
Oracle Instance Tuning Techniques

Oracle professionals know that you must optimizer your database by tuning global
parameters before detailed application tuning can proceed. This excerpt reviews proven
techniques for tuning any Oracle instance and has scripts to ensure that your database is
optimized for its application load.

This is an excerpt from the bestselling book “Oracle Tuning: The Definitive Reference”
(http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm) by Alexey
Danchenkov and Donald Burleson, technical editor Mladen Gogala. To supplement the
script

Viewing table and index access with AWR

One of the problems in Oracle9i was the single bit-flag that was used to monitor index
usage. The flag can be set with the alter index xxx monitoring usage command, and see if the
index was accessed by querying the v$object_usage view.

The goal of any index access is to use the most selective index for a query. This would be
the one that produces the smallest number of rows. The Oracle data dictionary is usually
quite good at this, but it is up to the DBA to define the index. Missing function-based
indexes are a common source of suboptimal SQL execution because Oracle will not use
an indexed column unless the WHERE clause matches the index column exactly.

The WISE tool (http://www.wise-oracle.com/product_wise_enterprise.htm) is a great
way to quickly plot Oracle time series data and gather signatures for Oracle metrics. The
figure below shows how the WISE tool displays this data. WISE is also able to plot
performance data on daily or monthly average basis. See http://www.wise-oracle.com
for details.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm
http://www.wise-oracle.com/product_wise_enterprise.htm
http://www.wise-oracle.com

Figure Output from the WISE viewer (http://www.wise-
oracle.com/product_wise_enterprise.htm)

Tracking SQL nested loop joins

As a review, nested loop joins are the most common method for Oracle to match rows in
multiple tables. Nested loop joins always invoke an index and they are never parallelized.
The following awr_nested_join_alert. sql script to count nested loop joins per hour:

< awr_nested_join_alert.sql

col c1 heading ‘Date’ format a20
col c2 heading ‘Nested|Loops|Count’ format 99,999,999
col c3 heading ‘Rows|Processed’ format 99,999,999
col c4 heading ‘Disk|Reads’ format 99,999,999
col c5 heading ‘CPU|Time’ format 99,999,999

accept nested_thr char prompt ‘Enter Nested Join Threshold: ‘

ttitle ‘Nested Join Threshold|&nested_thr’

select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(*) c2,
 sum(st.rows_processed_delta) c3,
 sum(st.disk_reads_delta) c4,
 sum(st.cpu_time_delta) c5
from
 dba_hist_snapshot sn,

http://www.wiseoracle.com/product_wise_enterprise.htm

 dba_hist_sql_plan p,
 dba_hist_sqlstat st
where
 st.sql_id = p.sql_id
and
 sn.snap_id = st.snap_id
and
 p.operation = ‘NESTED LOOPS’
having
 count(*) > &hash_thr
group by
 begin_interval_time;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The output below shows the number of total nested loop joins during the snapshot
period along with a count of the rows processed and the associated disk I/O. This report
is useful where the DBA wants to know if increasing pga_aggregate_target will improve
performance.

 Nested Loop Join Thresholds

 Nested
 Loops Rows Disk CPU
Date Count Processed Reads Time
-------------------- ----------- ----------- -----------
04-10-10 16 22 750 796 4,017,301
04-10-10 17 25 846 6 3,903,560
04-10-10 19 26 751 1,430 4,165,270
04-10-10 20 24 920 3 3,940,002
04-10-10 21 25 782 5 3,816,152
04-10-11 02 26 905 0 3,935,547
04-10-11 03 22 1,001 0 3,918,891
04-10-11 04 29 757 8 3,939,071
In the report above, nested loops are favored by SQL that returns a small number of
rows_processed than hash joins, which tend to return largest result sets.

The following awr_sql_index.sql script exposes the cumulative usage of database indexes:

awr_sql_index.sql

col c0 heading ‘Begin|Interval|time’ format a8
col c1 heading ‘Index|Name’ format a20
col c2 heading ‘Disk|Reads’ format 99,999,999
col c3 heading ‘Rows|Processed’ format 99,999,999
select
 to_char(s.begin_interval_time,'mm-dd hh24') c0,
 p.object_name c1,
 sum(t.disk_reads_total) c2,
 sum(t.rows_processed_total) c3
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat t,
 dba_hist_snapshot s
where
 p.sql_id = t.sql_id
 and
 t.snap_id = s.snap_id
 and
 p.object_type like '%INDEX%'
group by
 to_char(s.begin_interval_time,'mm-dd hh24'),

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

 p.object_name
order by
 c0,c1,c2 desc
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The following is a sample of the output where the stress on every important index is
shown over time. This information is important for placing index blocks into the KEEP
pool to reduce disk reads and for determining the optimal setting for the important
optimizer_index_caching parameter.

