

879

14

Web Services and SOA for DBA, Data
Architects, and Others

Things should be made as simple as possible, but not any simpler.

—

Albert Einstein

The promise of Web services is simplified interfaces for application-to-
application interaction in heterogeneous and distributed environments.
This chapter describes the key technologies that enable Web services (i.e.,
XML, WSDL, SOAP, UDDI) and then peeks at the bigger picture, the
service-oriented architecture (SOA). After reading this chapter, you will
be well armed to understand database Web services, our final destination.

14.1 Web Services 101

In traditional Web interactions, humans interact with applications through
browsers, which interpret HTML to produce graphical displays and accept
user inputs. As depicted by Figure 14.1, Web services, by contrast, allow

application-to-application interaction

 through XML messages

irrespective of
the implementations, the location, and the platforms

 of the client and the
server application modules. The World Wide Web Consortium (W3C)
defines Web services as “software applications or components identified by
a URL that describes their interfaces (i.e., services or operations they fur-
nish) and their binding in XML, and that can be accessed by client-applica-
tions using XML messages and Internet protocols.”

Figure 14.1

A Simplistic View
of Web Services

Chap14.fm Page 879 Saturday, May 6, 2006 9:42 AM

880

14.1

Web Services 101

The key benefits are interoperability (language/platform neutral); sim-
pler, flexible, and dynamic integration (provision to support new protocols,
dynamic service discovery and binding, defined interfaces foster composi-
tion); automation (application-to-application interaction, services orches-
tration/workflow); and time to market (reuse of existing applications).
These benefits are made possible by the standards technologies (formats,
protocols, and description) that compose the Web services stack. We can
distinguish the core Web services technologies and then the infrastructure/
deployment requirements, as well as higher-level technologies.

14.1.1 Core Web Services Technologies

The core technologies that make up Web services are XML, SOAP, WSDL,
and UDDI. Figure 14.2 depicts how these technologies come into play.
Let’s look briefly into each of these.

XML

The eXtended Markup Language (XML) is the

lingua franca

 of Web ser-
vices (and many other technologies); it serves as the base language for
type definition, service description, data format, data transfer, messaging,
discovery, security, and so on. Web services requesters and providers
exchange information using XML documents, which are formatted
according to either XML Document Type Definition (DTD) rules or
XML schema rules (XSD).

As briefly described in Chapter 8, XML Schema Definition (XSD) is a
W3C recommendation, an alternative to DTD, for describing

the structure,
content, and semantics of XML documents

, thereby allowing all parties

Figure 14.2

Web Services
Interaction

Chap14.fm Page 880 Saturday, May 6, 2006 9:42 AM

14.1

Web Services 101 881

Chapter 14

involved to have a common and exact understanding of the document in
question. The XSD defines which elements the document may contain,
their attributes, and their relationship. Because XML does not come with
predefined tags, the role of XML namespaces and XML schemas is integral
for a shared understanding of the document.

An XML document contains:

�

A prolog or processing instruction, which starts and ends with “?”
into brackets, and are the only “predefined” tags in XM; everything
else is self-described, which is the “eXtensibility” in XML.

�

XML namespace (

xmlns

), namespace instance (

xmlns:xsi

), and an
association of the schema and the instance (

xsi:schemaLocation

).
According to the W3C,

1

 “XML namespaces provide a simple method
for qualifying element and attribute names used in Extensible
Markup Language documents by associating them with namespaces
identified by URI references.”

�

A root element (address), which may have attributes and a cascade of
subelements:

<element>

 <subelement>

 <field1>.....</field1>

 </subelement>

</element>

Here is a basic XML document representing an address:

<?xml version=”1.0” encoding=”ISO-8859-1” standalone=”yes”?>

<! This is a comment -->

<Address

 xmlns=http://www.basicxml.org/AddressDoc

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:schemaLocation=

 “http://www.basicxml.org/AddressDoc

 file:./AddressDoc.xsd”>

 <Street> 24 Benin Drive</Street>

 <City> San Francisco </City>

1. http://www.w3.org/TR/REC-xml-names/.

