

381

9

Performance Tuning

Performance tuning of any application, including the database, is an itera-
tive process. This means that to maintain a healthy database, one must con-
stantly monitor and fine-tune it. During certain periods, an aggressive
performance tuning of both the application and database may be required.
At other times, only routine continuous monitoring and maintenance may
be needed. During this time, system hiccups may be discovered and solu-
tions tried and tested.

The goal of a DBA or the application developer is to provide efficient,
well-performing applications with good response time. In order for the
application to provide a good response, the system, database, and SQL que-
ries should be well tuned. Systems are tuned based on data collected during
periods of poor performance; the evidence and the data collected may pro-
vide an indication of where the actual problem resides. For continuous
monitoring and tuning of systems, a process or method should be adopted
that helps streamline the activity. As in most repeatable situations, a meth-
odology should be adopted, and once it has been validated and approved, it
needs to be practiced. This methodology should be iterated every time there
is a need to tune the system.

In this chapter, we will look into a scientific approach to troubleshoot-
ing, performance tuning, and maintaining a healthy database system. Tun-
ing a RAC implementation has many aspects, and the techniques will vary
depending on whether the RAC cluster is preproduction or live. Since a
RAC configuration comprises one or more instances connected to a shared
database, tuning a RAC configuration ideally starts with tuning the individ-
ual instances prior to the deployment of the production cluster. Individual
instances in the cluster should be tuned using the same techniques used for
single-instance databases. Once the individual instances are tuned, the
other tiers, network, interconnect, cluster manager, and so on, should be
incorporated into the tuning process.

Chap9.fm Page 381 Sunday, April 16, 2006 8:50 PM

382

9.1

Methodology

9.1 Methodology

Problem-solving tasks of any nature need to be approached in a systematic
and controlled manner. There needs to be a defined procedure or an action
plan, and this procedure needs to be followed step by step from start to fin-
ish. During every step of the process, data is collected and analyzed, and the
results are fed into the next step, which in turn is performed using a similar
systematic approach. Hence, methodology is the procedure or process fol-
lowed from start to finish, from identification of the problem to problem
solving and documentation. A methodology is a procedure or process that
is repeatable as a whole or in increments through iterations. During all of
this analysis, the cause or reasons for a behavior or problem should be based
on quantitative analysis and not on guesswork.

The performance tuning methodology can be broadly categorized into
seven steps:

1.

Problem statement.

 Identify or state the specific problem in hand
(e.g., poor response time or poorly performing SQL statement).

2.

Information gathering.

 Gather all information relating to the
problem identified in step one. For example, when a user com-
plains of poor performance, it may be a good idea to interview
him or her to identify what kind of function the user was per-
forming and at what time of the day (there may have been
another contending application at that time, which may have
caused the slow performance).

3.

Area identification.

 Once the information concerning the per-
formance issue is gathered, the next step is to identify the area
of the performance issue. For example, the module in the appli-
cation that belongs to a specific service type may be causing the
performance issue.

4.

Area drilldown.

 Drill down further to identify the cause or area of
the performance issue. For example, identify the SQL statement
or the batch application running at the wrong time of day.

5.

Problem resolution.

 Work to resolve the performance issue (e.g.,
tune the SQL query).

6.

Testing against baseline.

 Test to see if the performance issue has
been resolved. For example, request that the user who complained
test the performance.

Chap9.fm Page 382 Sunday, April 16, 2006 8:50 PM

9.1

Methodology 383

Chapter 9

7.

Repeating the process.

 Now that the identified problem has been
resolved, attempt to use the same process with the next problem.

While each of these steps is very broad, a methodical approach will help
identify and solve the problem in question, namely, performance. Which
area of the system is having a performance problem? Where do we start?
Should the tuning process start with the operating system, network, data-
base, instance, or application? Often the users of the application tier com-
plain that the system has a poor response time. Users access an application,
and the application in turn communicates with the database to store and
retrieve information. When the user who made the request does not get the
response in a sufficiently small amount of time, he or she complains that
the system is slow.

Starting with poor end user response time may assist in tuning a system
in production, but in other scenarios, we may need to tune bottom up (e.g.,
starting with the hardware platform, tuning the storage subsystem, tuning
the database configuration, tuning the instance). Addressing the perfor-
mance issues using this approach can bring some amount of change or per-
formance improvement to the system with less or no impact on the actual
application code. However, if the application is poorly written (e.g., a bad
SQL query), tuning the underlying layers will have only a marginal effect.

As a general rule, it is more effective to take a “top-down” approach to
database tuning since improvements in the upper layers (e.g., the applica-
tion) will change the demand experienced by the lower layers (such as the
storage system). When an application SQL is poorly tuned, it may cause
excessive physical I/O demand, which in turn leads to poor disk service
times. Tuning the SQL will both reduce the demand and eliminate the
problems at all layers of the application. On the other hand, improving
the performance of poorly tuned SQL by optimizing the storage sub-
system, perhaps by buying more spindles, is a relatively expensive and ulti-
mately ineffective measure. You also risk the embarrassing situation of
having requested expensive hardware upgrades, which are later rendered
unnecessary by the creation of an index or the addition of a hint to a
problematic SQL.

Therefore, it is usually wise to perform tuning activities in the following
order:

1. Tune the application, focusing on reducing its demand for data-
base services. Primarily, this is done through SQL tuning, addi-

Chap9.fm Page 383 Sunday, April 16, 2006 8:50 PM

384

9.1

Methodology

tion of indexes, rewording of SQLs or application-level caching.
The observable outcome of this stage is a reduction in the rate of
logical I/O demands (consistent reads and db (database) block
reads) by the application.

2. Eliminate any contention for shared resources, such as locks,
latches, freelists, and so on. Contention for these resources may
be preventing the application from exhibiting its full demand for
database services.

3. Use memory to minimize the amount of logical demand that
turns into physical disk I/Os. This involves tuning the buffer
cache to maximize the number of blocks of data that can be
found in memory and tuning the

PGA_AGGREGATE_TARGET

 to
minimize I/O resulting from disk sorts and hash joins.

4. Finally, when the physical I/O demand has been minimized,
distribute the load as evenly as possible across your disk spin-
dles, and if there are insufficient spindles for the I/O demand
you are now observing, add additional disk devices to improve
overall I/O bandwidth.

The top-down or bottom-up methodology discussed previously is good
for an already existing production application that needs to be tuned. Typi-
cally, we find an application’s performance has degraded over time, possibly
because (1) applications have degraded in performance due to new func-
tionality that was not sufficiently tuned; (2) the user base has increased and
the current application does not support the extended user base; and (3) the
volume of data in the underlying database has increased, but the storage has
not changed to accept the increased I/O load.

While these are issues with an existing application and database residing
on existing hardware, a more detailed testing and tuning methodology
should be adopted when migrating from a single instance to a clustered
database environment. Before migrating the actual application and produc-
tion enabling the new hardware, the following basic testing procedure
should be adopted.

As mentioned earlier, testing of the RAC environment should start with
tuning a single-instance configuration. Only when the performance charac-
teristics of the application are satisfactory should tuning on the clustered
configuration begin. To perform these tests, all nodes in the cluster except
one should be shut down, and the single-instance node should be tuned.
Only after the single instance has been tuned and appropriate performance

Chap9.fm Page 384 Sunday, April 16, 2006 8:50 PM

9.1

Methodology 385

Chapter 9

measurements equal to the current configuration or more are obtained
should the next step of tuning be started. Tuning the cluster should be per-
formed by adding one instance at a time to the mix. Performance should be
measured in detail to ensure that the expected scalability and availability are
obtained. If such performance measurements are not obtained, the applica-
tion should not be deployed into production, and only after the problem
areas are identified and tuned should deployment occur.

Note:

RAC cannot magically bring performance improvements to an applica-

tion that is already performing poorly on a single-instance configuration.

Caution

:

 The rule of thumb is if the application cannot scale on a single-
instance configuration when the number of CPUs on the server is increased
from two to four to eight, the application will not scale in a RAC environ-
ment. Indeed, migrating to RAC can conceivably diminish performance of

an application that cannot scale in an SMP (multi-CPU) environment.

While running performance tests on the instances by adding one node
at a time to the cluster, the following phases should be included in the test-
ing plan:

1.

Load Testing Phase I

. During this phase, a standard performance
benchmarking software load will test the database environment,
not including the application schemas and data. The purpose of
this test is to verify the database and operating system perfor-
mance characteristics. Based on the load tests and the statistics
collected, the database and environment should be tuned. Once
tuned, the testing should be repeated until a maximum or until
such point when no or minimal performance gains are noticed.
Load-testing tools such as Benchmark Factory (BMF), illustrated
in Figure 9.1, or free-load testing tools such as Swingbench

1

 or
Hammerora

2

 provide standard test categories and can be used to
test the environment during this phase.

1. The latest version of the Swingbench software can be downloaded from www.dominicgiles.com.
2. The latest version of the Hammerora software can be downloaded from http://hammerora.sourceforge.net.

Chap9.fm Page 385 Sunday, April 16, 2006 8:50 PM

386

9.1

Methodology

Once a stable environment has been reached, the next step is
to test all failure points because, after all, one primary reason to
migrate to a clustered environment is availability.

2.

Availability test

. During this step of testing, the various failure
points will have to be tested to ensure that the RAC database
will continue to function either as a single instance or as a clus-
ter, depending on where the failure has occurred. For example,
from where the node failure occurred, the remaining nodes in
the cluster should continue to function. Similarly, when a net-
work switches to the storage array and fails, the redundant
switch should continue to operate. Tests should be performed
during load, meaning that failures should be simulated, consid-
ering that they can happen in live production environments
with user activity.

Note

:

 This is a critical test and should not be compromised. All failure

points should be tested until the expected results are achieved.

3.

Load Testing Phase II

. During this step, a load test should be per-
formed against a production schema (on the new hardware plat-

Figure 9.1

Benchmark Factory
(BMF)

Chap9.fm Page 386 Sunday, April 16, 2006 8:50 PM

9.1

Methodology 387

Chapter 9

form) that contains a copy of the actual data from the current live
production environment. The purpose of this test is to tune the
instance and the database for application workloads not interfac-
ing with the business application. For such a test, an extract of the
SQL queries from the application can be used. One method to
extract these queries from a live system without user intervention
is to extract them using Oracle event 10046 and parsing the trace
files generated through an application to extract the queries with
their respective bind values. Sample steps to complete phase II are
as follows:

a. In a live production environment, enable Oracle Event
Trace 10046 at level 4 after connecting to the server as
user sys.

ALTER SYSTEM SET EVENTS '10046 TRACE NAME CONTEXT
FOREVER, LEVEL 4';

This command generates a trace file in the directory
identified by the parameter

USER_DUMP_DEST

.

Caution

:

 Depending on the activity on the production servers, the number
of trace files and their contents could be large and consume a considerable
amount of disk space. Please ensure sufficient disk space is available before

attempting this step.

b. Concatenate all the trace files generated by the event in
the user dump destination directory into one file.

cat *.trc > SQLQueries.trc

c. Using parsing software (sample Perl script provided in
Appendix B), replace the bind variables with bind values
found in the trace file.

d. Using the queries extracted from step c, perform a load test
simulating the estimated user workload iterating the que-
ries and measuring response times. Remember, this step is
also an iterative process, which means that the user load
should be gradually increased through iterations, and dur-
ing each iteration, statistics should be collected. Then,

Chap9.fm Page 387 Sunday, April 16, 2006 8:50 PM

388

9.1

Methodology

based on the analysis, the instance and database parameters
and, most importantly, the SQL queries should be tuned.
This test can be performed using either a homegrown tool
or third-party software such as BMF or hammerora.

Note

:

 Performance should be monitored on all the tiers of the database
server (i.e., operating system, instance, and database) during both load-test-
ing phases using various performance-monitoring tools, which are discussed

later in this chapter along with other performance-tuning methods.

Once the database layer has been tested and tuned simulating
user work behavior, the next step is to perform an actual user
acceptance test.

4.

User acceptance testing

. In this step, an organized set of users is
requested to perform day-to-day operations using the standard
application interface against the new environment. During this
test phase, the database environment should be monitored, and
data should be collected and analyzed and the environments
tuned. With this step, almost all problem areas of the new envi-
ronment should be identified and fixed.

5.

Day-in-a life test

. This is the final test where the environment is
put through an actual user test by the application users simulating
a typical business day.

Through these various stages of testing, all problem areas should be
identified and fixed before going live into a production environment. Please
note that RAC will not perform any miracles to improve the performance
of the application. All applications that do not scale on a single-instance
database environment will not scale in a clustered environment. Therefore,
it is important to ensure that the application is performing well in the clus-
tered environment during these testing cycles before going live.

Note:

One of the most common failures during preproduction benchmark-
ing is failure to simulate expected table data volumes. Many SQL state-
ments will increase their I/O requirements and elapsed times as table
volumes increase. In the case of a full table scan, the relationship will be
approximately linear: if you double the size of the table, you double the
SQLs’ I/O and elapsed time. Indexed-based queries may show better scal-

Chap9.fm Page 388 Sunday, April 16, 2006 8:50 PM

9.2

Storage subsystem 389

Chapter 9

ability, though many indexed queries will perform range scans that will
grow in size with the number of rows in the underlying table. Therefore, a
valid benchmark will use a database in which the long-term row counts in

key tables have been simulated.

Identification and tuning of the database depends on the type of appli-
cation, the type of user access patterns, the size of the database, the operat-
ing system, and so on. In the next sections of this chapter, the various
tuning areas and options are discussed.

9.2 Storage subsystem

Shared storage in a RAC environment is a critical component of the overall
architecture. Seldom is importance given to the storage system relative to
the size of the database, the number of nodes in the cluster, and so on.
Common problems found among customers are as follows:

�

When increasing the number of nodes participating in the cluster, seldom
is any thought given to the number of nodes versus the number of inter-
faces to the storage subsystem and the capacity of the I/O path

. Due to
limitations of the hardware, it has been observed on several occasions
that the number of slots for the host bus adapter (HBA) and the net-
work interface card (NIC) is insufficient to provide a good I/O capac-
ity, and so is the number of ports on a switch and the number of
controllers in a disk array. Care should be taken to ensure that the
number of HBAs is equal to the number of disk controllers. Using
the disk controller slots to accommodate more disk arrays will have a
negative impact on the total throughput.

For example, on a 16-port fiber channel switch, the ideal configu-
ration is have eight HBAs and eight disk controllers, giving a total
throughput of 8

×

 200 MB = 1.6 GB/sec.

3

 Now, if the number of
HBAs is reduced to four to provide room for additional storage, then
the total throughput drops by 50% (4

×

 200 MB = 800 MB/sec).

Another area of concern is tuning the operating system to han-
dle the I/O workload. For example, Figure 9.2 is an output from an
EM database console that illustrates a high I/O activity against the
storage array.

3. Assuming the maximum theoretical payload of 2 Gb/s Fiber Channel is 200 MB/sec.

Chap9.fm Page 389 Sunday, April 16, 2006 8:50 PM

390

9.2

Storage subsystem

Apart from poorly written SQL queries, high I/O activity against the
storage system can occur for a number of reasons:

�

Bad configuration of the SAN

�

Low disk throughput

�

High contention against the storage area

�

Bad I/O channel

�

High queue lengths

The storage system should be verified beforehand to ensure that
all disks in the storage array are of high-performing capacity. While it
may be difficult to have the entire storage array contain disks of the
same performance characteristics, care should be taken to ensure that
disks within a disk group (in the case of ASM) or volume group (in
the case of third-party volume managers) are of identical capacity and
performance characteristics because a poor-performing disk in a disk
group can create inconsistent I/O activity. When using ASM, perfor-
mance characteristics of the individual disks within a disk group can
be monitored using EM, as illustrated in Figure 9.3.

