

Oracle 10g Expert SQL Tuning Techniques

This book excerpt (http://www.rampant-
books.com/book_2005_1_awr_proactive_tuning.htm) will focus on real-world
techniques for improving the speed of SQL queries with a focus on the new Oracle10g
features. The topics will include the new Oracle parameters that affect SQL
performance, the use of hints to change SQL execution plans, re-writing SQL queries in
more efficient forms and the use of advanced techniques such as Materialized Views,
replacing SQL with PL/SQL, the new automated CBO statistics collection, and using the
new Oracle10g CPU costing approach.

This is an excerpt from the bestselling book “Oracle Tuning: The Definitive Reference”
(http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm) by Alexey
Danchenkov and Donald Burleson, technical editor Mladen Gogala. To supplement the
script

Understanding Oracle SQL Tuning
Before relational databases were introduced, database queries required knowledge of the
internal structures and developers needed to build in the tuning as a part of writing the
database query. However, the SQL standard imposed a declarative solution to database
queries where the database optimizer determines important data access methods such as
what indexes to use and the optimal sequence to join multiple tables together.

“I think we need to tune your SQL”

http://www.rampantbooks.com/book_2005_1_awr_proactive_tuning.htm
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Today, it is not enough for a developer to write an SQL statement that provides the
correct answer. SQL is declarative, so there are many ways to formulate a query, each
with identical results but with far different execution times.

Oracle SQL tuning is a phenomenally complex subject, and entire books have been
devoted to the nuances of Oracle SQL tuning, most notably the Kimberly Floss book
Oracle SQL & CBO Internals by Rampant TechPress. This chapter provides a review the
following areas of SQL tuning:

§ The goals of SQL tuning

§ Simplifying complex SQL

§ SQL Optimization instance parameters

§ Statistics and SQL optimization (http://www.dba-
oracle.com/art_orafaq_cbo_stats.htm)

§ Oracle10g and CBO statistics (http://www.dba-oracle.com/art_otn_cbo_p2.htm)

§ Oracle tuning with hints (http://www.dba-oracle.com/art_sql_tune.htm)

§ Oracle10g SQL profiles (http://www.dba-
oracle.com/oracle10g_tuning/t_dbms_sqltune_tasks.htm)

§ AWR and SQL tuning (http://www.dba-oracle.com/art_orafaq_awr_sql_tuning.htm)

§ ADDM and SQL tuning (http://www.dba -oracle.com/s_addm_asm_awr_assm.htm)

The first three sections will be an overview of general Oracle10g tuning concepts, so that
the basic tools and techniques for tuning SQL optimization are clearly introduced. The
focus will then shift to an exploration of the new Oracle10g SQL Profiles, and will
eventually delve into the internals of AWR and explore how the SQLTuning and
SQLAccess advisor use time-series metadata.

Optimizing Oracle SQL Execution

The key to success with the Oracle Cost-based Optimizer (CBO) is stability, and ensuring
success with the CBO involves the consideration of several important infrastructure
issues.

§ Ensure static execution plans: Whenever an object is re-analyzed, the execution plan
for thousands of SQL statements may be changed. Most successful Oracle sites will
choose to lock down their SQL execution plans by carefully controlling CBO
statistics, using stored outlines (optimizer plan stability), adding detailed hints to their
SQL, or by using Oracle10g SQL Profiles. Again, there are exceptions to this rule
such as LIMS databases, and for these databases, the DBA will choose to use
dynamic sampling and allow the SQL execution plans to change as the data changes.

