
Predictive Modeling in Oracle

Oracle professionals are now applying the proven predicting modeling techniques from
Oracle Data mining (ODM) and we are seeing Oracle professionals using special techniques
to analyze database signatures and predict upcoming database stress. This excerpt has
specific examples and scripts to get you started fast.

This is an excerpt from the bestselling book “Oracle Tuning: The Definitive Reference”
(http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm) by Alexey
Danchenkov (http://www.wise-oracle.com/) and Donald Burleson (http://www.dba -
oracle.com/books.htm), technical editor Mladen Gogala.

Predicting the Future with AWR
Predictive modeling is one of the best ways to perform long-term Oracle instance tuning,
and the AWR tables are very helpful in this pursuit. In the predictive model of Oracle
tuning, the DBA is charged with taking the existing AWR statistics and predicting the
future needs for all instance and I/O areas within the Oracle database. For example, the
AWR physical reads could be analyzed and compared to the memory usage within the
Oracle db_cache_size. The information from the comparison could be extrapolated and
used to predict the times at which the Oracle data buffers would need to be increased in
order to maintain the current levels of performance.

Those who forget the past are condemned to
repeat it.

George Santanaya

The DBA can also make a detailed analysis of Oracle's data buffer caches, including the
KEEP pool, DEFAULT pool, the RECYCLE pool, and the pools for multiple block
sizes like db_32k_cache_size. With that information, the DBA can accurately measure the
performance of each one of the buffer pools, summarized by day-of-the-week and hour-
of-the-day over long periods of time. Based upon existing usage, the DBA can accurately
predict at what time additional RAM memory is needed for each of these data buffers.

The AWR tables also offer the DBA an opportunity to slice off the information in brand
new ways. In the real world, all Oracle applications follow measurable, cyclical patterns
called signatures. For example, an Oracle Financials application may be very active on the
first Monday of every month when all of the books are being closed and the financial
reports are being prepared. Using AWR data, information can be extracted from every
first Monday of the month for the past year which will yield a valid signature of the
specific performance needs of the end of the month Oracle financials applications.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm
http://www.wise-oracle.com/
http://www.dba

Starting with Oracle8i, DBAs could dynamically change the Oracle database RAM regions
and other instance parameters depending upon the performance needs of the
applications. By making many initialization parameters alterable, Oracle is moving
towards a dynamic database configuration, whereby the configuration of the system can
be adjusted according to the needs of the Oracle application. The AWR can identify
these changing needs.

With Oracle9i r2, there were three predictive utilities included with the standard
STATSPACK report:

PGA advice: Oracle9i introduced an advisory utility dubbed v$pga_target_advice. This
utility shows the marginal changes in optimal, one-pass, and multipass PGA
execution for different sizes of pga_aggregate_target, ranging from 10% to 200% of the
current value.

Shared Pool advice - This advisory functionality was extended in Oracle9i r2 to include
an advice called v$shared_pool_advice.

Data Cache advice - The v$db_cache_advice utility shows the marginal changes in physical
data block reads for different sizes of db_cache_size. The data from STATSPACK can
provide similar data as v$db_cache_advice, and most Oracle tuning professionals use
STATSPACK and v$db_cache_advice to monitor the effectiveness of their data buffers.

These advisory utilities are extremely important for the Oracle DBA who must adjust the
sizes of the RAM areas to meet processing demands. The following display_cache_advice.sql

query can be used to perform the cache advice function once the v$db_cache_advice has
been enabled and the database has run long enough to give representative results.

< display_cache_advice.sql

column c1 heading 'Cache Size (meg)' format 999,999,999,999
column c2 heading 'Buffers' format 999,999,999
column c3 heading 'Estd Phys|Read Factor' format 999.90
column c4 heading 'Estd Phys| Reads' format 999,999,999

select
 size_for_estimate c1,
 buffers_for_estimate c2,
 estd_physical_read_factor c3,
 estd_physical_reads c4
from
 v$db_cache_advice
where
 name = 'DEFAULT'
and
 block_size = (SELECT value FROM V$PARAMETER
 WHERE name = 'db_block_size')
and
 advice_status = 'ON';

The output from the script is shown below. The values range from ten percent of the
current size to double the current size of the db_cache_size.

