
2
C H A P T E R

Computational Grids

Ian Foster
Carl Kesselman

In this introductory chapter, we lay the groundwork for the rest of the book
by providing a more detailed picture of the expected purpose, shape, and
architecture of future grid systems. We structure the chapter in terms of six
questions that we believe are central to this discussion: Why do we need
computational grids? What types of applications will grids be used for? Who
will use grids? How will grids be used? What is involved in building a grid?
And, what problems must be solved to make grids commonplace? We provide
an overview of each of these issues here, referring to subsequent chapters for
more detailed discussion.

2.1 REASONS FOR COMPUTATIONAL GRIDS

Why do we need computational grids? Computational approaches to problem
solving have proven their worth in almost every field of human endeavor.
Computers are used for modeling and simulating complex scientific and engi-
neering problems, diagnosing medical conditions, controlling industrial equip-
ment, forecasting the weather, managing stock portfolios, and many other
purposes. Yet, although there are certainly challenging problems that exceed
our ability to solve them, computers are still used much less extensively than
they could be. To pick just one example, university researchers make extensive
use of computers when studying the impact of changes in land use on biodiver-
sity, but city planners selecting routes for new roads or planning new zoning



2 Computational Grids
16

ordinances do not. Yet it is local decisions such as these that, ultimately, shape
our future.

There are a variety of reasons for this relative lack of use of computational
problem-solving methods, including lack of appropriate education and tools.
But one important factor is that the average computing environment remains
inadequate for such computationally sophisticated purposes. While today’s
PC is faster than the Cray supercomputer of 10 years ago, it is still far from
adequate for predicting the outcome of complex actions or selecting from
among many choices. That, after all, is why supercomputers have continued
to evolve.

2.1.1 Increasing Delivered Computation

We believe that the opportunity exists to provide users—whether city planners,
engineers, or scientists—with substantially more computational power: an
increase of three orders of magnitude within five years, and five orders of
magnitude within a decade. These dramatic increases will be achieved by
innovations in a wide range of areas:

1. Technology improvement: Evolutionary changes in VLSI technology and
microprocessor architecture can be expected to result in a factor of 10
increase in computational capabilities in the next five years, and a factor
of 100 increase in the next ten.

2. Increase in demand-driven access to computational power: Many applications
have only episodic requirements for substantial computational resources.
For example, a medical diagnosis system may be run only when a car-
diogram is performed, a stockmarket simulation only when a user re-
computes retirement benefits, or a seismic simulation only after a major
earthquake. If mechanisms are in place to allow reliable, instantaneous,
and transparent access to high-end resources, then from the perspective of
these applications it is as if those resources are dedicated to them. Given
the existence of multiteraFLOPS systems, an increase in apparent compu-
tational power of three or more orders of magnitude is feasible.

3. Increased utilization of idle capacity: Most low-end computers (PCs and
workstations) are often idle: various studies report utilizations of around
30% in academic and commercial environments [407, 164]. Utilization can
be increased by a factor of two, even for parallel programs [31], without im-
pinging significantly on productivity. The benefit to individual users can



2.1 Reasons for Computational Grids
17

be substantially greater: factors of 100 or 1,000 increase in peak computa-
tional capacity have been reported [348, 585].

4. Greater sharing of computational results: The daily weather forecast involves
perhaps 1014 numerical operations. If we assume that the forecast is of
benefit to 107 people, we have 1021 effective operations—comparable to
the computation performed each day on all the world’s PCs. Few other
computational results or facilities are shared so effectively today, but they
may be in the future as other scientific communities adopt a “big science”
approach to computation. The key to more sharing may be the develop-
ment of collaboratories: “. . . center[s] without walls, in which the nation’s
researchers can perform their research without regard to geographical
location—interacting with colleagues, accessing instrumentation, sharing
data and computational resources, and accessing information in digital li-
braries” [410].

5. New problem-solving techniques and tools: A variety of approaches can im-
prove the efficiency or ease with which computation is applied to problem
solving. For example, network-enabled solvers [146, 104] allow users to
invoke advanced numerical solution methods without having to install so-
phisticated software. Teleimmersion techniques [412] facilitate the sharing
of computational results by supporting collaborative steering of simula-
tions and exploration of data sets.

Underlying each of these advances is the synergistic use of high-
performance networking, computing, and advanced software to provide ac-
cess to advanced computational capabilities, regardless of the location of users
and resources.

2.1.2 Definition of Computational Grids

The current status of computation is analogous in some respects to that of elec-
tricity around 1910. At that time, electric power generation was possible, and
new devices were being devised that depended on electric power, but the need
for each user to build and operate a new generator hindered use. The truly rev-
olutionary development was not, in fact, electricity, but the electric power grid
and the associated transmission and distribution technologies. Together, these
developments provided reliable, low-cost access to a standardized service, with
the result that power—which for most of human history has been accessible
only in crude and not especially portable forms (human effort, horses, water
power, steam engines, candles)—became universally accessible. By allowing



2 Computational Grids
18

both individuals and industries to take for granted the availability of cheap, re-
liable power, the electric power grid made possible both new devices and the
new industries that manufactured them.

By analogy, we adopt the term computational grid for the infrastructure
that will enable the increases in computation discussed above. A computa-
tional grid is a hardware and software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to high-end computational capa-
bilities.

We talk about an infrastructure because a computational grid is concerned,
above all, with large-scale pooling of resources, whether compute cycles, data,
sensors, or people. Such pooling requires significant hardware infrastructure
to achieve the necessary interconnections and software infrastructure to mon-
itor and control the resulting ensemble. In the rest of this chapter, and through-
out the book, we discuss in detail the nature of this infrastructure.

The need for dependable service is fundamental. Users require assurances
that they will receive predictable, sustained, and often high levels of perfor-
mance from the diverse components that constitute the grid; in the absence
of such assurances, applications will not be written or used. The performance
characteristics that are of interest will vary widely from application to appli-
cation, but may include network bandwidth, latency, jitter, computer power,
software services, security, and reliability.

The need for consistency of service is a second fundamental concern. As
with electric power, we need standard services, accessible via standard in-
terfaces, and operating within standard parameters. Without such standards,
application development and pervasive use are impractical. A significant chal-
lenge when developing standards is to encapsulate heterogeneity without
compromising high-performance execution.

Pervasive access allows us to count on services always being available,
within whatever environment we expect to move. Pervasiveness does not im-
ply that resources are everywhere or are universally accessible. We cannot
access electric power in a new home until wire has been laid and an account
established with the local utility; computational grids will have similarly cir-
cumscribed availability and controlled access. However, we will be able to
count on universal access within the confines of whatever environment the
grid is designed to support.

Finally, an infrastructure must offer inexpensive (relative to income) ac-
cess if it is to be broadly accepted and used. Homeowners and industrialists
both make use of remote billion-dollar power plants on a daily basis because
the cost to them is reasonable. A computational grid must achieve similarly
attractive economics.



2.1 Reasons for Computational Grids
19

It is the combination of dependability, consistency, and pervasiveness
that will cause computational grids to have a transforming effect on how
computation is performed and used. By increasing the set of capabilities that
can be taken for granted to the extent that they are noticed only by their
absence, grids allow new tools to be developed and widely deployed. Much as
pervasive access to bitmapped displays changed our baseline assumptions for
the design of application interfaces, computational grids can fundamentally
change the way we think about computation and resources.

2.1.3 The Impact of Grids

The history of network computing (see Chapters 21 and 22) shows that orders-
of-magnitude improvements in underlying technology invariably enable revo-
lutionary, often unanticipated, applications of that technology, which in turn
motivate further technological improvements. As a result, our view of network
computing has undergone repeated transformations over the past 40 years.

There is considerable evidence that another such revolution is imminent.
The capabilities of both computers and networks continue to increase dramat-
ically. Ten years of research on metacomputing has created a solid base of
experience in new applications that couple high-speed networking and com-
puting. The time seems ripe for a transition from the heroic days of metacom-
puting to more integrated computational grids with dependable and pervasive
computational capabilities and consistent interfaces. In such grids, today’s
metacomputing applications will be routine, and programmers will be able
to explore a new generation of yet more interesting applications that leverage
teraFLOP computers and petabyte storage systems interconnected by gigabit
networks. We present two simple examples to illustrate how grid functionality
may transform different aspects of our lives.