§ Reanalyze statistics only when necessary: One of the most common mistakes made
by Oracle DBAs is to frequently re-analyze the schema. The sole purpose of doing
that is to change the execution plans for its SQL, and if it isn’t broken, don't fix it. If

http://www.dbaoracle.com/art_orafaq_cbo_stats.htm
http://www.dba-oracle.com/art_otn_cbo_p2.htm
http://www.dba-oracle.com/art_sql_tune.htm
http://www.dbaoracle.com/oracle10g_tuning/t_dbms_sqltune_tasks.htm
http://www.dba-oracle.com/art_orafaq_awr_sql_tuning.htm
http://www.dba

the DBA is satisfied with current SQL performance, re-analyzing a schema could
cause significant performance problems and undo the tuning efforts of the
development staff. In practice, very few shops are sufficiently dynamic to require
periodic schema re-analysis.

§ Pre-tune the SQL before deploying: Many Oracle systems developers assume that
their sole goal is to write SQL statements that deliver the correct data from Oracle. In
reality, writing the SQL is only half their job and successful Oracle sites require all
developers to ensure that their SQL accesses Oracle in an optimal fashion. Many
DBAs will export their production CBO statistics into their test databases so that
their developers can see how their SQL will execute when it is placed into the
production system. DBAs and staff should be trained to use the AUTOTRACE and
TKPROF utilities and to interpret SQL execution results.

§ Manage schema statistics: All Oracle DBAs should carefully manage the CBO
statistics to ensure that the CBO works the same in their test and production
environments. A savvy DBA knows how to collect high quality statistics and migrate
their production statistics into their test environments. This approach ensures that all
SQL migrating into production has the same execution plan as it did in the test
database.

§ Tune the overall system first: The CBO parameters are very powerful because a
single parameter change could improve the performance of thousands of SQL
statements. Changes to critical CBO parameters such as optimizer_mode,
optimizer_index_cost_adj, and optimizer_index_caching should be done before tuning
individual SQL statements. This reduces the number of suboptimal statements that
require manual tuning.

Prior to Oracle10g, it was an important job of the Oracle DBA to properly gather and
distribute statistics for the CBO. The goal of the DBA was to keep the most accurate
production statistics for the current processing. In some cases, there may be more than
one set of optimal statistics.

For example, the best statistics for OLTP processing may not be the best statistics for the
data warehouse processing that occurs each evening. In this case, the DBA will keep two
sets of statistics and import them into the schema when processing modes change.

The following section provides a quick, simple review of the goals of SQL tuning.

Goals of SQL Tuning

There are many approaches to SQL tuning and this paper describes a fast, holistic
method of SQL tuning where we optimize the SGA, the all-important optimizer
parameters, and adjust CBO statistics, all based on current system load. Once the
“best” overall optimization is achieved, we drill-down into the specific cases of
sub-optimal SQL, and change their execution plans with SQL profiles, specialized
CBO stats, or hints.

Despite the inherent complexity of tuning SQL, there are general guidelines that every
Oracle DBA follows in order to improve the overall performance of their Oracle systems.
The goals of SQL tuning are simple:

§ Replace unnecessary large-table full-table scans with index scans.

§ Cache small-table full table scans

§ Verify optimal index usage

§ Verify optimal JOIN techniques

§ Tune complex subqueries to remove redundant access

These goals may seem deceptively simple, but these tasks comprise 90 percent of SQL
tuning. They do not require a thorough understanding of the internals of Oracle SQL.
This venture will begin with an overview of the Oracle SQL optimizers.

Of course, the SQL can be tuned to one’s heart’s content, but if the optimizer is not fed
with the correct statistics, the optimizer may not make the correct decisions. Before
tuning, it is important to ensure that statistics are available and that they are current.

The following section will provide a closer look at the goals listed above as well as how
they simplify SQL tuning.