 Estd Phys Estd Phys
 Cache Size (meg) Buffers Read Factor Reads
---------------- ------------ ----------- ------------
 30 3,802 18.70 192,317,943 <== 10% size
 60 7,604 12.83 131,949,536
 91 11,406 7.38 75,865,861
 121 15,208 4.97 51,111,658
 152 19,010 3.64 37,460,786
 182 22,812 2.50 25,668,196
 212 26,614 1.74 17,850,847
 243 30,416 1.33 13,720,149
 273 34,218 1.13 11,583,180
 304 38,020 1.00 10,282,475 Current Size
 334 41,822 .93 9,515,878
 364 45,624 .87 8,909,026
 395 49,426 .83 8,495,039
 424 53,228 .79 8,116,496
 456 57,030 .76 7,824,764
 486 60,832 .74 7,563,180
 517 64,634 .71 7,311,729
 547 68,436 .69 7,104,280
 577 72,238 .67 6,895,122
 608 76,040 .66 6,739,731 <== 2x size

From the above listing, it is clear that increasing the db_cache_size from 304 Megabytes to
334 Megabytes would result in approximately 700,000 less physical reads. This can be
plotted as a 1/x function and the exact optimal point computed as the second derivative
of the function 1/x as shown in Figure 11.1:

Number of
Data buffer
blocks

Disk I/O
Low

Low

High

High
The marginal increase in data buffer
blocks is asymptotic to disk I/O.

f(x) = 1/x

Figure 11.1: The relationship between buffer size and disk I/O

Once DBAs can recognize cyclic performance patterns in the Oracle database, they are in
a position to reconfigure the database in order to meet the specific processing needs of
that Oracle database.

While the predictive models are new, the technique dates back to Oracle6. Old-timer
Oracle professionals would often keep several versions of their initialization parameter
file and bounce in a new version when processing patterns were going to change.

For example, it was not uncommon to see a special Oracle instance configuration that
was dedicated exclusively to the batch processing tasks that might occur on every Friday
while another version of the init.ora file would be customized for OLTP transactions.

Additional init.ora files could be created that were suited to data warehouse processing
that might occur on the weekend. In each of these cases, the Oracle database had to be
stopped and restarted with the appropriate init.ora configuration file.

Starting with Oracle10g, the AWR tables can be used to identify all specific times when
an instance-related component of Oracle is stressed, and the new dbms_scheduler package
can be used to trigger a script to dynamically change Oracle during these periods. In
sum, AWR data is ideally suited to work with the dynamic SGA features of Oracle10g.

Exception Reporting with the AWR

At the highest level, exception reporting involved adding a WHERE clause to a data
dictionary query to eliminate values that fall beneath a pre-defined threshold. For a
simple example, this can be done quite easily with a generic script to read dba_hist_sysstat.

The following simple script called rpt_sysstat_10g.sql displays a time-series exception report
for any statistic in dba_hist_sysstat. The script accepts the statistics number and the value
threshold for the exception report.

< rpt_sysstat_10g.sql

prompt
prompt This will query the dba_hist_sysstat view to display all values
prompt that exceed the value specified in
prompt the "where" clause of the query.
prompt

set pages 999

break on snap_time skip 2

accept stat_name char prompt 'Enter Statistic Name: ';
accept stat_value number prompt 'Enter Statistics Threshold value: ';

col snap_time format a19
col value format 999,999,999

select
 to_char(begin_interval_time,'yyyy-mm-dd hh24:mi') snap_time,
 value
from
 dba_hist_sysstat
 natural join
 dba_hist_snapshot
where
 stat_name = '&stat_name'
and
 value > &stat_value
order by
 to_char(begin_interval_time,'yyyy-mm-dd hh24:mi')
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Notice that this simple script will prompt you for the statistic name and threshold value;
allowing ad-hoc AWR queries:

SQL> @rpt_sysatst

This will query the dba_hist_sysstat view to display all values
that exceed the value specified in
the "where" clause of the query.

