
ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:125

CHAPTER
4

Tuning the Database
with Initialization

Parameters (DBA)

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:21:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

T he init.ora file (and spfile) determines many Oracle operating system environment
attributes, such as memory allocated for data, memory allocated for statements,

resources allocated for I/O, and other crucial performance-related parameters. Each version
of Oracle continues to add to the total number of initialization parameters. In Oracle 10g
Release 2 there are now 1381 (257 documented and 1124 hidden) different initialization
parameters (these numbers vary slightly on different versions of Oracle and platforms). As
you might expect, an entire book could be written on how to set and tune each parameter;
this book focuses on the key parameters that affect database performance. The key to an
optimized Oracle database is often the architecture of the system and the parameters that
set the environment for the database. Setting four key initialization parameters (SGA_MAX_SIZE,
PGA_AGGREGATE_TARGET, DB_CACHE_SIZE, and SHARED_POOL_SIZE) can be the
difference between sub-second queries and queries that take several minutes. There is also
a new SGA_TARGET parameter that can replace some of the key parameter that can be set
as well that is covered in this chapter. This chapter will focus on the crucial initialization
parameters but also list the top 25 initialization parameters near the end of the chapter. The
chapter concludes with a look at typical server configurations for various database sizes.

This chapter contains the following tips and techniques designed to achieve the greatest
performance gain with the least effort by focusing on the parameters that yield the biggest impact:

■ Crucial initialization parameters in Oracle

■ Modifying the initialization parameter file without a restart

■ Viewing the initialization parameters via Enterprise Manager

■ Tuning DB_CACHE_SIZE and monitoring hit ratios

■ Tuning the SHARED_POOL_SIZE

■ Checking library cache and dictionary cache

■ Querying the X$KSMSP table to get another picture of SHARED_POOL_SIZE

■ Using multiple buffer pools

■ Tuning the PGA_AGGREGATE_TARGET

■ User, session, and system memory use

■ Cost- vs. rule-based optimization

■ The top 25 performance-related initialization parameters to consider

■ Undocumented initialization parameters (more in Appendix A)

■ Typical server setups with different size databases

Identifying Crucial Initialization Parameters
While tuning specific queries alone can lead to performance gains, the system will still be slow
if the parameters for the initialization file are not set correctly because the initialization file plays
such an integral role in the overall performance of an Oracle database. While you can spend

126 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:126

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:21:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

time setting all the initialization parameters, there are just four main parameters that need to be
set correctly to realize significant performance gains:

■ SGA_MAX_SIZE

■ PGA_AGGREGATE_TARGET

■ DB_CACHE_SIZE

■ SHARED_POOL_SIZE

TIP
The key initialization parameters in Oracle are SGA_MAX_SIZE,
PGA_AGGREGATE_TARGET, DB_CACHE_SIZE, and
SHARED_POOL_SIZE.

There is also a new parameter, SGA_TARGET, which can be set so that Oracle manages
the shared memory on your system (Automatic Shared Memory Management); Metalink Note
295626.1 describes this in detail. While this is a new parameter, the Oracle Application
Development team recommends this for 10g (I included these recommendations at the end of
this chapter). I would like to see this mature a bit more before I hand the “keys to the car” to
Oracle, but I like the approach to simplicity, especially for beginners. The following query can
be used to find the current settings of the key initialization parameters on your database (if
SGA_TARGET is set to a non-zero value, then some of these parameters will be set to zero):

Col name for a25
Col value for a50

select name, value
from v$parameter
where name in ('sga_max_size', 'pga_aggregate_target',

'db_cache_size', 'shared_pool_size');

NAME VALUE
--------------------- --------------------
shared_pool_size 50331648
sga_max_size 135338868
db_cache_size 25165824
pga_aggregate_target 25165824

Changing the Initialization Parameters
Without a Restart
With each version of Oracle, more and more parameters can be altered without needing to
restart the database. This has greatly reduced the need for scheduled downtime to implement
system tuning changes. The next example shows changing the SHARED_POOL_SIZE to 128M
while the database is running:

SQL> ALTER SYSTEM SET SHARED_POOL_SIZE = 128M;

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 127

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:127

C
ha

ng
in

g
In

it
ia

liz
at

io
n

P
ar

am
et

er
s

W
it

ho
ut

a
R

es
ta

rt

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:21:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In addition to being able to dynamically change parameters, Oracle 10g provides for the use
of a SPFILE to persistently store dynamic changes to the instance parameters. Prior to Oracle 9i,
any dynamic changes were lost when the database was restarted unless the parameters were
added to the initialization parameter file manually. As of Oracle 9i and continuing into Oracle
10g Release 2, dynamic changes can be stored in a server parameter file (spfile). The default
order of precedence when an instance is started is to read parameter files in the following order:

1. spfile<SID>.ora

2. spfile.ora

3. init<SID>.ora

Parameters can be dynamically modified at a system-wide or session-specific scope. In
addition, parameters can be changed in memory only or persist across restarts via an SPFILE.

TIP
If you can’t figure out why your system isn’t using the value in your
init.ora file, you probably have an spfile overriding it. And, don’t
forget, you can also use a hint to override parameters at the query
level in 10gR2.

Finally, in a Real Application Cluster environment, parameters can be changed for a single
node or for all nodes in a cluster.

There are two key fields in the V$PARAMETER view:

■ ISSES_MODIFIABLE Indicates if a user with the ALTER SESSION privilege can modify
this initialization parameter for their session.

■ ISSYS_MODIFIABLE Indicates if someone with ALTER SYSTEM privilege can modify
this particular parameter.

The following query illustrates a list of initialization parameters that can be set without
shutting down and restarting the database. This query displays the initialization parameters that
can be modified with an ALTER SYSTEM or ALTER SESSION command (partial result displayed):

select name, value, isdefault, isses_modifiable, issys_modifiable
from v$parameter
where issys_modifiable <> 'FALSE'
or isses_modifiable <> 'FALSE'
order by name;

The result of the query is all of the initialization parameters that may be modified:

NAME VALUE ISDEFAULT ISSES ISSYS_MOD
------------------------- ------------------------------ --------- ----- ---------
aq_tm_processes 0 TRUE FALSE IMMEDIATE
archive_lag_target 0 TRUE FALSE IMMEDIATE
background_dump_dest C:\oracle\admin\orcl9ir2\bdump FALSE FALSE IMMEDIATE
backup_tape_io_slaves FALSE TRUE FALSE DEFERRED

128 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:128

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:22:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Be careful granting the ALTER SESSION privilege to users, as knowledgeable developers can
set individual parameters that positively affect their session at the expense of others on the system.

TIP
Changing initialization parameters dynamically is a powerful feature
for both developers and DBAs. Consequently, a user with the ALTER
SESSION privilege is capable of irresponsibly allocating 100M+ for
the SORT_AREA_SIZE for a given session, if it is not restricted.

Viewing the Initialization Parameters
with Enterprise Manager
You can also use Enterprise Manager to view the initialization parameter settings in the
Configuration screen under the Instance option. The section of Enterprise Manager displayed
in Figure 4-1 shows the initialization parameters. It shows the current settings for the parameters
and also shows if the parameters can be modified (dynamic=Y) without shutting down the
database. Oracle Enterprise Manager is covered in detail in Chapter 5.

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 129

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:129

V
ie

w
in

g
In

it
ia

liz
at

io
n

P
ar

am
et

er
s

w
it

h
E

nt
er

pr
is

e
M

an
ag

er

FIGURE 4-1. Enterprise Manager—initialization parameters in the SPFILE

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:22:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

130 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:130

Increasing Performance by Tuning the
DB_CACHE_SIZE
Long-time users of Oracle and readers of prior editions of this book will notice that some familiar
parameters have not been mentioned. This is because parameters such as DB_BLOCK_BUFFERS
have been deprecated (a parameter _DB_BLOCK_BUFFERS is set behind the scenes for backward
compatibility). While many of the familiar parameters from prior version of Oracle are still valid,
using them disables many Oracle 10g Release 2 features, including automatic cache memory
management. This chapter focuses on the Oracle 10g Release 2 parameters for tuning your system.

DB_CACHE_SIZE is the first parameter to look at in the initialization parameter file because it’s
the most crucial parameter in Oracle. If the DB_CACHE_SIZE is set too low, Oracle won’t have
enough memory to operate efficiently and the system may run poorly, no matter what else you do
to it. If DB_CACHE_SIZE is too high, your system may begin to swap and may come to a halt.
DB_CACHE_SIZE makes up the area of the SGA that is used for storing and processing data in
memory. As users request information, data is put into memory. If the DB_CACHE_SIZE parameter
is set too low, then the least recently used data will be flushed from memory. If the flushed data is
recalled with a query, it must be reread from disk (causing I/O and CPU resources to be used).

Retrieving data from memory can be over 10,000 times faster than disk (depending on the
speed of memory and disk devices). Even if you take into consideration disk caching (memory
on disk) and Oracle inefficiencies, retrieving data from memory is still about 100 times faster than
reading data from disk. Therefore, the higher the percentage of frequency that records are found
in memory (without being retrieved from disk), the faster the overall system performance (usually
at least 100 times faster for well-tuned queries). Having enough memory allocated to store data in
memory depends on the value used for DB_CACHE_SIZE (or for SGA_TARGET if used).

TIP
Retrieving data from physical memory is generally substantially faster
than retrieving it from disk, so make sure that the SGA is large enough.
One Oracle study showed Oracle memory access as averaging about
100 times faster than disk access. However, this takes into account disk
caching advances, which you may or may not have on your system.
The same study also showed an individual case where Oracle memory
access was well over 10,000 times faster than disk (which was hard for
me to believe), but it shows how important it is to measure this on your
own unique system.