Begin
Interval Index Disk Rows
time Name Reads Processed
-------- -------------------- ----------- -----------
10-14 12 I_CACHE_STATS_1 114
10-14 12 I_COL_USAGE$ 201 8,984
10-14 12 I_FILE1 2 0
10-14 12 I_IND1 93 604
10-14 12 I_JOB_NEXT 1 247,816
10-14 11 I_KOPM1 4 2,935
10-14 11 I_MON_MODS$_OBJ 12 28,498
10-14 11 I_OBJ1 72,852 604
10-14 11 I_PARTOBJ$ 93 604
10-14 11 I_SCHEDULER_JOB2 4 0
10-14 11 SYS_C002433 302 4,629
10-14 11 SYS_IOT_TOP_8540 0 75,544
10-14 11 SYS_IOT_TOP_8542 1 4,629
10-14 11 WRH$_DATAFILE_PK 2 0
10-14 10 WRH$_SEG_STAT_OBJ_PK 93 604
10-14 10 WRH$_TEMPFILE_PK 0
10-14 10 WRI$_ADV_ACTIONS_PK 38 1,760

The above report shows the highest impact tables.

The following awr_sql_index_access.sql script will summarize index access by snapshot
period.

< awr_sql_index_access.sql

col c1 heading ‘Begin|Interval|Time’ format a20
col c2 heading ‘Index|Range|Scans’ format 999,999
col c3 heading ‘Index|Unique|Scans’ format 999,999
col c4 heading ‘Index|Full|Scans’ format 999,999

select
 r.c1 c1,
 r.c2 c2,
 u.c2 c3,
 f.c2 c4
from
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

 p.object_owner <> 'SYS'
and
 p.operation like '%INDEX%'
and
 p.options like '%RANGE%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) r,
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.operation like '%INDEX%'
and
 p.options like '%UNIQUE%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) u,
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.operation like '%INDEX%'
and
 p.options like '%FULL%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) f
where
 r.c1 = u.c1
 and
 r.c1 = f.c1
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The sample output below shows those specific times when the database performs unique
scans, index range scans and index fast full scans:

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Begin Index Index Index
Interval Range Unique Full
Time Scans Scans Scans
-------------------- -------- -------- --------
04-10-21 15 36 35 2
04-10-21 19 10 8 2
04-10-21 20 8 2
04-10-21 21 8 2
04-10-21 22 11 8 3
04-10-21 23 16 11 3
04-10-22 00 10 9 1
04-10-22 01 11 8 3
04-10-22 02 12 8 1
04-10-22 03 10 8 3
04-10-22 04 11 8 2
04-10-22 05 8 3
04-10-22 06 8 2
04-10-22 07 10 8 3
04-10-22 08 8 2
04-10-22 09 8 2

SQL object usage can also be summarized by day-of-the-week:

awr_sql_object_avg_dy.sql

col c1 heading ‘Object|Name’ format a30
col c2 heading ‘Week Day’ format a15
col c3 heading ‘Invocation|Count’ format 99,999,999

break on c1 skip 2
break on c2 skip 2

select

decode(c2,1,'Monday',2,'Tuesday',3,'Wednesday',4,'Thursday',5,'Friday',6,'Saturday',7,
'Sunday') c2,
 c1,
 c3
from
(
select
 p.object_name c1,
 to_char(sn.end_interval_time,'d') c2,
 count(1) c3
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 p.object_name,
 to_char(sn.end_interval_time,'d')
order by
 c2,c1
)
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The output below shows the top objects within the database during each snapshot period.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

 Object Invocation
Week Day Name Count
--------------- ------------------------------ -----------
Monday CUSTOMER 44
 CUSTOMER_ORDERS 44
 CUSTOMER_ORDERS_PRIMARY 44
 MGMT_CURRENT_METRICS_PK 43
 MGMT_FAILOVER_TABLE 47
 MGMT_JOB 235
 MGMT_JOB_EMD_STATUS_QUEUE 91
 MGMT_JOB_EXECUTION 235
 MGMT_JOB_EXEC_IDX01 235
 MGMT_JOB_EXEC_SUMMARY 94
 MGMT_JOB_EXEC_SUMM_IDX04 94
 MGMT_JOB_PK 235
 MGMT_METRICS 65
 MGMT_METRICS_1HOUR_PK 43