Enter Statistic Name: physical writes
Enter Statistics Threshold value: 200000

SNAP_TIME VALUE
------------------- ------------
2004-02-21 08:00 200,395
2004-02-27 08:00 342,231
2004-02-29 08:00 476,386
2004-03-01 08:00 277,282
2004-03-02 08:00 252,396
2004-03-04 09:00 203,407

The listing above indicates a repeating trend where physical writes seem to be high at 8:00
AM on certain days. This powerful script will allow the DBA to quickly extract exception
conditions from any instance-wide Oracle metric and see its behavior over time.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The next section provides a more powerful exception report that compares system-wide
values to individual snapshots.

Exception reporting with dba_hist_filestatxs

The new 10g dba_hist_filestatxs table contains important file level information about
Oracle I/O activities. Because most Oracle databases perform a high amount of reading
and writing from disk, the dba_hist_filestatxs view can be very useful for identifying high
use data files.

For Oracle10g customers who are not using the Stripe and Mirror Everywhere (SAME)
approach, this view is indispensable for locating and isolating hot data files. Many Oracle
shops will isolate hot data files onto high-speed solid-state disk (SSD), or relocate the hot
files to another physical disk spindle.

If the dba_hist_filestatxs is described as shown in Table 11.1, the important information
columns can be seen below. The important information relates to physical reads and
writes, the actual time spent performing reads and writes, and the wait count associated
with each data file, for each snapshot.

COLUMN DESCRIPTION
snap_id Unique snapshot ID
filename Name of the datafile
phyrds Number of physical reads done
phywrts Number of times DBWR is required to write
singleblkrds Number of single block reads
readtim Time, in hundredths of a second, spent doing reads if the timed_statistics

parameter is TRUE; 0 if timed_statistics is FALSE

writetim Time, in hundredths of a second, spent doing writes if the timed_statistics
parameter is TRUE; 0 if timed_statistics is FALSE

singleblkrdtim Cumulative single block read time, in hundredths of a second

phyblkrd Number of physical blocks read
phyblkwrt Number of blocks written to disk, which may be the same as phywrts if all

writes are single blocks

wait_count Wait Count

Table 11.1: The metrics relating to file I/O in dba_hist_filestatxs

It is easy to write a customized exception report with AWR data. In this simple report
called hot_write_files_10g.sql, the dba_hist_filestatxs table is queried to identify hot write
datafiles, which is any condition where any individual file consumed more than 25% of
the total physical writes for the whole instance. Especially when you are not using RAID,

identification of hot datafiles is important because the objects inside the file cache can be
cached with the KEEP pool or by moving the hot data file onto high-speed solid-state
RAM disks.

The query below compares the physical writes in the the phywrts column of
dba_hist_filestatxs with the instance-wide physical writes statistic# = 55 from the
dba_hist_sysstat table.

This simple yet powerful script allows the Oracle professional to track hot-write datafiles
over time, thereby gaining important insight into the status of the I/O sub-system over
time.

< hot_write_files_10g.sql

prompt This will identify any single file who's write I/O
prompt is more than 25% of the total write I/O of the database.
prompt

set pages 999

break on snap_time skip 2

col filename format a40
col phywrts format 999,999,999
col snap_time format a20

select
 to_char(begin_interval_time,'yyyy-mm-dd hh24:mi') snap_time,
 filename,
 phywrts
from
 dba_hist_filestatxs
natural join
 dba_hist_snapshot
where
 phywrts > 0
and
 phywrts * 4 >
(
select
 avg(value) all_phys_writes
from
 dba_hist_sysstat
 natural join
 dba_hist_snapshot
where
 stat_name = 'physical writes'
and
 value > 0
)
order by
 to_char(begin_interval_time,'yyyy-mm-dd hh24:mi'),
 phywrts desc
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The following is the sample output from this powerful script. This is a useful report
because the high-write datafiles are identified as well as those specific times at which they
are hot.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

SQL> @hot_write_files

This will identify any single file who's write I/O
is more than 25% of the total write I/O of the database.

