Oracle Instance Tuning Techniques

Oracle professionals know that you must optimizer your database by tuning global
parameters before detailed application tuning can proceed. This excerpt reviews proven
techniques for tuning any Oracle instance and has scripts to ensure that your database is
optimized for its application load.

This is an excerpt from the bestselling book “Oracle Tuning: The Definitive Reference”

(http://www.rampant-books.com/book 2005 1 awr proactive tuning.htm) by Alexey

Danchenkov and Donald Burleson, technical editor Mladen Gogala. To supplement the
script

Viewing table and index access with AWR

One of the problems in Oracle9i was the single bit-flag that was used to monitor index
usage. The flag can be set with the a/ter index x> monitoring nsage command, and see if the
index was accessed by querying the sfobject_usage view.

The goal of any index access is to use the most selective index for a query. This would be
the one that produces the smallest number of rows. The Oracle data dictionary is usually
quite good at this, but it is up to the DBA to define the index. Missing function-based
indexes are a common source of suboptimal SQL execution because Oracle will not use
an indexed column unless the WHERE clause matches the index column exactly.

The WISE tool (http://www.wise-oracle.com/product wise enterprise.htm) is a great
way to quickly plot Oracle time series data and gather signatures for Oracle metrics. The
figure below shows how the WISE tool displays this data. WISE is also able to plot
petformance data on daily or monthly average basis. See http://www.wise-oracle.com
for details.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm
http://www.wise-oracle.com/product_wise_enterprise.htm
http://www.wise-oracle.com

1
CopyView D ataPattem Fiter Add To Chart Statisticfs] Properties
Search Pattern For "Total" physical® Prerfoim Filter Feset Filer
physical read 10 requests 11292.00 0.0z 0.10 j
physical reads H 0,05 0,28
physical reads cache 30281.00 0,05 0,26
physical reads cache prefetch 19328.00 0,03 017
physical reads direct 1308.00 0.00 0.01
nhwsical reads direct fakd 15A.00 n.nn n.nn ;I
Mew Chart Save To HTML Save To Repositony
Chart2
Chart2
L | ||
1,800 F
1,400 ’ 1295857
1200] \\
1,000 f \
800 A
s / } 7\
X AR
rd 1Y 220145
2%z] \ 28571 3‘_\‘-21-/
g 4571 2571 3T 4714 18 13857 6429
O o o o o o o O o o 9O O O 9 9 9 9 o o 0o 9 2 9o d
S § © ©& & o © § © o © ©o o © o 9 9 9 o © © 9 g dg
S = & & F @ & K F & S = & & ¥ & & K 8 & g 5 & 4
Snapshats
(: Hourly Avg: DBDABR:1: physical reads - Total)
Show Only Current DB Series () Toagle Char Chart Thermes Default
Fieport Description Cunent Report “Instance Activity Statistics”
Inskance Activity Statistics, -
* DBWR checkpaint buffers written: Number of buffers that were written For checkpaints. e
4 | »

Figure Output Sfrom the WISE viewer (http:/ /www.wise-
oracle.com/product wise enterprise.htm)

Tracking SQL nested loop joins

As a review, nested loop joins are the most common method for Oracle to match rows in
multiple tables. Nested loop joins always invoke an index and they are never parallelized.
The following awr_nested_join_alert. sq/ script to count nested loop joins per hour:

awr_nested_join_alert.sql

col c1 heading ‘ Date’ format a20

col c2 headi ng ‘ Nest ed| Loops| Count’ format 99, 999, 999
col c3 headi ng ‘ Rows| Processed’ format 99, 999, 999
col c4 heading ‘ D sk| Reads’ format 99, 999, 999
col c5 heading ‘ CPUl Ti ne’ format 99, 999, 999

accept nested_thr char pronpt ‘Enter Nested Join Threshol d: *

ttitle ‘Nested Join Threshol d| &ested_t hr’

sel ect
to_char(sn.begin_interval _tine,'yy-nmmdd hh24'") c1,
count (*) c2,
sun(st.rows_processed_del t a) c3,
sun(st . di sk_reads_del ta) c4,
sun(st.cpu_time_delta) c5
from

dba_hi st _snapshot sn,

http://www.wiseoracle.com/product_wise_enterprise.htm

dba_hi st_sql _plan p,
dba_hi st _sqgl stat st

wher e
st.sql _id =p.sql_id
and
sn.snap_id = st.snap_id
and
p. operati on = ‘ NESTED LOOPS
havi ng
count (*) > &hash_thr
group by

begi n_i nterval _ti ne;
SEE CODE DEPOT FOR MORE SCRI PTS
ht t p: // ww. r anpant - books. cond book 2005 1 aw proactive tuning. htm

The output below shows the number of total nested loop joins during the snapshot
period along with a count of the rows processed and the associated disk I/O. This report
is useful where the DBA wants to know if increasing pga_aggregate_target will improve
performance.

Nested Loop Joi n Threshol ds

Nest ed

Loops Rows Di sk CPU
Dat e Count Pr ocessed Reads Ti me
04- 10- 10 16 22 750 796 4,017,301
04- 10- 10 17 25 846 6 3,903,560
04- 10- 10 19 26 751 1,430 4,165,270
04- 10- 10 20 24 920 3 3,940,002
04-10-10 21 25 782 5 3,816,152
04- 10- 11 02 26 905 0 3,935,547
04- 10- 11 03 22 1, 001 0 3,918,891
04- 10- 11 04 29 757 8 3,939,071

In the report above, nested loops are favored by SQL that returns a small number of
rows_processed than hash joins, which tend to return largest result sets.