Today’s home finance software packages leverage the pervasive avail-
ability of communication technologies such as modems, Internet service
providers, and the Web to integrate up-to-date stock prices obtained from
remote services into local portfolio value calculations. However, the actual
computations performed on this data are relatively simple. In tomorrow’s
grid environment, we can imagine individuals making stock-purchasing de-
cisions on the basis of detailed Monte Carlo analyses of future asset value,
performed on remote teraFLOP computers. The instantaneous use of three
orders of magnitude more computing power than today will go unnoticed by
prospective retirees, but their lives will be different because of more accurate
information.



2 Computational Grids
20

Today, citizen groups evaluating a proposed new urban development must
study uninspiring blueprints or perspective drawings at city hall. A computa-
tional grid will allow them to call on powerful graphics computers and data-
bases to transform the architect’s plans into realistic virtual reality depictions
and to explore such design issues as energy consumption, lighting efficiency,
or sound quality. Meeting online to walk through and discuss the impact of the
new development on their community, they can arrive at better urban design
and hence improved quality of life. Virtual reality-based simulation models of
Los Angeles, produced by William Jepson [345], and the walkthrough model
of Soda Hall at the University of California–Berkeley, constructed by Carlo
Seguin and his colleagues, are interesting exemplars of this use of comput-
ing [88].

2.1.4 Electric Power Grids

We conclude this section by reviewing briefly some salient features of the com-
putational grid’s namesake. The electric power grid is remarkable in terms of
its construction and function, which together make it one of the technologi-
cal marvels of the 20th century. Within large geographical regions (e.g., North
America), it forms essentially a single entity that provides power to billions
of devices, in a relatively efficient, low-cost, and reliable fashion. The North
American grid alone links more than ten thousand generators with billions
of outlets via a complex web of physical connections and trading mecha-
nisms [105]. The components from which the grid is constructed are highly
heterogeneous in terms of their physical characteristics and are owned and
operated by different organizations. Consumers differ significantly in terms of
the amount of power they consume, the service guarantees they require, and
the amount they are prepared to pay.

Analogies are dangerous things, and electricity is certainly very different
from computation in many respects. Nevertheless, the following aspects of the
power grid seem particularly relevant to the current discussion.

Importance of Economics

The role and structure of the power grid are driven to a large extent by
economic factors. Oil- and coal-fired generators have significant economies
of scale. A power company must be able to call upon reserve capacity equal
to its largest generator in case that generator fails; interconnections between
regions allow for sharing of such reserve capacity, as well as enabling trading
of excess power. The impact of economic factors on computational grids is not
well understood [282]. Where and when are there economies of scale to be



2.2 Grid Applications
21

obtained in computational capabilities? Might economic factors lead us away
from today’s model of a “computer on every desktop”? We note an intriguing
development. Recent advances in power generation technology (e.g., small gas
turbines) and the deregulation of the power industry are leading some analysts
to look to the Internet for lessons regarding the future evolution of the electric
power grid!

Importance of Politics

The developers of large-scale grids tell us that their success depended on
regulatory, political, and institutional developments as much as on technical
innovation [105]. This lesson should be taken to heart by developers of future
computational grids.

Complexity of Control

The principal technical challenges in power grids—once technology issues
relating to efficient generation and high-voltage transmission had been
overcome—relate to the management of a complex ensemble in which
changes at a single location can have far-reaching consequences [105]. Hence,
we find that the power grid includes a sophisticated infrastructure for moni-
toring, management, and control. Again, there appear to be many parallels
between this control problem and the problem of providing performance
guarantees in large-scale, dynamic, and heterogeneous computational grid
environments.

2.2 GRID APPLICATIONS

What types of applications will grids be used for? Building on experiences in
gigabit testbeds [355, 476], the I-WAY network [155], and other experimental
systems (see Chapter 22), we have identified five major application classes for
computational grids, listed in Table 2.1 and described briefly in this section.
More details about applications and their technical requirements are provided
in the referenced chapters.

2.2.1 Distributed Supercomputing

Distributed supercomputing applications use grids to aggregate substantial
computational resources in order to tackle problems that cannot be solved
on a single system. Depending on the grid on which we are working (see
Section 2.3), these aggregated resources might comprise the majority of the



2 Computational Grids
22

Chapter
Category Examples Characteristics reference

Distributed
supercomputing

DIS
Stellar dynamics
Ab initio chemistry

Very large problems needing lots of
CPU, memory, etc.

2

High throughput Chip design
Parameter studies
Cryptographic problems

Harnessing many otherwise idle
resources to increase aggregate
throughput

12

On demand Medical instrumentation
Network-enabled solvers
Cloud detection

Remote resources integrated with
local computation, often for bounded
amount of time

3, 6

Data intensive Sky survey
Physics data
Data assimilation

Synthesis of new information from
many or large data sources

4

Collaborative Collaborative design
Data exploration
Education

Support communication or col-
laborative work between multiple
participants

5

2.1

TABLE

Five major classes of grid applications.

supercomputers in the country or simply all of the workstations within a
company. Here are some contemporary examples:

� Distributed interactive simulation (DIS) is a technique used for training
and planning in the military. Realistic scenarios may involve hundreds
of thousands of entities, each with potentially complex behavior patterns.
Yet even the largest current supercomputers can handle at most 20,000
entities. In recent work, researchers at the California Institute of Technol-
ogy have shown how multiple supercomputers can be coupled to achieve
record-breaking levels of performance (see Section 3.4).

� The accurate simulation of complex physical processes can require high
spatial and temporal resolution in order to resolve fine-scale detail. Cou-
pled supercomputers can be used in such situations to overcome reso-
lution barriers and hence to obtain qualitatively new scientific results.
Although high latencies can pose significant obstacles, coupled supercom-
puters have been used successfully in cosmology [423], high-resolution
ab initio computational chemistry computations [421], and climate mod-
eling [371].

Challenging issues from a grid architecture perspective include the need
to coschedule what are often scarce and expensive resources, the scalability of



2.2 Grid Applications
23

protocols and algorithms to tens or hundreds of thousands of nodes, latency-
tolerant algorithms, and achieving and maintaining high levels of performance
across heterogeneous systems.

2.2.2 High-Throughput Computing

In high-throughput computing, the grid is used to schedule large numbers
of loosely coupled or independent tasks, with the goal of putting unused
processor cycles (often from idle workstations) to work. The result may be,
as in distributed supercomputing, the focusing of available resources on a
single problem, but the quasi-independent nature of the tasks involved leads
to very different types of problems and problem-solving methods. Here are
some examples:

� Platform Computing Corporation reports that the microprocessor manu-
facturer Advanced Micro Devices used high-throughput computing tech-
niques to exploit over a thousand computers during the peak design
phases of their K6 and K7 microprocessors. These computers are located
on the desktops of AMD engineers at a number of AMD sites and were
used for design verification only when not in use by engineers.

� The Condor system from the University of Wisconsin is used to manage
pools of hundreds of workstations at universities and laboratories around
the world [348]. These resources have been used for studies as diverse
as molecular simulations of liquid crystals, studies of ground-penetrating
radar, and the design of diesel engines.

� More loosely organized efforts have harnessed tens of thousands of com-
puters distributed worldwide to tackle hard cryptographic problems [338].

2.2.3 On-Demand Computing

On-demand applications use grid capabilities to meet short-term requirements
for resources that cannot be cost-effectively or conveniently located locally.
These resources may be computation, software, data repositories, specialized
sensors, and so on. In contrast to distributed supercomputing applications,
these applications are often driven by cost-performance concerns rather than
absolute performance. For example:

� The NEOS [146] and NetSolve [104] network-enhanced numerical solver
systems allow users to couple remote software and resources into desktop



2 Computational Grids
24

applications, dispatching to remote servers calculations that are computa-
tionally demanding or that require specialized software.

� A computer-enhanced MRI machine and scanning tunneling microscope
(STM) developed at the National Center for Supercomputing Applications
use supercomputers to achieve realtime image processing [456, 457]. The
result is a significant enhancement in the ability to understand what we
are seeing and, in the case of the microscope, to steer the instrument. (See
also Section 4.2.4.)

� A system developed at the Aerospace Corporation for processing of data
from meteorological satellites uses dynamically acquired supercomputer
resources to deliver the results of a cloud detection algorithm to remote
meteorologists in quasi real time [332].