�

Disk I/O can also be improved by configuring Oracle to use asynchronous
I/O

. Asynchronous I/O (AIO) can be enabled by installing the fol-
lowing operating system-specific patches:

[root@oradb3 root]$ rpm -ivf libaio-0.3.96-3.i386.rpm

[root@oradb3 root]$ rpm -i-f libaio-devel-0.3.96-3.i386.rpm

Then, recompile the Oracle kernel using the following commands:

Figure 9.2

EM Active Session
Showing High I/O

Activity

Chap9.fm Page 390 Sunday, April 16, 2006 8:50 PM

9.2

Storage subsystem 391

Chapter 9

make -f ins_rdbms.mk async_on

make -f ins_rdbms.mk oracle

Subsequently, the following two parameters have to be set to the
appropriate values:

DISK_ASYNCH_IO = TRUE (default)

FILESYSTEMIO_OPTIONS=ASYNCH

In a RAC environment, by sharing blocks between instances
using the cluster interconnect, Oracle will avoid physical I/O if pos-
sible. However, if it must be done to force the data to be saved to
disks, then the goal should be to make I/O asynchronous and to
eliminate random I/O operations because

DBWRn

 processes often
have to write out large batches of “dirty” blocks to disk. If AIO is
not available, you may see “free buffer” or “write complete” waits as
sessions wait for the

DBWRn

 to catch up with the changes made by
user sessions.

Note:

 Oracle Wait Interface (OWI) is discussed later in this chapter.

AIO allows a process to submit I/O requests without waiting for
their completion. Enabling this feature allows Oracle to submit AIO
requests, and while the I/O request is being processed, Oracle can
pick up another thread and schedule a new I/O operation.

Not

e:

 In Oracle Database 10

g

 Release 2, during installation Oracle will
compile the kernel using the asynch parameters if the appropriate operating

system packages are installed. AIO is not supported for NFS servers.

�

Poor performance in Linux environments, particularly with OLAP que-
ries, parallel queries, backup and restore operations, or queries that per-
form large I/O operations, can be due to inappropriate setting of certain
operating system parameters

. For example, by default on Linux envi-
ronments, large I/O operations are broken into 32K-segment chunks,
separating system I/O operations into smaller sizes. To allow Oracle
to perform large I/O operations, certain default values at the operat-
ing system level should be configured appropriately. The following

Chap9.fm Page 391 Sunday, April 16, 2006 8:50 PM

392

9.2

Storage subsystem

steps will help users identify the current parameter settings and make
appropriate changes:

1. Verify if the following parameters have been configured:

cat /proc/sys/fs/superbh-behavior

cat /proc/sys/fs/aio-max-size

cat /proc/sys/fs/aio-max-nr

cat /proc/sys/fs/aio-nr

aio-max-size

The

aio-max-size

 parameter specifies the maximum block
size that one single AIO write/read can do. Using the default
value of 128K will chunk the AIO done by Oracle.

aio-nr and aio-max-nr

aio-nr

is the running total of the number of events specified
on the

io_setup

 system call for all currently active AIO contexts.
If

aio-nr

 reaches

aio-max-nr

, then

 io_setup

 will fail.

aio-nr

shows the current systemwide number of AIO requests. aio-
max-nr allows you to change the maximum value aio-nr can
increase to.

Increasing the value of the aio-max-size to 1,048,576 and
aio_max_ns parameters to 56K also helps the performance of the
ASM disks because ASM performs I/O in 1-MB chunks.

2. Update the parameters by adding the following lines to the /etc/
sysctl.conf file:

fs.superbh-behavior = 2

fs.aio-max-size = 1048576

fs.aio-max-nr = 512

This change will set these kernel parameters across reboots. To
change them dynamically on a running system, issue the follow-
ing commands as user root:

echo 2 > /proc/sys/fs/superbh-behavior

echo 1048576 > /proc/sys/fs/aio-max-size

echo 512 > /proc/sys/fs/aio-max-nr

Chap9.fm Page 392 Sunday, April 16, 2006 8:50 PM

9.2 Storage subsystem 393

Chapter 9

� When configuring disk groups or volume groups, care should be taken in
identifying disks of the same performance characteristics. Such verifica-
tion can be done using either the simple dd command or any disk cal-
ibration tool, such as Orion,4 for example;

dd bs=1048576 count=200 if=/dev/sdc of=/dev/null

This command will copy 200 blocks by reading one block at a
time up to a maximum of 1,048,576 bytes from an input device and
writing it to an output device. When testing disks for Oracle data-
base, the block size should represent the Oracle block size times the
value defined using the parameter MULTI_BLOCK_READ_COUNT to
obtain optimal disk performance.

The following is the description of the various options used
with the dd command:

� bs=bytes. Reads that many bytes of data at a time.
� count=blocks. Copies the number of blocks specified by

the count parameter.
� if=file. Specifies the input file to read data from (e.g., a

disk).
� of=file. Specifies the output device of the file where the

data will be written.

� When testing disk performance characteristics, user concurrency should
be considered from multiple nodes in a RAC environment. User con-
currency can also be simulated by running multiple dd commands.
By using standard operating system commands such as vmstat, the
concurrency level can be increased gradually to determine the high-
est throughput rate and beyond where there is a point of zero
increase.

� Selection of disk volume managers also plays an important part in the
overall performance of the database. This is where the use of ASM
comes into play. Deploying databases on ASM will help in auto-
matic distribution of files based on the same methodology, and
Oracle will perform the automatic placement of files based on the
importance of data.

4. Orion can be downloaded from the Oracle technology network at http://otn.oracle.com.

Chap9.fm Page 393 Sunday, April 16, 2006 8:50 PM

394 9.3 Automatic Storage Management

9.3 Automatic Storage Management
Above, we briefly touched on tuning the operating system to help improve
the I/O subsystem. ASM performs placement of files across various disks
automatically; however, ASM cannot improve the performance of existing
poorly performing disks. We discussed earlier that it would be ideal to
have all disks in a disk group with the same performance characteristics to

provide consistent performance. The performance characteristics of indi-
vidual disks illustrated in Figure 9.3 within a disk group can be monitored
using EM.

In Chapter 3, we discussed how an ASM instance and an RDBMS
instance will interact for various reasons. During this process of communi-
cation and during the various administrative functions performed by ASM
on the disk groups, ASM will require resources. Like in a RDBMS instance,
despite ASM being a lightweight instance, it also contains an SGA. For
example, the default SGA is

SQL> show sga

Total System Global Area 92274688 bytes

Fixed Size 1217884 bytes

Variable Size 65890980 bytes

ASM Cache 25165824 bytes

Figure 9.3
I/O Performance at

the ASM Disk
Level

Chap9.fm Page 394 Sunday, April 16, 2006 8:50 PM

9.4 Cluster interconnect 395

Chapter 9

Note: The ASM cache is defined by the DB_CACHE_SIZE parameter.

Note: The SGA is broken into the shared pool, large pool, and shared pool
reserved size. Default values for these parameters are:

SHARED_POOL_SIZE = 48M

LARGE_POOL_SIZE = 12M

SHARED_POOL_RESERVED_SIZE = 24M

SGA_MAX_SIZE = 88M

The SGA for the ASM instance is sized very small. Based on the number
of instances or databases communicating with the ASM instance, usually,
the default SGA is sufficient. However, when the application performs high
I/O activity or when the ASM instance supports more than six Oracle
instances, adding resources to the ASM instance is helpful to improve per-
formance (e.g., increasing the LARGE_POOL_SIZE to help in the communi-
cations between ASM and its clients) [27]. ASM and its functionality are
discussed extensively in Chapter 3.

9.4 Cluster interconnect

This is a very important component of the clustered configuration. Oracle
depends on the cluster interconnect for movement of data between the
instances. Chapter 2 provides a detailed explanation of how global data
movement occurs.

Testing the cluster interconnect should start with a test of the hardware
configuration. This basic test should ensure that the database is using the
correct IP addresses or NICs for the interconnect. The following query pro-
vides a list of IP addresses registered with Oracle:

COL PICKED_KSXPIA FORMAT A15

COL INDX FORMAT 99999

SELECT * FROM X$KSXPIA;

ADDR INDX INST_ID PUB_KSXPIA PICKED_KSXPIA NAME_KSXPIA IP_KSXPIA

-------- ---- ------- ---------- --------------- ------------ -------------

3FE47C74 0 1 N OCR bond1 10.168.2.130

3FE47C74 1 1 Y OCR bond0 192.168.2.30

Chap9.fm Page 395 Sunday, April 16, 2006 8:50 PM

396 9.4 Cluster interconnect

In the output, bond0 is the public interface (identified by the value Y
in column PUB_KSXPIA), and bond1 is the private interface (identified by
the value N in column PUB_KSXPIA). If the correct IP addresses are not
visible, this indicates incorrect installation and configuration of the RAC
environment.

Column PICKED_KSXPIA indicates the type of clusterware implemented
on the RAC cluster, where the interconnect configuration is stored, and the
cluster communication method that RAC will use. The valid values in this
column are

� OCR. Oracle Clusterware is configured.

� OSD. It is operating system dependent, meaning a third-party cluster
manager is configured, and Oracle Clusterware is only a bridge
between Oracle RDBMS and the third-party cluster manager.

� CI. The interconnect is defined using the CLUSTER_INTERCONNECT
parameter in the instance.

Alternatively interconnect information registered by all participating nodes
in the cluster can be verified from GV$CLUSTER_INTERCONNECTS view. Cluster
interconnect can also be verified by using the ORADEBUG utility (discussed later)
and verifying the trace file for the appropriate IP address.

Note: Failure to keep the interconnect interfaces private will result in the
instances’ competing with other network processes when requesting blocks
from other cluster members. The network between the instances needs to
be dedicated to cluster coordination and not used for any other purpose.

CLUSTER_INTERCONNECTS

This parameter provides Oracle with information on the availability of
additional cluster interconnects that can be used for cache fusion activity.
The parameter overrides the default interconnect settings at the operating
system level with a preferred cluster traffic network. While this parameter
does provide certain advantages over systems where high interconnect
latency is noticed by helping reduce such latency, configuring this parame-
ter can affect the interconnect high-availability feature. In other words, an
interconnect failure that is normally unnoticeable will instead cause an Ora-
cle cluster failure as Oracle still attempts to access the network interface.

Chap9.fm Page 396 Sunday, April 16, 2006 8:50 PM

9.5 Interconnect transfer rate 397

Chapter 9

Best Practice: NIC pairing/bonding should be a preferred method to using
the CLUSTER_INTERCONNECTS parameter to provide load-balancing and
failover of the interconnects.

9.5 Interconnect transfer rate

The next important verification is to determine the transfer rate versus the
actual implemented packet size to ensure the installation has been carried
out per specification.

The speed of the cluster interconnect depends solely on the hardware
vendor and the layered operating system. Oracle depends on the operating
system and the hardware for sending packets of information across the clus-
ter interconnect. For example, one type of cluster interconnect supported in
Sun 4800s is the UDP protocol. However, Solaris in this specific version
has an operating system limitation of a 64-KB packet size for data transfer.
To transfer 256 KB worth of data across this interconnect protocol would
take more than four round trips. Comparing this to another operating sys-
tem (e.g., Linux), the maximum supported packet size is 256K. On a high-
transaction system where there is a large amount of interconnect traffic,
because of user activity on the various instances participating in the clus-
tered configuration, limitations on the packet size can cause serious perfor-
mance issues.

Tools such as IPtraf on Linux environments (Figure 9.4) or glance on
HP-UX environments or utilities such as netstat should help monitor net-
work traffic and transfer rates between instance and client configurations.

IPTraf also helps to look into a specific network and monitor its perfor-
mance in detail by the type of protocol used for network traffic. For exam-
ple, in Figure 9.5, network traffic by protocol (TCP and UDP) is displayed,
giving outgoing and incoming rates.

Figure 9.4
IPTraf General

Network Traffic

Chap9.fm Page 397 Sunday, April 16, 2006 8:50 PM

398 9.5 Interconnect transfer rate

After the initial hardware and operating-system-level tests to confirm the
packet size across the interconnect, subsequent tests could be done from the
Oracle database to ensure that there is not any significant added latency
from using cache-to-cache data transfer or the cache fusion technology. The
query below provides the average time to receive a consistent read (CR)
block on the system:

set numwidth 20
column "AVG CR BLOCK RECEIVE TIME (ms)" format 9999999.9
select
 b1.inst_id,
 b2.value "GCS CR BLOCKS RECEIVED",
 b1.value "GCS CR BLOCK RECEIVE TIME",
 ((b1.value / b2.value) * 10) "AVG CR BLOCK RECEIVE TIME (ms)"
from gv$sysstat b1,
gv$sysstat b2
where b1.name = 'gc cr block receive time'
and b2.name = 'gc cr blocks received'
and b1.inst_id = b2.inst_id ;

INST_ID GCS CR BLOCKS RECEIVED GCS CR BLOCK RECEIVE TIME AVG CR BLOCK RECEIVE TIME (ms)
------- ---------------------- ------------------------- ------------------------------
 1 2758 112394 443.78
 2 1346 1457 10.8

Figure 9.5
IPTraf Statistics

for eth0

Chap9.fm Page 398 Sunday, April 16, 2006 8:50 PM

9.5 Interconnect transfer rate 399

Chapter 9

Note: The data in the GV$SYSSTAT view is cumulative since the last time
the Oracle instance was bounced. This does not reflect the true perfor-
mance of the interconnect or give a true picture of the latency in transfer-
ring data. To get a more realistic picture of the performance, it would be
good to bounce all of the Oracle instances and test again.

In the output above, it can be noticed that the AVG CR BLOCK RECEIVE
TIME for instance 1 is 443.78 ms; this is significantly high when the
expected average latency as recommended by Oracle should not exceed 15
ms. A high value is possible if the CPU has limited idle time, and the sys-
tem typically processes long-running queries. However, it is possible to have
an average latency of less than 1 ms with user-mode IPC. Latency can also
be influenced by a high value for the DB_MULTI_BLOCK_READ_COUNT
parameter. This is because this parameter determines the size of the block
that each instance would request from the other during read transfers. and a
requesting process can issue more than one request for a block depending
on the setting of this parameter and may have to wait longer. This kind of
high latency requires further investigation of the cluster interconnect con-
figuration, and tests should be performed at the operating system level to
ensure this is not something from Oracle or the parameter.

Note: Sizing of the DB_MULTI_BLOCK_READ_COUNT parameter should be
based on the interconnect latency and the packet sizes as defined by the
hardware vendor, and after considering the operating system limitations.

If the network interconnect is correctly configured as outlined earlier,
then it is unlikely that the interconnect itself will be responsible for high
receive times as revealed by GV$SYSSTAT. The actual time taken to transfer a
block across the interconnect hardware will normally be only a small frac-
tion of the total time taken to request the block on the first instance, con-
vert any locks that may exist on the block, prepare the block for transfer,
verify the receipt of the block, and update the relevant global cache struc-
tures. So, while it is important to ensure that the interconnect hardware is
correctly configured, it should not be concluded that the interconnect is
misconfigured if it is determined that block transfers are slow.

Chap9.fm Page 399 Sunday, April 16, 2006 8:50 PM

400 9.5 Interconnect transfer rate

The EM Cluster Cache Coherency screen (Figure 9.6) is also a tool to
monitor cluster interconnect performance. The figure displays three impor-
tant matrixes:

1. Global cache block access latency. This represents the elapsed time
from when the block request was initiated until it finishes. How-
ever, when a database block of any class is unable to locate a buff-
ered copy in the local cache, a global cache operation is initiated
by checking if the block is present in another instance. If it is
found, it is shipped to the requestor.

2. Global cache block transfer rate. If a logical read fails to find a copy
of the buffer in the local cache, it attempts to find the buffer in
the database cache of a remote instance. If the block is found, it is
shipped to the requestor. The global cache block transfer rate
indicates the number of blocks received.

3. Block Access Statistics. This indicates the number of blocks read
and the number of blocks transferred between instances in a
RAC cluster.

Latencies on the cluster interconnect can be caused by the following:

� No dedicated interconnect for cache fusion activity has been config-
ured.

� A large number of processes in the run queues are waiting for CPU or
as a result of processor scheduling delays.

� Incorrect platform-specific operating system parameter settings affect
IPC buffering or process scheduling.

� Slow, busy, or faulty interconnects create slow performance.

Figure 9.6
EM Cluster Cache

Coherency

Chap9.fm Page 400 Sunday, April 16, 2006 8:50 PM

9.5 Interconnect transfer rate 401

Chapter 9

One primary advantage of the clustered solution is to save on physical
I/O against a storage system, which is expensive. This means that the
latency of retrieving data across the interconnect should be significantly
lower compared to getting the data from disk. For the overall performance
of the cluster, the interconnect latency should be maintained at 6 to 8 ms.
The average latency of a consistent block request is the average latency of a con-
sistent-read request round-trip from the requesting instance to the holding
instance and back to the requesting instance.