The following awr_sql_index.sql sctipt exposes the cumulative usage of database indexes:

awr_sql_index.sql

col cO heading ‘Begin|Interval |[tinme’ format a8

col cl1 heading ‘| ndex| Nane’ format a20
col c2 heading ‘ D sk| Reads’ format 99, 999, 999
col c¢3 headi ng ‘ Rows| Processed’ format 99, 999, 999
sel ect
to_char(s. begin_interval _time,' mmdd hh24') cO,
p. obj ect _nane cl,
sum(t. di sk_reads_total) c2,
sun(t.rows_processed_total) c3
from

dba_hi st_sql _pl an p,
dba_hi st_sqgl stat t,
dba_hi st _snapshot s

wher e
p.sql _id =t.sql_id
and
t.snap_id = s.snap_id
and
p. obj ect _type |ike ' % NDEX%
group by

to_char (s. begi n_interval _time,' nmdd hh24'),

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

p. obj ect _name
order by
c0, cl,c2 desc

SEE_OCODE DEPOT FOR MORE SCR! PTS
htt p: // www. r anpant - books. com book 2005 1 aw proactive tuning. htm

The following is a sample of the output where the stress on every important index is
shown over time. This information is important for placing index blocks into the KEEP
pool to reduce disk reads and for determining the optimal setting for the important
optimizer_index_caching parameter.

Begi n

I nterval | ndex D sk Rows
tine Narre Reads Pr ocessed
10-14 12 | _CACHE_STATS 1 114
10-14 12 | _CO._USAGE$ 201 8,984
10-14 12 | _FILE1 2 0
10-14 12 1 _IND1 93 604
10-14 12 |1 _JOB_NEXT 1 247, 816
10- 14 11 | _KOPML 4 2,935
10-14 11 | _MON_MODS$_0BJ 12 28, 498
10-14 11 | _OBJ1 72,852 604
10-14 11 | _PARTOBI$ 93 604
10-14 11 | _SCHEDULER JOB2 4 0
10- 14 11 SYS (002433 302 4,629
10- 14 11 SYS | OT_TCP_8540 0 75, 544
10-14 11 SYS_ | OT_TCP_8542 1 4,629
10- 14 11 WRH$_DATAFI LE_PK 2 0
10- 14 10 WRH$_SEG STAT_OBJ_PK 93 604
10-14 10 WRH$_TEMPFI LE_PK 0
10-14 10 WRI $_ADV_ACTI ONS_PK 38 1, 760

The above report shows the highest impact tables.

The following awr_sql_index_access.sq/ script will summarize index access by snapshot

period.

awr_sql_index_access.sql

col cl1 heading ‘ Begin|Interval|Tine’ format a20
col c2 headi ng ‘I ndex| Range| Scans’ fornmat 999, 999
col c¢3 headi ng ‘ I ndex| Uni que| Scans’ fornat 999, 999
col c4 heading ‘Index|Full|Scans’ format 999, 999

sel ect
r.cl cl,
r.c2 c2,
u.c2 c3,
f.c2 c4
from

sel ect
to_char(sn.begin_interval _time,'yy-nmdd hh24') c1,
count (1) c2
from
dba_hi st_sql _pl an p,
dba_hi st _sql stat s,
dba_hi st _snapshot sn
wher e

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

p. obj ect _owner <> ' SYS'

and
p.operation |ike ' 9% NDEX%
and
p.options |ike ' %RANGEY%
and
p.sql _id = s.sql _id
and
s.snap_id = sn.snap_id
group by
to_char(sn. begin_i nterval _tine,"'yy-mmdd hh24')
order by
1)r,
(
sel ect
to_char(sn. begin_interval _tinme,'yy-mmdd hh24') c1,
count (1) c2
from

dba_hi st _sqgl _plan p,
dba_hi st _sqgl stat s,
dba_hi st _snapshot sn

wher e
p. obj ect _owner <> 'SYS
and
p.operation |ike ' % NDEX%
and
p.options |ike ' %N QUE%
and
p.sql _id = s.sql _id
and
s.snap_id = sn.snap_id
group hy
to_char(sn. begin_i nterval _tine,"'yy-mmdd hh24")
order by
1) u,
(
sel ect
to_char(sn. begin_interval _tinme,'yy-mmdd hh24') c1,
count (1) c2
from

dba_hi st _sqgl _pl an p,
dba_hi st _sql stat s,
dba_hi st _snapshot sn

wher e

p. obj ect _owner <> 'SYS
and

p.operation |ike ' % NDEX%
and

p.options like ' %UL%
and

p.sql _id = s.sql _id
and

s.snap_id = sn.snap_id
group by

to_char (sn. begin_interval _time,"'yy-mm dd hh24")

order by
1) f
wher e

r.cl =u.cl
and
r.cl =f.cl

’SEE CODE DEPOT FOR MORE SCRI PTS
http: //ww. ranpant - books. com book 2005 1 aw proactive tuning. htm

The sample output below shows those specific times when the database performs unique
scans, index range scans and index fast full scans:

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Begi n I ndex I ndex | ndex

I nterval Range Uni que Ful |
Ti me Scans Scans Scans
04-10-21 15 36 35 2
04-10-21 19 10 8 2
04-10-21 20 8 2
04-10-21 21 8 2
04-10-21 22 11 8 3
04-10-21 23 16 11 3
04-10-22 00 10 9 1
04-10-22 01 11 8 3
04-10-22 02 12 8 1
04-10-22 03 10 8 3
04-10-22 04 11 8 2
04-10-22 05 8 3
04-10-22 06 8 2
04-10-22 07 10 8 3
04-10-22 08 8 2
04-10-22 09 8 2

SQL object usage can also be summarized by day-of-the-week:

awr_sql_object_avg_dy.sql

col cl1 heading ‘ Obj ect| Nane’ format a30
col c2 heading ‘ Wek Day’ format alb
col c¢3 heading ‘I nvocati on| Count’ format 99, 999, 999

break on cl skip 2
break on c2 skip 2

sel ect

decode(c2, 1, ' Monday', 2, ' Tuesday', 3, ' Wednesday' , 4, ' Thursday', 5, "' Fri day', 6,"' Saturday', 7,

' Sunday') c2,
cl,
c3
from
(
sel ect
p. obj ect _name cl,
to_char(sn.end_interval tine,'d") c2,
count (1) c3
from
dba_hi st _sqgl _plan p,
dba_hi st _sql st at s,
dba_hi st _snapshot sn
wher e
p. obj ect _owner <> 'SYS
and
p.sql _id = s.sql _id
and
s.snap_id = sn.snap_id
group by

p. obj ect _nane,
to_char(sn.end_interval _tine,'d")
order by
c2,cl
)

éEE CODE DEPOT FOR MORE SCRI PTS
htt p://ww. ranpant - books. com book 2005 1 aw proactive tuni ng. htm

The output below shows the top objects within the database during each snapshot period.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Tuesday

Wdnesday

When these results are posted, the result is a well-defined signature that emerges for
particular tables, access plans and SQL statements. Most Oracle databases are remarkably
predictable, with the exception of DSS and ad-hoc query systems, and the DBA can
quickly track the usage of all SQL components.

Understanding the SQL signature can be extremely useful for determining what objects
to place in the KEEP pool, and to determining the most active tables and indexes in the

database.

hj ect
Nane

CUSTOMER

CUSTOMVER ORDERS
CUSTOMER_ORDERS_PRI MARY
MGMI_CURRENT _METRI CS_PK
MGMI_FAI LOVER_TABLE
MGMT_JOB
MGMI_JOB_EMD_STATUS QUEUE
MGMT_JOB_EXECUTI ON
MGMI_JOB_EXEC | DX01
MGMI_JOB_EXEC_SUMMVARY
MGMI_JOB_EXEC_SUWM | DX04
MGMI_JOB_PK

MGMI_NMETRI CS

MGMI_METRI CS_1HOUR PK

CUSTOVER
CUSTOMER _CHECK

CUSTOMER _PRI MARY
CUSTOMVER_ORDERS
CUSTOMER_ORDERS_PRI MARY
LOGWNR_LOGS

LOGWNR LOGS_PK
LOGSTDBY$PARAVETERS
MGMI_CURRENT METRI CS_PK
MGMI_FAI LOVER_TABLE
MGVT_JCB
MGMI_JOB_EMD_STATUS QUEUE
MGMT_JOB_EXECUTI ON
MGMI_JOB_EXEC | DX01
MGMT_JOB_EXEC_SUMVARY
MGMI_JOB_EXEC_SUWM | DX04
MGMI_JOB_PK

MGMI_METRI CS

CURRENT_SEVERI TY_PRI MARY_KEY
MGMI_CURRENT _METRI CS_PK
MGMI_CURRENT_SEVER! TY
MGMI_FAI LOVER TABLE

MGMT_JCB

MGMI_JOB_EMD_STATUS QUEUE
MGMT_JOB_EXECUTI ON
MGMI_JOB_EXEC | DX01
MGMT_JOB_EXEC_SUMVARY
MGMI_JOB_EXEC_SUWM | DX04

I nvocati on
Count

Once a particular SQL statement for which details are desired has been identified, it is
possible to view its execution plan used by optimizer to actually execute the statement.
The query below retrieves an execution plan for a particular SQL statement of interest:

awr_sql_details.sql

accept sqglid pronpt ‘Please enter SQ_ ID *

col cl1 heading ‘ Qperation’ format a20
col c2 heading ‘ Options’ format a20
col c3 headi ng ‘* Obj ect| Nan®e’ format a25
col c4 heading ‘ Search Col umms’ format 999, 999
col c5 heading ‘ Cardinality’ format 999, 999
sel ect

operation cl,

opti ons c2,

obj ect _nane c3,

sear ch_col ums c4,

cardinality c5
from

dba_hi st_sqgl _plan p
wher e

p.sql _id = "&sqlid

order by

p.id;

SEE CODE DEPOT FOR MORE SCRI PTS
htt p: // ww. r anpant - books. com book 2005 1 aw proactive tuning. htm

This is one of the most important of all of the SQL tuning tools. Here is a sample of the
output from this script:

Sear ch

Operation Opti ons Nare Cols Cardinality
SELECT STATEMENT 0

VI EW 3 4
SORT ORDER BY 4 4
VI EW 2 4
UNI ON- ALL 0

FI LTER 6

NESTED LOOPS OUTER 0 3
NESTED LOOPS ANTI 0 3
| NDEX UNI QUE SCAN STATSS$I DLE_EVENT_PK 1 46
TABLE ACCESS BY | NDEX ROW D STATS$SYSTEM EVENT 0 1
| NDEX UNI QUE SCAN STATS$SYSTEM EVENT_PK 4 1
FI LTER 0

FAST DUAL 1 1

The following section will show how one can count the frequency that indexes are used
within Oracle.