DB_CACHE_SIZE is the key parameter to use when tuning the data cache hit ratio. The data
cache hit ratio is the percentage of the data block accesses that occur without requiring a physical
read from disk. While there are several situations that can artificially inflate or deflate the data
cache hit ratio, this ratio is a key indicator of system efficiency. The following query can be used
to view the data cache hit ratio:

column phys format 999,999,999 heading 'Physical Reads'
column gets format 999,999,999 heading ' DB Block Gets'
column con_gets format 999,999,999 heading 'Consistent Gets'
column hitratio format 999.99 heading ' Hit Ratio '
select sum(decode(name,'physical reads',value,0)) phys,

sum(decode(name,'db block gets',value,0)) gets,

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:22:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 131

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:131

U
si

ng
V

$D
B

_C
A

C
H

E
_A

D
V

IC
E

in
tu

ni
ng

D
B

_C
A

C
H

E
_S

IZ
E

sum(decode(name,'consistent gets', value,0)) con_gets,
(1 - (sum(decode(name,'physical reads',value,0)) /
(sum(decode(name,'db block gets',value,0)) +
sum(decode(name,'consistent gets',value,0))))) * 100 hitratio

from v$sysstat;

Physical Reads DB Block Gets Consistent Gets Hit Ratio
-------------- -------------- --------------- -----------

1,671 39,561 71,142 98.49

While there are exceptions for every application, a data cache hit ratio of 95 percent or
greater should be achievable for a well-tuned transactional application with the appropriate
amount of memory. Because there is such a performance difference between some disk devices
and memory access, improving the data cache hit ratio from 90 to 95 percent can nearly double
system performance when reading disk devices that are extremely slow. Improving the cache hit
ratio from 90 to 98 percent could yield nearly a 500 percent improvement where disks are
extremely slow and under the right (or should I say wrong) architectural setup.

Poor joins and poor indexing can also yield very high hit ratios due to reading many index
blocks, so make sure that your hit ratio isn’t high for a reason other than a well-tuned system. An
unusually high hit ratio may indicate the introduction of code that is poorly indexed or includes
join issues.

TIP
Hit ratios are useful to experienced DBAs but can be misleading for
inexperienced DBAs. The best use of hit ratios is still to compare over
time to help alert you to a substantial change to a system on a given
day. While there are some that have deprecated hit ratios, they are
usually tool vendors who don’t see the value of tracking hit ratios
over time, since their tools are point-in-time or reactive-based tuning
solutions. Hit ratios should never be your only tool, but they should
definitely be one of many proactive tools in your arsenal.

Oracle continues to downplay the importance of hit ratios by reducing the discussions on hit
ratio tuning. Oracle is beginning to focus on analyzing system performance in terms of work done
(CPU or service time) versus time spent waiting for work (wait time). Areas where hit ratios are
still the primary tuning method are library cache and dictionary cache. See Chapter 14 on
STATSPACK for more information on balancing the entire tuning arsenal including hit ratios.

Using V$DB_CACHE_ADVICE in tuning DB_CACHE_SIZE
V$DB_CACHE_ADVICE is a view introduced in Oracle 9i to assist in tuning DB_CACHE_SIZE.
The view can be queried directly, and the data in the view is used by the Oracle kernel (or
database engine) to make automatic cache management decisions. Here is an Oracle 10g
Release 2 query (note that Oracle 9i Release 1 does not have the column size_factor) to view
the effect of changing DB_CACHE_SIZE on the data cache hit ratio:

select name, size_for_estimate, size_factor, estd_physical_read_factor
from v$db_cache_advice;

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:23:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

132 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:132

NAME SIZE_FOR_ESTIMATE SIZE_FACTOR ESTD_PHYSICAL_READ_FACTOR
-------------------- ----------------- ----------- -------------------------
DEFAULT 4 .1667 1.8136
DEFAULT 8 .3333 1.0169
DEFAULT 12 .5 1.0085
DEFAULT 16 .6667 1
DEFAULT 20 .8333 1
DEFAULT 24 1 1

Reading these results, we see the following:

■ The current cache size is 24MB (size_factor = 1).

■ We can decrease the cache size to be 16MB and maintain the current cache hit ratio,
since the physical_read_factor remains at 1 up to a decrease to 16MB.

While this view provides an estimate of the effect of changing the cache size on the cache hit
ratio, any changes should be tested to validate that the results are as forecasted. Oracle Enterprise
Manager provides a graphical view of the data in V$DB_CACHE_ADVICE.

Keeping the Hit Ratio for the Data Cache Above 95 Percent
The hit ratio for the data cache should generally be above 95 percent for transactional systems.
But, the best use for a hit ratio is to study your system over time to see major changes that should
warrant further investigation. Usually, if your hit ratio is below 95 percent, you may need to
increase the value of DB_CACHE_SIZE. In some instances, you can increase performance
substantially by increasing the hit ratio from 95 to 98 percent—especially if the last 5 percent
of the hits going to disk are the main lag on the system.

Monitoring the V$SQLAREA View to Find Bad Queries
Although hit ratios below 95 percent are usually a sign that your DB_CACHE_SIZE is set too low
or that you have poor indexing, distortion of the hit ratio numbers is possible and needs to be
taken into account while tuning. Hit ratio distortion and non-DB_CACHE_SIZE issues include the
following:

■ Recursive calls

■ Missing or suppressed indexes

■ Data sitting in memory

■ Rollback segments

■ Multiple logical reads

■ Physical reads causing the system to use CPU

To avoid being misled, locate bad queries by monitoring the V$SQLAREA view. Once
you isolate the queries that are causing performance hits, tune the queries or modify how the
information is stored to solve the problem. Using the Performance page of Enterprise Manager

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:23:26 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Grid Control, a DBA can generate the TopSQL for their system. The TopSQL section of Enterprise
Manager Grid Control (Figure 4-2) displays a list of the worst SQL statements in the current cache
based on Activity and also the Top Sessions by Activity. The DBA can then click on the problem
SQL to begin the process of analyzing and tuning the problem SQL statement. Chapter 5 discusses
the benefits of Oracle’s Enterprise Manager in detail and how to tune the SQL statements using
Enterprise Manager Grid Control.

TIP
In Oracle 10g Release 2, use the Enterprise Manager Grid Control to
find problem queries.

Hit Ratios Are Not Always Accurate
If you are utilizing hit ratios to measure performance, note that within Performance Manager,
during peak times the number of disk reads is larger than the number of in-memory reads and
thus the negative hit ratio is being computed in terms of the deltas between physical reads and
logical reads.

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 133

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:133

M
o

ni
to

ri
ng

th
e

V
$S

Q
L

A
R

E
A

V
ie

w
to

F
in

d
B

ad
Q

ue
ri

es

FIGURE 4-2. Use Oracle’s Enterprise Manager Grid Control to find problem queries.

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:23:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

134 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:134

Bad Hit Ratios Can Occur When an Index Is Suppressed
Consider the following query where the CUSTOMER table is indexed on the unique custno column. It
is not optimal to have this index suppressed by using the NVL, because it results in a poor hit ratio.

select custno, name
from customer
where nvl(custno,0) = 5789;

Tries (Logical Reads) = 105 Physical = 100
% hit ratio = (1 - Physical/Tries) x 100
% hit ratio = (1 - 100/105) x 100%
% hit ratio = 4.8% (A very low/bad hit ratio)

If you are looking at this in Enterprise Manager, there is an index missing on a query that is
being executed at the current time. Focus on the query that is causing this problem and fix the
query. The query can be found by accessing the V$SQLAREA view as shown in Chapter 8.

TIP
A low hit ratio for a query is an indication of a missing or suppressed
index.

Getting Good Hit Ratios with Well-Indexed Queries
Consider the following query, where the customer table is indexed on the unique custno column.
In this situation, it is optimal to utilize the custno index because it results in an excellent hit ratio.

select custno, name
from customer
where custno = 5789;

Tries (Logical Reads) = 105 Physical = 1
% hit ratio = (1 - Physical/Tries) x 100
% hit ratio = (1 - 1/105) x 100%
% hit ratio = 99% (A very high/usually good hit ratio)

If you are looking at this in the Enterprise Manager, there is usually an index on the query that
is being executed.

Bad Queries Executing a Second Time Can Result in Good Hit Ratios
When a full table scan is completed for the second time and the data is still in memory, you may
see a good hit ratio even though the system is trying to run a bad query.

Tries (Logical Reads) = 105 Physical = 1
% hit ratio = (1 - Physical/Tries) x 100
% hit ratio = (1 - 1/105) x 100%
% hit ratio = 99% (A very high/usually good hit ratio)

If you are looking at this in the Enterprise Manager, it appears that there is an index on the
query being executed when in fact the data is in memory from the last time it was executed. The
result is that you are “hogging up” a lot of memory even though it appears that an indexed search
is being done.

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:24:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

S
et

ti
ng

D
B

_B
L

O
C

K
_S

IZ
E

to
R

ef
le

ct
S

iz
e

o
fD

at
a

R
ea

ds

TIP
Bad (slow) queries show in V$SQLAREA view with poor hit ratios
the first time they are executed. Make sure your tune them at that
time. The second time that they execute, they may not show a
poor hit ratio.

Other Hit Ratio Distortions
There are several other hit distortions to consider:

■ Oracle Forms distortion Systems that use Oracle Forms (screens) frequently might use
the same information over and over. This reuse by some of the users of the system will
drive up the hit ratio. Other users on the system may not be experiencing hit ratios that
are as good as the Forms users, yet the overall system hit ratio may look very good. The
DBA must take into consideration that the Forms users can be boosting the hit ratio to an
artificially high level.