When such high latencies are experienced over the interconnect, another
good test is to perform a test at the operating system level by checking the
actual ping time. This will help to determine if there are any issues at the
operating system level. After all, the performance issue may not be from
data transfers within the RAC environment. Figure 9.7 (taken from Quest
Software’s Spotlight on RAC product) provides a comparison of the cluster
latency versus the actual ping time monitored at the operating system level.
This helps determine the latency encountered at the database level versus
any overheads at the operating system level.

Apart from the basic packet transfer tests that can be performed at the
operating system level, other checks and tests can be done to ensure that the
cluster interconnect has been configured correctly.

� There are redundant, private, high-speed interconnects between the
nodes participating in the cluster. Implementing NIC bonding or
pairing will help interconnect load-balancing and failover when one
of the interconnects fails. The configuring of bonding or pairing of
NICs is discussed in Chapter 4.

� The user network connection does not interfere with the cluster
interconnect traffic (i.e., they are isolated from each other).

At the operating system level, the netstat and ifconfig commands
display network-related data structures. The output below for netstat -i

Figure 9.7
Cluster Latency

versus Average
Ping Time

Chap9.fm Page 401 Sunday, April 16, 2006 8:50 PM

402 9.5 Interconnect transfer rate

indicates that there are four network adapters configured, and NIC pairing
is implemented:

[oracle@oradb3 oracle]$ netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
bond0 1500 0 3209 0 0 0 4028 0 0 0 BMmRU
bond0:1 1500 0 4390 0 0 0 6437 0 0 0 BMmRU
bond1 1500 0 7880 0 0 0 10874 0 0 0 BMmRU
eth0 1500 0 1662 0 0 0 2006 0 0 0 BMsRU
eth1 1500 0 1547 0 0 0 2022 0 0 0 BMsRU
eth2 1500 0 4390 0 0 0 6437 0 0 0 BMRU
eth3 1500 0 3490 0 0 0 4437 0 0 0 BMRU
lo 16436 0 7491 0 0 0 7491 0 0 0 LRU

� bond0 is the public interconnect created using the bonding function-
ality (bonds eth0 and eth1).

� bond0:1 is the VIP assigned to bond0.

� bond1 is the private interconnect alias created using the bonding
functionality (bonds eth2 and eth3).

� eth0 and eth1 are the physical public interfaces; however, they are
bonded/paired together (bond0).

� eth2 and eth3 are the physical private interfaces; however, they are
bonded/paired together (bond1).

� lo0 indicates that there is a loopback option configured. Verification
of whether Oracle is using the loopback option should be made using
the ORADEBUG command and is discussed later in this section. The use
of the loopback IP depends on the integrity of the routing table
defined on each of the nodes. Modification of the routing table can
result in the inoperability of the interconnect.

In the netstat output above, MTU is set at 1,500 bytes. MTU defini-
tions do not include the data-link header. However, packet size computa-
tions include data-link headers. Maximum packet size displayed by the
various tools is MTU plus the data-link header length. To get the maximum
benefit from the interconnect, MTU should be configured to the highest
possible value supported. For example, a setting as high as 9K using jumbo
frames will help improve interconnect bandwidth and data transmission.
Jumbo frame configuration is covered in Chapter 4.

Checks can also be done from the Oracle instance to ensure proper
configuration of the interconnect protocol. If the following commands

Chap9.fm Page 402 Sunday, April 16, 2006 8:50 PM

9.5 Interconnect transfer rate 403

Chapter 9

are executed as user sys, a trace file is generated in the user dump destina-
tion directory that contains certain diagnostic information concerning
the UDP /IPC configurations:

SQL> ORADEBUG SETMYPID

ORADEBUG IPC

EXIT

The following is an extract from the trace file concerning IPC. The out-
put confirms that the cluster interconnect is being used for instance-to-
instance message transfer.

admno 0x4768d5f0 admport:

SSKGXPT 0xe453ec4 flags SSKGXPT_READPENDING info for network 0

 socket no 7 IP 10.168.2.130 UDP 31938

 sflags SSKGXPT_UP

 info for network 1

 socket no 0 IP 0.0.0.0 UDP 0

 sflags SSKGXPT_DOWN

 active 0 actcnt 1

context timestamp 0

 no ports

Note:

� The above output protocol used is UDP. On certain operating sys-
tems, such as Tru64, the trace output does not reveal the cluster inter-
connect information.

� ASM in a cluster environment will also use the interconnect for its
interinstance cache transfer activity. The same verification step can also
be performed from the ASM instance to ensure that both are correct.

Both the RDBMS and ASM alert logs are another source for this infor-
mation.

Cluster communication is configured to use the following interface(s) for this
instance

 10.168.2.130

Sun Oct 2 21:34:13 2005

cluster interconnect IPC version: Oracle UDP/IP

IPC Vendor 1 proto 2

Chap9.fm Page 403 Sunday, April 16, 2006 8:50 PM

404 9.6 SQL*Net tuning

Best Practice: Set the interconnect network parameters to the maximum
allowed by the operating system.

9.6 SQL*Net tuning

Similar to the network buffer settings for the cluster interconnects, buffer
sizes and network parameters for the public interface should also be consid-
ered during the performance optimization process.

Network delays in receiving user requests and sending data back to users
affect the overall performance of the application and environment. Such
delays translate into SQL*Net-related wait events (OWI is discussed later).

Like the MTU settings for the interconnects, the MTU settings for the
public interface can also be set to jumbo frame sizes, provided the entire
network stack starting with the origin of the user request to the database
tier all support this configuration. If any one tier does not support jumbo
frames, this means the entire network stepping down to the default config-
uration of 1,500 bytes.

Like the MTU settings, the Session Data Unit (SDU) settings for the
SQL*Net connect descriptor can also be tuned. Optimal SDU settings can
be determined by repeated data/buffer requests by enabling SQL*Net and
listener trace at both the client and server levels.

SQL*Net tracing can be enabled by adding the following parameters to
the SQLNET.ora file on the client machines located in the $ORACLE_HOME/
network/admin directory:

trace_level_client=16

trace_file_client=client

trace_unique_client=true

trace_timestamp_client=ON

Listener tracing on the servers can be enabled by adding the following
parameters to the listener.ora file located in the $ORACLE_HOME/
network/admin directory:

trace_level_server=16

trace_file_server=server

trace_timestamp_server=ON

Chap9.fm Page 404 Sunday, April 16, 2006 8:50 PM

9.6 SQL*Net tuning 405

Chapter 9

Trace files are generated in $ORACLE_HOME/network/log directories on
the respective systems. The appropriate parameters should then be added to
the connection descriptor on the client system. For example, the following
SDU settings in the TNS connection descriptor will set the value of the
SDU to 8K:

SSKYDB =

 (DESCRIPTION =

 (SDU = 8192)

 (FAILOVER = ON)

 (ADDRESS = (PROTOCOL = TCP)(HOST = oradb1-vip.sumsky.net)(PORT = 1521))

 (ADDRESS = (PROTOCOL = TCP)(HOST = oradb2-vip.sumsky.net)(PORT = 1521))

 (ADDRESS = (PROTOCOL = TCP)(HOST = oradb3-vip.sumsky.net)(PORT = 1521))

 (ADDRESS = (PROTOCOL = TCP)(HOST = oradb4-vip.sumsky.net)(PORT = 1521))

 (LOAD_BALANCE = YES)

 (CONNECT_DATA =

 (SERVER = DEDICATED)

 (SERVICE_NAME = SSKYDB)

 (FAILOVER_MODE =

 (TYPE = SELECT)(METHOD = BASIC)(RETRIES = 10)(DELAY = 3)

)

)

)

Similar settings should also be applied to the listener to ensure that the
bytes received by the server are also of a similar size. For example, the fol-
lowing SDU settings on the listener will set the receive value to 8K:

SID_LIST_LISTENER =

(SID_DESC =

 (SDU=8192)

 (SID_NAME = SSKY1)

))

9.6.1 Tuning network buffer sizes

As a basic installation and configuration requirement, network buffer size
requirements were discussed in Chapter 4. These parameter values are the
bare minimum required for RAC functioning. Continuous monitoring and

Chap9.fm Page 405 Sunday, April 16, 2006 8:50 PM

406 9.6 SQL*Net tuning

measuring of network latencies can help increase these buffer sizes even fur-
ther, provided the operating system supports such an increase.

TCP uses a congestion window scheme to determine how many packets
can be transmitted at any one time. The maximum congestion window size
is determined by how much buffer space the kernel has allocated for each
socket. If the buffers are too small, the TCP congestion window will never
completely open; on the other hand, if the buffers are too large, the sender
can overrun the receiver, causing the TCP window to shut down.

Apart from the wmem_max and rmem_max parameters discussed in Chap-
ter 4, certain TCP parameters should also be tuned to improve TCP net-
work performance.

tcp_wmem

This variable takes three different values, which hold information on how
much TCP send buffer memory space each TCP socket has to use. Every
TCP socket has this much buffer space to use before the buffer is filled up.
Each of the three values is used under different conditions.

The first value in this variable sets the minimum TCP send buffer space
available for a single TCP socket; the second value sets the default buffer
space allowed for a single TCP socket to use; and the third value sets the
kernel’s maximum TCP send buffer space. The /proc/sys/net/core/
wmem_max value overrides this value; hence, this value should always be
smaller than that value.

tcp_rmem

The tcp_rmem variable is pretty much the same as tcp_wmem except in one
large area: tells the kernel the TCP receive memory buffers instead of the
transmit buffer, which is defined in tcp_wmem. This variable takes three dif-
ferent values, like the tcp_wmem variable.

tcp_mem

The tcp_mem variable defines how the TCP stack should behave when it
comes to memory usage. It consists of three values, just like the tcp_wmem
and tcp_rmem variables. The values are measured in memory pages (in
short, pages). The size of each memory page differs depending on hardware
and configuration options in the kernel, but on standard i386 computers,
this is 4 KB, or 4,096 bytes. On some newer hardware, this is set to 16, 32,
or even 64 KB. All of these values have no real default since they are calcu-

Chap9.fm Page 406 Sunday, April 16, 2006 8:50 PM

9.7 SQL tuning 407

Chapter 9

lated at boot time by the kernel and should, in most cases, be good for you
and most usages you may encounter.

9.6.2 Device queue sizes

As with tuning the network buffer sizes, it is important to look into the size of
the queue between the kernel network subsystems and the driver for the NIC.
Inappropriate sizing can cause loss of data due to buffer overflows, which in
turn causes retransmission, consumes resources, and delays performance.

There are two queues to consider in this area, the txqueuelen, which is
related to the transmit queue size, and the netdev_backlog, which deter-
mines the receive queue size. These values can be manually defined using
the ifconfig command on Linux and Unix systems. For example, the fol-
lowing command will reset the txqueuelen to 2,000:

/sbin/ifconfig eth0 txqueuelen 2000

Similarly, the receive queue size can be increased by setting the following
parameter:

/proc/sys/net/core/netdev_max_backlog = 2000 in the /etc/
sysctl.conf file.

Note: Tuning the network should also be considered when implementing
Standby or Streams solutions that involve movement of large volumes of
data across the network to the remote location.

9.7 SQL tuning

Irrespective of having high-performing hardware, a high-performing stor-
age subsystem, or an abundance of resources available on each of the nodes
in the cluster, RAC cannot perform magic to help with poorly-performing
queries. Actually, poorly-performing queries can be a serious issue when
you move from a single-instance configuration to a clustered configuration.
In certain cases, a negative impact on the overall performance of the system
will be noticed. When tuning queries, be it in a single-instance configura-
tion or a clustered configuration, the following should be verified and fixed.

Chap9.fm Page 407 Sunday, April 16, 2006 8:50 PM

408 9.7 SQL tuning

9.7.1 Hard parses

Hard parses are very costly for the Oracle’s optimizer. The amount of vali-
dation that has to be performed during a parse consumes a significant num-
ber of resources. The primary reason for a hard parse is the uniqueness of
the queries present in the library cache or SGA. When a user or session exe-
cutes a query, the query is parsed and loaded in the library cache after Ora-
cle has generated a hash value for the query. Subsequently, when another
session or user executes the same query, depending on the extent of its sim-
ilarity to the query already present in the library cache, it is reused, and
there is no parse operation involved. However, if it is a new query, it has to
go through the Oracle parsing algorithm; this is considered a hard parse and
is very costly. The total number of hard parses can be determined using the
following query:

SELECT PA.INST_ID,

 PA.SID,

 PA.VALUE "Hard Parses",

 EX.VALUE "Execute Count"

FROM GV$SESSTAT PA,

 GV$SESSTAT EX

WHERE PA.SID=EX.SID

AND PA.INST_ID=EX.INST_ID

AND PA.STATISTIC#=(SELECT STATISTIC#

 FROM V$STATNAME

 WHERE NAME ='parse count (hard)')

AND EX.STATISTIC#=(SELECT STATISTIC#

 FROM V$STATNAME

 WHERE NAME ='execute count')

AND PA.VALUE > 0;

Besides when a query is executed for the first time, other reasons for
hard parse operations are as follows:

1. There is insufficient allocation of the SGA. When numerous queries
are executed, they have to be flushed out to give space for new
ones. This repeated loading and unloading can create high hard
parse operations. The number of reloads can be determined using
the following query:

SELECT INST_ID,

Chap9.fm Page 408 Sunday, April 16, 2006 8:50 PM

9.7 SQL tuning 409

Chapter 9

 SQL_TEXT,

 LOADS

 FROM GV$SQLSTATS

 WHERE LOADS > 100;

The solution to this problem is to increase the size of the
shared pool using the parameter SHARED_POOL_SIZE. The ideal
configuration of the shared pool can be determined by querying
the V$SHARED_POOL_ADVICE view.

2. Queries that use literals in the WHERE clause, making every query exe-
cuted unique to Oracle’s optimizer, cause it to perform hard parse
operations. The solution to these issues is to use bind variables
instead of hard-coded values in the queries. If the application
code cannot be modified, the hard parse rate can be reduced by
setting the parameter CURSOR_SHARING to FORCE (or SIMILAR).
Furthermore, soft parse rates can be reduced by setting
SESSION_CACHED_CURSORS to a nonzero value.

Hard parsing should be minimized, largely to save on
resources and make those resources available for other purposes.

V$/GV$SQLSTATS

This view provides the same information available in V$SQL and
V$SQLAREA. However, accessing this view is much more cost-effective com-
pared to the others. Accessing data from GV$SQLSTATS will not require the
process to obtain any operating system latches and gives improved response
times.

9.7.2 Logical reads

When data is read from physical storage (disk), it is placed into the buffer
cache before filtering through the rows that match the criteria specified in
the WHERE clause. Rows thus read are retained in the buffer, assuming other
sessions executing similar queries may require the same data, reducing physi-
cal I/O. Queries not tuned to perform minimal I/O operations will retrieve a
significantly larger number of rows, causing Oracle to traverse through the
various rows, filtering what is not required instead of directly accessing rows
that match. Such operations cause a significant amount of overhead and
consume a large number of resources in the system.

Reading from buffer, or logical reads or logical I/O operations (LIO), is
cheaper compared to reading data from disk. However, in Oracle’s architec-
ture, high LIOs are not cheap enough that they can be ignored because

Chap9.fm Page 409 Sunday, April 16, 2006 8:50 PM

410 9.7 SQL tuning

when Oracle needs to read a row from buffer, it needs to place a lock on the
row in buffer. To obtain a lock, Oracle has to request a latch from the oper-
ating system. Latches are not available in abundance. Often when a latch is
requested, one is not immediately available because other processes are
using them. When a latch is requested, the requesting process will go into a
sleep mode and after a few nanoseconds, will wake up and request the latch
again. This time it may or may not obtain the latch and may have to sleep
again. These attempts to obtain a latch generally lead to high CPU con-
sumption on the host and cache buffer chains latch contention as sessions
fight for access to the same blocks. When Oracle has to scan a large number
of rows in the buffer to retrieve only a few rows that meet the search crite-
ria, this can prove costly.