Counting index usage inside SQL

Prior to Oracle9i, it was very difficult to see if an index was being used by the SQL in the
database. It required explaining all of the SQL in the library cache into a holding area and
then parsing through the execution plans for the index name. Things were simplified
slightly in Oracle9i when the primitive ALTER INDEX XXX MONITORING
command and the ability to see if the index was invoked were introduced.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

One problem has always been that it is very difficult to know what indexes are the most
popular. In Oraclel0g, it is easy to see what indexes are used, when they are used and the
context in which they are used. The following is a simple AWR query that can be used to
plot index usage:

index_usage_hr.sql

col cl1 heading ‘Begin|Interval |tine’ format a20

col c2 headi ng ‘ Search Col ums’ format 999

col c3 headi ng ‘I nvocati on| Count’ format 99, 999, 999
break on cl1 skip 2

accept idxnane char pronpt ‘Enter |ndex Nane:

ttitle ‘lInvocation Counts for index|& dxname’

sel ect
to_char(sn. begi n_interval _time,'yy-mmdd hh24') cl,
p. sear ch_col ums c2,
count (*) c3
from

dba_hi st _snapshot sn,
dba_hi st _sqgl _pl an p,
dba_hi st _sql st at st

wher e

st.sql _id =p.sql_id
and

sn.snap_id = st.snap_id
and

p. obj ect _nanme = ‘ & dxnane'
group by

begi n_i nterval _tine, search_col ums;
SEE CODE DEPOT FOR MORE SCRI PTS
htt p: // www. r anpant - books. coml book 2005 1 aw proactive tuning. htm

The query will produce an output showing a summary count of the index specified during
the snapshot interval. This can be compared to the number of times that a table was
invoked from SQL. Here is a sample of the output from the script:

I nvocation Counts for cust_index

Begi n
I nt erval I nvocati on
time Search Col ums Count
04- 10- 21 15
04- 10- 10 16
04- 10- 10 19
04- 10- 11 02
04- 10- 11 04
04- 10- 11 06
04-10-11 11
04-10- 11 12
04- 10- 11 13
04- 10- 11 15
04- 10- 11 17
04- 10- 11 18
04- 10- 11 19
04-10- 11 20
04-10-11 21

OCWOROONOOWNOROR
P~NRPRPRAWRNRPRRPRPNNRPP®

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Figure 15.24 shows a sample screenshot of a time-series plot produced by the WISE tool
(http://www.wise-oracle.com/product wise professionalhtm) for index access.

CopyYiew Data Pattem Fiter

SYSMAN. MGMT_PARAMETERS_IDE_01

Mew Chart1

TNDEX

| | é4dd To Chart
SVSIMAN, MGMT_CURRENT_METRICS_PK INDEX (UNIQUE) 1.00
SYSMAN, MGMT_I0B_EXEC D% INDE | s
SVSMAN MGMT JOB_EXEC_SUMM_IDX04 INDEX 2.00
SYSMAN MGMT_JOB_PK INDEX (UNIGUE) 5.00
SYSMAN.MGMT _METRICS_HOUR_PK INDEX (UNIGUE) 2.00
SYSMAN.MGMT_METRICS TD_01 INDEX (UNIGLUE) 1.00
SVSMAN MGMT_METRICS RAW_PK INDEX (UNIGUE) 6~ 2,00
SYSMAN MGMT _METRIC_COLLECTIONS REP_PK | INDEX (UNIGLUE) 1.00

1.00

Statistics] Properties

=l

Save To HTML Save To Repositony

Chart1

Snapshots

W e O) L) P 03— WD P 3o L P O) = (0L P (= (L) P (O (L0 F O (00 o (O 0
T oo A NANNNODE DO TS TOWWWDDD 000 ORREREREEDDDD DD DD
cogooogogoogoooogogoogoooogoooo00ogoogooOooooogoog
Ll B B - T e A B - B T

I DEDAER:1: SYSMAN. MGMT_METRICS_RAW_PK - Invocation Caunt)

Toggle Chart Chart Themes Default
Cunent Report 'lmvocation Count'!

Show Only Current DB Series (0
Report Description

Figure 15.24: Index invocation count time-series
(http://lwww.wise-oracle.com/product wise professional.htm) .

plot in WISE

tool

The AWR SQL tuning tables offer a wealth of important time metrics. This data can also

be summed up by snapshot period giving an overall view of how Oracle is accessing the
table data.

awr_access_counts.sql

ttile ‘Tabl e Access| Qperation Counts|Per Snapshot Period’

col

cl heading ‘Begin|Interval |[tinme’ format a20
col c2 heading ‘ Operation’ format alb
col c¢3 heading ‘ Option’ format alb
col c4 headi ng ‘ Ooj ect| Count’ format 999, 999

break on cl skip 2
break on c2 skip 2

sel ect

to_char(sn. begin_interval _tinme,'yy-mmdd hh24')

cl,
p. operation c2,

p. opti ons c3,
count (1) c4
from

dba_hi st_sql _pl an p,

dba_hi st_sqgl stat s,

dba_hi st _snapshot sn
wher e

p. obj ect _owner <> 'SYS
and

p.sqgl_id = s.sql _id

http://www.wise-oracle.com/product_wise_professional.htm
http://www.wise-oracle.com/product_wise_professional.htm

and
s.snap_id = sn.snap_id
group by
to_char (sn. begin_interval _tinme,'yy-mmdd hh24'),
p. oper ati on,
p. opti ons
order by
1,2, 3;
SEE CODE DEPOT FOR MORE SCRI PTS
ht t p: // waw. r anpant - books. cond book 2005 1 aw proactive tuning. htm

The output of the query is shown below, and it includes overall total counts for each
object and table access method.