Chap14.fm Page 881 Saturday, May 6, 2006 9:42 AM

882

14.1

Web Services 101

 <State> California</State>

 <Country>USA</Country>

</Address

XML defines simple types, such as

string, Base64Binary, hexBi-

nary, integer, date, positiveInteger, genativeInteger, nonNe-

gatveInteger, nonPositiveInteger, decimal, boolean, time,

dateTime, duration, date, Name, QNane, anyURI, ID, IDREF

, and
so on.

XML allows user-defined complex types such as the following:

<complexType name”myComplexType”>

<sequence>

<element name=”tname” type=”string” minOccurs=”0”/>

<element name=”description” type=”string” minOccurs=”0”/>

…

</sequence>

<attribute name=”objid” type=”ID”/>

<attribute name=”objref” type=”IDREF”/>

</complexType>

See Chapter 15 for more information.

XML documents can be processed and consumed directly by an applica-
tion as a character stream or serialized and parsed by XML serializers and
parsers (e.g.,

DOM, SAX, StAX

).

XML documents can also be displayed using XSL and XSL transformers
(XSLT) and style sheets. There is a whole range of XML standards, APIs,
tools, editors, and utilities. However, their coverage is beyond the scope of
this book. There are tons of online resources, tutorials, and FAQs about
XML, such as the following:

�

http://www.w3.org/XML/Schema

�

http://www.w3.org/TR/xmlschema-0

�

http://www.w3schools.com/xml/default.asp

Chap14.fm Page 882 Saturday, May 6, 2006 9:42 AM

14.1

Web Services 101 883

Chapter 14

WSDL

The Web Services Description Language (WSDL) is an XML language,
based on a general-purpose XML schema, for describing how to access a
service, including:

�

Messages and their style (i.e., document versus RPC)

�

Bindings of abstract operations and messages to a concrete network
protocol

�

Format of messages that a service can receive (see SOAP messages for-
mats discussion)

�

Supported operations, their parameters, and return types

�

Location of the service

A WSDL structure is made up of two substructures: a service interface
definition and a service implementation definition. The service interface
definition contains initially an implementation neutral (abstract or reus-
able) of the service that will be instantiated by the service implementation
and includes messages, types, port type, and binding.

�

Message

: Describes supported messages and parameters; may contain
parts for RPC arguments.

�

PortType

: Describes the interface of a service (i.e., the set of sup-
ported operations with input message, output message, and fault
message).

�

Operation

: A message signature, part of

PortType

; can be one-way
of request-response.

�

Binding

: How to invoke the operations—that is, style (e.g.,

RPC

),
transport (e.g.,

HTTP

,

SOAP

,

HTTP/MIME

,

SMTP/MIME

), encoding, and
security.

Note:

 WSDL does not require SOAP.

�

Types

: Describes XSD-related items and user-defined types.

The service implementation definition contains implementation details
of the service, including a collection of WSDL ports service and a concrete
endpoint or port.

Chap14.fm Page 883 Saturday, May 6, 2006 9:42 AM

884

14.1

Web Services 101

�

Service

: Set of endpoints or port type ports (i.e., groups endpoints
into service).

�

Port

: Concrete endpoint corresponding to a WSDL binding (i.e.,
network address of the Web service).

Do you have to learn how to write WSDL? Remember, “Things should
be made as simple as possible.” The WSDL is generated for each service by
the Web services framework when you deploy or publish the service (see
Chapter 15). As depicted in Figure 14.2, the requester retrieves the WSDL
from a registry (see UDDI later) but could also find/receive it by other
means; it then interacts with the service, either via a dynamic invocation
(remember the old-time

CORBA DII

?) or more commonly via a static client
or proxy. The other good news is that you don’t have to code against the
WSDL, because the Web services framework generates the Web service cli-
ent (also called proxy) corresponding to your platform (e.g., Java client,
.Net client), which shields you from SOAP/WSDL programming.