Tuesday CUSTOMER 40
 CUSTOMER _CHECK 2
 CUSTOMER _PRIMARY 1
 CUSTOMER_ORDERS 46
 CUSTOMER_ORDERS_PRIMARY 46
 LOGMNR_LOG$ 3
 LOGMNR_LOG$_PK 3
 LOGSTDBY$PARAMETERS 2
 MGMT_CURRENT_METRICS_PK 31
 MGMT_FAILOVER_TABLE 42
 MGMT_JOB 200
 MGMT_JOB_EMD_STATUS_QUEUE 78
 MGMT_JOB_EXECUTION 200
 MGMT_JOB_EXEC_IDX01 200
 MGMT_JOB_EXEC_SUMMARY 80
 MGMT_JOB_EXEC_SUMM_IDX04 80
 MGMT_JOB_PK 200
 MGMT_METRICS 48

Wednesday CURRENT_SEVERITY_PRIMARY_KEY 1
 MGMT_CURRENT_METRICS_PK 17
 MGMT_CURRENT_SEVERITY 1
 MGMT_FAILOVER_TABLE 24
 MGMT_JOB 120
 MGMT_JOB_EMD_STATUS_QUEUE 46
 MGMT_JOB_EXECUTION 120
 MGMT_JOB_EXEC_IDX01 120
 MGMT_JOB_EXEC_SUMMARY 48
 MGMT_JOB_EXEC_SUMM_IDX04 48
 MGMT_JOB_PK 120
 MGMT_METRICS 36
 MGMT_METRICS_1HOUR_PK 14
 MGMT_METRICS_IDX_01 24
 MGMT_METRICS_IDX_03 1
 MGMT_METRICS_PK 11

When these results are posted, the result is a well-defined signature that emerges for
particular tables, access plans and SQL statements. Most Oracle databases are remarkably
predictable, with the exception of DSS and ad-hoc query systems, and the DBA can
quickly track the usage of all SQL components.

Understanding the SQL signature can be extremely useful for determining what objects
to place in the KEEP pool, and to determining the most active tables and indexes in the
database.

Once a particular SQL statement for which details are desired has been identified, it is
possible to view its execution plan used by optimizer to actually execute the statement.
The query below retrieves an execution plan for a particular SQL statement of interest:

awr_sql_details.sql

accept sqlid prompt ‘Please enter SQL ID: ‘

col c1 heading ‘Operation’ format a20
col c2 heading ‘Options’ format a20
col c3 heading ‘Object|Name’ format a25
col c4 heading ‘Search Columns’ format 999,999
col c5 heading ‘Cardinality’ format 999,999

select
 operation c1,
 options c2,
 object_name c3,
 search_columns c4,
 cardinality c5
from
 dba_hist_sql_plan p
where
 p.sql_id = '&sqlid'
order by
 p.id;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

This is one of the most important of all of the SQL tuning tools. Here is a sample of the
output from this script:

 Search
Operation Options Name Cols Cardinality
---------------- ------------- ---------------------- --- -----------
SELECT STATEMENT 0
VIEW 3 4
SORT ORDER BY 4 4
VIEW 2 4
UNION-ALL 0
FILTER 6
NESTED LOOPS OUTER 0 3
NESTED LOOPS ANTI 0 3
INDEX UNIQUE SCAN STATS$IDLE_EVENT_PK 1 46
TABLE ACCESS BY INDEX ROWID STATS$SYSTEM_EVENT 0 1
INDEX UNIQUE SCAN STATS$SYSTEM_EVENT_PK 4 1
FILTER 0
FAST DUAL 1 1

The following section will show how one can count the frequency that indexes are used
within Oracle.