Remove unnecessary large-table full table scans

Unnecessary full table scans (FTS) are an important symptom of sub-optimal SQL and
cause unnecessary I/O that can drag down an entire database. The tuning expert first
evaluates the SQL based on the number of rows returned by the query. Oracle says that if
the query returns less than 40 percent of the table rows in an ordered table or seven
percent of the rows in an unordered table, based on the index key value described by
clustering_factor in dba_indexes, the query can be tuned to use an index in lieu of the full-
table scan. However, it’s not that simple. The speed of a FTS versus an index scan
depends on many factors:

§ Missing indexes, especially function-based indexes

§ Bad/stale CBO statistics

§ Missing CBO Histograms

§ Clustering of the table rows to the used index

§ System ability to optimize multiblock I/O

 (e.g. db_file_multiblock_read_count)

The most common tuning tool for addressing unnecessary full table scans is the addition
of indexes, especially function-based indexes. The decision about removing a full-table
scan should be based on a careful examination of the amount of logical I/O (consistent
gets) of the index scan versus the costs of the full table scan. This decision should be
made while factoring in the multiblock reads and possible parallel full-table scan

execution. In some cases, an unnecessary full-table scan can be forced to use an index by
adding an index hint to the SQL statement.

Cache small-table full table scans

For cases in which a full table scan is the fastest access method, the tuning professional
should ensure that a dedicated data buffer is available for the rows. In Oracle7, an alter
table xxx cache command can be issued. In Oracle8 and beyond, the small-table can be
cached by forcing it into the KEEP pool.

Logical reads (consistent gets) are often 100x faster than a disk read and small, frequently
referenced objects such as tables, clusters and indexes should be fully cached in the
KEEP pool. Most DBA’s check x$bh periodically and move any table that has 80% or
more of its blocks in the buffer into the KEEP pool. In addition, dba_hist_sqlstat should
be checked for tables that experience frequent small-table full-table scans.

Verify optimal index usage

Determining the index usage is especially important for improving the speed of queries
with multiple WHERE clause predicates. Oracle sometimes has a choice of indexes, and
the tuning professional must examine each index and ensure that Oracle is using the best
index, meaning the one that returns the result with the least consistent gets.

Verify optimal JOIN techniques

Some queries will perform faster with NESTED LOOP joins, some with HASH joins,
while others favor sort-merge joins. It is difficult to predict what join technique will be
fastest, so many Oracle tuning experts will test run the SQL with each different table join
method.

Tuning by Simplifying SQL Syntax

There are several methods for simplifying complex SQL statements, and Oracle10g will
sometimes automatically rewrite SQL to make it more efficient.

§ Rewrite the query into a more efficient form

§ Use the WITH clause

§ Use Global Temporary Tables

§ Use Materialized Views

The following example shows how SQL can be rewritten. For a simple example of SQL
syntax and execution speed, the following queries can be used. All of these SQL
statements produce the same results, but they have widely varying execution plans and
execution performance.

-- A non-correlated sub-query

select
 book_title
from
 book
where
 book_key not in (select book_key from sales);

Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=1 Bytes=64)
 1 0 FILTER
 2 1 TABLE ACCESS (FULL) OF 'BOOK' (Cost=1 Card=1 Bytes=64)
 3 1 TABLE ACCESS (FULL) OF 'SALES' (Cost=1 Card=5 Bytes=25)

-- An outer join

select
 book_title
from
 book b,
 sales s
where
 b.book_key = s.book_key(+)
and
 quantity is null;

Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=3 Card=100 Bytes=8200)

1 0 FILTER
2 1 FILTER
3 2 HASH JOIN (OUTER)
4 3 TABLE ACCESS (FULL) OF 'BOOK' (Cost=1 Card=20 Bytes=1280)
5 3 TABLE ACCESS (FULL) OF 'SALES' (Cost=1 Card=100 Bytes=1800)

-- A Correlated sub-query

select
 book_title
from
 book
where
 book_title not in (
 select
 distinct
 book_title
 from
 book,
 sales
 where
 book.book_key = sales.book_key
 and
 quantity > 0);