■ Rollback segment distortion Because the header block of the rollback segment is
usually cached, the activity to the rollback segment gives a falsely high hit ratio impact
when truly there is no significant impact on the hit ratio.

■ Index distortion An index range scan results in multiple logical reads on a very small
number of blocks. Hit ratios as high as 86 percent can be recorded when none of the
blocks are cached prior to the query executing. Make sure you monitor the hit ratio of
individual poorly tuned queries in addition to monitoring the big picture (overall hit ratio).

■ I/O distortion Physical reads that appear to be causing heavy disk I/O may be actually
causing you to be CPU bound. In tests, the same amount of CPU was used for 89 logical
reads as it was to process 11 physical reads. The result is that the physical reads are CPU
costly because of BUFFER MANAGEMENT. Fix the queries causing the disk I/O problems
and you will usually free up a large amount of CPU as well. Performance degradation
can be exponentially downward spiraling, but the good news is that when you begin
to fix your system, it is often an exponentially upward-spiraling event. It’s probably the
main reason why some people live to tune; tuning can be exhilarating.

Setting DB_BLOCK_SIZE to Reflect
the Size of Your Data Reads
The DB_BLOCK_SIZE is the size of the default data block size when the database is created. With
Oracle 10g Release 2, each tablespace can have a different block size, thus making block size
selection a less critical selection before the database is created. That said, a separate cache
memory allocation must be made for each different database block size. But, it is still very
important to choose wisely. While you can have different block size tablespaces, this is not truly
a performance feature, as the non-default buffer caches are not optimized for performance. So,
you still want to put the bulk of your data in the default buffer cache. The database must be
rebuilt if you want to increase the DB_BLOCK_SIZE.

The data block cache for the default block size is set using the DB_CACHE_SIZE initialization
parameter. Cache is allocated for other database block sizes by using the DB_nK_CACHE_SIZE,
where n is the block size in KB. The larger the DB_BLOCK_SIZE, the more that can fit inside a

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 135

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:135

S
et

ti
ng

D
B

_B
L

O
C

K
_S

IZ
E

to
R

ef
le

ct
S

iz
e

o
fD

at
a

R
ea

ds

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:24:21 AM

Color profile: Generic CMYK printer profile
Composite Default screen

single block and the more efficient large amounts of data can be retrieved. A small DB_BLOCK_SIZE
actually lets you retrieve single records faster and saves space in memory. In addition, a smaller
block size can improve transactional concurrency and reduce log file generation rates. As a rule
of thumb, a data warehouse should use the maximum block size available for your platform
(either 16KB or 32KB), while a transaction processing system should use an 8KB block size.
Rarely is a block size smaller than 8KB beneficial. If you have an extremely high transaction
rate system or very limited system memory, you might consider a block size smaller than 8KB.

Full table scans are limited to the maximum I/O of the box (usually 64K, but as high as 1M
on many systems). You can up the amount of data read into memory in a single I/O by increasing
DB_BLOCK_SIZE to 8K or 16K. You can also increase the DB_FILE_MULTIBLOCK_READ_COUNT
to the value of (max I/O size)/DB_BLOCK_SIZE.

Environments that run a lot of single queries to retrieve data could use a smaller block
size, but “hot spots” in those systems will still benefit from using a larger block size. Sites
that need to read large amounts of data in a single I/O read should increase the DB_FILE_
MULTIBLOCK_READ_ COUNT. Setting the DB_FILE_MULTIBLOCK_READ_COUNT
higher is especially important for data warehouses that retrieve lots of records. If the use of
DB_FILE_MULTIBLOCK_READ_COUNT starts to cause many full table scans (since the optimizer
now decides it can perform full table scans much faster and decides to do more of them) then
set OPTIMIZER_INDEX_COST_ADJ between 1 and 10 (I usually use 10) to force index use more
frequently.

TIP
The database must be rebuilt if you increase the DB_BLOCK_SIZE.
Increasing the DB_FILE_MULTIBLOCK_READ_COUNT will allow
more block reads in a single I/O, giving a benefit similar to a larger
block size.

The general rule of thumb is to start with an SGA_MAX_SIZE parameter at 25 percent of
the size allocated to your main memory. A large number of users (300+) or a small amount
of available memory may force you to make this 15–20 percent of physical memory. A small
number of users (less than 100) or a large amount of physical memory may allow you to make
this 30–50 percent of physical memory. If you set the SGA_MAX_SIZE less than 128M, then
the _ksm_granule_size will be 4M. If the SGA_MAX_SIZE is greater or equal to 128M, then the
_ksm_granule_size will be 16M. This granule size will determine the multiples for other initialization
parameters. A granule size of 4M means that certain initialization parameters will be rounded up
to the nearest 4M. Therefore, if I set SGA_MAX_SIZE to 64M and DB_CACHE_SIZE to 9M, then
the DB_CACHE_SIZE will be rounded to 12M (since the granule size is 4M). If I set SGA_MAX_SIZE
to 200M and DB_CACHE_SIZE to 9M, then the DB_CACHE_SIZE will be rounded to 16M (since
the granule size is 16M).

TIP
The SGA_MAX_SIZE determines the granule size for other parameters.
An SGA_MAX_SIZE<128M means a 4M granule, whereas an
SGA_MAX_SIZE>=128M means a 16M granule size.

136 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:136

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:24:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 137

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:137

T
un

in
g

th
e

S
H

A
R

E
D

_P
O

O
L

_
S

IZ
E

fo
r

O
pt

im
al

P
er

fo
rm

an
ce

Tuning the SHARED_POOL_SIZE for Optimal Performance
Sizing the SHARED_POOL_SIZE correctly will make sharing SQL statements that are identical
possible. Getting the statement parsed is priority #1. If the query never makes it into memory,
it can never request the data to be accessed; that’s where the SHARED_POOL_SIZE comes in.
SHARED_POOL_SIZE specifies the memory allocated in the SGA for data dictionary caching
and shared SQL statements.

The data dictionary cache is very important because that’s where the data dictionary
components are buffered. Oracle references the data dictionary several times when a SQL
statement is processed. Therefore, the more information (database and application schema and
structure) that’s stored in memory, the less information that’ll have to be retrieved from disk.
While the dictionary cache is part of the shared pool, Oracle also caches SQL statements and
their corresponding execution plans in the library cache portion of the shared pool (see next
section for how the shared SQL area works).

The data dictionary cache portion of the shared pool operates in a manner similar to the
DB_CACHE_SIZE when caching information. For the best performance, it would be great if the
entire Oracle data dictionary could be cached in memory. Unfortunately, this usually is not
feasible, so Oracle uses a least recently used algorithm for deciding what gets to stay in the cache.

Using Stored Procedures for Optimal Use of the Shared SQL Area
Each time a SQL statement is executed, the statement is searched for in the shared SQL area and,
if found, used for execution. This saves parsing time and improves overall performance. Therefore,
to ensure optimal use of the shared SQL area, use stored procedures as much as possible, since
the SQL parsed is exactly the same every time and therefore shared. However, keep in mind the
only time the SQL statement being executed can use a statement already in the shared SQL area
is if the statements are identical (meaning they have the same content exactly—the same case,
the same number of spaces, etc.). If the statements are not identical, the new statement will be
parsed, executed, and placed in the shared SQL area (exceptions to this are possible when the
initialization parameter CURSOR_SHARING has been set to SIMILAR or FORCE).

In the following example, the statements are identical in execution, but the word from causes
Oracle to treat the two statements as if they were different, thus not reusing the original cursor
that was located in the shared SQL area:

SQL> select name, customer from customer_information;
SQL> select name, customer FROM customer_information;

TIP
SQL must be written exactly the same to be reused. Case differences
and any other differences will cause a reparse of the statement.

In the following example, we are using different values for ENAME, which is causing multiple
statements to be parsed.

declare
temp VARCHAR2(10);

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:24:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

138 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:138

begin
select ename into temp
from rich
where ename = 'SMITH';
select ename into temp
from rich
where ename = 'JONES';

end;

A query of V$SQLAREA shows that two statements were parsed even though they were very
close to the same thing. Note, however, that PL/SQL converted each SQL statement to uppercase
and trimmed spaces and carriage returns (which is a benefit of using PL/SQL).

select sql_text
from v$sqlarea
where sql_text like 'SELECT ENAME%';

SQL_TEXT
--
SELECT ENAME FROM RICH WHERE ENAME = 'JONES'
SELECT ENAME FROM RICH WHERE ENAME = 'SMITH'

In the following example, we see a problem with third-party applications that do not use bind
variables (they do this to keep the code “vanilla” or capable of working on many different databases
without modification). The problem with this code is that the developer has created many statements
that fill the shared pool and these statements can’t be shared (since they’re slightly different). We
can build a smaller shared pool so that there is less room for cached cursors and thus fewer
cursors to search through to find a match (this is the band-aid inexperienced DBAs use). If the
following is your output from v$sqlarea, you may benefit from lowering the SHARED_POOL
_SIZE, but using CURSOR_SHARING is a better choice.

SQL_TEXT

select empno from rich778 where empno =451572
select empno from rich778 where empno =451573
select empno from rich778 where empno =451574
select empno from rich778 where empno =451575
select empno from rich778 where empno =451576
etc. . .

Set CURSOR_SHARING=FORCE and the query to V$SQLAREA will change to the one listed
next, because Oracle builds a statement internally that can be shared by all of the preceding
statements. Now the shared pool is not inundated with all of these statements; only one simple
statement that can be shared by all of them:

SQL_TEXT
--
select empno from rich778 where empno =:SYS_B_0

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:25:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 139

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:139

T
un

in
g

th
e

S
H

A
R

E
D

_P
O

O
L

_
S

IZ
E

fo
r

O
pt

im
al

P
er

fo
rm

an
ce

Setting the SHARED_POOL_SIZE High Enough to Fully Use
the DB_CACHE_SIZE
If the SHARED_POOL_SIZE is set too low, then you will not get the full advantage of your
DB_CACHE_SIZE (since statements that can’t be parsed can’t be executed). The queries that
can be performed against the Oracle V$ views to determine the data dictionary cache hit ratio
and the shared SQL statement usage are listed in the sections that follow. These will help you
determine if increasing the SHARED_POOL_SIZE will improve performance.