The following listing is a fragment of the WSDL generated for the Goo-
gle Spell Check Web Service (see a complete demo in Chapter 16):

 <definitions name="GoogleSearch"
targetNamespace="urn:GoogleSearch"

 …

 <

types

>

 <xsd:schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:GoogleSearch">

 <xsd:complexType name="GoogleSearchResult">

 <xsd:complexType name="ResultElement">

…

 </xsd:schema>

 </

types

>

 <

message

 name="doSpellingSuggestion">

 <part name="key" type="xsd:string" />

 <part name="phrase" type="xsd:string" />

 </

message

>

 <

message

 name="doSpellingSuggestionResponse">

<

portType

 name="GoogleSearchPort">

 <operation name="doSpellingSuggestion">

Chap14.fm Page 884 Saturday, May 6, 2006 9:42 AM

14.1

Web Services 101 885

Chapter 14

 <input message="typens:doSpellingSuggestion" />

 <output message="typens:doSpellingSuggestionResponse" /
>

 </operation>

 </

portType>

 <binding name="GoogleSearchBinding"
type="typens:GoogleSearchPort">

 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />

 <operation name="doSpellingSuggestion"></operation>

 </binding>

 <service name="GoogleSearchService">

 <port name="GoogleSearchPort"

 binding="typens:GoogleSearchBinding">

 <soap:address location="http://api.google.com/search/
beta2" />

 </port>

 </service>

</definitions>

A Web service can be assembled from an existing WSDL, using a top-
down approach. See Chapter 5 of the Oracle Application Server 10.1.3
Web Services Developer’s Guide. Database Web services start from database
functionality and correspond therefore to the bottom-up approach. Also,
WSDL specifications versions (1.1, 1.2) are not covered but can be seen at
the following Web sites:

� http://www.w3.org/TR/wsdl

� http://www.w3.org/2002/ws/desc/

SOAP

The Simple Object Access Protocol (SOAP) is a simple, lightweight, XML-
based RPC protocol, which defines a common shape as well as the process-
ing rules for messages exchanged between objects (remember old-time
IIOP?). SOAP enables Web services interoperability by providing XML
messaging, which is transport neutral (e.g., HTTP/HTTPS, FTP, SMTP, Messag-
ing Protocols, RPC, BEEP); implementation language neutral (e.g., Java, C/

Chap14.fm Page 885 Saturday, May 6, 2006 9:42 AM

886 14.1 Web Services 101

C++, C#, J#, JScript, Perl, VB, PL/SQL, SQL), and platform neutral (e.g.,
Java, .NET).

As depicted by Figure 14.3, a SOAP message is represented as a SOAP
envelope, which contains an optional header (i.e., SOAP header) and a
mandatory body (i.e., SOAP body).

� The SOAP Envelope must define a namespace for the envelope (i.e.,
xmlns:SOAP-ENV) and a namespace for the encoding style (covered
later; i.e., SOAP-ENV:encodingStyle).

� The optional SOAP Header” is used for metadata, security/authenti-
cation, transaction management, routing/delivery, and other
attributes. As an example, in SOAP 1.1, the actor attribute, when
present, specifies the final destination of the header; if the recipient is
not the final, it must forward/route the message to its final destina-
tion (this is replaced by the role attribute in SOAP 1.2).

� The mandatory SOAP Body carries the message content (i.e., payload)
or instructions. The SOAP body may contain a SOAP fault message
with the Code, the Reason, and optionally the Details of the fault.
When large data such as LOB cannot fit within the SOAP body, the
“SOAP with Attachment” specification (SwA) allows carrying a SOAP
envelope within a MIME multipart structure and referencing MIME
parts from the SOA envelope.