Execution Plan
--
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=1 Bytes=59)
1 0 FILTER
2 1 TABLE ACCESS (FULL) OF 'BOOK' (Cost=1 Card=1 Bytes=59)
3 1 FILTER
4 3 NESTED LOOPS (Cost=6 Card=1 Bytes=82)
5 4 TABLE ACCESS (FULL) OF 'SALES' (Cost=1 Card=5 Bytes=90)
6 4 TABLE ACCESS (BY INDEX ROWID) OF 'BOOK' (Cost=1 Card=1)
7 6 INDEX (UNIQUE SCAN) OF 'PK_BOOK' (UNIQUE)

The formulation of the SQL query has a dramatic impact on the execution plan for the
SQL, and the order of the WHERE clause predicates can make a difference. Savvy
Oracle developers know the most efficient way to code Oracle SQL for optimal
execution plans, and savvy Oracle shops train their developers to formulate efficient
SQL.

The following section will show how the WITH clause can help simplify complex queries.

Using the WITH clause to simplify complex SQL

Oracle SQL can run faster when complex subqueries are replaced with global temporary
tables. Starting in Oracle9i release 2, there was an incorporation of a subquery factoring
utility implemented the SQL-99 WITH clause. The WITH clause is a tool for
materializing subqueries to save Oracle from having to recompute them multiple times.

Use of the SQL WITH clause is very similar to the use of Global Temporary Tables
(GTT), a technique that is often employed to improve query speed for complex
subqueries. The following are some important notes about the Oracle WITH clause:

§ The SQL WITH clause only works on Oracle 9i release 2 and beyond.

§ Formally, the WITH clause was called subquery factoring.

§ The SQL WITH clause is used when a subquery is executed multiple times.

§ The ANSI WITH clause is also useful for recursive queries, but this feature has not
yet been implemented in Oracle SQL.

The following example shows how the Oracle SQL WITH clause works and see how the
WITH clause and Global temporary tables can be used to speed up Oracle queries.

All Stores with above average sales

To keep it simple, the following example only references the aggregations once, where
the SQL WITH clause is normally used when an aggregation is referenced multiple times
in a query.

The following is an example of a request to see the names of all stores with above average
sales. For each store, the average sales must be compared to the average sales for all
stores as shown in Figure 15.1.

Figure 15.1: The relationship between STORE and SALES

Essentially, the query below accesses the STORE and SALES tables, comparing the sales
for each store with the average sales for all stores. To answer this query, the following
information must be available:

§ The total sales for all stores.

§ The number of stores.

§ The sum of sales for each store.

To answer this in a single SQL statement, inline views will be employed along with a
subquery inside a HAVING clause:

select
 store_name,
 sum(quantity) store_sales,
 (select sum(quantity) from sales)/(select count(*) from store) avg_sales
from
 store s,
 sales sl
where
 s.store_key = sl.store_key
having
 sum(quantity) > (select sum(quantity) from sales)/(select count(*) from store)
group by
 store_name
;

While this query provides the correct answer, it is difficult to read and complex to execute
as it is recomputing the sum of sales multiple times.

To prevent the unnecessary re-execution of the aggregation (sum(sales)), temporary tables
could be created and used to simplify the query. The following steps should be followed:

1. Create a table named T1 to hold the total sales for all stores.

2. Create a table named T2 to hold the number of stores.

3. Create a table named T3 to hold the store name and the sum of sales for each
store.

A fourth SQL statement that uses tables T1, T2, and T3 to replicate the output from the
original query should then be written. The final result will look like this:

create table t1 as
select sum(quantity) all_sales from stores;

create table t2 as
select count(*) nbr_stores from stores;

create table t3 as
select store_name, sum(quantity) store_sales from store natural join sales;

select
 store_name
from
 t1,
 t2,
 t3
where
 store_sales > (all_sales / nbr_stores)
;

While this is a very elegant solution and easy to understand and has a faster execution
time, the SQL-99 WITH clause can be used instead of temporary tables. The Oracle
SQL WITH clause will compute the aggregation once, give it a name, and allow it to be
referenced, perhaps multiple times, later in the query.