The challenging issues in on-demand applications derive primarily from
the dynamic nature of resource requirements and the potentially large popula-
tions of users and resources. These issues include resource location, schedul-
ing, code management, configuration, fault tolerance, security, and payment
mechanisms.

2.2.4 Data-Intensive Computing

In data-intensive applications, the focus is on synthesizing new information
from data that is maintained in geographically distributed repositories, digital
libraries, and databases. This synthesis process is often computationally and
communication intensive as well.

� Future high-energy physics experiments will generate terabytes of data
per day, or around a petabyte per year (see Section 4.2.3). The complex
queries used to detect “interesting” events may need to access large frac-
tions of this data [363]. The scientific collaborators who will access this
data are widely distributed, and hence the data systems in which data is
placed are likely to be distributed as well.

� The Digital Sky Survey (Section 5.1.2) will, ultimately, make many tera-
bytes of astronomical photographic data available in numerous network-
accessible databases. This facility enables new approaches to astronomical
research based on distributed analysis, assuming that appropriate compu-
tational grid facilities exist.

� Modern meteorological forecasting systems make extensive use of data as-
similation to incorporate remote satellite observations (see Section 5.1.1).



2.2 Grid Applications
25

The complete process involves the movement and processing of many
gigabytes of data.

Challenging issues in data-intensive applications are the scheduling and
configuration of complex, high-volume data flows through multiple levels of
hierarchy.

2.2.5 Collaborative Computing

Collaborative applications are concerned primarily with enabling and enhanc-
ing human-to-human interactions. Such applications are often structured in
terms of a virtual shared space. Many collaborative applications are concerned
with enabling the shared use of computational resources such as data archives
and simulations; in this case, they also have characteristics of the other appli-
cation classes just described. For example:

� The BoilerMaker system developed at Argonne National Laboratory allows
multiple users to collaborate on the design of emission control systems in
industrial incinerators [158]. The different users interact with each other
and with a simulation of the incinerator.

� The CAVE5D system supports remote, collaborative exploration of large
geophysical data sets and the models that generate them—for example, a
coupled physical/biological model of the Chesapeake Bay [567].

� The NICE system developed at the University of Illinois at Chicago allows
children to participate in the creation and maintenance of realistic virtual
worlds, for entertainment and education [482].

Challenging aspects of collaborative applications from a grid architecture
perspective are the realtime requirements imposed by human perceptual ca-
pabilities and the rich variety of interactions that can take place.

We conclude this section with three general observations. First, we note
that even in this brief survey we see a tremendous variety of already suc-
cessful applications. This rich set has been developed despite the significant
difficulties faced by programmers developing grid applications in the absence
of a mature grid infrastructure. As grids evolve, we expect the range and so-
phistication of applications to increase dramatically. Second, we observe that
almost all of the applications demonstrate a tremendous appetite for compu-
tational resources (CPU, memory, disk, etc.) that cannot be met in a timely
fashion by expected growth in single-system performance. This emphasizes



2 Computational Grids
26

the importance of grid technologies as a means of sharing computation as
well as a data access and communication medium. Third, we see that many
of the applications are interactive, or depend on tight synchronization with
computational components, and hence depend on the availability of a grid
infrastructure able to provide robust performance guarantees.

2.3 GRID COMMUNITIES

Who will use grids? One approach to understanding computational grids is
to consider the communities that they serve. Because grids are above all a
mechanism for sharing resources, we ask, What groups of people will have
sufficient incentive to invest in the infrastructure required to enable sharing,
and what resources will these communities want to share?

One perspective on these questions holds that the benefits of sharing will
almost always outweigh the costs and, hence, that we will see grids that link
large communities with few common interests, within which resource sharing
will extend to individual PCs and workstations. If we compare a computational
grid to an electric power grid, then in this view, the grid is quasi-universal,
and every user has the potential to act as a cogenerator. Skeptics respond that
the technical and political costs of sharing resources will rarely outweigh the
benefits, especially when coupling must cross institutional boundaries. Hence,
they argue that resources will be shared only when there is considerable in-
centive to do so: because the resource is expensive, or scarce, or because
sharing enables human interactions that are otherwise difficult to achieve. In
this view, grids will be specialized, designed to support specific user commu-
nities with specific goals.

Rather than take a particular position on how grids will evolve, we propose
what we see as four plausible scenarios, each serving a different community.
Future grids will probably include elements of all four.

2.3.1 Government

The first community that we consider comprises the relatively small
number—thousands or perhaps tens of thousands—of officials, planners, and
scientists concerned with problems traditionally assigned to national govern-
ment, such as disaster response, national defense, and long-term research and
planning. There can be significant advantage to applying the collective power
of the nation’s fastest computers, data archives, and intellect to the solution
of these problems. Hence, we envision a grid that uses the fastest networks



2.3 Grid Communities
27

to couple relatively small numbers of high-end resources across the nation—
perhaps tens of teraFLOP computers, petabytes of storage, hundreds of sites,
thousands of smaller systems—for two principal purposes:

1. To provide a “strategic computing reserve,” allowing substantial computing
resources to be applied to large problems in times of crisis, such as to
plan responses to a major environmental disaster, earthquake, or terrorist
attack

2. To act as a “national collaboratory,” supporting collaborative investigations
of complex scientific and engineering problems, such as global change,
space station design, and environmental cleanup

An important secondary benefit of this high-end national supercomputing
grid is to support resource trading between the various operators of high-end
resources, hence increasing the efficiency with which those resources are
used.

This national grid is distinguished by its need to integrate diverse high-end
(and hence complex) resources, the strategic importance of its overall mission,
and the diversity of competing interests that must be balanced when allocating
resources.

2.3.2 A Health Maintenance Organization

In our second example, the community supported by the grid comprises ad-
ministrators and medical personnel located at a small number of hospitals
within a metropolitan area. The resources to be shared are a small number
of high-end computers, hundreds of workstations, administrative databases,
medical image archives, and specialized instruments such as MRI machines,
CAT scanners, and cardioangiography devices (see Chapter 4). The coupling
of these resources into an integrated grid enables a wide range of new, compu-
tationally enhanced applications: desktop tools that use centralized supercom-
puter resources to run computer-aided diagnosis procedures on mammograms
or to search centralized medical image archives for similar cases; life-critical
applications such as telerobotic surgery and remote cardiac monitoring and
analysis; auditing software that uses the many workstations across the hospital
to run fraud detection algorithms on financial records; and research software
that uses supercomputers and idle workstations for epidemiological research.
Each of these applications exists today in research laboratories, but has rarely
been deployed in ordinary hospitals because of the high cost of computation.



2 Computational Grids
28

This private grid is distinguished by its relatively small scale, central man-
agement, and common purpose on the one hand, and on the other hand by
the complexity inherent in using common infrastructure for both life-critical
applications and less reliability-sensitive purposes and by the need to integrate
low-cost commodity technologies. We can expect grids with similar character-
istics to be useful in many institutions.

2.3.3 A Materials Science Collaboratory

The community in our third example is a group of scientists who operate and
use a variety of instruments, such as electron microscopes, particle acceler-
ators, and X-ray sources, for the characterization of materials. This commu-
nity is fluid and highly distributed, comprising many hundreds of university
researchers and students from around the world, in addition to the opera-
tors of the various instruments (tens of instruments, at perhaps ten centers).
The resources that are being shared include the instruments themselves, data
archives containing the collective knowledge of this community, sophisticated
analysis software developed by different groups, and various supercomputers
used for analysis. Applications enabled by this grid include remote opera-
tion of instruments, collaborative analysis, and supercomputer-based online
analysis.

This virtual grid is characterized by a strong unifying focus and relatively
narrow goals on the one hand, and on the other hand by dynamic member-
ship, a lack of central control, and a frequent need to coexist with other uses
of the same resources. We can imagine similar grids arising to meet the needs
of a variety of multi-institutional research groups and multicompany virtual
teams created to pursue long- or short-term goals.

2.3.4 Computational Market Economy

The fourth community that we consider comprises the participants in a broad-
based market economy for computational services. This is a potentially enor-
mous community with no connections beyond the usual market-oriented rela-
tionships. We can expect participants to include consumers, with their diverse
needs and interests; providers of specialized services, such as financial mod-
eling, graphics rendering, and interactive gaming; providers of compute re-
sources; network providers, who contract to provide certain levels of network
service; and various other entities such as banks and licensing organizations.