SQLs that issue high logical read rates in comparison to the actual num-
ber of database rows processed are possible candidates for SQL tuning
efforts. Often the introduction of a new index or the creation of a more
selective index will reduce the number of blocks that must be examined in
order to find the rows required. For example, let’s examine the performance
of the following query:

 SELECT eusr_id,

 us.usec_total_logins,

 eu.eusr_role_cd,

 c.comp_scac_code,

 eu.eusr_login_name,

 ul.usrli_id

 FROM el_user eu, company c, user_login ul, user_security us

 WHERE ul.USRLI_ACTIVE_STATUS_CD = 'Active'

 AND ul.USRLI_LOGGED_IN_EUSR_ID = eu.EUSR_ID

 AND eu.eusr_comp_id = c.comp_id

 AND eu.eusr_id = us.USEC_EUSR_ID

 ORDER BY c.comp_comp_type_cd, c.comp_name, eu.eusr_last_name

call count cpu elapsed disk query current rows

------- ------ -------- ---------- -------- ---------- ---------- ----------

Parse 1 0.28 0.29 0 51 0 0

Execute 1 0.00 0.00 0 0 0 0

Fetch 1 26.31 40.35 12866 6556373 0 87

------- ------ -------- ---------- -------- ---------- ---------- ----------

total 3 26.59 40.64 12866 6556373 0 87

Misses in library cache during parse: 1

Chap9.fm Page 410 Sunday, April 16, 2006 8:50 PM

9.7 SQL tuning 411

Chapter 9

Optimizer goal: CHOOSE

Parsing user id: 33 (MVALLATH)

Rows Row Source Operation

------- ---
 87 SORT ORDER BY (cr=3176 r=66 w=66 time=346886 us)
 87 TABLE ACCESS BY GLOBAL INDEX ROWID USER_SECURITY PARTITION: 1 1 (cr=3176 r=66 w=66
time=338109 us)
 78 NESTED LOOPS (cr=3088 r=66 w=66 time=334551 us)
 90 NESTED LOOPS (cr=2596 r=66 w=66 time=322337 us)
 90 NESTED LOOPS (cr=1614 r=66 w=66 time=309393 us)
 90 VIEW (cr=632 r=66 w=66 time=293827 us)
 48390 HASH JOIN (cr=632 r=66 w=66 time=292465 us)
6556373 TABLE ACCESS FULL USER_LOGIN (cr=190 r=0 w=0 time=138776 us)(object id
24891)
 970 TABLE ACCESS FULL EL_USER (cr=442 r=0 w=0 time=56947 us)(object id 24706)
 90 INDEX UNIQUE SCAN PK_EUSR PARTITION: 1 1 (cr=492 r=0 w=0 time=6055 us)(object
id 24741)
 90 TABLE ACCESS BY LOCAL INDEX ROWID COMPANY PARTITION: 1 1 (cr=982 r=0 w=0
time=10135 us)
 90 INDEX UNIQUE SCAN PK_COMP PARTITION: 1 1 (cr=492 r=0 w=0 time=4905 us)(object
id 24813)
 87 INDEX RANGE SCAN USEC_INDX1 (cr=492 r=0 w=0 time=9115 us)(object id 24694)

In the tkprof output from a 10046 event trace, which, it should be
noted, retrieves just 87 rows from the database, the SQL is processing a
large number (6556373) rows from the USER_LOGIN table, and no index is
being used to retrieve the data. Now, if an index is created on the
USER_LOGIN table, the query performance improves several fold:

SQL> create index USRLI_INDX1 on USER_LOGIN(USRLI_ACTIVE_STATUS_CD);

Index created.

Rows Row Source Operation
------- ---
 487 SORT ORDER BY (cr=3176 r=66 w=66 time=346886 us)
 487 TABLE ACCESS BY GLOBAL INDEX ROWID USER_SECURITY PARTITION: 1 1 (cr=3176 r=66
w=66 time=338109 us)
 978 NESTED LOOPS (cr=3088 r=66 w=66 time=334551 us)
 490 NESTED LOOPS (cr=2596 r=66 w=66 time=322337 us)
 490 NESTED LOOPS (cr=1614 r=66 w=66 time=309393 us)
 490 VIEW (cr=632 r=66 w=66 time=293827 us)
 490 HASH JOIN (cr=632 r=66 w=66 time=292465 us)
56373 INDEX FAST FULL SCAN USRLI_INDX1 (cr=190 r=0 w=0 time=947 us)(object id 28491)
 970 TABLE ACCESS FULL EL_USER (cr=442 r=0 w=0 time=947 us)(object id 24706)
 490 TABLE ACCESS BY LOCAL INDEX ROWID ELOGEX_USER PARTITION: 1 1 (cr=982 r=0 w=0
time=12238 us)
 490 INDEX UNIQUE SCAN PK_EUSR PARTITION: 1 1 (cr=492 r=0 w=0 time=6055 us)(object
id 24741)

Chap9.fm Page 411 Sunday, April 16, 2006 8:50 PM

412 9.7 SQL tuning

 490 TABLE ACCESS BY LOCAL INDEX ROWID COMPANY PARTITION: 1 1 (cr=982 r=0 w=0
time=10135 us)
 490 INDEX UNIQUE SCAN PK_COMP PARTITION: 1 1 (cr=492 r=0 w=0 time=4905 us)(object
id 24813)
 487 INDEX RANGE SCAN USEC_INDX1 (cr=492 r=0 w=0 time=9115 us)(object id 24694)

The optimizer decides to use the new index USRL_INDX1 and reduces
the number of rows retrieved. Now, if another index is added to the
EL_USER table, further improvement in the query can be obtained.

Indexes that are not selective do not improve query performance but can
degrade DML performance. In RAC, unselective index blocks may be sub-
ject to interinstance contention, increasing the frequency of cache transfers
for indexes belonging to INSERT-intensive tables.

9.7.3 SQL Advisory

Oracle’s new SQL Advisory feature in EM is a good option for tuning SQL
queries. Oracle analysis data gathered from real-time performance statistics
uses this data to optimize the query performance. To use the SQL tuning
advisory, select the “Advisory Central” option from the performance page
from the db console or EM GC, then select the “SQL Tuning Advisory”
option. This option provides the “Top Activity” page (Figure 9.8). High-
lighting a specific time frame of the top activity will yield the “Top SQL”
page ordered by highest activity (Figure 9.9).

Poor query performance can occur for several reasons, such as

1. Stale optimizer statistics. The Oracle Cost-based Optimizer
(CBO) uses the statistics collected to determine the best execu-
tion plan. Stale optimizer statistics that do not accurately repre-
sent the current status of the data in objects can easily mislead

Figure 9.8
EM Top Activity

Chap9.fm Page 412 Sunday, April 16, 2006 8:50 PM

9.7 SQL tuning 413

Chapter 9

the optimizer to generate suboptimal plans. Since there is no
easy method to determine whether optimizer statistics are up-
to-date or stale, this can cause poor execution plans. Starting
with Oracle Database 10g, optimizer statistics collection has
been automated. A new job, GATHER_STATS_JOB, runs the
DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC procedure.
The job is automatically scheduled to run every night.

2. Missing access structures. The absence of appropriate access struc-
tures like indexes and materialized views is a common source of
poor SQL performance.

3. Suboptimal execution plan. The CBO can sometimes choose a
suboptimal execution plan for a SQL statement. This is primarily
because of incorrect estimates of some attributes of a SQL state-
ment, such as its cost, cardinality, or predicate selectivity.

4. Bad SQL. Queries using Cartesian joins or UNION ALL clauses in
SQL queries make the execution plan really expensive and
retrieval of the required rows time-consuming.

As illustrated in Figure 9.9, the SELECT statement with SQL_ID
1s2zxcxhhwvy0 has the highest activity. Once the queries to be tuned have
been identified, click “Schedule SQL Tuning Advisor” and allow Oracle to

Figure 9.9
Top SQL

Chap9.fm Page 413 Sunday, April 16, 2006 8:50 PM

414 9.7 SQL tuning

tune the queries. The tuning process will perform statistics analysis, access
path analysis, SQL profiling, and structure analysis before tuning the query.
Oracle provides the modified query with a comparison of the execution
plan before and after tuning. The changes can then be implemented.

Another option available under the SQL Advisory section is the SQL
Access Advisor. This complements the SQL Tuning Advisor functionality,
focusing on the identification of indexes, materialized views, and indexes
on the materialized views to improve the performance of the entire SQL
workload.

9.7.4 Queries with high cluster overhead

Queries not tuned can also be an overhead to performance across the clus-
ter, causing high delays. In Oracle Database 10g, four new columns have
been introduced to help identify queries that are performing poorly in gen-
eral and specifically in a RAC environment.

Using the CLUSTER_WAIT_TIME column in the GV$SQLSTATS view, que-
ries that are experiencing cluster-related waits can be identified and tuned.
For example, the following lists the SQL queries, giving the wait times
experienced at various stages of the operation:

SELECT INST_ID INST,

 SQL_ID,

 APPLICATION_WAIT_TIME AWT,

 CONCURRENCY_WAIT_TIME CONWT,

 CLUSTER_WAIT_TIME CLWT,

 USER_IO_WAIT_TIME UIWT

FROM GV$SQLSTATS

WHERE USER_IO_WAIT_TIME > 0

ORDER BY USER_IO_WAIT_TIME;

 INST SQL_ID AWT CONWT CLWT UIWT

---------- ------------- ---------- ---------- ---------- ----------

 2 10utkgdw43zmn 0 23007 62106878 263443

 2 1h50ks4ncswfn 8874 1628544 76655404 6194443

 2 8p23kcbgfqnk4 0 0 151877550 349272

 2 gfjvxb25b773h 0 5803 179456437 932921

 2 19v5guvsgcd1v 0 44526 184945511 355544

Chap9.fm Page 414 Sunday, April 16, 2006 8:50 PM

9.8 Sequences and index contention 415

Chapter 9

Once the queries with high cluster wait time have been identified, a spe-
cific query can be retrieved using the SQL_ID.

SQL> SELECT SQL_FULLTXT FROM GV$SQLSTATS WHERE SQL_ID='19v5guvsgcd1v';

SQL_FULLTEXT

SELECT C.TARGET_GUID, C.METRIC_GUID, C.STORE_METRIC, C.SCHEDULE, C.COLL_NAME, M.

. . .

. . .

SQL_FULLTEXT is of data type BLOB. To retrieve the complete informa-
tion from this column, PL/SQL packages such as DBMS_LOB.READ should
be used.

9.8 Sequences and index contention

Indexes, with key values generated using sequences tend to be subject to
leaf block contention when the insert rate is high. This is because the index
leaf block holding the highest key value is changed for every row inserted
as the values are monotonically ascending. This may lead to a high transfer
rate of current and CR blocks between nodes. Techniques that can reduce
such situations include the following:

� Increase sequence cache size. The difference between sequence values
generated by different instances increases successive index block splits
and tends to create instance affinity to index leaf blocks. This also
improves instance affinity to index keys deriving their values from
sequences. This technique may result in significant performance gains
for multi-instance INSERT-intensive applications.

� Implement the database partitioning option to physically distribute
the data.

� Use locally managed tablespaces (LMTs) over dictionary-managed
tablespaces.

� Use automatic segment space management (ASSM), which can pro-
vide instance affinity to table blocks and is the default in Oracle
Database 10g Release 2.

Chap9.fm Page 415 Sunday, April 16, 2006 8:50 PM

416 9.10 Load-balancing

Oracle’s sequence mechanism is highly efficient and works well in a
RAC environment, except when an attempt is made to “fix” it! A common
mistake is to add the ORDER clause to the CREATE SEQUENCE definition. This
guarantees that sequence numbers will be issued in ascending order across
the cluster, which means that for every sequence number issued, Oracle has
to read the last value from the data dictionary to work out the next number
(which might have been issued on another instance) and update the data
dictionary with the new number. This can have a disastrous impact on
applications that need high sequence-generation rates.

9.9 Undo block considerations

Excessive undo block shipment and contention for undo buffers usually
happens when index blocks containing active transactions from multiple
instances are read frequently. When a SELECT statement needs to read a
block with active transactions, it has to undo the changes to create a CR
version. If the active transaction in the block belongs to more than one
instance, the local and remote undo information needs to be combined for
the CR operation. Depending on the number of index blocks changed by
multiple instances and the duration of transactions, undo block shipment
may become a bottleneck.

Usually this happens in applications that read recently inserted data very
frequently and commit frequently. Techniques that can reduce such situa-
tions include the following:

� Shorter transactions reduce the likelihood that an index block in the
cache contains uncommitted data, thereby reducing the need to
access undo information for a consistent read.

� As explained earlier, increasing sequence cache sizes can reduce inter-
instance concurrent access to index leaf blocks. The CR version of
index blocks modified by only one instance can be fabricated without
the need for remote undo information.

9.10 Load-balancing

One primary feature of a clustered environment is the distribution of the
workload across the various nodes and instances in the cluster. To achieve
this distribution, it is advantageous to place new connections on systems
that have a higher number of resources in the cluster. As discussed in

Chap9.fm Page 416 Sunday, April 16, 2006 8:50 PM

9.10 Load-balancing 417

Chapter 9

Chapter 6, load-balancing can be configured using EM or Oracle-provided
PL/SQL packages. Load-balancing is based on the number of sessions or
resources available on the various instances.

Figure 9.10, the “Balance” drilldown from Spotlight on RAC, illustrates
the current load across the various nodes in the cluster. While the load is
balanced from the CPU and physical writes perspectives, it seems out of
balance with respect to the number of LIO operations. As indicated earlier,
LIO operations consume significant resources and can be reduced by tun-
ing the SQL queries.

Besides tuning poorly-performing queries, the next step in obtaining a
true load-balanced environment is to use the connection pooling feature on
the application side and implement the RCLB feature discussed in Chapter
6. Connection pooling is supported by all application servers, such as Ora-
cle 10g AS, Weblogic, and Jboss. How do you verify that the RCLB feature
is working?

When MMON generates load advices, it is stored in the GV$SERVICEMET-
RIC view and is used to communicate with the client of the current load.
For example, the following query displays the load characteristics as
updated by MMON in the GV$SERVICEMETRIC view. The view is joined with
GV$INSTANCE and GV$ACTIVE_SERVICES to obtain additional information.

Figure 9.10
Cluster Balance

Chap9.fm Page 417 Sunday, April 16, 2006 8:50 PM

418 9.10 Load-balancing

set pagesize 60 space 2 numwidth 8 linesize 132 verify off feedback off

column SERVICE_NAME format a20 truncated heading 'Service'

column INSTANCE_NAME heading 'Instance' format a10

column SERVICE_TIME heading 'Service Time|mSec/Call' format 999999999

column CPU_TIME heading 'CPU Time |mSec/Call' 99999999

column DB_TIME heading 'DB Time |mSec/Call' 99999999

column THROUGHPUT heading 'Calls/sec' format 99.99 break on SERVICE_NAME skip 1

SELECT SERVICE_NAME,

 INSTANCE_NAME,

 ELAPSEDPERCALL SERVICE_TIME,

 CPUPERCALL CPU_TIME,

 DBTIMEPERCALL DB_TIME,

 CALLSPERSEC THROUGHPUT

FROM GV$INSTANCE GVI,

 GV$ACTIVE_SERVICES GVAS,

 GV$SERVICEMETRIC GVSM

WHERE GVAS.INST_ID = GVSM.INST_ID

AND GVAS.NAME_HASH = GVSM.SERVICE_NAME_HASH

AND GVI.INST_ID = GVSM.INST_ID

AND GVSM.GROUP_ID = 10

ORDER BY

 SERVICE_NAME,

 GVI.INST_ID;

 Service Time

Service Instance mSec/Call CPU_TIME DB_TIME THROUGHPUT

--------------- ---------- ------------ -------- -------- ----------

SRV1 SSKY1 22981 4525.497 22980.72 202.5948

SRV1 SSKY2 124837 6111.93 124837.4 141.3127

SSKYDB SSKY1 0 0 0 0

SSKYDB SSKY2 1750 1750 1750 1.158301

SYS$BACKGROUND SSKY1 0 0 0 0

SYS$BACKGROUND SSKY2 0 0 0 0

SYS$USERS SSKY1 3608 3608 3608 .3992016

SYS$USERS SSKY2 0 0 0 0

In this output, service SRV1 on both instances does not seem balanced.
The service time on SSKY2 is high, and the overall throughput is low;
however, the DB time and CPU time values seem lower. When a message
is received by the application server using the FAN technology regarding
the current state of the instance, new sessions will be directed by FAN to
instance SSKY2.

Chap9.fm Page 418 Sunday, April 16, 2006 8:50 PM

9.10 Load-balancing 419

Chapter 9

GV$SERVICEMETRIC

This view contains metric values measured for all the services defined in the
database. These values are updated by the MMON process as it captures load
and other service-related information from the SGA. Updates to this view
happen in five-second and one-minute intervals.