The following code is a fragment of a SOAP message sent to the Google
Spell Check Web Service (see Chapter 16):

Figure 14.3
SOAP Envelope

Chap14.fm Page 886 Saturday, May 6, 2006 9:42 AM

14.1 Web Services 101 887

Chapter 14

<?xml version="1.0" encoding="UTF-8" ?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:doSpellingSuggestion

 xmlns:ns1="urn:GoogleSearch"

 SOAP-ENV:encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/">

 <key
xsi:type="xsd:string">00000000000000000000000000000000</key>

 <phrase xsi:type="xsd:string">Nelson Mandelo</phrase>

 </ns1:doSpellingSuggestion>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

The SOAP messages can be transmitted either synchronously or asyn-
chronously using either a Remote Procedure Call (RPC) or document mes-
saging style:

� In the RPC messaging style, the structure of the SOAP body (i.e.,
the request) must conform to section 7 of the SOAP 1.1 specifica-
tion and specify the method, the parameters, and the procedure (its
URI). Upon execution, the service provider sends back a SOAP
message (i.e., the response). The request/response messages are
exchanged synchronously.

� In the document messaging style, the structure of the SOAP body is
less constrained, because it does not contain direct method invoca-
tion, but rather an XML document, which may contain method
invocation as well as other information (e.g., status, notification); the
XML schema is defined by the type element in the WSDL (see
WSDL previously). The messages can be exchanged synchronously or
asynchronously.

The physical representation (i.e., the wire format) of the SOAP messages
exchanged between the service requester and the service provider is control-

Chap14.fm Page 887 Saturday, May 6, 2006 9:42 AM

888 14.1 Web Services 101

led by settings in the WSDL, particularly the value of the use attribute of
the WSDL binding, which specifies the encoding styles of the message:2

� Literal use: The encoding and interpretation of the SOAP body is dic-
tated by the specified XML schema.

� Encoded use: The encodingStyle attribute of the SOAP body speci-
fies the encoding and interpretation rules to use. The SOAP 1.1, sec-
tion 5, defines a set of serialization rules for structures, object graphs,
and so on.

The following classification—sometimes referred to as the WSDL
style—combines the encoding style or wire format (literal versus encoded)
and the message exchange style (RPC versus document) to determine how
the SOAP message is interpreted/processed:

� Document-literal format: Specifies a document style message with “lit-
eral” format. The SOAP body maps only one parameter; other
parameters are mapped by the SOAP header. This format conforms
to the Web services interoperability.

� Wrapped-document-literal: A variant of document-literal used prima-
rily in .NET environments. In this format, the parameters of the
method are wrapped by a schema definition.

� RPC-encoded format: Specifies RPC message style, with “encoded”
format. It is primarily used for object graphs.

� RPC-literal format: Specifies an RPC message style, with “literal” for-
mat.

REST

SOAP is by no contest the standard XML messaging technology for Web
services. However, the Representational State Transfer (REST) is an alterna-
tive XML messaging technology being adopted by Web retailers such as
Yahoo, Amazon, and Google for online shopping and search applications.
REST Web services use XML documents directly as message payload,
instead of SOAP envelopes and HTTP GET/POST and XML to share URIs

2. See "SOAP Encoding." in section 5 of the SOAP 1.1 specification at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
#_Toc478383512 and section 3 of the SOAP 1.2 specification at http://www.w3.org/TR/2003/REC-soap12-part2-
20030624/#soapenc.

Chap14.fm Page 888 Saturday, May 6, 2006 9:42 AM

14.1 Web Services 101 889

Chapter 14

between distributed applications; the applications or end users perform
state transitions (navigate following links), and the next state (next page) is
transferred to the application or end user (and rendered). REST is not a stan-
dard, but rather an architectural style; however, it is based on standards
such as HTTP, URL, XML/HTML/GIF/JPEG, and MIME types (e.g., text/
xml, text/html, image/gif, image/jpeg). Products such as Oracle
Application Server 10.1.3 support REST with the literal encoding style
(use=literal).

UDDI

The Universal Description Discovery and Integration (UDDI) is an industry
standard (supervised by OASIS) for publishing and locating Web services and
their descriptions (dynamic discovery) in registries. UDDI also designates a
collection of peer directories, known as UDDI Business Registries (UBR),
which host information about businesses and their services.