This public grid is in some respects the most intriguing of the four sce-
narios considered here, but is also the least concrete. One area of uncertainty



2.4 Using Grids
29

concerns the extent to which the average consumer will also act as a producer
of computational resources. The answer to this question seems to depend on
two issues. Will applications emerge that can exploit loosely coupled compu-
tational resources? And, will owners of resources be motivated to contribute
resources? To date, large-scale activity in this area has been limited to fairly
esoteric computations—such as searching for prime numbers, breaking crypto-
graphic codes [338], or detecting extraterrestrial communications [527]—with
the benefit to the individuals being the fun of participating and the potential
momentary fame if their computer solves the problem in question.

We conclude this section by noting that, in our view, each of these scenar-
ios seems quite feasible; indeed, substantial prototypes have been created for
each of the grids that we describe. Hence, we expect to see not just one single
computational grid, but rather many grids, each serving a different commu-
nity with its own requirements and objectives. Just which grids will evolve
depends critically on three issues: the evolving economics of computing and
networking, and the services that these physical infrastructure elements are
used to provide; the institutional, regulatory, and political frameworks within
which grids may develop; and, above all, the emergence of applications able
to motivate users to invest in and use grid technologies.

2.4 USING GRIDS

How will grids be used? In metacomputing experiments conducted to date,
users have been “heroic” programmers, willing to spend large amounts of time
programming complex systems at a low level. The resulting applications have
provided compelling demonstrations of what might be, but in most cases are
too expensive, unreliable, insecure, and fragile to be considered suitable for
general use.

For grids to become truly useful, we need to take a significant step forward
in grid programming, moving from the equivalent of assembly language to
high-level languages, from one-off libraries to application toolkits, and from
hand-crafted codes to shrink-wrapped applications. These goals are familiar
to us from conventional programming, but in a grid environment we are
faced with the additional difficulties associated with wide area operation—
in particular, the need for grid applications to adapt to changes in resource
properties in order to meet performance requirements. As in conventional
computing, an important step toward the realization of these goals is the
development of standards for applications, programming models, tools, and



2 Computational Grids
30

Class Purpose Makes use of Concerns

End users Solve Applications Transparency,
problems performance

Application Develop Programming Ease of use,
developers applications models, tools performance

Tool Develop tools, Grid Adaptivity, exposure of
developers programming models services performance, security

Grid Provide basic Local system Local simplicity,
developers grid services services connectivity, security

System Manage Management Balancing local
administrators grid resources tools and global concerns

2.2

TABLE

Classes of grid users.

services, so that a division of labor can be achieved between the users and
developers of different types of components.

We structure our discussion of grid tools and programming in terms of
the classification illustrated in Table 2.2. At the lowest level, we have grid
developers—the designers and implementors of what we might call the “Grid
Protocol,” by analogy with the Internet Protocol that provides the lowest-level
services in the Internet—who provide the basic services required to construct
a grid. Above this, we have tool developers, who use grid services to construct
programming models and associated tools, layering higher-level services and
abstractions on top of the more fundamental services provided by the grid
architecture. Application developers, in turn, build on these programming mod-
els, tools, and services to construct grid-enabled applications for end users who,
ideally, can use these applications without being concerned with the fact that
they are operating in a grid environment. A fifth class of users, system admin-
istrators, is responsible for managing grid components. We now examine this
model in more detail.

2.4.1 Grid Developers

A very small group of grid developers are responsible for implementing the
basic services referred to above. We discuss the concerns encountered at this
level in Section 2.5.



2.4 Using Grids
31

2.4.2 Tool Developers

Our second group of users are the developers of the tools, compilers, libraries,
and so on that implement the programming models and services used by ap-
plication developers. Today’s small population of grid tool developers (e.g.,
the developers of Condor [348], Nimrod [5], NEOS [146], NetSolve [104], Ho-
rus [548], grid-enabled implementations of the Message Passing Interface
(MPI) [198], and CAVERN [337]) must build their tools on a very narrow foun-
dation, comprising little more than the Internet Protocol. We envision that
future grid systems will provide a richer set of basic services, hence making
it possible to build more sophisticated and robust tools. We discuss the na-
ture and implementation of those basic services in Section 2.5; briefly, they
comprise versions of those services that have proven effective on today’s end
systems and clusters, such as authentication, process management, data ac-
cess, and communication, plus new services that address specific concerns of
the grid environment, such as resource location, information, fault detection,
security, and electronic payment.

Tool developers must use these basic services to provide efficient im-
plementations of the programming models that will be used by application
developers. In constructing these translations, the tool developer must be con-
cerned not only with translating the existing model to the grid environment,
but also with revealing to the programmer those aspects of the grid environ-
ment that impact performance. For example, a grid-enabled MPI [198] can
seek to adapt the MPI model for grid execution by incorporating specialized
techniques for point-to-point and collective communication in highly hetero-
geneous environments; implementations of collective operations might use
multicast protocols and adapt a combining tree structure in response to chang-
ing network loads. It should probably also extend the MPI model to provide
programmers with access to resource location services, information about grid
topology, and group communication protocols.

2.4.3 Application Developers

Our third class of users comprises those who construct grid-enabled applica-
tions and components. Today, these programmers write applications in what
is, in effect, an assembly language: explicit calls to the Internet Protocol’s User
Datagram Protocol (UDP) or Transmission Control Protocol (TCP), explicit
or no management of failure, hard-coded configuration decisions for specific
computing systems, and so on. We are far removed from the portable, efficient,



2 Computational Grids
32

high-level languages that are used to develop sequential programs, and the ad-
vanced services that programmers can rely upon when using these languages,
such as dynamic memory management and high-level I/O libraries.

Future grids will need to address the needs of application developers in
two ways. They must provide programming models (supported by languages,
libraries, and tools) that are appropriate for grid environments and a range
of services (for security, fault detection, resource management, data access,
communication, etc.) that programmers can call upon when developing appli-
cations.

The purpose of both programming models and services is to simplify
thinking about and implementing complex algorithmic structures, by provid-
ing a set of abstractions that hide details unrelated to the application, while
exposing design decisions that have a significant impact on program per-
formance or correctness. In sequential programming, commonly used pro-
gramming models provide us with abstractions such as subroutines and scop-
ing; in parallel programming, we have threads and condition variables (in
shared-memory parallelism), message passing, distributed arrays, and single-
assignment variables. Associated services ensure that resources are allocated
to processes in a reasonable fashion, provide convenient abstractions for ter-
tiary storage, and so forth.

There is no consensus on what programming model is appropriate for a
grid environment, although it seems clear that many models will be used.
Table 2.3 summarizes some of the models that have been proposed; new
models will emerge as our understanding of grid programming evolves. These
models are discussed in more detail in Chapters 8, 9, and 10, while Chapter 15
discusses the related question of tools.

As Table 2.3 makes clear, one approach to grid programming is to adapt
models that have already proved successful in sequential or parallel environ-
ments. For example, a grid-enabled distributed shared-memory (DSM) system
would support a shared-memory programming model in a grid environment,
allowing programmers to specify parallelism in terms of threads and shared-
memory operations. Similarly, a grid-enabled MPI would extend the popular
message-passing model [198], and a grid-enabled file system would permit
remote files to be accessed via the standard UNIX application programming
interface (API) [545]. These approaches have the advantage of potentially al-
lowing existing applications to be reused unchanged, but can introduce sig-
nificant performance problems if the models in question do not adapt well to
high-latency, dynamic, heterogeneous grid environments.

Another approach is to build on technologies that have proven effective in
distributed computing, such as Remote Procedure Call (RPC) or related object-



2.4 Using Grids
33

Model Examples Pros Cons

Datagram/stream UDP, TCP, Low overhead Low level
communication Multicast

Shared memory, POSIX Threads High level Scalability
multithreading DSM

Data parallelism HPF, HPC++ Automatic Restricted
parallelization applicability

Message passing MPI, PVM High performance Low level

Object-oriented CORBA, DCOM, Support for Performance
Java RMI large-system design

Remote procedure DCE, ONC Simplicity Restricted
call applicability

High throughput Condor, LSF, Ease of use Restricted
Nimrod applicability

Group ordered Isis, Totem Robustness Performance,
scalability

Agents Aglets, Flexibility Performance,
Telescript robustness

2.3

TABLE

Potential grid programming models and their advantages and disadvantages.

based techniques such as the Common Object Request Broker Architecture
(CORBA). These technologies have significant software engineering advan-
tages, because their encapsulation properties facilitate the modular construc-
tion of programs and the reuse of existing components. However, it remains to
be seen whether these models can support performance-focused, complex ap-
plications such as teleimmersion or the construction of dynamic computations
that span hundreds or thousands of processors.