Counting index usage inside SQL

Prior to Oracle9i, it was very difficult to see if an index was being used by the SQL in the
database. It required explaining all of the SQL in the library cache into a holding area and
then parsing through the execution plans for the index name. Things were simplified
slightly in Oracle9i when the primitive ALTER INDEX XXX MONITORING
command and the ability to see if the index was invoked were introduced.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

One problem has always been that it is very difficult to know what indexes are the most
popular. In Oracle10g, it is easy to see what indexes are used, when they are used and the
context in which they are used. The following is a simple AWR query that can be used to
plot index usage:

< index_usage_hr.sql

col c1 heading ‘Begin|Interval|time’ format a20
col c2 heading ‘Search Columns’ format 999
col c3 heading ‘Invocation|Count’ format 99,999,999

break on c1 skip 2

accept idxname char prompt ‘Enter Index Name: ‘

ttitle ‘Invocation Counts for index|&idxname’

select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 p.search_columns c2,
 count(*) c3
from
 dba_hist_snapshot sn,
 dba_hist_sql_plan p,
 dba_hist_sqlstat st
where
 st.sql_id = p.sql_id
and
 sn.snap_id = st.snap_id
and
 p.object_name = ‘&idxname'
group by
 begin_interval_time,search_columns;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The query will produce an output showing a summary count of the index specified during
the snapshot interval. This can be compared to the number of times that a table was
invoked from SQL. Here is a sample of the output from the script:

Invocation Counts for cust_index

Begin
Interval Invocation
time Search Columns Count
-------------------- -------------- -----------
04-10-21 15 1 3
04-10-10 16 0 1
04-10-10 19 1 1
04-10-11 02 0 2
04-10-11 04 2 1
04-10-11 06 3 1
04-10-11 11 0 1
04-10-11 12 0 2
04-10-11 13 2 1
04-10-11 15 0 3
04-10-11 17 0 14
04-10-11 18 4 1
04-10-11 19 0 1
04-10-11 20 3 7
04-10-11 21 0 1

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Figure 15.24 shows a sample screenshot of a time-series plot produced by the WISE tool
(http://www.wise-oracle.com/product_wise_professional.htm) for index access.

Figure 15.24: Index invocation count time-series plot in WISE tool
(http://www.wise-oracle.com/product_wise_professional.htm) .

The AWR SQL tuning tables offer a wealth of important time metrics. This data can also
be summed up by snapshot period giving an overall view of how Oracle is accessing the
table data.

< awr_access_counts.sql

ttile ‘Table Access|Operation Counts|Per Snapshot Period’

col c1 heading ‘Begin|Interval|time’ format a20
col c2 heading ‘Operation’ format a15
col c3 heading ‘Option’ format a15
col c4 heading ‘Object|Count’ format 999,999

break on c1 skip 2
break on c2 skip 2

select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 p.operation c2,
 p.options c3,
 count(1) c4
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.sql_id = s.sql_id

http://www.wise-oracle.com/product_wise_professional.htm
http://www.wise-oracle.com/product_wise_professional.htm

and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24'),
 p.operation,
 p.options
order by
 1,2,3;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The output of the query is shown below, and it includes overall total counts for each
object and table access method.

Begin
Interval Object
time Operation Option Count
-------------------- --------------- --------------- --------
04-10-15 16 INDEX UNIQUE SCAN 1

04-10-15 16 TABLE ACCESS BY INDEX ROWID 1
04-10-15 16 FULL 2

04-10-15 17 INDEX UNIQUE SCAN 1

04-10-15 17 TABLE ACCESS BY INDEX ROWID 1
04-10-15 17 FULL 2

04-10-15 18 INDEX UNIQUE SCAN 1

04-10-15 18 TABLE ACCESS BY INDEX ROWID 1
04-10-15 18 FULL 2

04-10-15 19 INDEX UNIQUE SCAN 1

04-10-15 19 TABLE ACCESS BY INDEX ROWID 1
04-10-15 19 FULL 2

04-10-15 20 INDEX UNIQUE SCAN 1

04-10-15 20 TABLE ACCESS BY INDEX ROWID 1
04-10-15 20 FULL 2

04-10-15 21 INDEX UNIQUE SCAN 1

04-10-15 21 TABLE ACCESS BY INDEX ROWID 1
04-10-15 21 FULL 2

If the DBA has a non-OLTP database that regularly performs large full-table and full-
index scans, it is helpful to know those times when the full scan activity is high. The
following query will yield that information:

awr_sql_full_scans.sql

-- ***
-- Copyright © 2005 by Rampant TechPress
-- This script is free for non-commercial purposes
-- with no warranties. Use at your own risk.
--
-- To license this script for a commercial purpose,
-- contact info@rampant.cc
-- ***

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

col c1 heading ‘Begin|Interval|Time’ format a20
col c2 heading ‘Index|Table|Scans’ format 999,999
col c3 heading ‘Full|Table|Scans’ format 999,999

select
 i.c1 c1,
 i.c2 c2,
 f.c2 c3
from
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.operation like '%TABLE ACCESS%'
and
 p.options like '%INDEX%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) i,
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.operation like '%TABLE ACCESS%'
and
 p.options = 'FULL'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) f
where
 i.c1 = f.c1
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The output below shows a comparison of index-full scans versus full-table scans.