Apart from making updates to the GV$SERVICEMETRIC view, MMON also
updates the operating system statistics and uses this information to deter-
mine the load characteristics on the various nodes in the cluster. The fol-
lowing query output from GV$OSSTAT provides the operating system
statistics.

SQL> SELECT * FROM GV$OSSTAT WHERE INST_ID=1;

 INST_ID STAT_NAME VALUE OSSTAT_ID

---------- ------------------------------ ---------- ----------

 1 NUM_CPUS 2 0

 1 IDLE_TIME 134867 1

 1 BUSY_TIME 82151 2

 1 USER_TIME 66198 3

 1 SYS_TIME 15953 4

 1 NICE_TIME 0 6

 1 RSRC_MGR_CPU_WAIT_TIME 0 14

 1 LOAD 6.65917969 15

 1 PHYSICAL_MEMORY_BYTES 433270784 1008

GV$OSSTAT

This view contains operating system statistics updated by the MMON process
and is used to determine the load on the nodes and servers. The values are
in hundredths of a second, as a processor has been busy executing code and
is averaged over all processors.

9.10.1 Tracing the load metric capture

RCLB can also be verified by enabling tracing at the database level using
event 10735 at level 3. Tracing can be enabled using the following statement:

SQL> ALTER SYSTEM SET EVENTS '10735 TRACE NAME CONTEXT
FOREVER, LEVEL 3';

Chap9.fm Page 419 Sunday, April 16, 2006 8:50 PM

420 9.10 Load-balancing

The output is generated and stored in the user dump destination direc-
tory of the instance, which can be determined after connecting to the data-
base and verifying the parameter USER_DUMP_DEST.

SQL> SHOW PARAMETER USER_DUMP_DEST

NAME TYPE VALUE

----------------- ----------- ------------------------------

user_dump_dest string /usr/app/oracle/admin/SSKYDB/udump

The trace file contains the activities involving the cluster or services
that are being monitored. This provides insight into how the client
machines using this metric will react. The output of the trace file resem-
bles the following:

/usr/app/oracle/admin/SSKYDB/udump/ssky1_ora_23316.trc

Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 - Production

With the Partitioning, Real Application Clusters, OLAP and Data Mining options

ORACLE_HOME = /usr/app/oracle/product/10.2.0/db_1

. . .

Instance name: SSKY1

Redo thread mounted by this instance: 1

Oracle process number: 70

Unix process pid: 23316, image: oracleSSKY1@oradb3.sumsky.net

kswsgsnp : length of KSWS_SYSTEM_SVC is 14

kswsgsnp : length of KSWS_DATABASE_SVC is 9

 Both should be less than 64 to avoid overrun

*** SERVICE NAME:(SRV1) 2005-09-24 23:58:31.636

*** SESSION ID:(91.1) 2005-09-24 23:58:31.635

###session count for SRV1=33

###session count for SRV1=34

*** 2005-09-24 23:59:32.626

SKGXPSEGRCV: MESSAGE TRUNCATED user data 40 bytes payload 200 bytes

SKGXPSEGRCV: trucated message buffer data skgxpmsg meta data header 0x0xbfff54e0
len 40 bytes

SKGXPLOSTACK: message truncation expected

SKGXPLOSTACK: data sent to port with no buffers queued from

SSKGXPID 0xbfff559c network 0 Internet address 10.168.2.140 UDP port number
54589

Chap9.fm Page 420 Sunday, April 16, 2006 8:50 PM

9.11 Resource availability 421

Chapter 9

SSKGXPID 0xbfff559c network 1 Internet address 220.255.187.12 UDP port
number 3260

SKGXPLOSTACK: sent seq 32763 expecting 32764

SKGXPLOSTACK: lost ack detected retransmit ack

*** 2005-09-25 00:02:38.927

###session count for SRV1=31

###session count for SRV1=30

This output illustrates that the MMON’s statistics collection is working
and configured for the default type and that the load-balance on session is
counted. In this case, SRV1 is the service, and Oracle updates the MMON
process, which in turn builds the advisory and posts the required advice
to the advanced queue (AQ), PMON, and the ONS. The trace output also
shows that there were several retransmissions, indicating potential issues
with the interconnect.

9.11 Resource availability

Resources available on any machine or node or to an Oracle instance are
limited, meaning they are not available in abundance and, if a process on
the system needs them, they may not be immediately available. There is a
physical limit to the number of resources available on any system. For
example, are processor resources limited by the number of CPUs available
on the system, and the amount of memory or cache area is limited by the
amount of physical memory available on the system. For an Oracle process,
this is further limited by the actual amount of memory allocated to the
SGA. Within the SGA, the shared pool, the buffer cache, and so on, are
again preallocated from the total SGA (defined by the SGA_TARGET_SIZE
parameter). These are memory allocations used by a regular single-instance
configuration.

In a RAC environment, there are no parameters to allocate any global-
specific resources (e.g., global cache size or global shared pool area). Oracle
allocates a certain portion of the available resources from the SGA for glo-
bal activity. The availability of global resources can be monitored using the
GV$RESOURCE_LIMIT view. For example, the following query displays the
current number of resources available for global activity. In the output
below, the availability of resources is limited by the column LIMIT_VALUE,
and when these resources are low, the method to increase the limit is to
increase the SGA_TARGET and SGA_MAX_SIZE parameters.

Chap9.fm Page 421 Sunday, April 16, 2006 8:50 PM

422 9.11 Resource availability

The following query generates the output containing the current utiliza-
tion of resources:

SELECT

 RESOURCE_NAME,

 CURRENT_UTILIZATION CU,

 MAX_UTILIZATION MU,

 INITIAL_ALLOCATION IA,

 LIMIT_VALUE LV

FROM GV$RESOURCE_LIMIT

WHERE MAX_UTILIZATION > 0

ORDER BY INST_ID,

 RESOURCE_NAME

RESOURCE_NAME CU MU IA LV

------------------------ ---------- ---------- ---------- ----------

cmtcallbk 0 1 187 UNLIMITED

dml_locks 2 59 748 UNLIMITED

enqueue_locks 19 27 2261 2261

enqueue_resources 22 45 968 UNLIMITED

gcs_resources 3447 3447 18245 18245

gcs_shadows 2259 2579 18245 18245

ges_big_msgs 27 28 964 UNLIMITED

ges_cache_ress 338 1240 0 UNLIMITED

ges_procs 35 36 320 320

ges_reg_msgs 44 81 1050 UNLIMITED

max_rollback_segments 11 11 187 65535

max_shared_servers 1 1 UNLIMITED UNLIMITED

processes 31 34 150 150

sessions 37 40 170 170

sort_segment_locks 0 1 UNLIMITED UNLIMITED

transactions 2 4 187 UNLIMITED

When the SGA_TARGET size was increased by 10M, the global resource
allocation also changed to the following new values:

gcs_resources 2553 2553 19351 19351

gcs_shadows 1279 1279 19351 19351

Chap9.fm Page 422 Sunday, April 16, 2006 8:50 PM

9.13 Oracle Wait Interface 423

Chapter 9

The rule should be that when the MAX_UTILIZATION (MU) gets close to
the LIMIT_VALUE (LV) and remains constant at this value for a considerable
time, consider increasing the SGA.

9.12 Response time

However large the clustered environment might be or however impressive
the hardware that supports it, the primary success factor for any application
environment is to provide good user response time (i.e., how quickly are the
users getting a response for their operations?). Response time is the time
used for the query to perform the actual service, plus any additional over-
head time spent by the process waiting for resources. In other words,
response time = service time + wait time.

Service time is the time used to make database-related calls and is
improved by tuning the queries and optimizing the various Oracle parame-
ters. The trick is to determine which part of the application is consuming
high service times. A number of commercial tools exist to help measure
elapsed time in either benchmarking or production environments.

In the absence of such a tool, the alternative is to try to instrument the
application itself. This can be done by inserting timing calls into the appli-
cation using language-specific syntax or using timing routines. Such
embedded routines will log the activity into files, which can then be ana-
lyzed to determine poorly performing areas of the application code.

Wait time is the overhead experienced by the processes while performing
an operation. Wait time can be due to several reasons. The Oracle Wait
Interface (OWI) provides a great instrumentation on the various wait states
encountered by database operations. In this section, the common waits
encountered in a RAC environment are discussed

9.13 Oracle Wait Interface

OWI, or wait event, in Oracle is a situation when a session puts itself to
sleep to wait for some external event to happen. Wait events are classified as
system, service, or idle conditions. Idle waits occur when a session is waiting
for a work request to be issued. Service wait events are waits for the system
to perform asynchronous operations such as I/O or process creation.

Before Oracle Database 10g, OWI was driven by the three primary views:
GV$SYSTEM_EVENT, GV$SESSION_EVENT, and GV$SESSION_WAIT. These
views provided wait times at the system level or at the individual session level.

Chap9.fm Page 423 Sunday, April 16, 2006 8:50 PM

424 9.13 Oracle Wait Interface

However, there was no method to isolate waits to a specific set of modules
within an application. In Oracle Database 10g, with the introduction of a
new abstraction class to support SOA, a new view is introduced,
GV$SERVICE_EVENT, which provides the intermediate level of instrumenta-
tion for performance diagnostics and tuning.

To further streamline the wait events, in Oracle Database 10g, wait
events have been classified into wait classes. This helps in grouping wait
events and directing tuning efforts to the various areas of the environment.
The following query illustrates the number of wait events grouped under
the various wait classes:

SELECT WAIT_CLASS,

 COUNT(*)

FROM V$SYSTEM_EVENT

GROUP BY WAIT_CLASS;

WAIT_CLASS COUNT(*)

-------------------- ----------

Concurrency 8

System I/O 9

User I/O 7

Configuration 2

Other 57

Cluster 11

Application 3

Idle 24

Commit 1

Network 3

While wait events pertaining to all classes have some direct or indirect
impact on a RAC environment, for our discussions, only wait events5 that
belong to the Cluster class will be discussed. In Oracle Database 10g
Release 2, there are 47 wait events in this class.

Note: In a clustered environment, all the V$ views, when prefixed with a “G”
(meaning global), will provide statistics from all instances in the cluster.

5. For a thorough understanding of wait events, please refer to Oracle Wait Interface: Practical Guide to Performance
Diagnostics & Tuning (2004) by Richmond Shee, Kirtikumar Deshpande, and K. Gopalakrishnan.

Chap9.fm Page 424 Sunday, April 16, 2006 8:50 PM

9.13 Oracle Wait Interface 425

Chapter 9

Wait categorization has changed and taken a strategic direction in Ora-
cle Database 10g. Table 9.1 provides a mapping between the Oracle 9i wait
events and the Oracle 10g wait events concerning RAC.

In Table 9.1, the Oracle Database 10g wait events are grouped as current
or CR-type wait events. Current and CR waits are based on current and CR
blocks in the buffer of various instances. What is the difference between CR
and current waits?

9.13.1 Consistent read versus current

The first time a block is read into a buffer of any participating instance, it is
termed a current block, no matter what the purpose of the user accessing

the block may be, meaning it can be a SELECT operation or a DML opera-
tion. The first access is always termed a current operation. Subsequently,

Table 9.1 Oracle Database 9i Event to Oracle Database 10g Event Mapping

Oracle 9i Wait Event Oracle 10g Wait Event

global cache null to x

global cache null to s

gc current block 2-way

gc current block 3-way

gc current block busy

gc current block congested

global cache open x gc current block 2-way

gc current block 3-way

gc current block busy

gc current block congested

gc current grant 2-way

gc current multiblock request

global cache s to x gc current grant 2-way

global cache cr request gc cr block 2-way

gc cr block 3-way

gc cr block busy

gc cr block congested

gc cr grant 2-way

gc cr multi block request

Chap9.fm Page 425 Sunday, April 16, 2006 8:50 PM

426 9.13 Oracle Wait Interface

when the block is transferred from one instance to another instance because
a session on that instance requested the block, it is termed as a CR block.

As discussed in Chapter 2, when a block is required by a process for read
purposes, it accesses the block in shared mode. When the block is to be
modified, the processes requires a grant from the GCS to access this block
in exclusive mode. The frequency of state/grant changes to the block can be
obtained by querying the STATE column from the GV$BH view. The follow-
ing are RAC-related state changes [9]:

� XCUR exclusive current

� SCUR shared current

� CR consistent read

� READ reading from disk

� WRITE write clone mode

� PI past image

When blocks are required by more than one process on the same
instance, Oracle will clone the block. The number of times a block can be
cloned is defined by the parameter _DB_BLOCK_MAX_CR_DBA6 and defaults
to six, meaning only six cloned copies of the same block of the same data
block address (DBA) can exist in the local buffer of an instance (SSKY1 in
Figure 9.10) at any given time. In Oracle Database 10g Release 1, Oracle
placed the CR blocks in the cold end of the buffer cache. Now the CR
blocks are treated like any other data block, and the Touch Count Algo-
rithm (TCA) is used. Under TCA the block read is placed at midpoint
(insertion point) in the buffer cache and will have to gain creditability
when session access or touch the block, to climb up the stack to reach the
hot buffer area. If the block is not touched by other sessions, it will move
down the stack and finally get flushed out when the buffer is needed by
new blocks.

Similarly, when blocks are required by more than one other instance,
Oracle will ship an image of the CR block (if it has not already done so)
to the requesting instance. As discussed in Chapter 2, blocks are shipped
from one instance to another (Figure 9.11), and the details about which
instance contains the block are maintained in the GRD. The number of

6. Underscore parameters should be modified only after consulting with Oracle support.

Chap9.fm Page 426 Sunday, April 16, 2006 8:50 PM

9.13 Oracle Wait Interface 427

Chapter 9

instances a block can exist on is determined by the parameter
_FAIRNESS_THRESHOLD7 and defaults to four, meaning only four images
of the same block of a particular DBA can exist in a RAC cluster (irre-
spective of the number of instances) at any given time.

Once the holder reaches the threshold defined by the parameter
_FAIRNESS_THRESHOLD, it stops making more copies, flushes the redo to
the disk, and downgrades the locks [9].

Note: While data movement in a RAC environment is at the block level, data
modifications are all at the row level (as in a single-instance configuration).

9.13.2 gc cr/current block 2-way/3-way

One primary function of a cluster environment is to share blocks between
instances, minimizing access to the physical storage. It is common that
blocks will be transferred from one instance to another. The wait events
listed in Table 9.1 all relate to the block transfers between the various
instances in the cluster. For example, a 2-way event indicates that there
was a 2-way shipment to transfer the block in which the requester sends a
message to the master, and the master ships the block back to the
requester. Similarly, a 3-way event indicates that there were three hops
before the block was received by the requestor. A three-hop scenario is
illustrated in Figure 9.12.

7. Underscore parameters should be modified only after consulting with Oracle support.

Figure 9.11
Block Cloning and

Imaging

Chap9.fm Page 427 Sunday, April 16, 2006 8:50 PM

428 9.13 Oracle Wait Interface

As illustrated in Figure 9.12, in a RAC cluster there are two possibilities
when the GCS process has to perform three hops before the requestor
receives the block.

1. Read the block from the disk.

� Instance SSKY1 requests block 500 from the GCS located on
instance SSKY4.

� Instance SSKY4, after checking against the GRD, determines
that neither instance SSKY4 nor any other instance in the clus-
ter has a copy of the block requested. Hence, it sends a mes-
sage to the requesting instance to read the block from disk.

� Instance SSKY3 reads the block from disk.

2. Request another instance to transfer the block.

� Instance SSKY2 requests block 500 from the GCS located on
instance SSKY4.

� Instance SSKY4 verifies against its GRD and determines that
the block is currently held by instance SSKY3. It sends a mes-
sage to instance SSKY3 requesting that it send a copy of the
block to instance SSKY2.

� Instance SSKY3 accepts the request and sends the block to
instance SSKY2.

Figure 9.12
3-Way Block

Transfer

Chap9.fm Page 428 Sunday, April 16, 2006 8:50 PM

9.13 Oracle Wait Interface 429

Chapter 9

In the RAC architecture, in order to get a block, the GCS may have to
perform two hops if the block requested cannot be found on the local
instance because, if the master is located on the instance where the
demand for the blocks concerning a specific object is the highest, hence,
most likely, the block is going to be present where the master is located. In
Oracle Database 10g Release 2, when the demand for the blocks concern-
ing the object increases on another instance, the master will dynamically
move or relocate to this new instance. Only when blocks are not found on
the master does the GCS need to direct the transfer from another instance
or from disk (three hops). Irrespective of the number of instances in the
cluster, the GCS process will have to make a maximum of three hops. That
is why the RAC architecture scales irrespective of the number of instances
in the cluster: no matter how many instances might be associated with the
cluster, the number of hops will never exceed three. The 3-way wait values
that are significantly high could indicate that the block was never found on
the master or the master did not relocate to another instance where the
demand is high.