The grid environment can also motivate new programming models and
services. For example, high-throughput computing systems (Chapter 13), as
exemplified by Condor [348] and Nimrod [5], support problem-solving meth-
ods such as parameter studies in which complex problems are partitioned into
many independent tasks. Group-ordered communication systems represent
another model that is important in dynamic, unpredictable grid environments;
they provide services for managing groups of processes and for delivering mes-
sages reliably to group members. Agent-based programming models represent
another approach apparently well suited to grid environments; here, programs
are constructed as independent entities that roam the network searching for
data or performing other tasks on behalf of a user.



2 Computational Grids
34

A wide range of new services can be expected to arise in grid environ-
ments to support the development of more complex grid applications. In addi-
tion to grid analogs of conventional services such as file systems, we will see
new services for resource discovery, resource brokering, electronic payments,
licensing, fault tolerance, specification of use conditions, configuration, adap-
tation, and distributed system management, to name just a few.

2.4.4 End Users

Most grid users, like most users of computers or networks today, will not write
programs. Instead, they will use grid-enabled applications that make use of
grid resources and services. These applications may be chemistry packages or
environmental models that use grid resources for computing or data; problem-
solving packages that help set up parameter study experiments [5]; mathemat-
ical packages augmented with calls to network-enabled solvers [146, 104]; or
collaborative engineering packages that allow geographically separated users
to cooperate on the design of complex systems.

End users typically place stringent requirements on their tools, in terms
of reliability, predictability, confidentiality, and usability. The construction of
applications that can meet these requirements in complex grid environments
represents a major research and engineering challenge.

2.4.5 System Administrators

The final group of users that we consider are the system administrators who
must manage the infrastructure on which computational grids operate. This
task is complicated by the high degree of sharing that grids are designed
to make possible. The user communities and resources associated with a
particular grid will frequently span multiple administrative domains, and new
services will arise—such as accounting and resource brokering—that require
distributed management. Furthermore, individual resources may participate
in several different grids, each with its own particular user community, access
policies, and so on. For a grid to be effective, each participating resource must
be administered so as to strike an appropriate balance between local policy
requirements and the needs of the larger grid community. This problem has a
significant political dimension, but new technical solutions are also required.

The Internet experience suggests that two keys to scalability when ad-
ministering large distributed systems are to decentralize administration and
to automate trans-site issues. For example, names and routes are administered
locally, while essential trans-site services such as route discovery and name
resolution are automated. Grids will require a new generation of tools for au-



2.5 Grid Architecture
35

tomatically monitoring and managing many tasks that are currently handled
manually.

New administration issues that arise in grids include establishing, moni-
toring, and enforcing local policies in situations where the set of users may
be large and dynamic; negotiating policy with other sites and users; account-
ing and payment mechanisms; and the establishment and management of
markets and other resource-trading mechanisms. There are interesting paral-
lels between these problems and management issues that arise in the electric
power and banking industries [114, 218, 216].

2.5 GRID ARCHITECTURE

What is involved in building a grid? To address this question, we adopt a
system architect’s perspective and examine the organization of the software
infrastructure required to support the grid users, applications, and services
discussed in the preceding sections.

As noted above, computational grids will be created to serve different
communities with widely varying characteristics and requirements. Hence,
it seems unlikely that we will see a single grid architecture. However, we
do believe that we can identify basic services that most grids will provide,
with different grids adopting different approaches to the realization of these
services.

One major driver for the techniques used to implement grid services is
scale. Computational infrastructure, like other infrastructures, is fractal, or
self-similar at different scales. We have networks between countries, organiza-
tions, clusters, and computers; between components of a computer; and even
within a single component. However, at different scales, we often operate in
different physical, economic, and political regimes. For example, the access
control solutions used for a laptop computer’s system bus are probably not
appropriate for a trans-Pacific cable.

In this section, we adopt scale as the major dimension for comparison. We
consider four types of systems, of increasing scale and complexity, asking two
questions for each: What new concerns does this increase in scale introduce?
And how do these new concerns influence how we provide basic services?
These system types are as follows (see also Table 2.4):

1. The end system provides the best model we have for what it means to
compute, because it is here that most research and development efforts
have focused in the past four decades.



2 Computational Grids
36

Computational Resource
System type model I/O model management Security

End system Multithreading,
automatic
parallelization

Local I/O, disk
striping

Process
creation,
OS signal
delivery, OS
scheduling

OS kernel,
hardware

Cluster (increased
scale, reduced
integration)

Synchronous
communication,
distributed shared
memory

Parallel I/O (e.g.,
MPI-IO), file
systems

Parallel
process
creation, gang
scheduling,
OS-level signal
propagation

Shared
security
databases

Intranet (hetero-
geneity, separate
administration,
lack of global
knowledge)

Client/server,
loosely
synchronous:
pipelines, coupling
manager/worker

Distributed file
systems (DFS,
HPSS), databases

Resource
discovery,
signal
distribution
networks, high
throughput

Network
security
(Kerberos)

Internet (lack of
centralized control,
geographical
distribution,
international
issues)

Collaborative
systems, remote
control, data mining

Remote file
access, digital
libraries, data
warehouses

Brokers,
trading,
mobile code,
negotiation

Trust
delegation,
public key,
sandboxes

2.4

TABLE

Computer systems operating at different scales.

2. The cluster introduces new issues of parallelism and distributed manage-
ment, albeit of homogeneous systems.

3. The intranet introduces the additional issues of heterogeneity and geo-
graphical distribution.

4. The internet introduces issues associated with a lack of centralized control.

An important secondary driver for architectural solutions is the perfor-
mance requirements of the grid. Stringent performance requirements amplify
the effect of scale because they make it harder to hide heterogeneity. For ex-
ample, if performance is not a big concern, it is straightforward to extend UNIX
file I/O to support access to remote files, perhaps via a HyperText Transport
Protocol (HTTP) gateway [545]. However, if performance is critical, remote
access may require quite different mechanisms—such as parallel transfers



2.5 Grid Architecture
37

over a striped network from a remote parallel file system to a local parallel
computer—that are not easily expressed in terms of UNIX file I/O semantics.
Hence, a high-performance wide area grid may need to adopt quite different
solutions to data access problems. In the following, we assume that we are
dealing with high-performance systems; systems with lower performance re-
quirements are generally simpler.

2.5.1 Basic Services

We start our discussion of architecture by reviewing the basic services pro-
vided on conventional computers. We do so because we believe that, in the
absence of strong evidence to the contrary, services that have been developed
and proven effective in several decades of conventional computing will also
be desirable in computational grids. Grid environments also require additional
services, but we claim that, to a significant extent, grid development will be
concerned with extending familiar capabilities to the more complex wide area
environment.

Our purpose in this subsection is not to provide a detailed exposition of
well-known ideas but rather to establish a vocabulary for subsequent discus-
sion. We assume that we are discussing a generic modern computing system,
and hence refrain from prefixing each statement with “in general,” “typically,”
and the like. Individual systems will, of course, differ from the generic systems
described here, sometimes in interesting and important ways.

The first step in a computation that involves shared resources is an au-
thentication process, designed to establish the identity of the user. A subse-
quent authorization process establishes the right of the user to create entities
called processes. A process comprises one or more threads of control, created
for either concurrency or parallelism, and executing within a shared address
space. A process can also communicate with other processes via a variety of ab-
stractions, including shared memory (with semaphores or locks), pipes, and
protocols such as TCP/IP.

A user (or process acting on behalf of a user) can control the activities in
another process—for example, to suspend, resume, or terminate its execution.
This control is achieved by means of asynchronously delivered signals.

A process acts on behalf of its creator to acquire resources, by executing
instructions, occupying memory, reading and writing disks, sending and re-
ceiving messages, and so on. The ability of a process to acquire resources
is limited by underlying authorization mechanisms, which implement a sys-
tem’s resource allocation policy, taking into account the user’s identity, prior
resource consumption, and/or other criteria. Scheduling mechanisms in the



2 Computational Grids
38

underlying system deal with competing demands for resources and may also
(for example, in realtime systems) support user requests for performance
guarantees.