SNAP_TIME FILENAME PHYWRTS
----------------- -------------------------------------- --------
2004-02-20 23:30 E:\ORACLE\ORA92\FSDEV10G\SYSAUX01.DBF 85,540

2004-02-21 01:00 E:\ORACLE\ORA92\FSDEV10G\SYSAUX01.DBF 88,843

2004-02-21 08:31 E:\ORACLE\ORA92\FSDEV10G\SYSAUX01.DBF 89,463

2004-02-22 02:00 E:\ORACLE\ORA92\FSDEV10G\SYSAUX01.DBF 90,168

2004-02-22 16:30 E:\ORACLE\ORA92\FSDEV10G\SYSAUX01.DBF 143,974
 E:\ORACLE\ORA92\FSDEV10G\UNDOTBS01.DBF 88,973

This type of time-series exception reporting is extremely useful for detecting those times
when an Oracle database is experiencing I/O stress. Many Oracle professionals will
schedule these types of exception reports for automatic e-mailing every day. We can also
use AWR to aggregate this information to spot trends.

Now that the concept of trend identification has been introduced, it is time to move onto
an examination of a more sophisticated type of report where repeating trends within the
data can be identified.

General trend identification with the AWR

Once the dba_hist scripts have been mastered, the next step is to look at the more
complex task of trend identification with the AWR tables. By now, it should be clear that
aggregating important Oracle performance metrics over time, day-of-the-week and hour-
of-the-day, allows the DBA to see the hidden signatures. These signatures are extremely
important because they show regularly occurring changes in processing demands. This
knowledge allows the DBA to anticipate upcoming changes and reconfigure Oracle just-
in-time to meet the changes.

The following is a simple example. The rpt_sysstat_hr_10g.sql script will show the
signature for any Oracle system statistic, averaged by hour of the day, and figure 11.2
shows a typical output of the script.

Figure 11.2: An hourly Signature for physical disk reads

Plotting the data makes it easy to find trends. Of course, open source products such as
RRDTool can also be used to automate the plotting of data from the AWR and ASH
tables and make nice web screens to see the data. Finally, the WISE tool
(http://www.wise-oracle.com/product_wise_enterprise.htm) can be used and with just a
few clicks, comprehensive charts can be produced for any snapshot period as well as
trend charts for month, day, or hourly periods. Figure 11.3 below shows a sample WISE
view:

Figure 11.3: Time series charts in The WISE tool (http://www.wise-
oracle.com/product_wise_enterprise.htm)

http://www.wise-oracle.com/product_wise_enterprise.htm
http://www.wiseoracle.com/product_wise_enterprise.htm

The same types of reports, aggregated by day-of-the week, can be created to show daily
trends. Over long periods of time, almost all Oracle databases will develop distinct
signatures that reflect the regular daily processing patterns of the end-user community.

The rpt_10g_sysstat.sql script, that was introduced in Chapter 2, will accept any of the
values from dba_hist_sysstat. This data can now be plotted for trend analysis as shown in
Figure 11.4 below. These types of signatures will become very stable for most Oracle
databases and can be used to develop a predictive model for proactive tuning activities.

Figure 11.4: The signature for average physical reads by day of the week

Correlation analysis with AWR and ASH

For those who like Oracle tuning with the Oracle Wait Interface (OWI), there are
interesting statistics that relate to system-wide wait events from the dba_hist_waitstat table
as shown in Table 11.2 that provide detailed wait event information from the
dba_hist_active_sess_history.