9.13.3 gc cr/current block congested

This wait indicates that the request was made to the Distributed Lock Man-
ager (DLM) but ended up waiting, and the foreground process have to retry
the request. Under these circumstances, the gc cr/current block congested
wait counter is incremented.

Normally, this indicates that the GCS process (LMSn background) is not
able to keep up with the requests. LMSn is a single-threaded synchronous
process and follows the first in first out (FIFO) algorithm to complete block
requests. This means that when multiple requests are received, the GES will
place the requests in a queue and send the request to the LMSn process when
it has completed a previous operation. In such situations, consideration
should be given to increase the number of LMSn processes using the param-
eter GCS_SERVER_PROCESSES. A good rule of thumb is to set the value of
this parameter to one LMSn processes for every two CPUs on the node. Set-
ting it to high values will consume resources and can affect the overall per-
formance of the cluster. LMSn processing delays can also be the result of
scheduling delays and high queue lengths experienced by the node at the
operating system level.

RAC has several other types of wait events. For a better understanding,
the global cache–related wait events have been grouped in Figure 9.13 by
the areas they affect.

Chap9.fm Page 429 Sunday, April 16, 2006 8:50 PM

430 9.13 Oracle Wait Interface

9.13.4 gc remaster

This wait indicates the delay encountered when remastering the resource
master from one instance to another instance in the cluster. In Oracle
Database 10g Release 2, RAC architecture allows for dynamic remastering
from a less busy instance to an instance where the demand for the object is
the highest. This movement is called resource affinity.

Apart from remastering based on demand, remastering also happens
when an instance leaves (fails) or joins the clustered configuration. During
instance failure, remastering may happen more than once, first to place the
master dynamically on one of the surviving nodes and, second, once the
cluster has reached a stable state to reassess the situation and remaster again
based on demand. Monitoring the remastering activity is discussed later in
the chapter.

9.13.5 wait for master SCN

Each instance in the cluster will generate its own SCN and, subsequently,
using the propagation method, will resynchronize to the highest SCN in the
cluster. This wait indicates the number of times the foreground processes
waited for SCNs to be acknowledged from other instances in the cluster.

Before Oracle Database 10g Release 2, the method of SCN propagation
was driven by the parameter MAX_COMMIT_PROPAGATION_DELAY. Setting this

Figure 9.13
Wait Events

Grouped

Chap9.fm Page 430 Sunday, April 16, 2006 8:50 PM

9.13 Oracle Wait Interface 431

Chapter 9

value to higher than zero uses the Lamport algorithm. In Oracle Database
10g Release 2, this parameter is deprecated and is maintained for backward
compatibility only and defaults to zero. This functionality is now driven by
the underscore (hidden) parameter _IMMEDIATE_COMMIT_PROPAGATION8

and has a Boolean value of TRUE or FALSE.

When this parameter is set to TRUE (default), Oracle uses the Block on
Commit (BOC) algorithm for messaging. While the method of propaga-
tion remains similar to the Lamport algorithm, in the case of BOC, the glo-
bal high water mark for the SCNs sent and received is maintained, reducing
messaging traffic for global SCN synchronization and, in turn, improving
overall performance.

9.13.6 gc cr/current request

This event indicates the time spent waiting when a session is looking for a
CR version of a block (indicated by the lock element number or class of the
buffer in P3 (Table 9.2), and the block number in column P2; it belongs to
the file indicated in column P1 in the V$SESSION_WAIT view cannot find it
in its local cache, and so has made a request to a remote instance for the
block. However, the transferred block has not yet arrived at the requesting
instance. The event ends when the requesting session gets the block or per-
mission to read the block from disk.

This event may not always indicate a problem with the GCS requests.
Circumstances under which this wait time value is high can be due to the
following:

1. Data blocks are being modified frequently on all instances.

2. Requests for block have resulted in a cache miss.

3. LMSn cannot keep up with the high number of CR requests.

4. There are latency issues with the interconnect.

5. Several full table scans are being performed.

High waits on this event can be reduced by looking at the system and
scheduling delays at the operating system level (e.g., ensuring that the
LMSn process gets enough CPU cycles to complete its operation). As
explained earlier, increasing the number of LMSn processes may be

8. Underscore parameters should be modified only after consulting with Oracle support.

Chap9.fm Page 431 Sunday, April 16, 2006 8:50 PM

432 9.14 Server/database statistics

required. Ensuring that a high-speed interconnect is used will also help
reduce waits in this category.

9.13.7 gc current/CR block busy

This wait indicates that a current or CR block was requested and received
but was not sent immediately by LMSn because some special condition that
delayed the sending was found.

9.13.8 gc current grant busy

This wait indicates that a current block was requested, and a grant message
was received. The busy hint implies that the request was blocked because
others were ahead of it, or it could not be handled immediately.

9.14 Server/database statistics

Oracle gathers performance-related statistics from various categories that
are subsequently analyzed. These statistics help in diagnosing performance-
related issues in the database. Several statistics are collected for the RAC

Table 9.2 Common Block Classes [9]

Block Class Description

0 System rollback segment

1 Data blocks

2 Sort blocks

3 Deferred rollback segment blocks (save undo)

4 Segment header blocks

5 Deferred rollback segment header blocks

6 Freelist blocks

7 Extent map blocks

8 Bitmapped space management blocks

9 Space management index blocks

10 Unused

Chap9.fm Page 432 Sunday, April 16, 2006 8:50 PM

9.14 Server/database statistics 433

Chapter 9

environment. Monitoring and tuning the related areas will help improve
performance.

Server statistics are stored at the system level or at the session level. As
with the OWI, system-level statistics stored in GV$SYSSTAT are a cumulative
value of all sessions since the instance was started. On the other hand,
GV$SESSTAT contains values for individual sessions that are active at a given
point. With the introduction of services in Oracle Database 10g, a new
view at the service level is also available: GV$SERVICE_STATS.

The RAC-related statistics maintained at the system level can be
obtained using the following query:

SELECT NAME,

 VALUE

FROM V$SYSSTAT

WHERE NAME LIKE 'g%';

NAME VALUE

-- ----------

global enqueue gets sync 104853

global enqueue gets async 15529

global enqueue get time 3203

global enqueue releases 111512

gcs messages sent 8286

ges messages sent 7656

global enqueue CPU used by this session 816

gc cr blocks served 3461

gc cr block build time 30

gc cr block flush time 18

gc cr block send time 54

gc current blocks served 4458

gc current block pin time 13

gc current block flush time 0

gc current block send time 112

gc cr blocks received 76

gc cr block receive time 67

gc current blocks received 280

gc current block receive time 126

gc blocks lost 89

gc claim blocks lost 0

gc blocks corrupt 0

Chap9.fm Page 433 Sunday, April 16, 2006 8:50 PM

434 9.14 Server/database statistics

gc CPU used by this session 807

global undo segment hints helped 0

global undo segment hints were stale 0

9.14.1 Time model statistics

In Oracle Database 10g, a new method of monitoring statistics is intro-
duced called the time model. While the wait event shows where the system
is spending time waiting, the time model shows where the system is wasting
time doing activities such as reloading the SQL cache or performing a parse
operation.

Under the time model method, the time spent at various stages of the
process is collected, providing a more detailed level of data for problem
diagnosis. Like the database statistics discussed earlier, the time model sta-
tistics can also be obtained at the system level from the
GV$SYS_TIME_MODEL or at the session level from the GV$SES_TIME_MODEL
views. The following query lists the time model statistics at the system level:

COL STAT_NAME FORMAT A45

SELECT STAT_NAME,

 VALUE

FROM V$SYS_TIME_MODEL;

STAT_NAME VALUE

--- ----------

DB time 139911756

DB CPU 30228434

background elapsed time 171121413

background cpu time 38843962

sequence load elapsed time 527830

parse time elapsed 47249379

hard parse elapsed time 45738124

sql execute elapsed time 137995412

connection management call elapsed time 402551

failed parse elapsed time 0

failed parse (out of shared memory) elapsed time 0

hard parse (sharing criteria) elapsed time 14348

hard parse (bind mismatch) elapsed time 12671

PL/SQL execution elapsed time 6104754

inbound PL/SQL rpc elapsed time 0

PL/SQL compilation elapsed time 5856205

Chap9.fm Page 434 Sunday, April 16, 2006 8:50 PM

9.15 Service-level metrics 435

Chapter 9

Java execution elapsed time 0

repeated bind elapsed time 163961

RMAN cpu time (backup/restore) 0

Of all the statistics available under the time model, the two statistics that
are important for diagnosing performance-related issues are DB time (data-
base time) and DB CPU. DB time is the key statistic for the time model
and represents the total elapsed time spent servicing user requests on data-
base-related calls. The value includes CPU time spent, plus any non-idle
wait time to complete the database operation and waiting on the run queue
for CPU. In other words,

DB time = Sum of time spent processing all user requests = Sum
of time (Running on CPU + Waiting for Resources + Waiting for
CPU) [10]

DB time/sec = Total DB time / Elapsed time or Wall clock time

DB time is used as a mechanism to measure other time statistic values.
Typically, the ratio of the time statistic collected from a wait event to DB
time will help determine the total system impact of that wait event. The
goal of the DBA is to reduce the DB time to improve the overall perfor-
mance of the database.

9.15 Service-level metrics

With the support for SOA and Oracle’s implementation of a layer of
abstraction to the application as services, Oracle has also introduced in
Oracle Database 10g a new dimension for performance tuning. With ser-
vices, workloads are visible and measurable, and statistics gathered can be
attributed to specific applications or modules within applications. Services
provide another level of performance optimization by connecting a specific
poorly performing SQL operation to a service instead of the traditional
approach where a SQL was always related to a session. Apart from wait
events at the service level (discussed earlier) available through the
GV$SERVICE_EVENTS view, the following statistics are also collected at the
service level:

Chap9.fm Page 435 Sunday, April 16, 2006 8:50 PM

436 9.15 Service-level metrics

Optionally, Oracle provides additional levels of data collection by
defining modules within applications or actions within modules. This
helps in easy identification of performance areas within the application.
Module and action-level monitoring can be enabled using the following
PL/SQL definition:

DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE (<SERVICE_NAME>,
<MODULE NAME>)

For example, to enable statistics collection for module ORDERS in service
SRV1, the following should be executed on the database server on any of the
available instances:

EXEC DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE ('SR1','ORDERS');

Once monitoring has been enabled, it remains active until it is disabled
using the following procedure:

User calls Workarea executions – optimal

DB time – response time Workarea executions – onepass

DB CPU – CPU/service Workarea executions – multipass

Parse count (total) Session cursor cache hits

Parse time elapsed User rollbacks

Parse time CPU DB block changes

Execute count gc cr blocks received

SQL execute elapsed time gc cr block receive time

Opened cursors cumulative gc current blocks received

Session logical reads gc current block receive time

Physical reads Cluster wait time

Physical writes Concurrency wait time

Redo size Application wait time

User commits User I/O wait time

Chap9.fm Page 436 Sunday, April 16, 2006 8:50 PM

9.15 Service-level metrics 437

Chapter 9

EXEC DBMS_MONITOR.SERV_MOD_ACT_STAT_DISABLE (null,null);

These definitions can be verified by querying the
DBA_ENABLED_AGGREGATIONS table:

SELECT AGGREGATION_TYPE,

 QUALIFIER_ID1 MODULE,

 QUALIFIER_ID2 ACTION

FROM DBA_ENABLED_AGGREGATIONS;

AGGREGATION_TYPE MODULE ACTION

--------------------- ---------- ---------

SERVICE_MODULE_ACTION ORDERS Mixed

SERVICE_MODULE_ACTION ORDERS Multiple

SERVICE_MODULE_ACTION ORDERS Read

SERVICE_MODULE_ACTION ORDERS Update

Before monitoring the performance statistics, the application connecting
to the database should connect to the SERVICE_NAME being monitored, and
the application should have the module identified in the code. The module
name can be set in the application using the following procedure:

DBMS_APPLICATION_INFO.SET_MODULE (<MODULE NAME>, <ACTION TYPE>);

For example, to let the database know which module is being moni-
tored, the following procedure should be executed from inside the applica-
tion module:

EXEC DBMS_APPLICATION_INFO.SET_MODULE ('ORDERS');

Apart from monitoring individual modules, performance-related statis-
tics can also be collected for any specific action. For example, the perfor-
mance of various users executing update statements can also be monitored
with the following procedure:

EXEC DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE
('SRV1','ORDERS','UPDATE');

Chap9.fm Page 437 Sunday, April 16, 2006 8:50 PM

438 9.15 Service-level metrics

Similarly, inside the application, the ORDERS module, the specific
action (UPDATE) being modified should also be identified using the fol-
lowing procedure:

EXEC DBMS_APPLICATION_INFO.SET_MODULE ('ORDERS','UPDATE');

This feature of collecting a performance matrix for an action type within
a module was not available until Oracle Database 10g and is a great feature
that can easily be taken advantage of. In a RAC environment with DWM
implementation, this helps track a module’s performance across the cluster.

Once the statistics collection has been enabled on the database server
and on the client side, the performance metrics can be collected or moni-
tored. For example, the output from the following script against the
GV$SERVICE_STATS view provides a high-level indication that DB time for
SRV1 on instance 2 is significantly high.

COL STAT_NAME FORMAT A35

COL MODULE FORMAT A10

COL SERVICE FORMAT A15

COL INST FORMAT 999

SELECT INST_ID INST,

 SERVICE_NAME SERVICE,

 STAT_NAME,

 VALUE

FROM GV$SERVICE_STATS

WHERE VALUE > 0

AND SERVICE_NAME ='SRV1'

ORDER BY VALUE;

 INST SERVICE STAT_NAME VALUE

---- --------------- ----------------------------------- ----------

 2 SRV1 parse count (total) 114332

 2 SRV1 opened cursors cumulative 114574

 2 SRV1 execute count 252873

 2 SRV1 session logical reads 5254843

 2 SRV1 redo size 21199172

 2 SRV1 cluster wait time 27815562

 2 SRV1 application wait time 87809921

 2 SRV1 user I/O wait time 98546228

Chap9.fm Page 438 Sunday, April 16, 2006 8:50 PM

9.15 Service-level metrics 439

Chapter 9

 2 SRV1 concurrency wait time 2055384221

 2 SRV1 DB CPU 2156249531

 2 SRV1 sql execute elapsed time 6912286900

 2 SRV1 parse time elapsed 8681424580

 2 SRV1 DB time 9845032706

To identify the module and action type that caused the high DB time
values, use the following script against the view GV$SERV_MOD_ACT_STATS:

COL STAT_NAME FORMAT A35

COL MODULE FORMAT A10

COL SERVICE FORMAT A10

COL INST FORMAT 999

COL ACTION FORMAT A8

SELECT INST_ID INST,

 AGGREGATION_TYPE,

 SERVICE_NAME SERVICE,

 MODULE,

 ACTION,

 STAT_NAME,

 VALUE

FROM GV$SERV_MOD_ACT_STATS;

The benefits provided for monitoring activity at the service level do not
stop here. Tracing user operations is also available at the module and action
level. Oracle generates one trace file per session, connecting to the database
using the SERVICE_NAME. Users connecting to the database may get
attached to any of the available instances supporting the service. The advan-
tage of tracing at this level is that, when multiple trace files are generated
from the current instance or across instances in the cluster, data related to a
specific action type can be grouped together. For example, the following
procedure will enable tracing of a service at the module and action levels:

DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE
(<SERVICE_NAME>,<MODULE NAME>,<ACTION TYPE>);

EXEC DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE
('SRV1','ORDERS','MIXED');

Chap9.fm Page 439 Sunday, April 16, 2006 8:50 PM

440 9.15 Service-level metrics

Apart from the basic SQL-level trace information, additional informa-
tion such as wait events encountered (collected by default), bind variables,
and values used can also be collected. For example:

EXEC DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE (

 SERVICE_NAME => 'SRV1',

 MODULE_NAME => 'ORDERS',

 ACTION_NAME => DBMS_MONITOR.ALL_ACTIONS,

 WAITS => TRUE,

 BINDS => TRUE);

Note: The SERV_MOD_ACT_TRACE_ENABLE utility generates trace files similar
to the trace files generated using event 10406 at level 1. Enabling wait events
and binds will be similar to generating tracing using 10406 at level 12.