Underlying accounting mechanisms keep track of resource allocations and
consumption, and payment mechanisms may be provided to translate resource
consumption into some common currency. The underlying system will also
provide protection mechanisms to ensure that one user’s computation does not
interfere with another’s.

Other services provide abstractions for secondary storage. Of these, virtual
memory is implicit, extending the shared address space abstraction already
noted; file systems and databases are more explicit representations of secondary
storage.

2.5.2 End Systems

Individual end systems—computers, storage systems, sensors, and other
devices—are characterized by relatively small scale and a high degree of ho-
mogeneity and integration. There are typically just a few tens of components
(processors, disks, etc.), these components are mostly of the same type, and
the components and the software that controls them have been co-designed
to simplify management and use and to maximize performance. (Specialized
devices such as scientific instruments may be more significantly complex,
with potentially thousands of internal components, of which hundreds may
be visible externally.)

Such end systems represent the simplest, and most intensively studied,
environment in which to provide the services listed above. The principal
challenges facing developers of future systems of this type relate to changing
computer architectures (in particular, parallel architectures) and the need to
integrate end systems more fully into clusters, intranets, and internets.

State of the Art

The software architectures used in conventional end systems are well known
[511]. Basic services are provided by a privileged operating system, which
has absolute control over the resources of the computer. This operating sys-
tem handles authentication and mediates user process requests to acquire re-
sources, communicate with other processes, access files, and so on. The inte-
grated nature of the hardware and operating system allows high-performance
implementations of important functions such as virtual memory and I/O.



2.5 Grid Architecture
39

Programmers develop applications for these end systems by using a va-
riety of high-level languages and tools. A high degree of integration between
processor architecture, memory system, and compiler means that high perfor-
mance can often be achieved with relatively little programmer effort.

Future Directions

A significant deficiency of most end-system architectures is that they lack
features necessary for integration into larger clusters, intranets, and inter-
nets. Much current research and development is concerned with evolving
end-system architectures in directions relevant to future computational grids.
To list just three: Operating systems are evolving to support operation in
clustered environments, in which services are distributed over multiple net-
worked computers, rather than replicated on every processor [25, 544]. A sec-
ond important trend is toward a greater integration of end systems (computers,
disks, etc.) with networks, with the goal of reducing the overheads incurred
at network interfaces and hence increasing communication rates [167, 288].
Finally, support for mobile code is starting to appear, in the form of au-
thentication schemes, secure execution environments for downloaded code
(“sandboxes”), and so on [238, 559, 555, 370].

The net effect of these various developments seems likely to be to re-
duce the currently sharp boundaries between end system, cluster, and in-
tranet/internet, with the result that individual end systems will more fully
embrace remote computation, as producers and/or consumers.

2.5.3 Clusters

The second class of systems that we consider is the cluster, or network of
workstations: a collection of computers connected by a high-speed local area
network and designed to be used as an integrated computing or data process-
ing resource (see Chapter 17). A cluster, like an individual end system, is
a homogeneous entity—its constituent systems differ primarily in configura-
tion, not basic architecture—and is controlled by a single administrative entity
who has complete control over each end system. The two principal complicat-
ing factors that the cluster introduces are as follows:

1. Increased physical scale: A cluster may comprise several hundred or thou-
sand processors, with the result that alternative algorithms are needed for
certain resource management and control functions.



2 Computational Grids
40

2. Reduced integration: A desire to construct clusters from commodity parts
means that clusters are often less integrated than end systems. One
implication of this is reduced performance for certain functions (e.g.,
communication).

State of the Art

The increased scale and reduced integration of the cluster environment make
the implementation of certain services more difficult and also introduce a
need for new services not required in a single end system. The result tends to
be either significantly reduced performance (and hence range of applications)
or software architectures that modify and/or extend end-system operating
systems in significant ways.

We use the problem of high-performance parallel execution to illustrate
the types of issues that can arise when we seek to provide familiar end-
system services in a cluster environment. In a single (multiprocessor) end
system, high-performance parallel execution is typically achieved either by
using specialized communication libraries such as MPI or by creating multiple
threads that communicate by reading and writing a shared address space.

Both message-passing and shared-memory programming models can be
implemented in a cluster. Message passing is straightforward to implement,
since the commodity systems from which clusters are constructed typically
support at least TCP/IP as a communication protocol. Shared memory re-
quires additional effort: in an end system, hardware mechanisms ensure a
uniform address space for all threads, but in a cluster, we are dealing with
multiple address spaces. One approach to this problem is to implement a logi-
cal shared memory by providing software mechanisms for translating between
local and global addresses, ensuring coherency between different versions of
data, and so forth. A variety of such distributed shared-memory systems exist,
varying according to the level at which sharing is permitted [586, 177, 422].

In low-performance environments, the cluster developer’s job is done
at this point; message-passing and DSM systems can be run as user-level
programs that use conventional communication protocols and mechanisms
(e.g., TCP/IP) for interprocessor communication. However, if performance
is important, considerable additional development effort may be required.
Conventional network protocols are orders of magnitude slower than intra-
end-system communication operations. Low-latency, high-bandwidth inter-
end-system communication can require modifications to the protocols used
for communication, the operating system’s treatment of network interfaces,
or even the network interface hardware [553, 431] (see Chapters 17 and 20).



2.5 Grid Architecture
41

The cluster developer who is concerned with parallel performance must
also address the problem of coscheduling. There is little point in communicat-
ing extremely rapidly to a remote process that must be scheduled before it can
respond. Coscheduling refers to techniques that seek to schedule simultane-
ously the processes constituting a computation on different processors [174,
520]. In certain highly integrated parallel computers, coscheduling is achieved
by using a batch scheduler: processors are space shared, so that only one com-
putation uses a processor at a time. Alternatively, the schedulers on the dif-
ferent systems can communicate, or the application itself can guide the local
scheduling process to increase the likelihood that processes will be cosched-
uled [25, 121].

To summarize the points illustrated by this example: in clusters, the
implementation of services taken for granted in end systems can require
new approaches to the implementation of existing services (e.g., interpro-
cess communication) and the development of new services (e.g., DSM and
coscheduling). The complexity of the new approaches and services, as well
as the number of modifications required to the commodity technologies from
which clusters are constructed, tends to increase proportionally with perfor-
mance requirements.

We can paint a similar picture in other areas, such as process creation,
process control, and I/O. Experience shows that familiar services can be ex-
tended to the cluster environment without too much difficulty, especially if
performance is not critical; the more sophisticated cluster systems provide
transparent mechanisms for allocating resources, creating processes, control-
ling processes, accessing files, and so forth, that work regardless of a program’s
location within the cluster. However, when performance is critical, new im-
plementation techniques, low-level services, and high-level interfaces can be
required [544, 180].

Future Directions

Cluster architectures are evolving in response to three pressures:

1. Performance requirements motivate increased integration and hence op-
erating system and hardware modifications (for example, to support fast
communications).

2. Changed operational parameters introduce a need for new operating sys-
tem and user-level services, such as coscheduling.



2 Computational Grids
42

3. Economic pressures encourage a continued focus on commodity technolo-
gies, at the expense of decreased integration and hence performance and
services.

It seems likely that, in the medium term, software architectures for clus-
ters will converge with those for end systems, as end-system architectures
address issues of network operation and scale.

2.5.4 Intranets

The third class of systems that we consider is the intranet, a grid comprising
a potentially large number of resources that nevertheless belong to a single
organization. Like a cluster, an intranet can assume centralized administrative
control and hence a high degree of coordination among resources. The three
principal complicating factors that an intranet introduces are as follows:

1. Heterogeneity: The end systems and networks used in an intranet are
almost certainly of different types and capabilities. We cannot assume a
single system image across all end systems.

2. Separate administration: Individual systems will be separately adminis-
tered; this feature introduces additional heterogeneity and the need to
negotiate potentially conflicting policies.

3. Lack of global knowledge: A consequence of the first two factors, and the
increased number of end systems, is that it is not possible, in general,
for any one person or computation to have accurate global knowledge of
system structure or state.