Begin Index Full
Interval Table Table
Time Scans Scans
-------------------- -------- --------
04-10-21 15 53 18

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

04-10-21 17 3 3
04-10-21 18 1 2
04-10-21 19 15 6
04-10-21 20 6
04-10-21 21 6
04-10-21 22 16 6
04-10-21 23 21 9
04-10-22 00 16 6
04-10-22 01 6
04-10-22 02 17 6
04-10-22 03 15 6

Knowing the signature for large-table full-table scans can help in both SQL tuning and
instance tuning. For SQL tuning, this report will tell when to drill down to verify that all
of the large-table full-table scans are legitimate. Once verified, this same data can be used
to dynamically reconfigure the Oracle instance to accommodate the large scans.

With that introduction to the indexing component, it will be useful to learn how to use
the AWR data to track full-scan behavior over time.

Tracking full scan access with AWR

All of the specific SQL access methods can be counted and their behavior tracked over
time. This is especially important for large-table full-table scans (LTFTS) because they
are a common symptom of suboptimal execution plans (i.e. missing indexes).

Once it has been determined that the large-table full-table scans are legitimate, the DBA
must know those times when they are executed so that a selective parallel query can be
implemented, depending on the existing CPU consumption on the server. OPQ drives
up CPU consumption, and should be invoked when the server can handle the additional
load.

< awr_full_table_scans.sql

ttile ‘Large Full-table scans|Per Snapshot Period’

col c1 heading ‘Begin|Interval|time’ format a20
col c4 heading ‘FTS|Count’ format 999,999

break on c1 skip 2
break on c2 skip 2

select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c4
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn,
 dba_segments o
where
 p.object_owner <> 'SYS'
and
 p.object_owner = o.owner
and
 p.object_name = o.segment_name
and

 o.blocks > 1000
and
 p.operation like '%TABLE ACCESS%'
and
 p.options like '%FULL%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
 1;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The output below shows the overall total counts for tables that experience large-table
full-table scans because the scans may be due to a missing index.

 Large Full-table scans
 Per Snapshot Period

Begin
Interval FTS
time Count
-------------------- --------
04-10-18 11 4
04-10-21 17 1
04-10-21 23 2
04-10-22 15 2
04-10-22 16 2
04-10-22 23 2
04-10-24 00 2
04-10-25 00 2
04-10-25 10 2
04-10-25 17 9
04-10-25 18 1
04-10-25 21 1
04-10-26 12 1
04-10-26 13 3
04-10-26 14 3
04-10-26 15 11
04-10-26 16 4
04-10-26 17 4
04-10-26 18 3
04-10-26 23 2
04-10-27 13 2
04-10-27 14 3
04-10-27 15 4
04-10-27 16 4
04-10-27 17 3
04-10-27 18 17
04-10-27 19 1
04-10-28 12 22
04-10-28 13 2
04-10-29 13 9

This data can be easily plotted to see the trend for a database as shown in Figure 15.25:

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Figure 15.25: – Trends of large-table full-table scans

__

Search for Symptoms! One of the most
common manifestations of suboptimal
SQL execution is a large-table full-table
scan. Whenever an index is missing,
Oracle may be forced to read every row
in the table when an index might be
faster.

__

If the large-table full-table scans are legitimate, the DBA will want to know the periods
that they are invoked, so Oracle Parallel Query (OPQ) can be invoked to speed up the
scans as shown in the awr_sql_access_hr.sql script that follows:

< awr_sql_access_hr.sql

ttile ‘Large Tabe Full-table scans|Averages per Hour’

col c1 heading ‘Day|Hour’ format a20
col c2 heading ‘FTS|Count’ format 999,999

break on c1 skip 2
break on c2 skip 2

select
 to_char(sn.begin_interval_time,'hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn,

 dba_segments o
where
 p.object_owner <> 'SYS'
and
 p.object_owner = o.owner
and
 p.object_name = o.segment_name
and
 o.blocks > 1000
and
 p.operation like '%TABLE ACCESS%'
and
 p.options like '%FULL%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'hh24')
order by
 1;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The following output shows the average number of large-table full-table scans per hour.