The SQL-99 WITH clause is very confusing at first because the SQL statement does not
begin with the word SELECT. Instead, the WITH clause is used to start the SQL query,
defining the aggregations, which can then be named in the main query as if they were real
tables:

WITH
 subquery_name
AS
 (the aggregation SQL statement)
SELECT
 (query naming subquery_name);

Retuning to the oversimplified example, the temporary tables should be replaced with the
SQL WITH clause:

WITH
 sum_sales AS
 select /*+ materialize */
 sum(quantity) all_sales from stores
 number_stores AS
 select /*+ materialize */
 count(*) nbr_stores from stores;
 sales_by_store AS
 select /*+ materialize */
 store_name, sum(quantity) store_sales from
 store natural join sales
SELECT
 store_name
FROM

 store,
 sum_sales,
 number_stores,
 sales_by_store
WHERE
 store_sales > (all_sales / nbr_stores)
;

Note the use of the Oracle undocumented materialize hint in the WITH clause. The
Oracle materialize hint is used to ensure that the Oracle CBO materializes the temporary
tables that are created inside the WITH clause, and its opposite is the undocumented
inline hint. This is not necessary in Oracle10g, but it helps ensure that the tables are only
created one time.

Tip! Depending on the release of Oracle in
use, the global temporary tables (GTT)
might be a better solution than the WITH
clause because indexes can be created on the
GTT for faster performance.

Future enhancement to the WITH clause

Even though it is part of the ANSI SQL standard, as of Oracle 10g, it should be noted
that the WITH clause is not yet fully functional within Oracle SQL, and it does not yet
support the use of WITH clause replacement for CONNECT BY when performing
recursive queries.

To show how the WITH clause is used in ANSI SQL-99 syntax, the following is an
excerpt from Jonathan Gennick’s work Understanding the WITH Clause showing the use of
the SQL-99 WITH clause to traverse a recursive bill of materials hierarchy.

NOTE: This ANSI SQL syntax does NOT work (yet) with Oracle SQL

WITH recursiveBOM
 (assembly_id, assembly_name, parent_assembly) AS
(SELECT parent.assembly_id,
 parent.assembly_name,
 parent.parent_assembly
FROM bill_of_materials parent
WHERE parent.assembly_id=100
UNION ALL
SELECT child.assembly_id,
 child.assembly_name,
 child.parent_assembly
FROM recursiveBOM parent, bill_of_materials child
WHERE child.parent_assembly = parent.assembly_id)
SELECT assembly_id, parent_assembly, assembly_name
FROM recursiveBOM;

The WITH clause allows one to pre-materialize components of a complex query, making
the entire query run faster. This same technique can also be used with Global temporary
tables.

Tuning SQL with Temporary Tables

It has long been understood that materializing a subquery component can greatly
improve SQL performance. Oracle global temporary tables are a great way to accomplish
this.

With global temporary tables Oracle can allow hundreds of end-users to create their own
copies of intermediate SQL result sets, independent of other users in the system. A silver
bullet has been included at the end of this chapter with more details on tuning SQL with
temporary tables.

Before delving into the tuning of individual SQL statements, it will be useful to examine
how global Oracle parameters and features influence SQL execution. When tuning SQL,
it is critical to optimize the instance as a whole before tuning individual SQL statements.
This is especially important for proactive SQL tuning where the SQL may change
execution plans based on changes in object statistics.

Oracle SQL Performance Parameters
Making the cost-based SQL optimizer (CBO) one of the most sophisticated tools ever
created has cost Oracle Corporation millions of dollars. While the job of the CBO is to
always choose the most optimal execution plan for any SQL statement, there are some
things that the CBO cannot detect. This is when the DBA’s expertise is needed.

The best execution plan for an SQL statement is affected by the types of SQL statements,
the speed of the disks, and the load on the CPUs. For instance, the best execution plan
resulting from a query run at 4:00 a.m. when 16 CPUs are idle may be quite different
from the same query at 3:00 p.m. when the system is 90 percent utilized.