Begi n

I nterval oj ect
tine Qperati on Option Count
04- 10- 15 16 | NDEX UN QUE SCAN 1
04- 10- 15 16 TABLE ACCESS BY | NDEX ROWN D 1
04- 10- 15 16 FULL 2
04- 10- 15 17 | NDEX UN QUE SCAN 1
04- 10- 15 17 TABLE ACCESS BY | NDEX ROWN D 1
04- 10- 15 17 FULL 2
04- 10- 15 18 | NDEX UN QUE SCAN 1
04- 10- 15 18 TABLE ACCESS BY | NDEX ROW D 1
04- 10- 15 18 FULL 2
04-10- 15 19 1 NDEX UN QUE SCAN 1
04-10- 15 19 TABLE ACCESS BY | NDEX ROW D 1
04- 10- 15 19 FULL 2
04- 10- 15 20 | NDEX UNI QUE SCAN 1
04-10- 15 20 TABLE ACCESS BY | NDEX ROW D 1
04- 10- 15 20 FULL 2
04-10-15 21 | NDEX UNI QUE SCAN 1
04-10-15 21 TABLE ACCESS BY | NDEX ROW D 1
04-10-15 21 FULL 2

If the DBA has a non-OLTP database that regularly performs large full-table and full-
index scans, it is helpful to know those times when the full scan activity is high. The
following query will yield that information:

awr_sql_full_scans.sql

kkkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkk*kkkkx**x*%x

-- Copyright © 2005 by Ranpant TechPress
-- This script is free for non-commercial purposes
-- with no warranties. Use at your own risk.

-- To license this script for a commercial purpose,
-- contact info@anpant.cc

LR EEEEEEEEEESEEEEEEEEEEEEEE S SRS S S S SRR EEEEEEEEEES

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

col cl1 heading ‘ Begin|Interval | Ti ne’ format a20
col c2 heading ‘I ndex| Tabl e] Scans’ format 999, 999
col c3 heading ‘ Ful |l | Tabl e|] Scans’ format 999, 999

sel ect
i.cl c1,
i.c2 «c2,
f.c2 «¢3
from
sel ect
to_char(sn. begin_interval tinme,'yy-mmdd hh24') c1,
count (1) c2
from

dba_hi st _sqgl _pl an p,
dba_hi st _sql stat s,
dba_hi st _snapshot sn

wher e
p. obj ect _owner <> ' SYS
and
p. operation |i ke ' %dABLE ACCESS%
and
p.options |ike ' 9% NDEX%
and
p.sqgl_id = s.sql _id
and
s.snap_id = sn.snap_id
group by
to_char(sn. begin_interval _tinme,"'yy-mmdd hh24')
order by
1) i,
sel ect
to_char(sn.begin_interval tine,'yy-mmdd hh24') c1,
count (1) c2
from

dba_hi st_sql _pl an p,
dba_hi st _sql stat s,
dba_hi st _snapshot sn

wher e

p. obj ect _owner <> 'SYS
and

p.operation |i ke ' %9ABLE ACCESS%
and

p.options = 'FULL'
and

p.sql _id = s.sqgl _id
and

s.snap_id = sn.snap_id
group by

to_char(sn. begin_interval _tine,"'yy-mmdd hh24")

order by
1) f
wher e

i.cl =f.cl

éEE CODE DEPOT FOR MORE SCRI PTS
ht t p: // waw. r anpant - books. cond book 2005 1 aw proactive tuning. htm

The output below shows a comparison of index-full scans versus full-table scans.

Begi n | ndex Ful |
I nterval Tabl e Tabl e
Ti e Scans Scans

04-10-21 15 53 18

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

04-10-21 17 3 3
04-10-21 18 1 2
04-10-21 19 15 6
04-10-21 20 6
04-10-21 21 6
04-10-21 22 16 6
04-10-21 23 21 9
04-10-22 00 16 6
04-10-22 01 6
04-10-22 02 17 6
04-10-22 03 15 6

Knowing the signature for large-table full-table scans can help in both SQL tuning and
instance tuning. For SQL tuning, this report will tell when to drill down to verify that all
of the large-table full-table scans are legitimate. Once verified, this same data can be used
to dynamically reconfigure the Oracle instance to accommodate the large scans.

With that introduction to the indexing component, it will be useful to learn how to use
the AWR data to track full-scan behavior over time.

Tracking full scan access with AWR

All of the specific SQL access methods can be counted and their behavior tracked over
time. This is especially important for large-table full-table scans (LTFTS) because they
are a common symptom of suboptimal execution plans (i.e. missing indexes).