The SHARED_POOL_SIZE parameter is specified in bytes. The default value for the
SHARED_POOL_SIZE parameter varies per system but is generally lower than necessary
for large production applications.

Keeping the Data Dictionary Cache Hit Ratio at or above 95 Percent
The data dictionary cache is a key area to tune because the dictionary is accessed so frequently,
especially by the internals of Oracle. At startup, the data dictionary cache contains no data.
But as more data is read into cache, the likelihood of cache misses decreases. For this reason,
monitoring the data dictionary cache should be done only after the system has been up for a
while and stabilized. If the dictionary cache hit ratio is below 95 percent, then you’ll probably
need to increase the size of the SHARED_POOL_SIZE parameter in the initialization parameter
file. Implementing Locally Managed Tablespaces (LMT) can also help your dictionary cache (see
Metalink Note 166474.1, “Can We Tune the Row Cache!”) However, keep in mind that the
shared pool also includes the library cache (SQL statements) and Oracle decides how much the
distribution will be for the library cache versus the row cache.

Use the following query against the Oracle V$ view to determine the data dictionary cache
hit ratio:

select ((1 - (Sum(GetMisses) / (Sum(Gets) + Sum(GetMisses)))) * 100) "Hit Rate"
from V$RowCache
where Gets + GetMisses <> 0;

Hit Rate

91.747126

TIP
Measure hit ratios for the row cache (data dictionary cache) of the
shared pool with the V$ROWCACHE view. A hit ratio of over 95
percent should be achieved. However, when the database is initially
started, hit ratios will be around 85 percent.

Using Individual Row Cache Parameters to Diagnose Shared Pool Use To diagnose a
problem with the shared pool or the overuse of the shared pool, use a modified query to the
V$ROWCACHE view. This will show how each individual parameter makes up the data
dictionary cache, also referred to as the row cache.

column parameter format a20 heading 'Data Dictionary Area'
column gets format 999,999,999 heading 'Total|Requests'
column getmisses format 999,999,999 heading 'Misses'

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:25:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

column modifications format 999,999 heading 'Mods'
column flushes format 999,999 heading 'Flushes'
column getmiss_ratio format 9.99 heading 'Miss|Ratio'
set pagesize 50
ttitle 'Shared Pool Row Cache Usage'

select parameter, gets, getmisses, modifications, flushes,
(getmisses / decode(gets,0,1,gets)) getmiss_ratio,
(case when (getmisses / decode(gets,0,1,gets)) > .1 then '*' else ' ' end) " "

from v$rowcache
where Gets + GetMisses <> 0;

Tue Aug 27 page 1
Shared Pool Row Cache Usage
Total Miss

Data Dictionary Area Requests Misses Mods Flushes Ratio
-------------------- ------------ ------------ -------- -------- ----- -
dc_segments 637 184 0 0 .29 *
dc_tablespaces 18 3 0 0 .17 *
dc_users 126 25 0 0 .20 *
dc_rollback_segments 235 21 31 30 .09
dc_objects 728 167 55 0 .23 *
dc_global_oids 16 6 0 0 .38 *
dc_object_ids 672 164 55 0 .24 *
dc_sequences 1 1 1 1 1.00 *
dc_usernames 193 10 0 0 .05
dc_histogram_defs 24 24 0 0 1.00 *
dc_profiles 1 1 0 0 1.00 *
dc_user_grants 24 15 0 0 .63 *

This query places an asterisk (*) for any query that has misses greater than 10 percent. It does
this by using the CASE expression to limit the miss ratio to the tenth digit, and then analyzes that
digit for any value greater than 0 (which would indicate a hit ratio of 10 percent or higher). A 0.1
miss or higher returns an *. Explanations of each of the columns are listed in the next section.

Keeping the Library Cache Reload Ratio at 0
and the Hit Ratio Above 95 Percent
For optimal performance, you’ll want to keep the library cache reload ratio [sum(reloads) /
sum(pins)] at zero and the library cache hit ratio above 95 percent. If the reload ratio is not zero,
then there are statements that are being “aged out” that are later needed and brought back into
memory. If the reload ratio is zero (0), that means items in the library cache were never aged or
invalidated. If the reload ratio is above 1 percent, the SHARED_POOL_SIZE parameter should
probably be increased. Likewise, if the library cache hit ratio comes in below 95 percent, then
the SHARED_POOL_SIZE parameter may need to be increased. Also, if you are using ASMM,
the SGA_TARGET includes both auto-tuned and manual parameters. When you decide to raise
a parameter specifically (such as SHARED_POOL_SIZE), it will influence the auto-tuned part.
(Other parameters will be affected; see Metalink Note 295626.1, “How to Use Automatic Shared
Memory Management (ASMM) in Oracle 10g.”)

There are a couple of ways to monitor the library cache. The first method is to execute the
STATSPACK report (STATSPACK is covered in detail in Chapter 14). The second is to use the

140 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:140

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:25:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

V$LIBRARYCACHE view. The following query uses the V$LIBRARYCACHE view to examine the
reload ratio in the library cache:

select Sum(Pins) "Hits",
Sum(Reloads) "Misses",
((Sum(Reloads) / Sum(Pins)) * 100)"Reload %"

from V$LibraryCache;

Hits Misses Reload %
1969 50 0.253936

The next query uses the V$LIBRARYCACHE view to examine the library cache’s hit ratio in detail:

select Sum(Pins) "Hits",
Sum(Reloads) "Misses",
Sum(Pins) / (Sum(Pins) + Sum(Reloads)) "Hit Ratio"

from V$LibraryCache;

HITS MISSES HIT RATIO
1989 5 .99749248

This hit ratio is excellent (over 99 percent) and does not require any increase in the
SHARED_POOL_SIZE parameter.

Using Individual Library Cache Parameters to Diagnose Shared Pool Use Using a
modified query on the same table, we can see how each individual parameter makes up the
library cache. This may help diagnose a problem or show overuse of the shared pool.

set numwidth 3
set space 2
set newpage 0
set pagesize 58
set linesize 80
set tab off
set echo off
ttitle 'Shared Pool Library Cache Usage'
column namespace format a20 heading 'Entity'
column pins format 999,999,999 heading 'Executions'
column pinhits format 999,999,999 heading 'Hits'
column pinhitratio format 9.99 heading 'Hit|Ratio'
column reloads format 999,999 heading 'Reloads'
column reloadratio format .9999 heading 'Reload|Ratio'
spool cache_lib.lis
select namespace, pins, pinhits, pinhitratio, reloads, reloads

/decode(pins,0,1,pins) reloadratio
from v$librarycache;

Sun Mar 19 page 1
Shared Pool Library Cache Usage

Hit Reload

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 141

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:141

T
un

in
g

th
e

S
H

A
R

E
D

_P
O

O
L

_
S

IZ
E

fo
r

O
pt

im
al

P
er

fo
rm

an
ce

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:25:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

142 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:142

Entity Executions Hits Ratio Reloads Ratio

SQL AREA 1,276,366 1,275,672 1.00 2 .0000
TABLE/PROC 539,431 539,187 1.00 5 .0000
BODY 0 0 1.00 0 .0000
TRIGGER 0 0 1.00 0 .0000
INDEX 21 0 .00 0 .0000
CLUSTER 15 5 .33 0 .0000
OBJECT 0 0 1.00 0 .0000
PIPE 0 0 1.00 0 .0000
JAVA SRCE 0 0 1.00 0 .0000
JAVA RES 0 0 1.00 0 .0000
JAVA DATA 0 0 1.00 0 .0000
11 rows selected.

Use the following list to help interpret the contents of the V$LIBRARYCACHE view:

■ namespace The object type stored in the library cache. The values SQL AREA,
TABLE/PROCEDURE, BODY, and TRIGGER show the key types.

■ gets Shows the number of times an item in library cache was requested.

■ gethits Shows the number of times a requested item was already in the library cache.

■ gethitratio Shows the ratio of gethits to gets.

■ pins Shows the number of times an item in the library cache was executed.

■ pinhits Shows the number of times an item was executed where that item was already
in the library cache.

■ pinhitratio Shows the ratio of pinhits to pins.

■ reloads Shows the number of times an item had to be reloaded into the library cache
because it aged out or was invalidated.

Keeping the Pin Hit Ratio for Library Cache Items Close to 100 Percent
The pin hit ratio for all library cache items “sum(pinhits) / sum(pins)” should be close to one (or a
100 percent hit ratio). A pin hit ratio of 100 percent means that every time the system needed to
execute something, it was already allocated and valid in the library cache. While there will always
be some misses the first time a request is made, misses can be reduced by writing identical SQL
statements.

TIP
Measure hit ratios for the library cache of the shared pool with the
V$LIBRARYCACHE view. A hit ratio of over 95 percent should be
achieved. However, when the database is initially started, hit ratios
will be around 85 percent.

Keeping the Miss Ratio Less Than 15 Percent
The miss ratio for data dictionary cache “sum(getmisses) / sum(gets)” should be less than 10 to 15
percent. A miss ratio of zero (0) means that every time the system went into the data dictionary
cache, it found what it was looking for and did not have to retrieve the information from disk.