The CBO is not psychic, despite the literal definition of Oracle. Oracle can never know,
the exact load on the Oracle system; therefore, the Oracle professional must adjust the
CBO behavior periodically.

Most Oracle professionals make these behavior adjustments using the instance wide CBO
behavior parameters such as optimizer_index_cost_adj and optimizer_index_caching. However,
Oracle does not advise altering the default values for many of these CBO settings because
the changes can affect the execution plans for thousands of SQL statements.

Some major adjustable parameters that influence the behavior of the CBO are shown
below:

§ parallel_automatic_tuning: Full-table scans are parallelized when set to ON. Since
parallel full-table scans are extremely quick, the CBO will give a higher cost to index
access and will be friendlier to full-table scans.

§ hash_area_size (if not using pga_aggregate_target): The setting for the hash_area_size
parameter governs the propensity of the CBO to favor hash joins over nested loops
and sort merge table joins.

§ db_file_multiblock_read_count: The CBO, when set to a high value, recognizes
that scattered (multi-block) reads may be less expensive than sequential reads. This
makes the CBO friendlier to full-table scans.

§ optimizer_index_cost_adj: This parameter changes the costing algorithm for access
paths involving indexes. The smaller the value, the cheaper the cost of index access.

§ optimizer_index_caching: This is parameter tells Oracle the amount the index is
likely to be in the RAM data buffer cache. The setting for optimizer_index_caching
affects the CBO’s decision to use an index for a table join (nested loops) or to favor a
full-table scan.

§ optimizer_max_permutations: This controls the maximum number of table join
permutations allowed before the CBO is forced to pick a table join order. For a six-
way table join, Oracle must evaluate six factorial (6!), or 720 possible join orders for
the tables. This parameter has been deprecated in Oracle10g.

§ sort_area_size (if not using pga_aggregate_target): The sort_area_size influences the
CBO when deciding whether to perform an index access or a sort of the result set.
The higher the value for sort_area_size, the more likely a sort will be performed in
RAM, and the more likely that the CBO will favor a sort over pre-sorted index
retrieval. Note that sort_area_size is ignored when pga_aggregate_target is set and when
workarea_size_policy =auto, unless you are using a specialized feature such as the MTS
(shared servers). If dedicated server connections are used, the sort_area_size parameter
is ignored.

Note: Oracle10g release 2 has a new sorting algorithm which claims to use less server
resources (specifically CPU and RAM resources). A hidden parameter called
_newsort_enabled (set to TRUE or FALSE} is used to turn-on the new sorting method.

Remember, the optimizer_index_cost_adj parameter controls the CBO’s propensity to favor
index scans over full-table scans. In a dynamic system, as the type of SQL and load on
the database changes, the ideal value for optimizer_index_cost_adj may change radically in
just a few minutes.

Using optimizer_index_cost_adjError! Bookmark not defined.

The most important parameter is the optimizer_index_cost_adj, and the default setting of
100 is incorrect for most Oracle systems. For OLTP systems, resetting this parameter to
a smaller value (between 10 and 30) may result in huge performance gains as SQL
statements change from large-table full-table scans to index range scans. The Oracle
environment can be queried so that the optimal setting for optimizer_index_cost_adj can be
intelligently estimated.

The optimizer_index_cost_adj parameter defaults to a value of 100, but it can range in value
from one to 10,000. A value of 100 means that equal weight is given to index versus
multiblock reads. In other words, optimizer_index_cost_adj can be thought of as a “how
much do I like full-table scans?” parameter.

With a value of 100, the CBO likes full-table scans and index scans equally, and a number
lower than 100 tells the CBO index scans are faster than full-table scans. Although, with a
super low setting such as optimizer_index_cost_adj=1, the CBO will still choose full-table
scans for no-brainers such as tiny tables that reside on two blocks.