Once it has been determined that the large-table full-table scans are legitimate, the DBA
must know those times when they are executed so that a selective parallel query can be
implemented, depending on the existing CPU consumption on the server. OPQ drives
up CPU consumption, and should be invoked when the server can handle the additional
load.

awr_full_table_scans.sql

ttile ‘Large Full-table scans|Per Snapshot Period’

col cl1 heading ‘Begin|Interval |tine’ format a20
col c4 heading ‘ FTS| Count’ format 999, 999

break on cl skip 2
break on c2 skip 2

sel ect
to_char(sn. begin_interval _time,'yy-mmdd hh24') c1,
count (1) c4
from

dba_hi st_sql _pl an p,
dba_hi st _sql stat s,
dba_hi st _snapshot sn,

dba_segnent s (o]
wher e

p. obj ect _owner <> ' SYS'
and

p. obj ect _owner = 0. owner
and

p. obj ect _nanme = o. segnent _nane
and

0. bl ocks > 1000

and
p.operation |i ke ' %9ABLE ACCESS%
and
p.options |ike ' %ULL%
and
p.sql _id = s.sqgl _id
and
s.snap_id = sn.snap_id
group by
to_char(sn. begin_interval _tine,"'yy-mmdd hh24")
order by
1:

SEE' CODE DEPOT FOR MORE SCRI PTS
htt p: // ww. r anpant - books. com book 2005 1 aw proactive tuning. htm

The output below shows the overall total counts for tables that experience large-table
full-table scans because the scans may be due to a missing index.

Large Full-table scans
Per Snapshot Peri od

Begi n

I nt erval FTS
time Count
04- 10- 18 11
04- 10- 21 17
04- 10- 21 23
04- 10- 22 15
04- 10- 22 16
04- 10- 22 23
04- 10- 24 00
04- 10- 25 00
04- 10- 25 10
04- 10- 25 17
04- 10- 25 18
04-10-25 21
04- 10- 26 12
04- 10- 26 13
04- 10- 26 14
04- 10- 26 15
04- 10- 26 16
04- 10- 26 17
04- 10- 26 18
04- 10- 26 23
04- 10- 27 13
04- 10- 27 14
04- 10- 27 15
04- 10- 27 16
04- 10- 27 17
04- 10- 27 18
04- 10- 27 19
04- 10- 28 12
04- 10- 28 13
04- 10- 29 13

[N

N =
ONNRPNWARWONNWARMPRPWOWWRRPFRPONMNMNNNDNNNEN

This data can be easily plotted to see the trend for a database as shown in Figure 15.25:

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Large fulttable scans

25

15 A
" A\ /
—

I:I T T 17T 1T 17T 17T 17T 17T T 1T 1T 1T 1T T 1T T T T T 1T 17T T 1T 1T 1771
m“fﬁ}"h{?hﬁﬂ}ﬂa&?\‘hh%fﬁmﬁﬂﬁﬁ
(g L S R A
':::f Ry ﬁ'&u’q’ﬁ o ':::f{]" Qﬂ' ':::f{]" {:’{]"{:ﬂ' U{L qu' {:rq' {:’q"

FHFFHFFFFHF X F
Figure 15.25: — Trends of large-table full-table scans

Scan Count

Search for Symptoms! One of the most
common manifestations of suboptimal
SQL execution is a large-table full-table
scan. Whenever an index is missing,
Oracle may be forced to read every row
in the table when an index might be
faster.

If the large-table full-table scans are legitimate, the DBA will want to know the periods
that they are invoked, so Oracle Parallel Query (OPQ) can be invoked to speed up the
scans as shown in the awr_sql_access_hr.sq/ script that follows:

awr_sql_access_hr.sql

ttile ‘Large Tabe Full-tabl e scans| Averages per Hour’

col cl1 headi ng ‘ Day| Hour’ format a20
col c2 heading ‘ FTS| Count’ format 999, 999

break on cl skip 2
break on c2 skip 2

sel ect
to_char(sn.begin_interval _tine,'hh24') c1,
count (1) c2
from

dba_hi st_sql _plan p,
dba_hi st _sql stat s,
dba_hi st _snapshot sn,

dba_segnent s o]

wher e

p. obj ect _owner <> ' SYS'
and

p. obj ect _owner = 0. owner
and

p. obj ect _name = o. segnent _nane
and

0. bl ocks > 1000
and

p. operation |i ke ' %9ABLE ACCESS%
and

p.options |ike ' %ULL%
and

p.sql _id = s.sqgl _id
and

s.snap_id = sn.snap_id
group by

to_char(sn. begin_interval _tinme,"' hh24")
order by
1:

SEE OODE DEPOT FOR MORE SCR! PTS
htt p: // ww. r anpant - books. com book 2005 1 aw proactive tuning. htm

The following output shows the average number of large-table full-table scans per hour.