COLUMN DESCRIPTION
snap_id Unique snapshot ID
dbid Database ID for the snapshot
instance_number Instance number for the snapshot
class Class of the block
wait_count Number of waits by the OPERATION for this CLASS of block

time Sum of all wait times for all the waits by the OPERATION for this
CLASS of block

Table 11.2: The dba_hist_waitstat statistics used to wait event analysis

To understand correlation analysis for an Oracle database, a simple example may be
helpful. For advanced correlation analysis, we seek to identify correlations between
instance-wide wait events and block-level waits. This is a critical way of combining
human insight with the AWR and ASH information to isolate the exact file and object
where the wait contention is occurring.

The ASH stores the history of a recent session’s activity in v$active_session_history with the
AWR history view dba_hist_active_sess_history. This data is designed as a rolling buffer in
memory, and earlier information is overwritten when needed. To do this, the AWR
dba_hist_active_sess_history view is needed. This view contains historical block-level
contention statistics as shown in Table 11.3 below.

COLUMN DESCRIPTION
snap_id Unique snapshot ID
sample_time Time of the sample
session_id Session identifier
session_serial# Session serial number. This is used to uniquely identify a session's objects.

user_id Oracle user identifier
current_obj# Object ID of the object that the session is currently referencing

current_file# File number of the file containing the block that the session is currently
referencing

current_block# ID of the block that the session is currently referencing

wait_time Total wait time for the event for which the session last waited (0 if currently
waiting)

time_waited Time that the current session actually spent waiting for the event. This
column is set for waits that were in progress at the time the sample was
taken.

Table 11.3: Selected columns from the dba_hist_active_sess_history view

The wait_time_detail.sql script below compares the wait event values from dba_hist_waitstat
and dba_hist_active_sess_history. This script quickly allows the identification of the exact
objects that a re experiencing wait events.

< wait_time_detail_10g.sql

-- ***
-- Copyright © 2005 by Rampant TechPress
-- This script is free for non-commercial purposes
-- with no warranties. Use at your own risk.
-- ***

prompt
prompt This will compare values from dba_hist_waitstat with
prompt detail information from dba_hist_active_sess_history.

prompt

set pages 999
set lines 80

break on snap_time skip 2

col snap_time heading 'Snap|Time' format a20
col file_name heading 'File|Name' format a40
col object_type heading 'Object|Type' format a10
col object_name heading 'Object|Name' format a20
col wait_count heading 'Wait|Count' format 999,999
col time heading 'Time' format 999,999

select
 to_char(begin_interval_time,'yyyy-mm-dd hh24:mi') snap_time,
-- file_name,
 object_type,
 object_name,
 wait_count,
 time
from
 dba_hist_waitstat wait,
 dba_hist_snapshot snap,
 dba_hist_active_sess_history ash,
 dba_data_files df,
 dba_objects obj
where
 wait.snap_id = snap.snap_id
and
 wait.snap_id = ash.snap_id
and
 df.file_id = ash.current_file#
and
 obj.object_id = ash.current_obj#
and
 wait_count > 50
order by
 to_char(begin_interval_time,'yyyy-mm-dd hh24:mi'),
 file_name
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

This script is also enabled to join into the dba_data_files view to get the file names
associated with the wait event. This is a very powerful script that can be used to quickly
drill-in to find the cause of specific waits. Below is sample output showing time-slices
and the corresponding wait counts and times:

SQL> @wait_time_detail_10g

Copyright 2004 by Donald K. Burleson

This will compare values from dba_hist_waitstat with
detail information from dba_hist_active_sess_hist.