Large Table Full-table scans
Averages per Hour

Day FTS
Hour Count
-------------------- --------
00 4
10 2
11 4
12 23
13 16
14 6
15 17
16 10
17 17
18 21
19 1
23 6

The script below shows the same data for day of the week:

< awr_sql_access_day.sql

ttile ‘Large Table Full-table scans|Averages per Week Day’

col c1 heading ‘Week|Day’ format a20
col c2 heading ‘FTS|Count’ format 999,999

break on c1 skip 2
break on c2 skip 2

select
 to_char(sn.begin_interval_time,'day') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn,

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

 dba_segments o
where
 p.object_owner <> 'SYS'
and
 p.object_owner = o.owner
and
 p.object_name = o.segment_name
and
 o.blocks > 1000
and
 p.operation like '%TABLE ACCESS%'
and
 p.options like '%FULL%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'day')
order by
1;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The following sample query output shows specific times the database experienced large
table scans.

Large Table Full-table scans
Averages per Week Day

Week FTS
Day Count
-------------------- --------
sunday 2
monday 19
tuesday 31
wednesday 34
thursday 27
friday 15
Saturday 2

The awr_sql_scan_sums.sql script will show the access patterns of usage over time. If a
DBA is really driven to know their system, all they need to do is understand how SQL
accesses the tables and indexes in the database to provide amazing insight. The optimal
instance configuration for large-table full-table scans is quite different than the
configuration for an OLTP databases, and the report generated by the
awr_sql_scan_sums.sql script will quickly identify changes in table access patterns.

awr_sql_scan_sums.sql

col c1 heading ‘Begin|Interval|Time’ format a20
col c2 heading ‘Large|Table|Full Table|Scans’ format 999,999
col c3 heading ‘Small|Table|Full Table|Scans’ format 999,999
col c4 heading ‘Total|Index|Scans’ format 999,999

select
 f.c1 c1,
 f.c2 c2,
 s.c2 c3,

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

 i.c2 c4
from
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn,
 dba_segments o
where
 p.object_owner <> 'SYS'
and
 p.object_owner = o.owner
and
 p.object_name = o.segment_name
and
 o.blocks > 1000
and
 p.operation like '%TABLE ACCESS%'
and
 p.options like '%FULL%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) f,
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn,
 dba_segments o
where
 p.object_owner <> 'SYS'
and
 p.object_owner = o.owner
and
 p.object_name = o.segment_name
and
 o.blocks < 1000
and
 p.operation like '%INDEX%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) s,
(
select
 to_char(sn.begin_interval_time,'yy-mm-dd hh24') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.operation like '%INDEX%'
and

 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'yy-mm-dd hh24')
order by
1) i
where
 f.c1 = s.c1
 and
 f.c1 = i.c1
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The sample output looks like the following, where there is a comparison of index versus
table scan access. This is a very important signature for any database because it shows, at
a glance, the balance between index (OLTP) and data warehouse type access.

 Large Small
Begin Table Table Total
Interval Full Table Full Table Index
Time Scans Scans Scans
-------------------- ---------- ---------- --------
04-10-22 15 2 19 21
04-10-22 16 1 1
04-10-25 10 18 20
04-10-25 17 9 15 17
04-10-25 18 1 19 22
04-10-25 21 19 24
04-10-26 12 23 28
04-10-26 13 3 17 19
04-10-26 14 18 19
04-10-26 15 11 4 7
04-10-26 16 4 18 18
04-10-26 17 17 19
04-10-26 18 3 17 17
04-10-27 13 2 17 19
04-10-27 14 3 17 19
04-10-27 15 4 17 18
04-10-27 16 17 17
04-10-27 17 3 17 20
04-10-27 18 17 20 22
04-10-27 19 1 20 26
04-10-28 12 22 17 20
04-10-28 13 2 17 17
04-10-29 13 9 18 19

This is a very important report because it shows the method with which Oracle is
accessing data over time periods. This is especially important because it shows when the
database processing modality shifts between OLTP (first_rows index access) to a batch
reporting mode (all_rows full scans) as shown in Figure 15.26.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