Once these procedures are executed on the database server, the trace files
are generated in the USER_DUMP_DEST directory on the respective instances.
Oracle generates one trace file for every session, connecting to the database
using the service SRV1. The trace files can then be consolidated based on
different criteria. Based on the example, the trace file will contain informa-
tion such as SQL statements, wait events encountered, bind variables, and
bind values. This trace information can be

1. Analyzed directly using the Transient Kernel Profiler (tkprof)
utility.

tkprof ssky1.ora.*.trc trcSRV1.prf explain=bmf/bmf
table=bmf.temp sys=no

2. Scanned through and extracted by action type using the trcsess
utility. Once extracted into a single file, it can be analyzed using
the tkprof utility.

trcsess output=trcMixed.trc service=SRV1
module='ORDERS' action=Mixed ssky1_ora_*.trc

trcsess [output=<output file name >]
[session=<session ID>] [clientid=<clientid>]
[service=<service name>] [action=<action name>]

Chap9.fm Page 440 Sunday, April 16, 2006 8:50 PM

9.16 Identifying blockers across instances 441

Chapter 9

[module=<module name>] <trace file names>

� <output file name> is the output destination, default being
standard output.

� <sessionID> is the session to be traced. SessionID is a com-
bination of session index and session serial number.

� <clientid> is the client to be traced.

� <service name> is the service to be traced.

� <action name> is the action to be traced.

� <module name> is the module to be traced.

� <trace file names> is a space-separated list of trace files
with wild card '*' supported.

The following trcsess command will extract trace information from
the trace file that pertains to service SRV1 but contains all modules and
actions:

trcsess output=trcSRV1.trc service=SRV1 ssky1_ora_*.trc

Similarly, the following trcsess command will extract trace informa-
tion from the trace files that pertain to service SRV1 and module ORDERS,
but will contain all actions:

trcsess output=trcRead.trc service=SRV1 action=Mixed
module=ORDERS ssky1_ora_*.trc

9.16 Identifying blockers across instances

When two users request access to the same row of data for update purposes,
all users except the first will remain in wait mode until the first user has
committed or rolled back the change. This is true irrespective of whether it
is a single-instance configuration or a clustered RAC configuration, with an
additional possibility. Apart from users on the same instance, users from
other instances can also request the same row at the same time. The follow-
ing query helps identify a blocking session in a RAC environment:

Chap9.fm Page 441 Sunday, April 16, 2006 8:50 PM

442 9.17 Identifying hot blocks

SELECT DECODE(G.INST_ID,1,'SSKY1',2,'SSKY2') INSTANCE,

 S.SID,

 G.TYPE,

 S.USERNAME,

 S.SERIAL#,

 S.PROCESS,

 DECODE(LMODE,0,'None',1,'Null',2,'Row-S',3,'Row-X',4,'Share',5,'S/ROW',
6,'Exclusive') LMODE,

 DECODE(REQUEST,0,'None',1,'Null',2,'Row-S',3,'Row-X',4,'Share', 5,'S/
ROW',6,'Exclusive')REQUEST,

 DECODE(REQUEST,0,'BLOCKER','WAITER') STATE

FROM GV$GLOBAL_BLOCKED_LOCKS G,

 GV$SESSION S

WHERE G.SID = S.SID

AND G.INST_ID = S.INST_ID

ORDER BY STATE

INSTANCE SID TY USERN SERIAL# PROCESS LMODE REQUEST STATE

---------- ---- -- ----- ---------- ------------ --------- --------- -------

SSKY2 132 TX OE 519 2576:820 Exclusive None BLOCKER

SSKY2 148 TX OE 78 980:3388 None Exclusive WAITER

SSKY1 139 TX OE 114 3192:2972 None Exclusive WAITER

In this output, the session with SID 132 on instance SSKY2 is the BLOCKER
because this session accessed this row first in an exclusive mode and has either
committed or rolled back the transaction. Subsequently, the session with SID
148 also on instance SSKY2 requested this same row for update, followed by
SID 139 from instance SSKY1. Both of these SIDs will remain as WAITER
until the row is available to the session to complete its update operation.
Blockers can also be determined from the EM by selecting the “Blocking Ses-
sions” option from the database performance page or by querying
BLOCKING_SESSION_STATUS, BLOCKING_INSTANCE, BLOCKING_SESSION col-
umns from V$SESSION view.

9.17 Identifying hot blocks

One primary feature of RAC is to provide scalability by allowing transfer of
blocks on user request from one instance to the other, thus avoiding any
disk I/O. When the same sets of blocks is requested back and forth between
the various instances in the cluster, the sessions requesting the block may
have to wait until the holding instance has released it. This back-and-forth

Chap9.fm Page 442 Sunday, April 16, 2006 8:50 PM

9.18 Monitoring remastering 443

Chapter 9

movement of the same blocks may indicate or create contention over the
interconnect. Identifying such blocks and then analyzing ways in which
they can be minimized will help in the overall performance of the cluster.
Hot blocks can be identified by querying the V$SEGSTAT view.

9.18 Monitoring remastering

One of the primary scalability factors for Oracle is balancing resource
demands on each instance by satisfying requests on local nodes where
demand for the resource is high. For example, if there are 1,000 users on
instance SSKY1 and only 100 users on instance SSKY2 for the EMP table
object, it would be more efficient to place the master for the EMP object on
instance SSKY1. However, when demand for the object changes, and SSKY2
has more users for the object, then the master should move from instance
SSKY1 to SSKY2. This is called resource remastering. The following query
against the V$DYNAMIC_REMASTER_STATS view gives the current remaster
activity for an instance:

SELECT REMASTER_OPS,

 REMASTER_TIME,

 REMASTERED_OBJECTS,

 CURRENT_OBJECTS,

 SYNC_TIME

FROM V$DYNAMIC_REMASTER_STATS;

REMASTER_OPS REMASTER_TIME REMASTERED_OBJECTS CURRENT_OBJECTS SYNC_TIME

------------ ------------- ------------------ --------------- ----------

 2 608 10 10 360

In this output, REMASTER_OPS indicates the number of remaster opera-
tions completed this far, REMASTER_TIME indicates the time spent on remas-
ter activities, REMASTERED_OBJECTS indicates the number of objects
remastered, the CURRENT_OBJECTS column indicates the number of objects
mastered on the current instance that have not been remastered, and
SYNC_TIME indicates the amount of time spent in cache synchronization
activities during the remaster operation.

Note: All values in this view are cumulative, meaning they reflect the
remastering activity since the instance started.

Chap9.fm Page 443 Sunday, April 16, 2006 8:50 PM

444 9.19 Operating system tuning

On a clustered configuration with more than two nodes, if the 3-way wait
event indicate a significantly high number (numbers greater than 2-way wait
events), this would be an indication that remastering was not working or that
remaster activity had been disabled. While remastering is based on the num-
ber of times the object is touched in a particular instance, the requirement is
that it be touched 60 times more than the other instance in a period of
approximately 10 minutes. The touch count logic for remastering and the
maximum period before remastering occurs are tunable using the underscore
parameters _GC_AFFINITY_LIMIT and _GC_AFFINITY_TIME.9

In Oracle Database 10g Release 2, this feature is enabled by default at
the object level. In prior releases, though mastering was maintained at the
datafile level, no dynamic remastering occurred.

9.19 Operating system tuning

Once the database has been tuned to high performance standards, it is also
a good idea to look at the overall performance from the operating system
level. Areas of the operating system that influence the performance are CPU
utilization and memory utilization.

9.19.1 CPU utilization

CPU utilization is the amount of time that the active CPUs on the system
are running processes. CPU utilization statistics presented by the sar -u
command are displayed as a composite of the %system, %user, and
%idle times, where the addition of all three parameters will equate to
100%. A lower %idle time indicates a higher workload.

[root@oradb4 oracle]# sar -u 5 6

Linux 2.4.21-e.41smp (oradb4.sumsky.net) 10/03/2005

11:06:57 PM CPU %user %nice %system %idle

11:07:02 PM all 89.07 0.00 9.72 1.21

11:07:07 PM all 55.74 0.00 11.06 33.19

11:07:12 PM all 73.35 0.00 7.23 19.42

11:07:17 PM all 90.82 0.00 8.16 1.02

11:07:22 PM all 90.43 0.00 9.16 0.41

11:07:27 PM all 91.80 0.00 8.20 0.00

Average: all 70.06 0.00 8.92 21.02

9. Underscore parameters should be modified only after consulting with Oracle support.

Chap9.fm Page 444 Sunday, April 16, 2006 8:50 PM

9.19 Operating system tuning 445

Chapter 9

System and user statistics represent the proportion of time the CPUs are
working on system-related activities or user-based programs, respectively.
Characterization of a system’s performance in terms of CPU utilization is a
widely used approach. In a normal workload, %system should not con-
sume more than 20% of CPU. CPU utilization information is made more
significant when combined with the run queue length and run queue occu-
pancy statistics. For example, if the server is running close to the 95% utili-
zation level for most of the day, does this indicate an immediate CPU
deficiency on the server? The answer is, it depends. If this is a single-CPU
system, and the run queue is consistently at a value of 1, then the answer is,
it is difficult to arrive at any definite conclusion. If the run queue length
consistently exceeds the number of CPUs on the system, and the run queue
occupancy is consistently high, together with a high CPU utilization rate,
then this would indicate a CPU deficiency. CPU information can be veri-
fied using cat /proc/cpuinfo on Linux-based systems and from the Task
Manager in Windows-based environments.

An ideal situation for the server is to run consistently under the 80%
utilization level with a stable workload. In this situation, the investment in
CPU power is justified since the utilization rate is high, yet not at its maxi-
mum. The reality of most servers is that workload fluctuates throughout an
entire day and rarely shows as stable. The measurement of CPU utilization
can help in identifying shortfalls in CPU processing power, especially dur-
ing peak periods where the demand on CPU resources can exceed availabil-
ity and cause systemwide performance degradation. The sar -u command
will generate the CPU utilization statistics.

9.19.2 Memory utilization

Like the processing power provided by the CPUs on a system, the amount
of data stored in Oracle’s buffer is based on the memory available at the
operating system level, meaning a portion of the total memory available is
allocated to the Oracle instance on the server in its SGA.

meminfo

Memory information can be obtained using cat /proc/meminfo on a
Linux-based system and using the Task Manager in a Windows environment.

[root@oradb4 oracle]# cat /proc/meminfo

 total: used: free: shared: buffers: cached:

Mem: 2636144640 2518822912 117321728 699658240 182558720 1304363008

Chap9.fm Page 445 Sunday, April 16, 2006 8:50 PM

446 9.19 Operating system tuning

Swap: 2146787328 0 2146787328

MemTotal: 2574360 kB

MemFree: 114572 kB

MemShared: 683260 kB

Buffers: 178280 kB

Cached: 1273792 kB

SwapCached: 0 kB

Active: 1164964 kB

Inact_dirty: 970368 kB

Inact_clean: 0 kB

Inact_target: 643492 kB

HighTotal: 1703860 kB

HighFree: 2036 kB

LowTotal: 870500 kB

LowFree: 112536 kB

SwapTotal: 2096472 kB

SwapFree: 2096472 kB

BigPagesFree: 0 kB

Committed_AS: 2153424 kB

HugePages_Total: 0

HugePages_Free: 0

Hugepagesize: 4096 kB

[root@oradb4 oracle]#

slabInfo

Another statistic collected by the operating system is slabinfo, which pro-
vides information about internal kernel caches. Slabs are small allocations
of memory, less than a page or not a multiple of page size. The statistics can
be useful in determining where the kernel is using too much memory.

[root@oradb4 oracle]# cat /proc/slabinfo

slabinfo - version: 1.1 (SMP)

kmem_cache 96 96 244 6 6 1 : 252 126

asm_request 116 118 64 2 2 1 : 252 126

nfs_read_data 0 0 384 0 0 1 : 124 62

nfs_inode_cache 2 17 224 1 1 1 : 252 126

nfs_write_data 0 0 384 0 0 1 : 124 62

nfs_page 0 0 96 0 0 1 : 252 126

ocfs_fileentry 64 64 512 8 8 1 : 124 62

ocfs_lockres 384 384 160 16 16 1 : 252 126

ocfs_ofile 382 444 320 37 37 1 : 124 62

Chap9.fm Page 446 Sunday, April 16, 2006 8:50 PM

9.19 Operating system tuning 447

Chapter 9

ocfs_oin 214 340 192 15 17 1 : 252 126

 active-objects

 | allocated-objects

 | | object-size

 | | | active-slab-allocations

 | | | | total-slab-allocations

 | | | | | alloc-size

 | | | | | |

asm_request 116 118 64 2 2 1 : 252 126

 | |

 limit |

 batch-count

� active-objects. After creating a slab cache, you allocate your
objects out of that slab cache. This is the count of objects currently
allocated out of the cache.

� allocated-objects. This is the current total number of objects in
the cache.

� object-size. This is the size of each allocated object. There is over-
head to maintaining the cache, so with a 512-byte object and a
4,096-byte page size, it can fit seven objects in a single page and will
waste 512-slab overhead bytes per allocation. Slab overhead varies
with object size (smaller objects have more objects per allocation and
require more overhead to track used versus unused objects).

� active-slab-allocs. This is the number of allocations that have at
least one of the allocations objects in use.

� total-slab-allocs. This is the total number of allocations in the
current slab cache.

Chap9.fm Page 447 Sunday, April 16, 2006 8:50 PM

448 9.20 Automatic workload repository

� alloc-size. This is the size of each allocation in units of memory
pages. Page size is architecture specific, but the most common size is
4K.

� The last two items are SMP specific. On SMP machines, the slab
cache will keep a per-CPU cache of objects so that an object freed on
CPU0 will be reused on CPU0 instead of CPU1 if possible. This
improves cache performance on SMP systems greatly.

� limit. This is the limit of free objects stored in the per-CPU free list
for this slab cache.

� batch-count. On SMP systems, when the available object list is
refilled, instead of doing them one at a time, a batch of objects are
taken at a time.

As illustrated in Figure 9.14, the EM also provides operating system infor-
mation such as CPU utilization, memory utilization, and disk I/O utilization.

9.20 Automatic workload repository

In Oracle Database 10g, Oracle introduced a new process to capture and per-
formance statistics called the Automatic Workload Repository (AWR). For
those of us who have used STATSPACK in the past, AWR is an enhanced
rewrite of this utility with a more user-friendly interface. Statistics and the
entire workload information are collected (snapshot) automatically by the
MMON background process every 60 minutes (default) and stored in the wrh$

Figure 9.14
EM operating

system Monitoring

Chap9.fm Page 448 Sunday, April 16, 2006 8:50 PM

9.20 Automatic workload repository 449

Chapter 9

and wri$ tables in the SYSAUX tablespace. Data collected is retained in the
AWR for seven days (default) and then automatically purged. During this
period, database performance and workload statistics can be generated into a
report by comparing two snapshot periods. Unlike a STATSPACK report,
AWR collects data on only two levels: TYPICAL (default) and ALL. These lev-
els are driven by the parameter STATISTICS_LEVEL.

AWR snapshots can also be captured manually using the
DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT() procedure and at the ALL
level DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT(flush_level=>ALL);

The number of top SQL queries reported by the AWR is also con-
trolled by the STATISTICS_LEVEL parameter. When the value is TYPICAL
the top 30 queries are listed, and when the value is ALL the top 100 que-
ries are listed. This can be overridden in Oracle Database 10g Release 2
using the following procedure:

DBMS_WORKLOAD_REPOSITORY.modify_snapshot_settings(topnsql =>
200);

During typical benchmarking cycles, when a set of performance metrics
needs to be saved as a baseline for comparisons, the traditional method used
by DBAs has been to export performance data. AWR makes this more con-
venient using the following procedure:

DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE(<START SNAP ID>,<END
SNAP ID>,<BASLINE NAME><DB ID>);

For example, the following procedure will create a baseline QAR1BLINE
of the current database instance (default) represented by DB ID in the syn-
tax above.

execute DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE
(459,476,'QAR1BLINE');

The baseline definition can be validated by querying the
DB_HIST_BASELINE table.