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:26:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 143

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:143

T
un

in
g

th
e

S
H

A
R

E
D

_P
O

O
L

_
S

IZ
E

fo
r

O
pt

im
al

P
er

fo
rm

an
ce

If the miss ratio “sum(getmisses) / sum(gets)” is greater than 10–15 percent, the initialization
SHARED_POOL_SIZE parameter should be increased.

Using Available Memory to Determine if the SHARED_POOL_SIZE
is Set Correctly
The main question that people usually want answered is: “Is there any memory left in the shared pool?”
To find out how fast memory in the shared pool is being depleted (made noncontiguous or in use) and
also what percent is unused (and still contiguous), run the following query after starting the database and
running production queries for a short period of time (for example, after the first hour of the day):

col value for 999,999,999,999 heading "Shared Pool Size"
col bytes for 999,999,999,999 heading "Free Bytes"
select to_number(v$parameter.value) value, v$sgastat.bytes,

(v$sgastat.bytes/v$parameter.value)*100 "Percent Free"
from v$sgastat, v$parameter
where v$sgastat.name = 'free memory'
and v$parameter.name = 'shared_pool_size'
and v$sgastat.pool = 'shared pool';

Shared Pool Size Free Bytes Percent Free
---------------- ---------------- ------------

50,331,648 46,797,132 92.9775476

If there is plenty of contiguous free memory (greater than 2MB) after running most of the queries
in your production system (you’ll have to determine how long this takes), then there is no need to
increase the SHARED_POOL_SIZE parameter. I have never seen this parameter go all of the way
to zero (Oracle saves a portion for emergency operations via the SHARED_POOL_RESERVED_
SIZE parameter).

TIP
The V$SGASTAT view shows how fast the memory in the shared pool
is being depleted. Remember that it is only a rough estimate. It shows
you any memory that has never been used combined with any piece
of memory that has been reused. Free memory will go up and down
as the day goes on, depending on how the pieces are fragmented.

Using the X$KSMSP Table to Get a Detailed Look at the Shared Pool
The X$KSMSP table can be queried to get total breakdown for the shared pool. This table will
show the amount of memory that is free, memory that is freeable, and memory that is retained for
large statements that won’t fit into the current shared pool. Consider the following query for a
more accurate picture of the shared pool. Refer to Chapter 13 for an in-depth look at this query
and how it is adjusted as Oracle is started and as the system begins to access shared pool memory.

select sum(ksmchsiz) Bytes, ksmchcls Status
from x$ksmsp
group by ksmchcls;

BYTES STATUS
----------- ------
50,000,000 R-free

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:26:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

144 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:144

40 R-freea
888,326,956 free

837,924 freeabl
61,702,380 perm

359,008 recr

Oracle does not state anywhere what the values for status in the X$KSMSP table indicate.
In the following table, I offer the following possible descriptions based on the behavior of these
values as researched in Chapter 13.

Status Possible Meaning

Free This is the amount of contiguous free memory available.

Freeabl Freeable but not flushable shared memory; currently in use.

Perm I have read that this is permanently allocated and non-freeable memory,
but in testing this, I find that it behaves as free memory not yet moved to
the free area for use.

Recr Allocated memory that is flushable when the shared pool is low on memory.

R-free This is SHARED_POOL_RESERVED_SIZE (default 5 percent of SP).

R-freea This is probably reserved memory that is freeable but not flushable.

R-recr Recreatable chucks of memory in the reserved pool.

R-perm Permanent chucks of memory in the reserved pool.

TIP
The general rule of thumb is to make the SHARED_POOL_SIZE
parameter 50–150 percent of the size of your DB_CACHE_SIZE. In
a system that makes use of a large amount of stored procedures or
Oracle supplied packages but has limited physical memory, this
parameter could make up as much as 150 percent the size of
DB_CACHE_SIZE. In a system that uses no stored procedures but has
a large amount of physical memory to allocate to DB_CACHE_SIZE,
this parameter may be 10–20 percent of the size of DB_CACHE_SIZE.
I have worked on larger systems where the DB_CACHE_SIZE was set
as high as 100G. Note that in a shared server configuration (previously
known as MTS) items from the PGA are allocated from the shared
pool rather than the session process space.

Points to Remember about Cache Size
Here are some quick further notes about setting your cache and share pool sizes:

■ If the dictionary cache hit ratio is low (below 95 percent), then consider increasing
SHARED_POOL_SIZE.

■ If the library cache reload ratio is high (>1 percent), then consider increasing
SHARED_POOL_SIZE.

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:26:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 145

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:145

T
un

in
g

th
e

S
H

A
R

E
D

_P
O

O
L

_
S

IZ
E

fo
r

O
pt

im
al

P
er

fo
rm

an
ce

■ Size the data cache and shared pool appropriately for your systems in terms of workload
requirements.

Waits Related to Initialization Parameters
Setting initialization parameters incorrectly will often result in various types of performance
issues that will show up as general “waits” or “latch waits” in a STATSPACK report. In Chapter
14, we cover every type of wait and latch issue related to this. The following tables identify some
waits and latch waits and their potential fixes.

Wait Problem Potential Fix

Free buffer Increase the DB_CACHE_SIZE; shorten the checkpoint; tune the code

Buffer busy Segment Header — Add freelists or freelist groups or use ASSM

Buffer busy Data Block — Separate hot data; use reverse key indexes; small
block sizes

Buffer busy Data Block — Increase initrans and/or maxtrans

Buffer busy Undo Header —Use automatic undo management

Buffer busy Undo Block — Commit more; use automatic undo management

Latch free Investigate the detail (listing in next table of this chapter for fixes)

Log buffer space Increase the log buffer; use faster disks for the redo logs

Scattered read Indicates many full table scans — tune the code; cache small tables

Sequential read Indicates many index reads — tune the code (especially joins)

Write complete waits Adds database writers; checkpoint more often; buffer cache too small

Latch Problem Potential Fix

Library cache Use bind variables; adjust the shared_pool_size

Shared pool Use bind variables; adjust the shared_pool_size

Row cache objects Increase the shared pool. This is not a common problem.

Cache buffers chain If you get this latch wait, it means you need to reduce logical I/O
rates by tuning and minimizing the I/O requirements of the SQL
involved. High I/O rates could be a sign of a hot block (meaning
a block highly accessed). Cache buffer lru chain latch contention
can be resolved by increasing the size of the buffer cache and
thereby reducing the rate at which new blocks are introduced
into the buffer cache. You should adjust DB_BLOCK_BUFFERS,
and possible DB_BLOCK_SIZE. Multiple buffer pools can help
reduce contention on this latch. You can create additional cache
buffer lru chain latches by adjusting the configuration parameter
DB_BLOCK_LRU_LATCHES. You may be able to reduce the load
on the cache buffer chain latches by increasing the configuration
parameter. _DB_BLOCK_HASH_BUCKETS may need to be
increased or set to a prime number (in pre-9i versions).

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:27:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Some latch problems have often been bug related in the past, so make sure that you check
Metalink for issues related to latches. Any of the latches that have a hit ratio below 99 percent
should be investigated.

Using Oracle Multiple Buffer Pools
There are pools for the allocation of memory. They relate to the DB_CACHE_SIZE and SHARED_
POOL_SIZE. Each of these parameters, which were all-inclusive of the memory they allocate,
now has additional options for memory allocation within each memory pool. I will cover each
of the two separately.

Pools Related to DB_CACHE_SIZE and Allocating Memory for Data
In this section, we will focus on the Oracle pools that are used to store the actual data in memory.
The initialization parameters DB_CACHE_SIZE, DB_KEEP_CACHE_SIZE, and DB_RECYCLE_CACHE_
SIZE will be the determining factors for memory used to store data. DB_CACHE_SIZE refers to the
total size in bytes of the main buffer cache (or memory for data) in the SGA. Two additional
buffer pools are DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE. These additional two
pools serve the same purpose as the main buffer cache (DB_CACHE_SIZE), with the exception
that the algorithm to maintain the pool is different for all three available pools. Note that the
BUFFER_POOL_KEEP, DB_BLOCK_BUFFERS, and BUFFER_POOL_RECYCLE parameters have
been deprecated and should no longer be used. Unlike BUFFER_POOL_KEEP and BUFFER_
POOL_RECYCLE, DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE are not subtracted
from DB_CACHE_SIZE; they are allocated in addition to DB_CACHE_SIZE.

The main buffer cache (defined by DB_CACHE_SIZE) maintains the LRU (least recently used)
list and flushes the oldest buffers in the list. While all three pools utilize the LRU replacement
policy, the goal for the main buffer cache is to fit most data being used in memory.

The keep pool (defined by DB_KEEP_CACHE_SIZE) is hopefully never flushed; it is intended
for buffers that you want to be “pinned” indefinitely (buffers that are very important and need to
stay in memory). Use the keep pool for small tables (that will fit in their entirety in this pool) that
are frequently accessed and need to be in memory at all times.

The recycle pool (defined by DB_RECYCLE_CACHE_SIZE) is a pool from which you expect
the data to be regularly flushed, since there is too much data being accessed to stay in memory.
Use the recycle pool for large, less important data that is usually accessed only once in a long
while (usually ad hoc user tables for inexperienced users are put here).

The following examples provide a quick look on how information is allocated to the various
buffer pools. Remember, if no pool is specified, then the buffers in the main pool are used.