The following optimizer_index_cost_adj.sql script illustrates the suggested initial setting for
the optimizer_index_cost_adj.

optimizer_index_cost_adjError! Bookmark not defined..sql

col c1 heading 'Average Waits for|Full Scan Read I/O' format 9999.999
col c2 heading 'Average Waits for|Index Read I/O' format 9999.999
col c3 heading 'Percent of| I/O Waits|for Full Scans' format 9.99
col c4 heading 'Percent of| I/O Waits|for Index Scans' format 9.99
col c5 heading 'Starting|Value|for|optimizer|index|cost|adj' format 999

select
 a.average_wait c1,
 b.average_wait c2,
 a.total_waits /(a.total_waits + b.total_waits) c3,
 b.total_waits /(a.total_waits + b.total_waits) c4,
 (b.average_wait / a.average_wait)*100 c5
from
 v$system_event a,
 v$system_event b
where
 a.event = 'db file scattered read'
and
 b.event = 'db file sequential read'
;

The following is the output from the script.

 Starting
 Value
 for
 optimizer
 Percent of Percent of index
 Average waits for Average waits for I/O waits I/O waits cost
 full scan read I/O index read I/O for full scans for index scans adj

 ------------------ ------------------- ---------------- --------------- -----
 1.473 .289 .02 .98 20

In this example, the suggested starting value of 20 for optimizer_index_cost_adj may be too
high because 98 percent of the data waits are on index (sequential) block access.
Weighting this starting value for optimizer_index_cost_adj to reflect the reality that this
system has only two percent waits on full-table scan reads, a typical OLTP system with
few full-table scans, is a practical matter. It is not desirable to have an automated value
for optimizer_index_cost_adj to be less than one or more than 100.

This same script may give a very different result at a different time of the day because
these values change constantly, as the I/O waits accumulate and access patterns change.
Oracle10g now has the dba_hist_sysmetric_summary table for time-series analysis of this
behavior.

Setting the SQL Optimizer Cost Model

Starting with Oracle9i, DBAs have the ability to view the estimated CPU, TEMP and I/O
costs for every SQL execution plan step. Oracle Corporation has noted that typical
OLTP databases are becomingly increasingly CPU-bound and has provided the ability for
the DBA to make the optimizer consider the CPU costs associated with each SQL
execution step.

The developers of Oracle10g recognized this trend toward CPU-based optimization by
providing the ability to choose CPU-based or I/O-based costing during SQL
optimization with the 10g default being CPU-costing. In Oracle10g, system stats are
gathered by default, and in Oracle9i the DBA must manually execute the
dbms_stat.gather_system_stats package to get CBO statistics.

alter session set "_optimizer_cost_model"=choose;
alter session set "_optimizer_cost_model"=io;
alter session set "_optimizer_cost_model"=cpu;

This parameter can be used to choose the best optimizer costing model for a particular
database, based on the I/O and CPU load.

The choice of relative weighting for these factors depends upon the existing state of the
database. Databases using 32-bit technology and the corresponding 1.7 gigabyte limit on
SGA RAM size tend to be I/O-bound with the top timed events being those performing
disk reads:

Top 5 Timed Events
~~~~~~~~~~~~~~~~~                                           % Total 
Event                                     Waits    Time (s) Ela Time 
---------------------------------- ------------ ----------- -------- 
db file sequential read                   xxxx       xxxx      30 
db file scattered read                    xxxx       xxxx      40 
 
Once 64-bit became popular, Oracle SGA sizes increased, more frequently referenced 
data was cached, and databases became increasingly CPU-bound.  Also, solid-state disk 
(RAM SAN) has removed disk I/O as a source of waits: 
 
Top 5 Timed Events 
~~~~~~~~~~~~~~~~~                                           % Total 
Event Waits Time (s) Ela Time
---------------------------------- ------------ ----------- --------
CPU time xxxx xxxx 55.76
db file sequential read xxxx xxxx 27.55

The gathered statistics are captured via the dbms_stats package in 9.2 and above, and the
following CPU statistics are captured automatically in 10g and stored in the sys.aux_stat$
view.