The UDDI specification includes:

� An XML schema, which defines the documents that describe the key
UDDI data structures relative to: (1) the business/organization/indi-
vidual that offers services (i.e., businessEntity); (2) the set of services
being offered (i.e., businessService); (3) binding information for
invoking and using the services (i.e., bindingTemplate); more techni-
cal information for connecting to services (i.e., tModel); the relation-
ship between entities (i.e., publisher Assertion)—new in UDDI
version 2; and standing orders or requests (i.e., Subscriptions)—new
in UDDI version 3.

� A set of UDDI APIs (Inquiry, Publication, Security, Subscription)
for querying/browsing (also known as Inquiry API) the directories
for details about a given Web service, such as supported security
and transport protocols, and publishing/registering information in
directories. The Information in UDDI registries is stored/classified
in three parts: (1) white pages (general business information), (2)
yellow pages (taxonomies industry/category/location), and (3)
green pages (technical information). Vendors furnish Web-based
interfaces as well.

� The Replication and Custody Transfer APIs for replicating directory
entries between peer UDDI registries for failover and custody transfer.

Chap14.fm Page 889 Saturday, May 6, 2006 9:42 AM

890 14.2 Service-Oriented Architecture (SOA): The Bigger Picture

Browse the following links for more UDDI resources:

www.oasis-open.org

www.uddi.org

www.uddi4j.org

Final Thoughts

Throughout this section, we have seen that Web services are standards-
based, XML centric, platform independent, programming language neu-
tral, self-contained, self-describing, and self-advertising software modules
allowing application-to-application interaction over the Web.3 Let’s revisit
Figure 14.2 to see how the core Web services technologies (i.e., SOAP,
WSDL, UDDI) come into play:

Step 1: The provider sends the WSDL to the UDDI registry.

Step 2: The requester retrieves the WSDL from the registry.

Step 3: Based on information in the WSDL, the requester binds to
the provider.

Step 4: The requester invokes operations on the provider.

All interactions are SOAP message based. This concludes a high-level
“tour d’horizon” of the base technologies that enable Web services, and
invokes operations on the services, but while you can publish and deploy
Web services using the base technologies, you will rapidly be confronted
with solving the usual enterprise deployment requirements of security,
reliability, manageability, and so on—and this time with a new dimension:
the Web! In order to address these requirements, a set of new Web
services–related specifications, recommendations, de facto standards,
APIs, and component models are being consolidated into the SOA, which
is our next topic.

14.2 Service-Oriented Architecture (SOA):
The Bigger Picture

Java brought portability across systems, but Web services go one step
beyond and bring interoperability. It is no surprise then that all of the play-
ers in the IT industry are actively engaged in making Web services a reality.

3. Take a deep breath first!

Chap14.fm Page 890 Saturday, May 6, 2006 9:42 AM

14.2 Service-Oriented Architecture (SOA): The Bigger Picture 891

Chapter 14

As already mentioned, however, it takes more than the core Web services
technologies to interoperate across platforms, languages, corporations, and
the Web. This section looks at the bigger picture of Web services: the ser-
vice-oriented architecture (SOA), its specifications, recommendations, de
facto standards, APIs, component models, and so on.

SOA 101

To get a feel for the pervasiveness of the concept of SOA, just Google “ser-
vice-oriented architecture” and you get about 17 million hits. This is proba-
bly not the best definition, but SOA can be summarized as the ability to
implement a corporate architecture based on Web services standards, wherein
client applications with proper authorization, simply register, discover, and use
available services reliably and securely.

The implications, requirements, and concerns for implementing SOA
include advertising, business process, description, discovery, architecture,
interoperability, management, messaging and reliable messaging, security,
transport, policy, transaction, and user interface.

The following charts list some of the various specifications, standards, ini-
tiatives, recommendations, working drafts, and so on that address SOA infra-
structure services requirements. Some of these services will be widely adopted
and persist, while others will be subsumed by new ones and disappear.