State of the Art

The software technologies employed in intranets focus primarily on the prob-
lems of physical and administrative heterogeneity. The result is typically
a simpler, less tightly integrated set of services than in a typical cluster.
Commonly, the services that are provided are concerned primarily with
the sharing of data (e.g., distributed file systems, databases, Web services)
or with providing access to specialized services, rather than with support-
ing the coordinated use of multiple resources. Access to nonlocal resources
often requires the use of simple, high-level interfaces designed for “arm’s-
length” operation in environments in which every operation may involve
authentication, format conversions, error checking, and accounting. Never-
theless, centralized administrative control does mean that a certain degree



2.5 Grid Architecture
43

of uniformity of mechanism and interface can be achieved; for example, all
machines may be required to run a specific distributed file system or batch
scheduler, or may be placed behind a firewall, hence simplifying security
solutions.

Software architectures commonly used in intranets include the Distri-
buted Computing Environment (DCE), DCOM, and CORBA. In these systems,
programs typically do not allocate resources and create processes explicitly,
but rather connect to established “services” that encapsulate hardware re-
sources or provide defined computational services. Interactions occur via re-
mote procedure call [352] or remote method invocation [424, 290], models
designed for situations in which the parties involved have little knowledge
of each other. Communications occur via standardized protocols (typically
layered on TCP/IP) that are designed for portability rather than high perfor-
mance. In larger intranets, particularly those used for mission-critical applica-
tions, reliable group communication protocols such as those implemented by
ISIS [62] and Totem [401] (see Chapter 18) can be used to deal with failure by
ordering the occurrence of events within the system.

The limited centralized control provided by a parent organization can
allow the deployment of distributed queuing systems such as Load Sharing
Facility (LSF), Codine, or Condor, hence providing uniform access to com-
pute resources. Such systems provide some support for remote management
of computation, for example, by distributing a limited range of signals to pro-
cesses through local servers and a logical signal distribution network. How-
ever, issues of security, payment mechanisms, and policy often prevent these
solutions from scaling to large intranets.

In a similar fashion, uniform access to data resources can be provided
by means of wide area file system technology (such as DFS), distributed
database technology, or remote database access (such as SQL servers). High-
performance, parallel access to data resources can be provided by more spe-
cialized systems such as the High Performance Storage System [562]. In these
cases, the interfaces presented to the application would be the same as those
provided in the cluster environment.

The greater heterogeneity, scale, and distribution of the intranet environ-
ment also introduce the need for services that are not needed in clusters. For
example, resource discovery mechanisms may be needed to support the dis-
covery of the name, location, and other characteristics of resources currently
available on the network. A reduced level of trust and greater exposure to
external threats may motivate the use of more sophisticated security technolo-
gies. Here, we can once again exploit the limited centralized control that a par-
ent organization can offer. Solutions such as Kerberos [418] can be mandated



2 Computational Grids
44

and integrated into the computational model, providing a unified authentica-
tion structure throughout the intranet.

Future Directions

Existing intranet technologies do a reasonable job of projecting a subset of fa-
miliar programming models and services (procedure calls, file systems, etc.)
into an environment of greater complexity and physical scale, but are inad-
equate for performance-driven applications. We expect future developments
to overcome these difficulties by extending lighter-weight interaction models
originally developed within clusters into the more complex intranet environ-
ment, and by developing specialized performance-oriented interfaces to vari-
ous services. Some relevant issues are discussed in Chapters 17 and 20.

2.5.5 Internets

The final class of systems that we consider is also the most challenging on
which to perform network computing—internetworked systems that span
multiple organizations. Like intranets, internets tend to be large and hetero-
geneous. The three principal additional complicating factors that an internet
introduces are as follows:

1. Lack of centralized control: There is no central authority to enforce opera-
tional policies or to ensure resource quality, and so we see wide variation
in both policy and quality.

2. Geographical distribution: Internets typically link resources that are geo-
graphically widely distributed. This distribution leads to network perfor-
mance characteristics significantly different from those in local area or
metropolitan area networks of clusters and intranets. Not only does la-
tency scale linearly with distance, but bisection bandwidth arguments
[147, 197] suggest that accessible bandwidth tends to decline linearly with
distance, as a result of increased competition for long-haul links.

3. International issues: If a grid extends across international borders, export
controls may constrain the technologies that can be used for security, and
so on.

State of the Art

The internet environment’s scale and lack of central control have so far pre-
vented the successful widespread deployment of grid services. Approaches



2.5 Grid Architecture
45

that are effective in intranets often break down because of the increased scale
and lack of centralized management. The set of assumptions that one user or
resource can make about another is reduced yet further, a situation that can
lead to a need for implementation techniques based on discovery and negoti-
ation.

We use two examples to show how the internet environment can require
new approaches. We first consider security. In an intranet, it can be reasonable
to assume that every user has a preestablished trust relationship with every
resource that he wishes to access. In the more open internet environment,
this assumption becomes intractable because of the sheer number of potential
process-to-resource relationships. This problem is accentuated by the dynamic
and transient nature of computation, which makes any explicit representation
of these relationships infeasible. Free-flowing interaction between computa-
tions and resources requires more dynamic approaches to authentication and
access control. One potential solution is to introduce the notion of delegation
of trust into security relationships; that is, we introduce mechanisms that al-
low an organization A to trust a user U because user U is trusted by a second
organization B, with which A has a formal relationship. However, the develop-
ment of such mechanisms remains a research problem (see Chapter 16).

As a second example, we consider the problem of coscheduling. In an
intranet, it can be reasonable to assume that all resources run a single sched-
uler, whether a commercial system such as LSF or a research system such as
Condor. Hence, it may be feasible to provide coscheduling facilities in sup-
port of applications that need to run on multiple resources at once. In an
internet, we cannot rely on the existence of a common scheduling infrastruc-
ture. In this environment, coscheduling requires that a grid application (or
scheduling service acting for an application) obtain knowledge of the schedul-
ing policies that apply on different resources and influence the schedule ei-
ther directly through an external scheduling API or indirectly via some other
means [144].

Future Directions

Future development of grid technologies for internet environments will in-
volve the development of more sophisticated grid services and the gradual
evolution of the services provided at end systems in support of those services.
There is little consensus on the shape of the grid architectures that will emerge
as a result of this process, but both commercial technologies and research
projects point to interesting potential directions. Three of these directions—
commodity technologies, Legion, and Globus—are explored in detail in later



2 Computational Grids
46

chapters. We note their key characteristics here but avoid discussion of their
relative merits. There is as yet too little experience in their use for such dis-
cussion to be meaningful.

The commodity approach to grid architecture, as advocated in Chapter 10,
adopts as the basis for grid development the vast range of commodity technolo-
gies that are emerging at present, driven by the success of the Internet and
Web and by the demands of electronic information delivery and commerce.
These technologies are being used to construct three-tier architectures, in
which middle-tier application servers mediate between sophisticated back-end
services and potentially simple front ends. Grid applications are supported in
this environment by means of specialized high-performance back-end and ap-
plication servers.

The Legion approach to grid architecture, described in Chapter 9, seeks
to use object-oriented design techniques to simplify the definition, deploy-
ment, application, and long-term evolution of grid components. Hence, the
Legion architecture defines a complete object model that includes abstractions
of compute resources called host objects, abstractions of storage systems called
data vault objects, and a variety of other object classes. Users can use inheri-
tance and other object-oriented techniques to specialize the behavior of these
objects to their own particular needs, as well as develop new objects.

The Globus approach to grid architecture, discussed in Chapter 11, is based
on two assumptions:

1. Grid architectures should provide basic services, but not prescribe partic-
ular programming models or higher-level architectures.

2. Grid applications require services beyond those provided by today’s com-
modity technologies.

Hence, the focus is on defining a “toolkit” of low-level services for security,
communication, resource location, resource allocation, process management,
and data access. These services are then used to implement higher-level ser-
vices, tools, and programming models.

In addition, hybrids of these different architectural approaches are possi-
ble and will almost certainly be addressed; for example, a commodity three-
tier system might use Globus services for its back end.

A wide range of other projects are exploring technologies of potential
relevance to computational grids, for example, WebOS [546], Charlotte [47],
UFO [13], ATLAS [40], Javelin [122], Popcorn [99], and Globe [549].



2.6 Research Challenges
47

2.6 RESEARCH CHALLENGES

What problems must be solved to enable grid development? In preceding
sections, we outlined what we expect grids to look like and how we expect
them to be used. In doing so, we tried to be as concrete as possible, with the
goal of providing at least a plausible view of the future. However, there are
certainly many challenges to be overcome before grids can be used as easily
and flexibly as we have described. In this section, we summarize the nature
of these challenges, most of which are discussed in much greater detail in the
chapters that follow.

