
how well you understand the material in the chapter. You may check the Appendix for answers
to these questions.

	 1.	 True   False  � A SELECT statement can concatenate strings.

	 2.	 True   False  � A SELECT statement can add, subtract, multiply, and divide numbers
to return derived results in the SELECT list.

	 3.	 True   False  � Date mathematics work the same way in both Oracle and MySQL
databases, because you can get yesterday’s date by subtracting one
from the current date.

	 4.	 True   False  � A scalar subquery returns one to many columns and only one row of
data.

	 5.	 True   False  � An INNER JOIN can splice a set of columns from one table with a set
of columns from another table based on a column that shares the same
value.

	 6.	 True   False  � A LEFT JOIN returns the INNER JOIN results plus everything in the
left table of the join not found in the right table.

	 7.	 True   False  � In MySQL, you can use the IF function to perform conditional
operations.

	 8.	 True   False  � In Oracle, you can use the DECODE function to perform conditional
operations.

	 9.	 True   False  � You use the UNION ALL set operator performs the exact same thing as
a UNION set operator.

	10.	 True   False  � You can’t filter results in the WHERE clause on negation of a comparison.

	11.	 Which of the following returns a null and works as a subquery?

	 A.	 A scalar subquery

	B .	 A single-row subquery

	 C.	 A multiple-row subquery

	 D.	 A correlated subquery

	 E.	 None of the above

11-ch11.indd 327 9/5/11 4:24:36 PM

Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8 Oracle TIGHT / Oracle Database 11g & MySQL 5.6 Developer Handbook / Michael McLaughlin / 885-8

328   Oracle Database 11g & MySQL 5.6 Developer Handbook

	12.	 How many columns does a scalar subquery return?

	 A.	 1

	B .	 2

	 C.	 3

	 D.	 4

	 E.	 Many

	13.	 What is the maximum number of rows you can update with a correlated subquery?

	 A.	 1

	B .	 2

	 C.	 3

	 D.	 4

	 E.	 Many

	14.	 The MINUS set operator yields the symmetric difference in which of the following
examples?

	 A.	 The left join minus the right join

	B .	 The left join minus the inner join

	 C.	 The right join minus the inner join

	 D.	 The full join minus the cross join

	 E.	 The full join minus the right join

	15.	 Which clause holds the join between tables in ANSI SQL-92?

	 A.	 The WHERE clause

	B .	 The GROUP BY clause

	 C.	 The FROM clause

	 D.	 The ORDER BY clause

	 E.	 None, because the natural join principal always manages the process

11-ch11.indd 328 9/5/11 4:24:36 PM