Advertising

Description Status/Sponsor

UDDI Web-based registry to

publicize and locate services

OASIS standard

Architecture

Description Status/Sponsor

EbXML Electronic Business XML Superseded by various WS specs.

ebSOA TC Electronic Business Service-Ori-
ented Architecture

TC formed

Chap14.fm Page 891 Saturday, May 6, 2006 9:42 AM

892 14.2 Service-Oriented Architecture (SOA): The Bigger Picture

Business Process

Description Status/Sponsor

BPEL4WS Notation for specifying business
process behavior

OASIS

Standard

WS-Choreography Ability to compose and describe
the relationships between WS

W3C, WG formed

Web Services Choreogra-
phy Description Lan-
guage

Describes peer-to-peer collabora-
tions

W3C, Working draft

Business Process Execu-
tion Language (BPEL)

Continue business process lan-
guage work

OASIS, TC formed

Description

Description Status/Sponsor

XML Extended Markup Language W3C Recommendation

WSDL Model and format for describing
Web services

W3C

Web Services Architecture Reference Architecture W3C

Discovery

Description Status/Sponsor

Web Services Inspection
Language (WS-Inspec-
tion)

Allow WS requester to drill down
into WS

Proposal

Interoperability, Specification Profiles

Description Status/Sponsor

WS-I Basic Profile Mandate support for SOAP 1.1,
WSDL 1.1, HTTP 1.1, HTTP
binding (or HTTPS), and XML
Schema (1 and 2)

WS-I

Devices Profile Interoperability between devices
and Web services

Chap14.fm Page 892 Saturday, May 6, 2006 9:42 AM

14.2 Service-Oriented Architecture (SOA): The Bigger Picture 893

Chapter 14

Implementation

Description Status/Sponsor

Framework for Web Ser-
vices

Implementation(FWSI
TC)

Methods for broad, multiplat-
form, vendor-neutral implemen-
tation

OASIS, TC formed

Management, Auditing, Logging

Description Status/Sponsor

WS-Management Interoperable and cross-platform
management using Web services

Microsoft

WS-Management Catalog Available endpoints or
“resources,” summary forms,
compatible actions, schemas, and
WSDL

Microsoft

WS-Manageability Set of capabilities for discovering
the existence, availability, health,
performance, usage, and control
of a Web service

OASIS, Spec Published

Messaging and Reliable Messaging

Description Status/Sponsor

WS-ReliableMessaging Guaranteed delivery, guaranteed
duplicate elimination

OASIS, Spec published

SOAP Peer-to-peer RPC message
exchange

W3C

WS-Addressing Enables messaging systems to
support message transmission in
a transport-neutral manner

W3C, Spec published

MTOM (Attachments) SOAP Message Transmission
Optimization Mechanism
(Supersedes WS-Attachments)

W3C, Working draft

WS-Enumeration Enables an application to ask for
items from a list of data that is
held by a WS

Spec published

WS-Eventing How to construct an event-ori-
ented message exchange pattern
using WS Addressing

Spec published

Chap14.fm Page 893 Saturday, May 6, 2006 9:42 AM

894 14.2 Service-Oriented Architecture (SOA): The Bigger Picture

WS-Transfer Defines how to invoke a simple
set of familiar verbs (Get, Post,
Put, and Delete) using SOAP

Spec published

SOAP-over-UDP Defines a binding of SOAP to
use datagrams, including message
patterns, addressing require-
ments, and security consider-
ations

Spec published

Reliable HTTP
(HTTPR)

Guarantees reliable delivery of
HTTP packets

IBM

Metadata

Description Status/Sponsor

WS-Policy Describes and communicates the
policies of a WS (service require-
ments, preferences)

Spec published

WS-PolicyAssertions Details messaging-related asser-
tions for use with WS policy
(encoding, language)

Spec published

WS-PolicyAttachment Specifies three attachment mech-
anisms for using policy expres-
sions with WS

Spec published

WS-Discovery Multicast discovery protocol to
locate services

Spec published

WS-MetadataExchange Bootstrap communication with a
WS, defines request-response
message pairs to retrieve WS-Pol-
icy, WSDL, and XMl Schema

Spec published

Security

Description Status/Sponsor

WS-Security: SOAP Mes-
sage Security

Message Integrity and confidenti-
ality

OASIS proposal

WS-Security: Username-
Token Profile

How a consumer will specify
UsernameToken

OASIS proposal

Messaging and Reliable Messaging (continued)