2.6.1 The Nature of Applications

Early metacomputing experiments provide useful clues regarding the nature
of the applications that will motivate and drive early grid development. How-
ever, history also tells us that dramatic changes in capabilities such as those
discussed here are likely to lead to radically new ways of using computers—
ways as yet unimagined. Research is required to explore the bounds of what is
possible, both within those scientific and engineering domains in which meta-
computing has traditionally been applied, and in other areas such as business,
art, and entertainment. Some of these issues are discussed at greater length in
Chapters 3 through 6.

2.6.2 Programming Models and Tools

As noted in Section 2.4, grid environments will require a rethinking of existing
programming models and, most likely, new thinking about novel models more
suitable for the specific characteristics of grid applications and environments.
Within individual applications, new techniques are required for expressing
advanced algorithms, for mapping those algorithms onto complex grid archi-
tectures, for translating user performance requirements into system resource
requirements, and for adapting to changes in underlying system structure and
state. Increased application and system complexity increases the importance
of code reuse, and so techniques for the construction and composition of grid-
enabled software components will be important. Another significant challenge
is to provide tools that allow programmers to understand and explain program
behavior and performance. These issues are discussed in Chapters 7 through
10 and 15.



2 Computational Grids
48

2.6.3 System Architecture

The software systems that support grid applications must satisfy a variety of
potentially conflicting requirements. A need for broad deployment implies
that these systems must be simple and place minimal demands on local sites.
At the same time, the need to achieve a wide variety of complex, performance-
sensitive applications implies that these systems must provide a range of po-
tentially sophisticated services. Other complicating factors include the need
for scalability and evolution to future systems and services. It seems likely
that new approaches to software architecture will be needed to meet these
requirements—approaches that do not appear to be satisfied by existing Inter-
net, distributed computing, or parallel computing technologies. Architectural
issues are discussed in Chapters 9, 10, 11, and 13.

2.6.4 Algorithms and Problem-Solving Methods

Grid environments differ substantially from conventional uniprocessor and
parallel computing systems in their performance, cost, reliability, and se-
curity characteristics. These new characteristics will undoubtedly motivate
the development of new classes of problem-solving methods and algorithms.
Latency-tolerant and fault-tolerant solution strategies represent one important
area in which research is required [40, 47, 99]. Highly concurrent and specu-
lative execution techniques may be appropriate in environments where many
more resources are available than at present. These issues are touched upon
in a number of places, notably Chapters 3 and 7.

2.6.5 Resource Management

A defining feature of computational grids is that they involve sharing of net-
works, computers, and other resources. This sharing introduces challenging
resource management problems that are beyond the state of the art in a vari-
ety of areas. Many of the applications described in later chapters need to meet
stringent end-to-end performance requirements across multiple computa-
tional resources connected by heterogeneous, shared networks. To meet these
requirements, we must provide improved methods for specifying application-
level requirements, for translating these requirements into computational
resources and network-level quality-of-service parameters, and for arbitrat-
ing between conflicting demands. These issues are discussed in Chapters 12,
13, and 19.



2.6 Research Challenges
49

2.6.6 Security

Sharing also introduces challenging security problems. Traditional network se-
curity research has focused primarily on two-party client-server interactions
with relatively low performance requirements. Grid applications frequently
involve many more entities, impose stringent performance requirements, and
involve more complex activities such as collective operations and the down-
loading of code. In larger grids, issues that arise in electronic markets become
important. Users may require assurance and licensing mechanisms that can
provide guarantees (backed by financial obligations) that services behave as
advertised [325]. Some of these issues are addressed in Chapter 16 and Sec-
tion 4.3.4.

2.6.7 Instrumentation and Performance Analysis

The complexity of grid environments and the performance complexity of
many grid applications make techniques for collecting, analyzing, and explain-
ing performance data of critical importance. Depending on the application
and computing environment, poor performance as perceived by a user can
be due to any one or a combination of many factors: an inappropriate algo-
rithm, poor load balancing, inappropriate choice of communication protocol,
contention for resources, or a faulty router. Significant advances in instrumen-
tation, measurement, and analysis are required if we are to be able to relate
subtle performance problems in the complex environments of future grids to
appropriate application and system characteristics. Chapters 14 and 15 discuss
these issues.

2.6.8 End Systems

Grids also have implications for the end systems from which they are con-
structed. Today’s end systems are relatively small and are connected to net-
works by interfaces and with operating system mechanisms originally devel-
oped for reading and writing slow disks. Grids require that this model evolve
in two dimensions. First, by increasing demand for high-performance net-
working, grid systems will motivate new approaches to operating system and
network interface design in which networks are integrated with computers
and operating systems at a more fundamental level than is the case today.
Second, by developing new applications for networked computers, grids will
accelerate local integration and hence increase the size and complexity of the



2 Computational Grids
50

end systems from which they are constructed. Significant research is required
in both areas, as discussed in Chapters 17 and 20.

2.6.9 Network Protocols and Infrastructure

Grid applications can be expected to have significant implications for future
network protocols and hardware technologies. Mainstream developments in
networking, particularly in the Internet community, have focused on best-
effort service for large numbers of relatively low-bandwidth flows. Many of the
future grid applications discussed in this book require both high bandwidths
and stringent performance assurances. Meeting these requirements will re-
quire major advances in the technologies used to transport, switch, route, and
manage network flows. These issues are discussed in Chapters 18 and 21. In
addition, as discussed in Chapter 22, a next generation of testbeds will be re-
quired to support the experiments that will advance the state of the art.

2.7 SUMMARY

This chapter has provided a high-level view of the expected purpose, shape,
and architecture of future grid systems and, in the process, sketched a road
map for more detailed technical discussion in subsequent chapters. The dis-
cussion was structured in terms of six questions.

Why do we need computational grids? We explained how grids can enhance
human creativity by, for example, increasing the aggregate and peak com-
putational performance available to important applications and allowing the
coupling of geographically separated people and computers to support collab-
orative engineering. We also discussed how such applications motivate our
requirement for a software and hardware infrastructure able to provide de-
pendable, consistent, and pervasive access to high-end computational capabil-
ities.

What types of applications will grids be used for? We described five classes of
grid applications: distributed supercomputing, in which many grid resources
are used to solve very large problems; high throughput, in which grid re-
sources are used to solve large numbers of small tasks; on demand, in which
grids are used to meet peak needs for computational resources; data intensive,
in which the focus is on coupling distributed data resources; and collaborative,
in which grids are used to connect people.

Who will use grids? We examined the shape and concerns of four grid com-
munities, each supporting a different type of grid: a national grid, serving



Further Reading
51

a national government; a private grid, serving a health maintenance orga-
nization; a virtual grid, serving a scientific collaboratory; and a public grid,
supporting a market for computational services.

How will grids be used? We analyzed the requirements of five classes of
users for grid tools and services, distinguishing between the needs and con-
cerns of end users, application developers, tool developers, grid developers,
and system managers.

What is involved in building a grid? We discussed potential approaches to
grid architecture, distinguishing between the differing concerns that arise
and technologies that have been developed within individual end systems,
clusters, intranets, and internets.

What problems must be solved to enable grid development? We provided a
brief review of the research challenges that remain to be addressed before
grids can be constructed and used on a large scale.

FURTHER READING

For more information on the topics covered in this chapter, see www.mkp.com/
grids and also the following references:

� A series of books published by the Corporation for National Research
Initiatives [215, 217, 218, 216] review and draw lessons from other large-
scale infrastructures, such as the electric power grid, telecommunications
network, and banking system.

� Catlett and Smarr’s original paper on metacomputing [109] provides an
early vision of how high-performance distributed computing can change
the way in which scientists and engineers use computing.

� Papers in a 1996 special issue of the International Journal of Supercomputer
Applications [155] describe the architecture and selected applications of the
I-WAY metacomputing experiment.

� Papers in a 1997 special issue of the Communications of the ACM [515]
describe plans for a National Technology Grid.

� Several reports by the National Research Council touch upon issues rele-
vant to grids [411, 412, 410].

� Birman and van Renesse [63] discuss the challenges that we face in achiev-
ing reliability in grid applications.