0

5

10

15

20

25

30

04
-1

0-
22

 1
5

04
-1

0-
25

 1
0

04
-1

0-
25

 1
8

04
-1

0-
26

 1
2

04
-1

0-
26

 1
4

04
-1

0-
26

 1
6

04
-1

0-
26

 1
8

04
-1

0-
27

 1
4

04
-1

0-
27

 1
6

04
-1

0-
27

 1
8

04
-1

0-
28

 1
2

04
-1

0-
29

 1
3

Large table scans
Small table scans
Index Access

Figure 15.26: Plot of full scans vs. index access

The example in Figure 15.26 is typical of an OLTP database with the majority of access
being via small-table full-table scans and index access. In this case, the large-table full-
table scans must be carefully checked, their legitimacy verified for such things as missing
indexes, and then they should be adjusted to maximize their throughput.

Of course, in a really busy database, there may be concurrent OLTP index access and
full-table scans for reports and it is the DBA’s job to know the specific times when the
system shifts table access modes as well as the identity of those tables that experience the
changes.

The following awr_sql_full_scans_avg_dy.sql script can be used to roll-up average scans into
daily averages.

< awr_sql_full_scans_avg_dy.sql

col c1 heading ‘Begin|Interval|Time’ format a20
col c2 heading ‘Index|Table|Scans’ format 999,999
col c3 heading ‘Full|Table|Scans’ format 999,999

select
 i.c1 c1,
 i.c2 c2,
 f.c2 c3
from
(
select
 to_char(sn.begin_interval_time,'day') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where

 p.object_owner <> 'SYS'
and
 p.operation like '%TABLE ACCESS%'
and
 p.options like '%INDEX%'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'day')
order by
1) i,
(
select
 to_char(sn.begin_interval_time,'day') c1,
 count(1) c2
from
 dba_hist_sql_plan p,
 dba_hist_sqlstat s,
 dba_hist_snapshot sn
where
 p.object_owner <> 'SYS'
and
 p.operation like '%TABLE ACCESS%'
and
 p.options = 'FULL'
and
 p.sql_id = s.sql_id
and
 s.snap_id = sn.snap_id
group by
 to_char(sn.begin_interval_time,'day')
order by
1) f
where
 i.c1 = f.c1
;
SEE CODE DEPOT FOR MORE SCRIPTS
http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

The sample output is shown below:

Begin Index Full
Interval Table Table
Time Scans Scans
-------------------- -------- --------
sunday 393 189
monday 383 216
tuesday 353 206
wednesday 357 178
thursday 488 219
friday 618 285
saturday 400 189

For example, the signature shown in Figure 15.27 below indicates that Fridays are very
high in full-table scans, probably as the result of weekly reporting.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Figure 15.27: Plot of full scans

With this knowledge, the DBA can anticipate the changes in processing from index
access to LTFTS access by adjusting instance configurations.

Whenever the database changes into a mode dominated by LTFTS, the data buffer sizes,
such as db_cache_size and db_nk_cache_size, can be decreased. Since parallel LTFTS bypass
the data buffers, the intermediate rows are kept in the pga_aggregate_target region. Hence,
it may be desirable to use dbms_scheduler to anticipate this change and resize the SGA just
in time to accommodate the regularly repeating change in access patterns.

--

This is an excerpt from the bestselling book “Oracle Tuning: The
Definitive Reference” (http://www.rampant-
books.com/book_2005_1_awr_proactive_tuning.htm) by Alexey
Danchenkov (http://www.wise-oracle.com/) and Donald Burleson
(http://www.dba-oracle.com/books.htm) , technical editor Mladen
Gogala.

Incorporating the principles of artificial intelligence, Oracle10g has
developed a sophisticated mechanism for capturing and tracking
database performance over time periods. This new complexity has
introduced dozens of new v$ and DBA views, plus dozens of
Automatic Workload Repository (AWR) tables.

http://www.rampantbooks.com/book_2005_1_awr_proactive_tuning.htm
http://www.wise-oracle.com/
http://www.dba-oracle.com/books.htm

The AWR and its interaction with the Automatic Database Diagnostic Monitor (ADDM) is
a revolution in database tuning. By understanding the internal workings of the AWR tables,
the senior DBA can develop time-series tuning models to predict upcoming outages and
dynamically change the instance to accommodate the impending resource changes.

This is not a book for beginners. Targeted at the senior Oracle DBA, this book dives deep
into the internals of the v$ views, the AWR table structures and the new DBA history views.
Packed with ready-to-run scripts, you can quickly monitor and identify the most challenging
performance issues.