COL BASELINE_NAME FORMAT A25

SELECT DBID,

 BASELINE_NAME,

Chap9.fm Page 449 Sunday, April 16, 2006 8:50 PM

450 9.20 Automatic workload repository

 START_SNAP_ID,

 END_SNAP_ID

FROM DBA_HIST_BASELINE;

 DBID BASELINE_NAME START_SNAP_ID END_SNAP_ID

---------- ------------------------- ------------- -----------

4275027223 QAR1BLINE 459 476

Note: Creation of a baseline will override AWR automatic purging for the
baseline snapshot range.

While AWR does provide information concerning RAC, statistics are
collected from all instances and stored by instance number under a com-
mon SNAP_ID (SNAP_ID is the primary key for the AWR and is generated
for every snapshot collection); that is, statistics are collected by instance and
not at the global level.

AWR reports or snapshot comparisons can be done either by using a
command-line interface by executing an Oracle-provided SQL script
($ORACLE_HOME/rdbms/admin/awrrpt.sql) or by using the EM inter-
faces. An HTML file can be generated and viewed using a browser by either
method.

The script provides an option to pick a range of snapshots to compare.
Once the range is selected, the report is generated in the default directory.
In an RAC environment, a report is generated for one instance at a time.

Tuning using the AWR starts with identifying the top five wait events
reported in the first page of the report, illustrated in Table 9.3.

Table 9.3 AWR Top Five Timed Events

Chap9.fm Page 450 Sunday, April 16, 2006 8:50 PM

9.20 Automatic workload repository 451

Chapter 9

Table 9.3 provides the wait events at the instance level and can contain
RAC-related wait events as shown for “gc buffer busy.” AWR also pro-
vides a global-level cache load profile illustrating the global cache activity
between the various instances in the cluster.

Like STATSPACK, AWR is also organized by sections. When the
AWR report is generated in a RAC environment, the second page of this
report relates to RAC. Apart from the performance data illustrated in
Tables 9.3 and 9.4, other important data is discussed later in this section.

Table 9.4 AWR RAC Global Cache Load Profile

Table 9.5 AWR RAC Global Cache Load Profile Formula

Profile Formula

Global cache blocks received (gc current blocks received +

 gc cr blocks received) / elapsed time

Global cache blocks served (gc current blocks served +

 gc cr blocks served) / elapsed time

GCS/GES messages received (gcs messages received +

 ges messages received) / elapsed time

GCS/GES messages sent (gcs messages sent +

 ges messages sent) / elapsed time

DBWR fusion writes DBWR fusion writes / elapsed time

Chap9.fm Page 451 Sunday, April 16, 2006 8:50 PM

452 9.20 Automatic workload repository

In Table 9.4, the various profiles are calculated using the formula
described in Table 9.5.

The formula in Table 9.5 is based on statistic values obtained from
GV$SYSSTAT or GV$DLM_MISC views. Elapsed time is the time between the
start and end of the collection period. In the case of an AWR report, the
elapsed time is the time between two snapshots being compared. The load
profile can be grouped by services using the GV$SERVICE_STATS view to
obtain a more focused performance metric.

Table 9.6 provides the overall performance of the instance with respect
to global cache movement between instances.

Estimated interconnect traffic (((gc cr blocks received +

gc current blocks received +

gc cr blocks served +

gc current blocks served) * db_block_size) +

((gcs messages sent +

ges messages sent +
 gcs msgs received +

ges msgs received) * 200) /1024 / elapsed time)

Table 9.6 AWR RAC Global Cache and Enqueue Services

Table 9.5 AWR RAC Global Cache Load Profile Formula

Chap9.fm Page 452 Sunday, April 16, 2006 8:50 PM

9.20 Automatic workload repository 453

Chapter 9

 The average values in Table 9.6 are also based on statistic values from
the GV$SYSSTAT and GV$DLM_MISC views. Once the actual values are com-
puted, the average is determined to provide the overall health of the cluster
during the snapshot interval. Table 9.7 illustrates the statistic values used in
some of the average values included in Table 9.6.

AWR provides other RAC-related performance statistics in the AWR
report, including the following, to name a few:

� RAC report summary

� Global enqueue statistics

� Global CR served stats

� Global Current served statistics

� Global cache transfer stats

� Global cache transfer statistics aggregated per class

Among these, the Global Cache Transfer Stats is an informative section
providing details of block transfers between various instances participating
in the cluster. As illustrated in Table 9.8, the transfer is broken down
between CR and current requests.

Table 9.8, in conjunction with the section on hot blocks, should deter-
mine what database-level tuning is required to reduce this movement and
reduce block-request contention.

Table 9.9 lists the differences between a STATSPACK and AWR report.

Table 9.7 AWR RAC Global Cache Load Profile Formula

Statistic Formula
Typical

Value (ms)
Upper

Limit (ms)

Average global cache cr
block receive time

10 × gc cr block receive time /
gc cr blocks received

4 12

Average global cache
current block receive
time

10 × gc current block receive
time / gc current blocks received

8 30

Chap9.fm Page 453 Sunday, April 16, 2006 8:50 PM

454 9.20 Automatic workload repository

Table 9.8 Global Cache Transfer Stats

Table 9.9 AWR versus STATSPACK

AWR STATSPACK

It automatically configured by the DBCA. Manual installation and configuration are
required using scripts.

It automatically purges data older than
seven days (can be changed).

A manual purge routine is required.

A reporting option is available via both
EM and scripts. Output can be in either
HTML or ASCII text format.

Reports are generated only via scripts, and
the output is always in ASCII text format.

It contains Oracle provided PL/SQL
packages to create baselines.

Baselines can be maintained by exporting
data or by not purging the existing data.

Statistics are collected by the MMON pro-
cess every 60 minutes (default) and stored
in the AWR.

Data is actually collected by the script
during execution. The script can be con-
figured to run automatically by schedul-
ing it at regular intervals using
DBMS_JOB or DBMS_SCHEDULER.

Data from the AWR is used by other per-
formance diagnostic tools, such as
ADDM and ASH (discussed later in this
chapter).

Data collected is only used by the
STATSPACK reporter.

It requires an additional Oracle license. No additional license is required.

Chap9.fm Page 454 Sunday, April 16, 2006 8:50 PM

9.21 Automatic Database Diagnostic Monitor 455

Chapter 9

9.21 Automatic Database Diagnostic Monitor

The Automatic Database Diagnostic Monitor (ADDM, pronounced
“Adam”) is a self-diagnostic analysis and reporting tool that is part of Oracle
Database 10g. Earlier, we discussed the hourly capture (snapshot) of perfor-
mance statistics by the AWR process. As illustrated in Figure 9.15, ADDM
uses these snapshots and provides advice about what and where the prob-
lem is, what areas of the system are affected, what has caused performance
issues if any, and what can be done to improve the overall performance of
the database.

Like AWR, ADDM can also be generated using the EM or the
addmrpt.sql script available in the $ORACLE_HOME/rdbms/admin/ direc-
tory. These reports are stored by default for 30 days in the database before
being purged. These reports are generated on thresholds predefined (but
which can be modified) for a predetermined set of areas. For example, the
user I/O is defined by the parameter DBIO_EXPECTED and defaults to
1,000 ms. Another parameter that is used to calculate the amount of data-
base time spent is the DB_ELAPSED_TIME parameter, which defaults to 0
ms. Both of these parameters can be modified using the
DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER PL/SQL procedure.

ADDM functionality can be accessed by selecting the “Advisor Central”
page from two levels: (1) clustered database performance page and (2) data-
base instance performance page. As illustrated in Figure 9.16, once ADDM
is selected, the EM automatically generates an analysis report on the latest

Figure 9.15
AWR and ADDM

Process Flow

Chap9.fm Page 455 Sunday, April 16, 2006 8:50 PM

456 9.21 Automatic Database Diagnostic Monitor

AWR snapshot available and allows for regeneration of analysis based on
another snapshot period.

In Figure 9.16, ADDM provides an overall performance of the database
and a list of findings based on the analysis of the snapshots selected. Apart
from providing the findings, the analysis also reports on the percentage of
impact. In this case, the impact for “Host CPU was a bottleneck” is 100%.
To understand the areas of impact and the recommendations for fixing this
issue, click on the specific finding. Once this is selected, the EM provides
the recommendations (Figure 9.17).

As illustrated in Figure 9.17, the recommendations or actions required
are both valid. The system is low on CPU because at the time of testing
only one CPU was present. The other recommendation of using ODRM is
also valid and helps in implementing a DWM environment.

Note: ODRM and DWM are discussed in Chapter 5.

Figure 9.16
EM ADDM RAC
Database Activity

Chap9.fm Page 456 Sunday, April 16, 2006 8:50 PM

9.21 Automatic Database Diagnostic Monitor 457

Chapter 9

Similarly, as illustrated in Figure 9.18, ADDM has identified that the
LMSn background processes are not able to keep up with the workload. Cur-
rently, only one LMSn background process is present. A good rule of thumb
is to configure one LMSn process for every two CPUs on the server.

ADDM is also a good source for identifing high-load SQL statements.
Every run of ADDM produces a report containing its analysis and recom-
mendations. These reports are stored by default for 30 days in the database

Figure 9.17
EM ADDM RAC

Performance
Finding Details

Figure 9.18
EM ADDM RAC

Performance
Finding Details

Chap9.fm Page 457 Sunday, April 16, 2006 8:50 PM

458 9.22 Active session history

before being purged. Apart from identifying high-load SQL statements,
ADDM will also recommend running SQL advisors on them to obtain
optimal performance benefits.

9.22 Active session history

AWR provides snapshots containing performance characteristics of the
database; ADDM analyzes this information and provides guidelines and
suggestions on how to fix it. However, a one-time occurrence of any issue is
not a good indication of any specific performance problem. For instance,
when a user reports a bug in his or her application, the developer is inter-
ested to find out if this bug is repeatable or reproducible. Only then will the
developer spend time investigating it; otherwise, he or she will consider it a
minor issue because a one-time occurrence of an issue does not really pro-
vide sufficient data to fix the problem. After repeated occurrences data
becomes consistent and tunable. Similarly, in a database environment,
problems do arise, systems do slow down, and occasional high spikes do
occur. However, unless this happens consistently over a length of time (past,
present, and future), there is no real concern.

Active session history (ASH, pronounced “ash”) tries to bridge this gap.
ASH helps perform analysis of transient problems lasting for a few minutes
or over various dimensions, such as time, SQL_ID, module, action, and so
on. As mentioned earlier, unlike the other reactive reporting issues, ASH is
based on a sampled history of all events happening in the database. ASH
data captured for all active sessions and stored is essentially a fact table
(GV$ACTIVE_SESSION_HISTORY) in a data warehouse environment, with
the columns representing the dimensions of the fact table. In this view,
there are about 13 important dimensions of data. However, in the case of
ASH, all contents are in memory and are accessing very quickly.

SQL> desc gv$active_session_history;

 Name Null? Type

 --- -------- ------------

 INST_ID NUMBER

 SAMPLE_ID NUMBER

 SAMPLE_TIME TIMESTAMP(3)

 SESSION_ID NUMBER

 SESSION_SERIAL# NUMBER

 USER_ID NUMBER

 SQL_ID VARCHAR2(13)

Chap9.fm Page 458 Sunday, April 16, 2006 8:50 PM

9.22 Active session history 459

Chapter 9

 SQL_CHILD_NUMBER NUMBER

 SQL_PLAN_HASH_VALUE NUMBER

 FORCE_MATCHING_SIGNATURE NUMBER

 SQL_OPCODE NUMBER

 SERVICE_HASH NUMBER

 SESSION_TYPE VARCHAR2(10)

 SESSION_STATE VARCHAR2(7)

 QC_SESSION_ID NUMBER

 QC_INSTANCE_ID NUMBER

 BLOCKING_SESSION NUMBER

 BLOCKING_SESSION_STATUS VARCHAR2(11)

 BLOCKING_SESSION_SERIAL# NUMBER

 EVENT VARCHAR2(64)

 EVENT_ID NUMBER

 EVENT# NUMBER

 SEQ# NUMBER

 P1TEXT VARCHAR2(64)

 P1 NUMBER

 P2TEXT VARCHAR2(64)

 P2 NUMBER

 P3TEXT VARCHAR2(64)

 P3 NUMBER

 WAIT_CLASS VARCHAR2(64)

 WAIT_CLASS_ID NUMBER

 WAIT_TIME NUMBER

 TIME_WAITED NUMBER

 XID RAW(8)

 CURRENT_OBJ# NUMBER

 CURRENT_FILE# NUMBER

 CURRENT_BLOCK# NUMBER

 PROGRAM VARCHAR2(48)

 MODULE VARCHAR2(48)

 ACTION VARCHAR2(32)

 CLIENT_ID VARCHAR2(64)

Like to the AWR and ADDM features, ASH reports can also be gener-
ated from the EM console or using the ashrpt.sql script located in the
$ORACLE_HOME/rdbms/admin directory on the database server.

Chap9.fm Page 459 Sunday, April 16, 2006 8:50 PM

460 9.23 EM Grid Control

9.23 EM Grid Control

All of the EM-related reports and functionality discussed previously are part
of the default dbconsole configuration that is defined by DBCA while cre-
ating the database. In a RAC environment, the console is defined on the
node where the DBCA was executed.

Apart from the dbconsole, the DBCA provides current database-related
information. Another version that captures a performance-related matrix
and saves it in a repository is the EM Grid Control (GC). While in this
chapter we have been looking at optimization features for the RAC data-
base, the GC supports all tiers of the application:

� Database tier

� Web tier

� Application tier

At the database tier, apart from the traditional functionalities provided by
the dbconsole, the GC provides a holistic view of the RAC cluster.

9.23.1 Cluster latency/activity

GC monitors the internode data transfer between the various instances in
the cluster. The cluster Interconnects page displays all the interconnects
that are configured across the cluster. Both public and private interfaces are
identified and shown with their statistics, such as transfer rate and related
errors. This screen helps identify configuration problems with the interface
setup and performance problems with the interconnect latency.

9.23.2 Topology view

In the Oracle Database 10g Release 2 version of GC, Oracle has added a
new cluster database home page called the Topology page that displays a
graphical view of the entire cluster, including the database instances, listen-
ers, ASM instances, and interfaces. From the Topology page, the adminis-
trator can also launch various administrative and configuration functions,
like startup and shutdown, monitoring of configurations, and so on.

Chap9.fm Page 460 Sunday, April 16, 2006 8:50 PM

9.23 EM Grid Control 461

Chapter 9

9.23.3 Spotlight® on RAC

When there are configurations with a large number of nodes, it is conve-
nient to view the cluster as a whole, identify specific issues with any one
instance in the cluster, and receive immediate notification by an alarm. In
other words, instead of navigating through each instance to find out exactly
where the problem is, a console or dashboard kind of tool that provides one
view, such as in Figure 9.19, is beneficial. Figure 9.19 is a dashboard screen
from Spotlight on RAC. It provides one dashboard view of the cluster and
highlights issues with any instance in the cluster. For example, in Figure
9.19, nodes “Venus” and “Earth” are currently high on CPU usage, and an
alarm is being raised. Hovering over the alarm will provide details of the
alarm, and by drilling down, the specific individual metric relating to the
CPU can be identified.

Figure 9.19 also illustrates one view of the three tiers of the database
server, the interconnect or global data movement at the top, the specific
instances, and the storage or I/O subsystem at the bottom.

Figure 9.19
Spotlight on RAC

Chap9.fm Page 461 Sunday, April 16, 2006 8:50 PM

462 9.24 Conclusion

9.24 Conclusion

RAC performance depends on how well the application and SQL queries
are tuned to access the database. A poorly performing query in a single-
instance database will also perform poorly in a RAC environment. Usage of
best practices plays an important role.

In this chapter, we looked at the various areas of application and the
database, considering the areas that can be improved. In addition, the vari-
ous ways of identifing specific issues, like blockers, frequency of remaster-
ing, and so on, were covered.

The primary goal of the chapter was to identify and help in the diagnostic
process of a RAC database. It does not cover all the areas of troubleshooting;
several more areas of the database affect the cluster performance directly or
indirectly. Please note that an issue discussed in this chapter may not be rele-
vant in other environments and should be tested before implementation.

Chap9.fm Page 462 Sunday, April 16, 2006 8:50 PM