Large Table Full -tabl e scans
Aver ages per Hour

Day FTS
Hour Count
00 4
10 2
11 4
12 23
13 16
14 6
15 17
16 10
17 17
18 21
19 1
23 6

The script below shows the same data for day of the week:

awr_sql_access_day.sql

ttile ‘Large Table Full -tabl e scans| Averages per Week Day’

col cl1 headi ng ‘ Wek| Day’ format a20
col c2 heading ‘ FTS| Count’ format 999, 999

break on cl skip 2
break on c2 skip 2

sel ect
to_char(sn.begin_interval tine,'day') cl,
count (1) c2
from

dba_hi st _sql _pl an p,
dba_hi st _sqgl stat s,
dba_hi st _snapshot sn,

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

dba_segnent s o]
wher e
p. obj ect _owner <> ' SYS
and
p. obj ect _owner = 0. owner
and
p. obj ect _name = o. segnent _nane
and
0. bl ocks > 1000
and
p.operation |i ke ' YddABLE ACCESS%
and
p.options |ike ' %ULL%
and
p.sql _id = s.sqgl _id
and
s.snap_id = sn.snap_id
group by
to_char(sn. begi n_i nterval _tine,'day')
order by
1:

SEE CCDE DEPOT FOR MORE SCRI PTS

http: // wwv. ranpant - books. com book 2005 1 aw proactive tuning. ht m

The following sample query output shows specific times the database experienced large
table scans.

Large Table Full -tabl e scans
Averages per \Wek Day

Veek FTS
Day Count
sunday 2
nonday 19
t uesday 31
wednesday 34
t hur sday 27
friday 15
Sat ur day 2

The awr_sql_scan_sums.sql script will show the access patterns of usage over time. If a
DBA is really driven to know their system, all they need to do is understand how SQL
accesses the tables and indexes in the database to provide amazing insight. The optimal
instance configuration for large-table full-table scans is quite different than the
configuration for an OLTP databases, and the report

awr_sql_scan_sums.sql script will quickly identify changes in table access patterns.

awr_sql_scan_sums.sql

by the

col cl1 heading ‘Begin|Interval|Tinme’ format a20
col c2 heading ‘ Large| Tabl e| Ful | Tabl e| Scans’ format 999, 999
col c3 heading ‘ Smal | | Tabl e| Ful | Tabl e|] Scans’ fornmat 999, 999
col c4 heading ‘ Total | | ndex| Scans’ format 999, 999
sel ect

f.cl ci

f.c2 c2

s.c2 c¢3

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

i.c2 c4
from

sel ect
to_char(sn. begi n_i nterval _tine,"'yy-mmdd hh24")
count (1) c2
from
dba_hi st_sql _pl an p,
dba_hi st _sql stat s,
dba_hi st _snapshot sn

dba_segnent s o]
wher e
p. obj ect _owner <> 'SYS
and
p. obj ect _owner = o.owner
and
p. obj ect _nanme = o. segnent _nane
and
0. bl ocks > 1000
and
p.operation |ike ' %dABLE ACCESS%
and
p.options |ike ' 9%ULL%
and
p.sql _id = s.sql _id
and
s.snap_id = sn.snap_id
group by

to_char(sn. begin_i nterval _tine,"'yy-mmdd hh24")
order by

1) f,

(

sel ect
to_char(sn. begin_interval _time,"'yy-mmdd hh24')
count (1) c2

from

dba_hi st _sqgl _pl an p,
dba_hi st_sql stat s,
dba_hi st _snapshot sn

dba_segnent s [0}
wher e
p. obj ect _owner <> 'SYS
and
p. obj ect _owner = o.owner
and
p. obj ect _nanme = o. segnment _nane
and
0. bl ocks < 1000
and
p.operation |ike ' 9% NDEX%
and
p.sql _id = s.sql _id
and
s.snap_id = sn.snap_id
group by
to_char(sn. begin_i nterval _tine,"'yy-mmdd hh24')
order by
1) s,
sel ect
to_char(sn. begin_interval _time,"'yy-mm dd hh24")
count (1) c2
from

dba_hi st _sqgl _pl an p,

dba_hi st _sqgl stat s,

dba_hi st _snapshot sn
wher e

p. obj ect _owner <> 'SYS
and

p.operation |ike ' % NDEX%
and

cl,

cl,

cl,

p.sql _id = s.sql _id

and
s.snap_id = sn.snap_id
group by
to_char(sn. begin_i nterval _tine,"'yy-mmdd hh24')
order by
1) i
wher e
f.cl =s.cl
and
f.cl =i.cl

éEE CODE DEPOT FOR MORE SCRI PTS
ht t p: // ww. r anpant - books. cond book 2005 1 aw proactive tuning. htm

The sample output looks like the following, where there is a comparison of index versus
table scan access. This is a very important signature for any database because it shows, at
a glance, the balance between index (OLTP) and data warehouse type access.

Large Smal |
Begi n Tabl e Tabl e Tot al
I nt erval Full Table Full Table | ndex
Ti me Scans Scans Scans
04- 10-22 15 2 19 21
04- 10- 22 16 1 1
04- 10- 25 10 18 20
04- 10- 25 17 9 15 17
04- 10- 25 18 1 19 22
04-10-25 21 19 24
04- 10- 26 12 23 28
04- 10- 26 13 3 17 19
04- 10- 26 14 18 19
04- 10- 26 15 11 4 7
04- 10- 26 16 4 18 18
04- 10- 26 17 17 19
04- 10- 26 18 3 17 17
04- 10- 27 13 2 17 19
04- 10- 27 14 3 17 19
04- 10- 27 15 4 17 18
04- 10- 27 16 17 17
04- 10- 27 17 3 17 20
04- 10- 27 18 17 20 22
04- 10- 27 19 1 20 26
04- 10- 28 12 22 17 20
04- 10- 28 13 2 17 17
04- 10- 29 13 9 18 19

This is a very important report because it shows the method with which Oracle is
accessing data over time periods. This is especially important because it shows when the
database processing modality shifts between OLTP (firsz_rows index access) to a batch
reporting mode (a//_rows full scans) as shown in Figure 15.20.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

30

25

20

Large table scans
—— Small table scans
------- Index Access

15

10

=]
S~

-

04-10-22 15
04-10-25 10
04-10-26 12]
04-10-26 14
04-10-26 16
04-10-26 18
04-10-27 14
04-10-27 16
04-10-27 18
04-10-28 12
04-10-29 13

Figure 15.26: Plot of full scans vs. index access

The example in Figure 15.26 is typical of an OLTP database with the majority of access
being via small-table full-table scans and index access. In this case, the large-table full-
table scans must be carefully checked, their legitimacy verified for such things as missing
indexes, and then they should be adjusted to maximize their throughput.