§ single block disk read time, in microseconds

§ multiblock disk read-time, in microseconds)

§ CPU speed in mhz

§ average multiblock_read_count in number of blocks

A database where CPU is the top timed event may benefit from a change in the SQL
optimizer to consider the CPU costs associated with each execution plan.

Using CPU costing may not be good for databases that are I/O-bound. Also, changing
to CPU-based optimizer costing will change the predicate evaluation order of the query.
MetaLink bulletin 276877.1 provides additional information on this.

Turning on CPU Costing

The default setting for the optimizer cost model is CHOOSE, meaning that the presence
of CBO statistics will influence whether or not CPU costs are considered. According to
the documentation, CPU costs are considered when SQL optimizer schema statistics are
gathered with the dbms_stat.gather_system_stats package, which is the default behavior in
Oracle10g, and CPU costs will be considered in all SQL optimization.

It gets tricky because of Bug 2820066 where CPU cost is computed whenever
optimizer_index_cost_adj is set to a non-default value. Unless the 9.2.0.6 server patch set
has been applied, the Oracle9i database may be generating CPU statistics, regardless of
the CBO stats collection method.

To ensure that CPU costing is in use:

§ In Oracle9i, use dbms_stats.gather_system_stats to collect statistics

§ Set the undocumented parameter _optimizer_cost_model=cpu;

Turning on I/O Costing

I/O-bound databases, especially 32-bit databases, may want to utilize I/O-based SQL
costing. The default optimizer costing in Oracle10g is CPU, and it can be changed to IO
costing by using these techniques:

§ Ensure that optimizer_index_cost_adj is set to the default value (Oracle9i bug 2820066)

§ Add a no_cpu_costing hint in the SQL

§ alter session set “_optimizer_cost_model”=io;

§ Set init.ora hidden parameter _optimizer_cost_model=io

Notes on Bug 2820066:

CPU cost is computed when optimizer_index_cost_adj is set to a non-default value. If
optimizer_index_cost_adj is set to a non-default value, CPU costs are calculated regardless of
the optimizer cost model used. If optimizer_index_cost_adj is set and the optimizer CPU
cost model is not in use, but the explain plan shows that for queries not using domain
indexes CPU costs are being calculated, this bug is likely in play.

In sum, CPU cost is always computed regardless of optimizer mode when
optimizer_index_cost_adj is set in unpatched Oracle versions less than 10.1.0.2.

--

This is an excerpt from the bestselling book “Oracle Tuning: The
Definitive Reference” (http://www.rampant-
books.com/book_2005_1_awr_proactive_tuning.htm) by Alexey
Danchenkov (http://www.wise-oracle.com/) and Donald Burleson
(http://www.dba-oracle.com/books.htm), technical editor Mladen
Gogala.

Incorporating the principles of artificial intelligence, Oracle10g has
developed a sophisticated mechanism for capturing and tracking
database performance over time periods. This new complexity has
introduced dozens of new v$ and DBA views, plus dozens of
Automatic Workload Repository (AWR) tables.

The AWR and its interaction with the Automatic Database Diagnostic Monitor (ADDM) is
a revolution in database tuning. By understanding the internal workings of the AWR tables,
the senior DBA can develop time-series tuning models to predict upcoming outages and
dynamically change the instance to accommodate the impending resource changes.

This is not a book for beginners. Targeted at the senior Oracle DBA, this book dives deep
into the internals of the v$ views, the AWR table structures and the new DBA history views.
Packed with ready-to-run scripts, you can quickly monitor and identify the most challenging
performance issues.

http://www.rampantbooks.com/book_2005_1_awr_proactive_tuning.htm
http://www.wise-oracle.com/
http://www.dba-oracle.com/books.htm