1. Create a table that will be stored in the keep pool upon being accessed:

Create table state_list (state_abbrev varchar2(2), state_desc varchar2(25))

Storage (buffer_pool keep);

2. Alter the table to the recycle pool:

Alter table state_list storage (buffer_pool recycle);

3. Alter the table back to the keep pool:

Alter table state_list storage (buffer_pool keep);

146 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:146

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:27:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:147

U
si

ng
O

ra
cl

e
M

ul
ti

pl
e

B
uf

fe
r

P
o

o
ls

4. Find the disk and memory reads in the keep pool:

select physical_reads "Disk Reads",

db_block_gets + consistent_gets "Memory Reads"

from v$buffer_pool_statistics

where name = 'KEEP';

Modifying the LRU Algorithm
In this section, we’re going to go over the deep edge for experts only. Skip this section if you’ve
used Oracle for only a decade or less. There are five undocumented initialization parameters
(defaults are in parentheses) that can be used to alter the LRU algorithm for greater efficiency
when you really have studied and understand your system buffer usage well:

■ _db_percent_hot_default (50) The percent of buffers in the hot region

■ _db_aging_touch_time (3) Seconds that must pass to increment touch count again

■ _db_aging_hot_criteria (2) Threshold to move a buffer to the MRU end of LRU chain

■ _db_aging_stay_count (0) Touch count reset to this when moved to MRU end

■ _db_aging_cool_count (1) Touch count reset to this when moved to LRU end

We can see that by decreasing the value of the first of these parameters, we allow buffers to
remain longer; setting it higher will cause a flush sooner. Setting parameter 2 lower will give
higher value to buffers that are executed a lot in a short period of time. Parameters 3, 4, and 5 all
relate to how quickly to move things from the hot end to the cold end and how long they stay on
each end.

Pools Related to SHARED_POOL_SIZE and Allocating Memory for
Statements
In this section, we will focus on the pools that are used to store the actual statements in memory.
Unlike the pools related to the data, the LARGE_POOL_SIZE is allocated outside the memory
allocated for SHARED_POOL_SIZE, but it is still part of the SGA.

The LARGE_POOL_SIZE is a pool of memory used for the same operations as the shared
pool. Oracle defines this as the size set aside for large allocations of the shared pool. You’ll
have to do your own testing to ensure where the allocations are coming from in your system
and version of Oracle. The minimum setting is 300K, but the setting must also be as big as the
_LARGE_POOL_MIN_ALLOC, which is the minimum size of shared pool memory requested that
will force an allocation in the LARGE_POOL_SIZE memory. Unlike the shared pool, the large
pool does not have an LRU list. Oracle does not attempt to age memory out of the large pool.

You can view your pool settings by querying the V$PARAMETER view:

select name, value, isdefault, isses_modifiable, issys_modifiable
from v$parameter
where name like '%pool%'
and isdeprecated <> 'TRUE'
order by 1;

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 147

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:27:37 AM

Color profile: Generic CMYK printer profile
Composite Default screen

148 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:148

NAME VALUE ISDEFAULT ISSES ISSYS_MOD
------------------------- ----------- --------- ----- ---------
java_pool_size 54525952 FALSE FALSE IMMEDIATE
large_pool_size 2516582 FALSE FALSE IMMEDIATE
olap_pool_size 8388608 FALSE FALSE DEFERRED
shared_pool_reserved_size 4613734 FALSE FALSE FALSE
shared_pool_size 134217728 TRUE FALSE IMMEDIATE
streams_pool_size TRUE FALSE IMMEDIATE
6 rows selected.

TIP
The additional buffer pools (memory for data) available in Oracle are
initially set to zero.

Tuning the PGA_AGGREGATE_TARGET
for Optimal Use of Memory
The PGA_AGGREGATE_TARGET specifies the total amount of session PGA memory that Oracle
will attempt to allocate across all sessions. PGA_AGGREGATE_TARGET was introduced in
Oracle 9i and should be used in place of the *_SIZE parameters such as SORT_AREA_SIZE. Also,
in Oracle 9i, the PGA_AGGREGATE_TARGET parameter does not automatically configure ALL
*_SIZE parameters. For example, both the LARGE_POOL_SIZE and JAVA_POOL_SIZE parameters
are not affected by PGA_AGGREGATE_TARGET. The advantage of using PGA_AGGREGATE_
TARGET is the ability to cap the total user session memory to minimize OS paging.

When PGA_AGGREGATE_TARGET is set, WORKAREA_SIZE_POLICY must be set to AUTO.
Like the V$DB_CACHE_ADVICE view, the V$PGA_TARGET_ADVICE (Oracle 9.2 and later
versions) and V$PGA_TARGET_ADVICE_HISTOGRAM views exist to assist in tuning the
PGA_AGGREGATE_TARGET. Oracle Enterprise Manager provides graphical representations
of these views.

The PGA_AGGREGATE_TARGET should be set to attempt to keep the ESTD_PGA_CACHE_
HIT_PERCENTAGE greater than 95 percent. By setting this appropriately, more data will be sorted
in memory that may have been sorted on disk. The next query returns the minimum value for the
PGA_AGGREGATE_TARGET that is projected to yield a 95 percent or greater cache hit ratio:

select min(pga_target_for_estimate)
from v$pga_target_advice
where estd_pga_cache_hit_percentage > 95;

MIN(PGA_TARGET_FOR_ESTIMATE)

12582912

Modifying the Size of Your SGA to Avoid Paging
and Swapping
Before you increase the size of your SGA, you must understand the effects on the physical memory
of your system. If you increase parameters that use more memory than what is available on your

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:27:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 149

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:149

U
nd

er
st

an
di

ng
th

e
C

o
st

-B
as

ed
O

pt
im

iz
er

system, then serious degradation in performance may occur. When your system processes jobs,
if it doesn’t have enough memory, it will start paging or swapping to complete the active task.

When paging occurs, information that is not currently being used is moved from memory
to disk. This allows memory to be used by a process that currently needs it. If paging happens
a lot, the system will experience decreases in performance, causing processes to take longer
to run.

When swapping occurs, an active process is moved from memory to disk temporarily so that
another active process that also desires memory can run. Swapping is based on system cycle time.
If swapping happens a lot, your system is dead. Depending on the amount of memory available,
an SGA that is too large can cause swapping.

Understanding the Cost-Based Optimizer
The cost-based optimizer was built to make your tuning life easier by choosing better paths for
your poorly written queries. Rule-based optimization was built on a set of rules on how Oracle
processes statements. Oracle 10g Release 2 now only supports the use of the cost-based
optimizer; the rule-based optimizer is no longer supported. Oracle 10g Release 2 has automatic
statistics gathering turned on to aid the effectiveness of the cost-based optimizer. In Oracle, many
features are only available when using cost-based optimization. The cost-based optimizer now
has two modes of operation, normal mode, and tuning mode. Normal mode should be used in
production and test environments; tuning mode can be used in development environments to aid
developers and DBAs in testing specific SQL code.

How Optimization Looks at the Data
Rule-based optimization is Oracle-centric, while cost-based optimization is data-centric. The
optimizer mode under which the database operates is set via the initialization parameter
OPTIMIZER_MODE. The possible optimizer modes are as follows:

■ CHOOSE Uses cost-based optimization for all analyzed tables. This is a good mode for
well-built and well-tuned systems (for advanced users). This option is not documented
for 10gR2 but is still usable.

■ RULE Always uses rule-based optimization. If you are still using this, you need to start
using cost-based optimization, as rule-based optimization is no longer supported under
Oracle 10g Release 2.

■ FIRST_ROWS Gets the first row faster (generally forces index use). This is good for
untuned systems that process lots of single transactions (for beginners).

■ FIRST_ROWS (1|10|100|1000) Gets the first n rows faster. This is good for applications
that routinely display partial results to users such as paging data to a user in a web
application.

■ ALL_ROWS Gets all rows faster (generally forces index suppression). This is good for
untuned, high-volume batch systems (usually not used).

The default optimizer mode for Oracle 10g Release 2 is ALL_ROWS. Also, cost-based
optimization will be used even if the tables are not analyzed.

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:28:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

150 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:150

NOTE
The optimizer in Oracle 10g Release 2 uses cost-based optimization
regardless of whether the tables have been analyzed or not.

TIP
There is no OPTIMIZER MODE called COST (a misconception). If
you are using Oracle Database 9i Release 2 or an earlier version
and are not sure what optimizer mode to use, then use CHOOSE or
FIRST_ROWS and analyze all tables. By doing this, you will be using
cost-based optimization. As the data in a table changes, tables need to
be re-analyzed at regular intervals. Oracle 10g Release 2 automatically
does this right out of the box.

Creating Enough Dispatchers
When using a shared server, some of the things you need to watch for are high busy rates for
the existing dispatcher processes and increases in wait times for response queues of existing
dispatcher processes. If the wait time increases, as the application runs under normal use, you
may wish to add more dispatcher processes, especially if the processes are busy more than 50
percent of the time.

Use the following statement to determine the busy rate:

select Network,
((Sum(Busy) / (Sum(Busy) + Sum(Idle))) * 100) "% Busy Rate"

from V$Dispatcher
group by Network;

NETWORK % Busy Rate
TCP1 0
TCP2 0

Use the following statement to check for responses to user processes that are waiting in a
queue to be sent to the user:

select Network Protocol,
Decode (Sum(Totalq), 0, 'No Responses',
Sum(Wait) / Sum(TotalQ) || ' hundredths of a second')
"Average Wait Time Per Response"

from V$Queue Q, V$Dispatcher D
where Q.Type = 'DISPATCHER'
and Q.Paddr = D.Paddr
group by Network;

PROTOCOL Average Wait Time Per Response
TCP1 0 hundredths of a second
TCP2 1 hundredths of a second

Use the following statement to check the requests from user processes that are waiting in a
queue to be sent to the user:

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:28:31 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 151

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:151

Im
po

rt
an

t
In

it
ia

liz
at

io
n

P
ar

am
et

er
s

to
C

o
ns

id
er

select Decode (Sum(Totalq), 0, 'Number of Requests',
Sum(Wait) / Sum(TotalQ) || 'hundredths of a second')
"Average Wait Time Per Request"

from V$Queue
where Type = 'COMMON';

Average Wait Time Per Request
12 hundredths of a second

Open Cursors
If you don’t have enough open cursors, then you will receive errors to that effect. The key is to
stay ahead of your system by increasing the OPEN_CURSORS initialization parameter before you
run out of open cursors.