Snap Object Object Wait
Time Type Name Count Time
-------------------- ---------- ------------ ------- -------
2004-02-28 01:00 TABLE ORDOR 4,273 67
 INDEX PK_CUST_ID 12,373 324
 INDEX FK_CUST_NAME 3,883 17
 INDEX PK_ITEM_ID 1,256 967

2004-02-29 03:00 TABLE ITEM_DETAIL 83 69

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

2004-03-01 04:00 TABLE ITEM_DETAIL 1,246 45

2004-03-01 21:00 TABLE CUSTOMER_DET 4,381 354
 TABLE IND_PART 117 15

2004-03-04 01:00 TABLE MARVIN 41,273 16
 TABLE FACTOTUM 2,827 43
 TABLE DOW_KNOB 853 6
 TABLE ITEM_DETAIL 57 331
 TABLE HIST_ORD 4,337 176
 TABLE TAB_HIST 127 66

This example demonstrates how the AWR and ASH data can be used to create an almost
infinite number of sophisticated custom performance reports.

The AWR can also be used with the Oracle Data Mining (ODM) product to analyze
trends. Using Oracle ODM, the AWR tables can be scanned for statistically significant
correlations between metrics. Sophisticated multivariate Chi-Square techniques can also
be applied to reveal hidden patterns within the AWR treasury of Oracle performance
information.

The Oracle10g ODM uses sophisticated Support Vector Machines (SVM) algorithms for
binary, multi-class classification models and has built-in linear regression functionality.

Conclusion

If the DBA takes the time to become familiar with the wealth of metrics within the AWR
and ASH tables, it becomes easy to get detailed correlation information between any of
the 500+ performance metrics captured by the AWR.

As the Oracle database evolves, Oracle will continue to enhance the mechanisms for
analyzing the valuable performance information in AWR. At the present rate, future
releases of Oracle may have true artificial intelligence built-in to detect and correct even
the most challenging Oracle optimization issues.

The AWR provides the foundation for sophisticated performance analysis, including
exception reporting, trend analysis, correlation analysis, hypothesis testing, data mining,
and best of all the ability to anticipate future stress on the database.

The main points of this chapter include:

§ The AWR dba_hist views are similar to well-known STATSPACK tables, making it
easy to migrate existing performance reports to Oracle10g.

§ The dba_hist views are fully documented and easy to use for writing custom scripts.

§ The creation of AWR and ASH provides a complete repository for diagnosing and
fixing any Oracle performance issue.

§ The AWR and ASH are the most exciting performance optimization tools in Oracle’s
history and provide the foundation for the use of artificial intelligence techniques to
be applied to Oracle performance monitoring and optimization.

§ As Oracle evolves, the AWR and ASH will likely automate the tedious and time
consuming task of Oracle tuning.

Now that the basic idea behind proactive time-series and correlation analysis has been
revealed, the next step is to take a look at how the AWR and ASH data can be used to
monitor external server conditions. Oracle10g shows that Oracle recognizes that the
server hardware is critical to Oracle performance and offers many exciting tools to help
the DBA with tuning.
--

This is an excerpt from the bestselling book “Oracle Tuning: The
Definitive Reference” (http://www.rampant-
books.com/book_2005_1_awr_proactive_tuning.htm) by Alexey
Danchenkov (http://www.wise-oracle.com/) and Donald Burleson
(http://www.dba-oracle.com/books.htm), technical editor Mladen
Gogala.

Incorporating the principles of artificial intelligence, Oracle10g has
developed a sophisticated mechanism for capturing and tracking
database performance over time periods. This new complexity has
introduced dozens of new v$ and DBA views, plus dozens of
Automatic Workload Repository (AWR) tables.

The AWR and its interaction with the Automatic Database Diagnostic Monitor (ADDM) is
a revolution in database tuning. By understanding the internal workings of the AWR tables,
the senior DBA can develop time-series tuning models to predict upcoming outages and
dynamically change the instance to accommodate the impending resource changes.

This is not a book for beginners. Targeted at the senior Oracle DBA, this book dives deep
into the internals of the v$ views, the AWR table structures and the new DBA history views.
Packed with ready-to-run scripts, you can quickly monitor and identify the most challenging
performance issues.

http://www.rampantbooks.com/book_2005_1_awr_proactive_tuning.htm
http://www.wise-oracle.com/
http://www.dba-oracle.com/books.htm