Description Status/Sponsor

Chap14.fm Page 894 Saturday, May 6, 2006 9:42 AM

14.2 Service-Oriented Architecture (SOA): The Bigger Picture 895

Chapter 14

WS-Security: X.509 Cer-
tificate Token Profile

WS-SecureConver-
sation, WS-Federa-
tion, and WS-
Authorization

Authenticate message exchanges,
security context exchange, and
trust

Microsoft, Verisign & IBM pro-
posal

WS-SecurityPolicy Security policy assertions Microsoft, Verisign, RSA, and
IBM proposal

WS-Trust, WS-Policy,
WS-Privacy

Trust, constraints of security pol-
icies, and privacy pactices

Microsoft, Verisign and IBM
proposal

WS-Federation Active
Requester Profile

WS-Federation Passive
Requester Profile

WS-Security: Kerberos
Binding

Web Single Sign-On
Interoperability Profile

Web Single Sign-On
Metadata Exchange Pro-
tocol

XML-Signature Integrity, message and user
authentication

W3c recommendation

SAML Security Assertion Markup Lan-
guage

OASIS standard

XML Key Management
Specifications (XKMS)

Public-key infrastructure integra-
tion

W3C Note

WS-Security Profile for
XML-Based Tokens

Security

Description Status/Sponsor

Chap14.fm Page 895 Saturday, May 6, 2006 9:42 AM

896 14.2 Service-Oriented Architecture (SOA): The Bigger Picture

Transport

Description Status/Sponsor

WS-Coordination Protocols to coordinate distrib-
uted applications

BEA, IBM, Arjuna, Microsoft,
Hitachi, and IONA

WS-AtomicTransaction Transaction completion, volatile
two-phase commit, and durable
two-phase commit

BEA, IBM, Arjuna, Microsoft,
Hitachi, and IONA

WS-BusinessActivity Protocols for the business activity
coordination

BEA, IBM, Arjuna, Microsoft,
Hitachi, and IONA

Policy and Binding

Description Status/Sponsor

WS-PolicyAttachment Mechanisms for attaching policy
expressions with one or more
subjects or resources

BEA, IBM, Microsoft, and SAP

WS-PolicyAssertions Messaging related assertions for
WS-Policy

BEA, IBM, Microsoft, and SAP

Transaction

Description Status/Sponsor

WS Composite Applica-
tion Framework

(WS-CAF 3 parts: WS-
CTX, WS-CF, WS-
TXM)

Ability to compose an applica-
tion out of multiple Web services

Oracle, Sun, Fujistu, Arjuna,
IONA

WS-AtomicTransaction See above

WS-Coordination See above

User Interface

Description
Status/
Sponsor

Web Services for Remote
Portlets (WSRP)

Set of interfaces and related
semantics that standardize inter-
actions with components provid-
ing user-facing markup

Oracle, SAP, IBM, Microsoft,
Sun, BEA Novell, Tibco,
Vignette

Chap14.fm Page 896 Saturday, May 6, 2006 9:42 AM

14.3 Conclusion 897

Chapter 14

14.3 Conclusion

Web services frameworks vendors such as Oracle, Microsoft, IBM, BEA,
Sun MicroSystems, and open source players/products are actively inte-
grating these APIs/technologies while hiding their complexity from the
developers/assemblers. Now that we have seen the core Web services tech-
nologies and the broader SOA landscape, let’s look at how to turn your
database into a first-class member of your SOA, including exposing data-
base operations as a Web service and invoking external Web services from
within the database.

Web Services for Interac-
tive Applications

(WSIA)

Standard based on XML and
Web services for presenting inter-
active Web applications to users

IBM, Sun

Web Services Experience
Language (WSXL)

Web services-centric component
model for interactive Web appli-
cations

IBM

User Interface

Chap14.fm Page 897 Saturday, May 6, 2006 9:42 AM

Chap14.fm Page 898 Saturday, May 6, 2006 9:42 AM