25 Important Initialization Parameters to Consider
1. DB_CACHE_SIZE Initial memory allocated to data cache or memory used for data itself.

2. SGA_TARGET If you use Oracle’s Automatic Shared Memory Management, this
parameter is used to automatically determine the size of your data cache, shared pool,
large pool, and Java pool (see Chapter 1 for more information). Setting this to 0 disables it.

3. PGA_AGGREGATE_TARGET Soft memory cap for total of all users’ PGAs.

4. SHARED_POOL_SIZE Memory allocated for data dictionary and SQL and PL/SQL.

5. SGA_MAX_SIZE Maximum memory that the SGA can dynamically grow to.

6. OPTIMIZER_MODE CHOOSE, RULE, FIRST_ROWS, FIRST_ROWS_n or ALL_ROWS.
Although RULE is definitely desupported and obsolete and people are often scolded for
even talking about it, I was able to set the mode to RULE in 10g.

7. CURSOR_SHARING Converts literal SQL to SQL with bind variables, reducing parse
overhead.

8. OPTIMIZER_INDEX_COST_ADJ Coarse adjustment between the cost of an index scan
and the cost of a full table scan. Set between 1 and 10 to force index use more frequently.
Setting this parameter to a value between 1 and 10 would pretty much guarantee index
use, even when not appropriate, so be careful, since it is highly dependent on the index
design and implementation being correct. Please note that if you using Applications 11i:
Setting OPTIMIZER_INDEX_COST_ADJ to any value other than the default (100) is not
supported (see Note 169935.1). Also, see bug 4483286.

9. QUERY_REWRITE_ENABLED Used to enable Materialized View and Function-Based-
Index capabilities and other features in some versions.

10. DB_FILE_MULTIBLOCK_READ_COUNT For full table scans to perform I/O more
efficiently, this reads this many blocks in a single I/O.

11. LOG_BUFFER Buffer for uncommitted transactions in memory (not dynamic; set in pfile).

12. DB_KEEP_CACHE_SIZE Memory allocated to keep pool or an additional data cache
that you can set up outside the buffer cache for very important data that you don’t want
pushed out of the cache.

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:28:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

152 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:152

13. DB_RECYCLE_CACHE_SIZE Memory allocated to a recycle pool or an additional data
cache that you can set up outside the buffer cache and in addition to the keep cache
described in the preceding item. Usually, DBAs set this up for ad hoc user query data
that has queries that are poorly written.

14. DBWR_IO_SLAVES (also DB_WRITER_PROCESSES if you have async I/O) Number
of writers from SGA to disk for simulated async I/O. If you have async I/O, then you
use DB_WRITER_PROCESSES to set up multiple writers to more quickly write out dirty
blocks during a database write (DBWR).

15. LARGE_POOL_SIZE Total blocks in the large pool allocation for large PL/SQL and a
few other Oracle options less frequently used.

16. STATISTICS_LEVEL Used to enable advisory information and optionally keep
additional OS statistics to refine optimizer decisions. TYPICAL is the default.

17. JAVA_POOL_SIZE Memory allocated to the JVM for Java stored procedures.

18. JAVA_MAX_SESSIONSPACE_SIZE Upper limit on memory that is used to keep track
of user session state of JAVA classes.

19. MAX_SHARED_SERVERS Upper limit on shared servers when using shared servers.

20. WORKAREA_SIZE_POLICY Used to enable automatic PGA size management.

21. FAST_START_MTTR_TARGET Bounds time to complete a crash recovery. This is
the time (in seconds) that the database will take to perform crash recovery of a single
instance. If you set this parameter, LOG_CHECKPOINT_INTERVAL should not be set
to 0. If you don’t set this parameter, you can still see your estimated MTTR (mean
time to recovery) by querying V$INSTANCE_RECOVERY for ESTIMATED_MTTR.

22. LOG_CHECKPOINT_INTERVAL Checkpoint frequency (in OS blocks—most OS blocks
are 512 bytes) where Oracle performs a database write of all dirty (modified) blocks to
the datafiles in the database. Oracle will also perform a checkpoint if more the one quarter
of the data buffers are dirty in the db cache and also on any log switch. The LGWR (log
writer) also updates the SCN in the control files and datafiles with the SCN of the checkpoint.

23. OPEN_CURSORS Specifies the size of the private area used to hold (open) user
statements. If you get “ORA-01000: maximum open cursors exceeded,” you may need
to increase this parameter, but make sure you are closing cursors that you no longer
need. Prior to 9.2.0.5, these open cursors were also cached and at times caused issues
(ORA-4031) if OPEN_CURSORS was set too high. In 9.2.05, SESSION_CACHED_
CURSORS now controls the setting of the PL/SQL cursor cache. Do not set the
parameter SESSION_CACHED_CURSORS as high as you set OPEN_CURSORS or
you may experience ORA-4031 or ORA-7445 errors.

24. DB_BLOCK_SIZE Default block size for the database. A smaller block size will reduce
contention by adjacent rows, but a larger block size will lower the number of I/Os
needed to pull back more records. A larger block size will also help in range scans
where the blocks desired are sequentially stored.

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:29:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 153

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:153

F
in

di
ng

U
nd

o
cu

m
en

te
d

In
it

ia
liz

at
io

n
P

ar
am

et
er

s

25. OPTIMIZER_DYNAMIC_SAMPLING Controls the number of blocks read by the dynamic
sampling query. Very useful with systems that are using Global Temporary Tables.

TIP
Setting certain initialization parameters correctly could be the
difference between a report taking two seconds and two hours.
Test changes on a test system thoroughly before implementing
those changes in a production environment.

Initialization Parameters over the Years
Oracle has moved from a point where there were over four times as many documented
parameters as undocumented in Oracle 6 to where the undocumented parameters exceeded
the documented in Oracle 8i to where there are four times as many undocumented as
documented parameters in Oracle 10g. Clearly, we have moved to a place where there are
more dials to set in 10g for the experts (undocumented), but the number of dials to set for
the standard database setup (documented parameters) is not increasing any more and is
becoming standardized. The following table charts the changing numbers of documented
and undocumented parameters:

Version Documented Undocumented Total

6 111 19 130

7 117 68 185

8.0 193 119 312

8.1 203 301 504

9.0 251 436 687

9.2 257 540 797

10.2 257 (+0%) 1124 (+108%) 1381 (+73%)

Finding Undocumented Initialization Parameters
Querying the table X$KSPPI shows you documented as well as undocumented initialization
parameters. The query may only be done as user SYS, so be careful. See Chapter 13 for a
complete look at the X$ tables. My top 13 undocumented initialization parameters are listed in
Appendix A. Appendix C gives a complete listing as of the writing of this book of the X$ tables.

select ksppinm, ksppstvl, ksppstdf
from x$ksppi a, x$ksppcv b
where a.indx = b.indx
order by ksppinm;

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:29:27 AM

Color profile: Generic CMYK printer profile
Composite Default screen

154 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:154

The following is a brief description of the columns in the x$ksppi & x$ksppcv tables:

■ KSPPINM Parameter name

■ KSPPSTVL Current value for the parameter

■ KSPPSTDF Default value for the parameter

A partial output listing of the initialization parameters is shown here:

KSPPINM KSPPSTVL KSPPSTDF
------------------------------ -------------------- ----------
...
_write_clones 3 TRUE
_yield_check_interval 100000 TRUE
active_instance_count TRUE
aq_tm_processes 1 FALSE
archive_lag_target 0 TRUE
...

TIP
Using undocumented initialization parameters can cause corruption.
Never use these if you are not an expert and you are not directed by
Oracle Support! Ensure that you work with Oracle Support before
setting these parameters.

Understanding the Typical Server
The key to understanding Oracle is to understand its dynamic nature. Oracle continues to have
many attributes of previous versions while also leading the way by implementing the future of
distributed database and object-oriented programming. Experience from earlier versions of Oracle
always benefits the DBA in future versions of Oracle. Here are some of the future changes to
consider as you build your system:

■ Oracle can be completely distributed and maintained at a single point. (Many databases
and locations with one DBA managing the system looks like the corporate future.)

■ Database maintenance is becoming completely visual (all point-and-click maintenance
as in the Enterprise Manager). The V$ views are still your lowest-performance cost access
method, but Enterprise Manager is easier to use for more complex inquiries that may
require multiple V$ views to get the same result.

■ Network throughput continues to be an issue that looks to be solved by technology (next
three or so years).

■ CPUs will continue to get faster, eliminating the CPU as a system resource issue. (I/O and
correct design will continue to be the issues.)

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:29:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 155

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:155

M
o

de
lin

g
a

T
yp

ic
al

S
er

ve
r

■ Object-oriented development will be crucial to rapid system development.

■ Current database design theory is being rewritten to focus more on denormalization.

■ Graphics are causing the sizes of databases to become increasingly large. Also, the fact
that disk space is getting cheaper and cheaper has made businesses more willing to keep
data around longer.

Modeling a Typical Server
This section contains rough estimates designed as setup guidelines. However, it is important to
emphasize that these are only guidelines and that the reality is that every system is different and
must be tuned to meet the system’s demands. (CPU speed will depend on the type of processor,
e.g., RISC vs. Intel.) The following table does not include guidelines for Oracle Applications.
Oracle Applications tends to have unique issues that are addressed by Oracle in the application
documentation and on Metalink.