Of course, in a really busy database, there may be concurrent OLTP index access and
full-table scans for reports and it is the DBA’s job to know the specific times when the
system shifts table access modes as well as the identity of those tables that experience the
changes.

The ftollowing awr_sq/_full_scans_avg_dy.sq/ script can be used to roll-up average scans into
daily averages.

awr_sql_full_scans_avg_dy.sql

col cl1 heading ‘ Begin|Interval | Ti ne’ format a20
col c2 headi ng ‘ I ndex| Tabl e| Scans’ fornmat 999, 999
col c3 heading ‘ Ful |l | Tabl e|] Scans’ format 999, 999

sel ect
i.cl «cl,
i.c2 c2,
f.c2 «c3
from
(
sel ect
to_char(sn. begin_interval _tinme,'day') c1,
count (1) c2
from

dba_hi st_sql _pl an p,

dba_hi st_sql stat s,

dba_hi st _snapshot sn
wher e

p. obj ect _owner <> ' SYS

and
p.operation |i ke ' YddABLE ACCESS%
and
p.options |ike ' 9% NDEX%
and
p.sql _id = s.sqgl _id
and
s.snap_id = sn.snap_id
group by

to_char(sn. begin_interval _tine, ' day')
order by

1) i,
(
sel ect
to_char(sn. begin_interval _time,"'day")
count (1) c2
from

dba_hi st _sql _pl an p,
dba_hi st _sqgl stat s,
dba_hi st _snapshot sn

wher e

p. obj ect _owner <> ' SYS
and

p.operation | i ke ' YddABLE ACCESS%
and

p.options ="'FULL
and

p.sql _id = s.sql _id
and

s.snap_id = sn.snap_id
group by

to_char(sn. begin_interval tine,"'day')

order by
1) f
wher e

i.cl =f.cl

,SEE CODE DEPOT FOR MORE SCRI PTS

cl,

ht t p: // www. r anpant - books. coni book 2005 1 aw _proactive tuni ng. ht m

The sample output is shown below:

Begi n | ndex Ful

I nterval Tabl e Tabl e
Ti me Scans Scans
sunday 393 189
nonday 383 216
t uesday 353 206
wednesday 357 178
t hur sday 488 219
friday 618 285
sat ur day 400 189

For example, the signature shown in Figure 15.27 below indicates that Fridays are very

high in full-table scans, probably as the result of weekly reporting.

http://www.rampant-books.com/book_2005_1_awr_proactive_tuning.htm

Fao

g00 &'

a00 / \
400 | e 4 = FLill-table scan

300 = FLl-index scan

Scans

200 -ﬁ.—-&--.;.__,/\\

100

I:I I I I I

&P
(Qp ‘@@e‘:"é} @“} %'}@

Figure 15.27: Plot of full scans

With this knowledge, the DBA can anticipate the changes in processing from index
access to LTFTS access by adjusting instance configurations.

Whenever the database changes into a mode dominated by LTFTS, the data buffer sizes,
such as db_cache_size and db_nk_cache_size, can be decreased. Since parallel LTFTS bypass
the data buffers, the intermediate rows are kept in the pga_aggregate_target region. Hence,
it may be desirable to use dbwzs_scheduler to anticipate this change and resize the SGA just
in time to accommodate the regularly repeating change in access patterns.

This is an excerpt from the bestselling book ‘Oracle Tuning: The
ﬂ_ il [LIS Definitive Reference” (http://swww.rampant-
5 books.com/book 2005 1 awr proactive tuning.htm) by Alexey
Danchenkov (http://www.wise-oracle.com/) and Donald Butleson
(http:/ /www.dba-oracle.com/books.htm) , technical editor Mladen
Gogala.

Incorporating the principles of artificial intelligence, Oracle10g has
developed a sophisticated mechanism for capturing and tracking
database performance over time periods. This new complexity has
introduced dozens of new v§ and DBA views, plus dozens of
Automatic Workload Repository (AWR) tables.

http://www.rampantbooks.com/book_2005_1_awr_proactive_tuning.htm
http://www.wise-oracle.com/
http://www.dba-oracle.com/books.htm

The AWR and its interaction with the Automatic Database Diagnostic Monitor (ADDM) is
a revolution in database tuning. By understanding the internal workings of the AWR tables,
the senior DBA can develop time-series tuning models to predict upcoming outages and
dynamically change the instance to accommodate the impending resource changes.

This is not a book for beginners. Targeted at the senior Oracle DBA, this book dives deep
into the internals of the v§ views, the AWR table structures and the new DBA history views.
Packed with ready-to-run scripts, you can quickly monitor and identify the most challenging
performance issues.