Database Size Up to 25GB 100–200GB 500–1,000GB

Number of users 100 200 500

Number of CPUs 4 8 16+

System memory 8GB 16GB 32GB+

SGA_MAX_SIZE 2GB 4GB 8GB

PGA_AGGREGATE_TARGET 512MB 1GB 2GB

Total disk capacity 100GB 500–1000GB 1–50TB

Percentage of query 75 percent 75 percent 75 percent

Percentage of DML 25 percent 25 percent 25 percent

Number of redo logs
multiplexed?

4–8
Yes

6–10
Yes

6–12
Yes

Number of control files 4 4 4

Percent batch 20 percent 20 percent 20 percent

Percent online 80 percent 80 percent 80 percent

Archiving used? Yes Yes Yes

Buffer hit ratio 95 percent + 95 percent + 95 percent +

Dictionary hit ratio 95 percent + 95 percent + 95 percent +

Library hit ratio 95 percent + 95 percent + 95 percent +

Other system software
(other than Oracle)

Minimum Minimum Minimum

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:29:58 AM

Color profile: Generic CMYK printer profile
Composite Default screen

156 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:156

Database Size Up to 25GB 100–200GB 500–1,000GB

Use raw devices? No No No

Use parallel query? Depends on
queries

Depends on
queries

Probably in many
queries

The following variables can be reason to deviate from the typical server configuration:

■ Heavy batch processing may need much larger rollback or undo, redo, and temp
tablespace sizes.

■ Heavy DML processing may need much larger rollback or undo, redo, and temp
tablespace sizes.

■ Heavy user access to large tables requires more CPU and memory, and larger temp
tablespace sizes.

■ Poorly tuned systems require more CPU and memory, and larger temp tablespace sizes.

■ A greater number of disks and controllers always increase performance by reducing I/O
contention.

■ An increase in the disk capacity can speed backup and recovery time by going to disk
and not tape.

Sizing the Oracle Applications Database
Oracle recommends via Metalink Note 216205.1 (written by Oracle Applications Development)
the SGA settings shown in Table 4-1. This is also a nice guideline for sizing systems. Note that
the SGA_TARGET takes the place of the other memory parameters and allows Oracle to allocate
memory where needed. I don’t think this should necessarily be used in all cases (in the Metalink
note it is recommended for 10g); be careful to test this well if you use it as it is a new parameter.
If you do set the initialization parameter SGA_TARGET to allow Oracle to use Automatic Shared
Memory Management (ASMM), you can query the view V$SGA_DYNAMIC_COMPONENTS to
see where (i.e., buffer cache, shared pool, etc.) the memory is being allocated. The SGA_TARGET
parameter cannot be set larger than the SGA_MAX_SIZE or you will receive the ORA-00823 error.

The CSP and NOCSP options of the shared pool–related parameters refer to the use of
cursor_space_for_time, which is documented in the common database initialization parameters
section. The use of cursor space for time results in much larger shared pool requirements.

The Development / Test instance refers to a small instance used for only development or
testing in which no more than 10 users exist. The range of user counts provided in the table refers
to active Applications users, not total or named users. For example, if you plan to support a
maximum of 500 active Oracle Applications users, then you should use the sizing per the range
101–500 users. The parameter values provided in this document reflect a development / test
instance configuration, and you should adjust the relevant parameters according to the Applications
user counts (refer to the table).

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:30:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 157

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:157

Tips Review
■ The key initialization parameters in Oracle are SGA_MAX_SIZE, PGA_AGGREGATE_TARGET,

DB_CACHE_SIZE, and SHARED_POOL_SIZE. If you use ASMM, then SGA_TARGET is
the key initialization parameter.

■ If you can’t figure out why your system isn’t using the value in your init.ora file, you
probably have an spfile overriding it. And don’t forget, you can also use a hint to
override parameters at the query level in 10gR2.

Parameter Name
Development /
Test Instance

11–100
Users

101–500
Users

501–1,000
Users

1001–2000
Users1

Processes 200 200 800 1200 2500

Sessions 400 400 1600 2400 5000

db_block_buffers 20000 50000 150000 250000 400000

db_cache_size2 156M 400M 1G 2G 3G

sga_target3 1G 1G 2G 3G 14G

undo_retention4 1800 3600 7200 10800 14400

Shared_pool_size (csp) N/A N/A N/A 1800M 3000M

Shared_pool_reserved_size (csp) N/A N/A N/A 180M 300M

Shared_pool_size (no csp) 400M 600M 800M 1000M 2000M

Shared_pool_reserved_size
(no csp)

40M 60M 80M 100M 100M

pga_aggregate_target5 1G 2G 4G 10G 20G

Total Memory Required6 ~ 2GB ~ 3GB ~ 6GB ~ 13GB ~ 25GB
1For instances supporting a minimum of 1000 Oracle Applications users, you should use the Oracle 64-bit Server for your
platform in order to support large SGAs.
2The parameter db_cache_size should be used for 9i-based environments in place of db_block_buffers.
3The parameter sga_target should be used for 10g-based environments (I suggest that if you use this parameter, you test
this well before handing over full memory management to Oracle).
4The values for undo_retention are recommendations only, and this parameter should be adjusted according to the
elapsed times of the concurrent jobs and corresponding commit windows. It is not required to set undo_retention for
10g-based systems, as undo retention is automatically set as part of automatic undo tuning.
5pga_aggregate_target should only be used with a 9i- or 10g-based database instances. This parameter should not be set
in 8i-based instances.
6The total memory required refers to the amount of memory required for the data server instance and associated memory,
including the SGA and the PGA. You should ensure that your system has sufficient available memory in order to support
the values provided in the table. The values provided should be adjusted in accordance with available memory so as to
prevent swapping and paging.

TABLE 4-1. SGA Settings

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:30:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Changing initialization parameters dynamically is a powerful feature for both developers and
DBAs. Consequently, a user with the ALTER SESSION privilege is capable of irresponsibly
allocating 100M+ for the SORT_AREA_SIZE for a given session, if it is not restricted.

■ In Oracle 10g Release 2, use the Enterprise Manager Grid Control to find problem queries.

■ Physical memory is generally much faster than retrieving data from disk, so make sure
that the SGA is large enough to accommodate memory reads when it is effective to do so.

■ Poor joins and poor indexing also yield very high hit ratios, so make sure that your hit
ratio isn’t high for a reason other than a well-tuned system. An unusually high hit ratio
may indicate the introduction of code that is poorly indexed or includes join issues.

■ Hit ratios are useful to experienced DBAs but can be misleading to inexperienced DBAs.
The best use of hit ratios is still to compare over time to help alert you to a substantial
change to a system on a given day. While there are those who don’t like using hit ratios,
they are usually tool vendors who don’t see the value of tracking hit ratios over time,
since their tools are point-in-time or reactive-based tuning solutions. Hit ratios should
never be your only tool, but they should definitely be one of many proactive tools in
your arsenal.

■ In Oracle 10g Release 2, use the TopSQL monitor of Oracle’s SQL Analyze to find
problem queries.

■ A low hit ratio for a query is an indication of a missing or suppressed index.

■ Bad (slow) queries show in V$SQLAREA view with poor hit ratios the first time they are
executed. Make sure you tune them at that time. The second time that they execute, they
may not show a poor hit ratio.

■ The database must be rebuilt if you increase the DB_BLOCK_SIZE. Increasing the
DB_FILE_MULTIBLOCK_READ_COUNT will allow more block reads in a single I/O,
giving a benefit similar to a larger block size.

■ SQL must be written exactly the same to be reused. Case differences and any other
differences will cause a reparse of the statement.

■ Measure hit ratios for the data dictionary row cache of the shared pool with the
V$ROWCACHE view. A hit ratio of over 95 percent should be achieved. However,
when the database is initially started, hit ratios will be around 85 percent.

■ Measure hit ratios for the library cache of the shared pool with the V$LIBRARYCACHE
view. A hit ratio of over 95 percent should be achieved. However, when the database is
initially started, hit ratios will be around 85 percent.

■ The V$SGASTAT view shows how fast the memory in the shared pool is being depleted.
Remember that it is only a rough estimate. It shows you any memory that has never been
used combined with any piece of memory that has been reused. Free memory will go up
and down as the day goes on according to how the pieces are fragmented.

■ The general rule of thumb is to make the SHARED_POOL_SIZE parameter 50–150
percent of the size of your DB_CACHE_SIZE.

158 Oracle Database 10g Performance Tuning Tips & Techniques

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:158

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:30:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ The additional buffer pools (memory for data) available in Oracle are initially set to zero.

■ The optimizer in Oracle 10g Release 2 uses cost-based optimization regardless of
whether the tables have been analyzed or not.

■ Setting certain initialization parameters correctly could be the difference between a
report taking two seconds and two hours. Test changes on a test system thoroughly
before implementing those changes in a production environment.

■ Using undocumented initialization parameters can cause corruption. Never use these if
you are not an expert and you are not directed by Oracle Support! Ensure that you work
with Oracle Support before setting these parameters.

References
Craig Shallahamer, All about Oracle’s Touch-Count Data Block Buffer Algorithm (OraPub, excellent)
Rich Niemiec, DBA Tuning; Now YOU are the Expert (TUSC)
Performance Tuning Guide, Oracle Corporation

Thanks to Randy Swanson, who did the update for this chapter in the 9i version of the book.
(Where were you this time around?)

Chapter 4: Tuning the Database with Initialization Parameters (DBA) 159

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:159

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:31:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE T&T / Oracle Database 10g Performance Tuning Tips & Techniques / Niemiec / 226305-9 / Chapter 4
Blind Folio 4:160

P:\010Comp\OracleT&T\305-9\ch04.vp
Friday, May 18, 2007 11:31:05 AM

Color profile: Generic CMYK printer profile
Composite Default screen

