Inside Oracle10g Dynamic Sampling
Donald K. Burleson

One of the greatest problems with the Oracle CBO was the failure of the Oracle DBA to gather accurate schema XE "schema" statistics. Even with the dbms_stats XE "dbms_stats" package, the schema statistics were often stale and the DBA did not always create histograms for skewed data columns and data columns that are used to estimate the size of SQL intermediate result sets.

This resulted in a bum rap for Oracle’s CBO, and beginner DBA’s often falsely accused the CBO of failing to generate optimal execution plans when the real cause of the sub-optimal execution plan XE "execution plan" was the DBA’s failure to collect complete schema XE "schema" statistics.

Using the enhanced dbms_stats XE "dbms_stats" package, Oracle will automatically estimate the sample size, detect skewed columns that would benefit from histograms, and refresh the schema XE "schema" statistics when they become stale. This automates a very important DBA task and ensures that Oracle always has the statistics that it needs to make good execution plan XE "execution plan" choices.

However, there was always a nagging problem with the CBO. Even with good statistics, the CBO would sometimes determine a sub-optimal table-join order causing unnecessarily large intermediate result sets.

Even with the best schema XE "schema" statistics, it can be impossible to predict the optimal table join order, the table join order that has the smallest intermediate baggage. As can be expected, reducing the size of the intermediate row sets can greatly improve the speed of the query.

If one were to assume that there is a three-way table join against tables that all contain over 10,000 rows each. This database has 50,000 student rows, 10,000 course rows and 5,000 professor rows as shown in Figure 10.2.

[image: image1.emf]Student

Course Professor

Figure 10.2: Number of rows in each table.
If the number of rows in the table determined the best table join order, the expectation would be that any 3-way table join would start by joining the professor and course tables, and then join the RESULT set to the student table.

However, whenever there is a WHERE clause, the total number of rows in each table does not matter if index access is being used. The following is the query:

select

 student_name

from

 professor

natural join

 course

natural join

 student

where

 professor = ‘jones’

and

 course = ‘anthropology 610’;

Stan Nowakowski

Bob Crane

James Bakke

Patty O’Furniture

4 Rows selected.

Despite the huge numbers of rows in each table, the final result set will only be four rows. If the CBO can predict the size of the final result, sampling techniques can be used to examine the WHERE clause of the query and determine which two tables should be joined first.

There are only two table join choices in this simplified example:

· Join (student to course) and (RESULT to professor).

· Join (professor to course) and (RESULT to student).

Which option is better? The best solution will be the one where RESULT is smallest. Since the query is filtered with a WHERE clause, the number of rows in each table is incidental, and the real concern is about the number of rows where professor = ‘jones’ and where course = ‘Anthropology 610’.

If this information is already known, the best table join order becomes obvious. Assume that Professor Jones is very popular and teaches 50 courses and that Anthropology 610 has a total of eight students. Knowing this, it becomes apparent that the size of the intermediate row baggage is very different if the intial join is (professor to course) followed by (RESULT to student). This is shown in Figure 10.3:

[image: image2.emf]Student

Course Professor

Join course, professor

Where professor = ‘Jones’;

50 rows

returned.

Figure 10.3: A sub-optimal intermediate row size.

If the CBO were to join the student table to the course table first, the intermediate result set would only be eight rows, far less baggage to carry over to the final join if the join order is (student to course) and (RESULT to professor).

[image: image3.emf]Student

Course Professor

Join student, course

Where course = ‘Anthropology 610’;

8 rows

returned.

Figure 10.4: An optimal intermediate row size.
Now that there are only eight rows returned from the first query, it easy to join the tiny 8-row result set into the professor table to get the final answer.

How is Join Cardinality Estimated?

In the absence of column histograms, the Oracle CBO must be able to guess on this information. Sometimes the guesses are wrong. This is one reason why the ORDERED hint XE "ORDERED hint" is one of the most popular SQL tuning hints. Use of the ORDERED hint allows the DBA to specify that the tables be joined together in the same order that they appear in the FROM clause, like this:

select /+ ORDERED */

 student_name

from

 student

natural join

 course

natural join

 professor

where

 professor = ‘jones’

and

 course = ‘anthropology 610’;

If the values for the professor and course table columns are not skewed, it is unlikely that the 10g automatic statistics would have created histograms buckets in the dba_histograms XE "dba_histograms" view for these columns.

The Oracle CBO needs to be able to accurately estimate the final number of rows returned by each step of the query. The schema XE "schema" metadata from running dbms_stats XE "dbms_stats" is then used to choose the table join order that results in the least amount of baggage (intermediate rows) from each of the table join operations. This can be a daunting task. When an SQL query has a complex WHERE clause it can be very difficult to estimate the size of the intermediate result sets, especially when the WHERE clause transforms column values with mathematical functions.

Oracle9i introduced the new dynamic sampling method for gathering run-time schema XE "schema" statistics, and it is now enabled by default in Oracle10g. However, dynamic sampling is not for every database. When dynamic_sampling XE "dynamic_sampling" was first introduced in Oracle9i, it was used primarily for database systems with complex queries. Since it is enabled by default in Oracle10g, the DBA may want to turn off dynamic_sampling to remove unnecessary overhead if any of the following are true:

· The application is an online transaction processing (OLTP XE "OLTP") database with small, single-table queries.

· The database queries are not frequently re-executed, as determined by the EXECUTIONS column in v$sql XE "v$sql" and executions_delta XE "executions_delta" in dba_hist_sqlstat XE "dba_hist_sqlstat" .
· The system’s multi-table joins have simple WHERE clause predicates with single-column values and no built-in or mathematical functions.

Dynamic sampling is ideal whenever a query is going to execute multiple times because the sample time is small compared to the overall query execution time. By sampling data from the table at runtime, Oracle10g can quickly evaluate complex WHERE clause predicates and determine the selectivity of each predicate, using this information to determine the optimal table join order.

Sample Table Scans

A sample table scan retrieves a random sample of data of whatever size is chosen. The sample can be from a simple table or a complex SELECT statement such as a statement involving multiple joins and complex views.

Some simple SQL queries can be run to peek inside dynamic sampling. The following SQL statement uses a sample block and sample rows scan on the customer table. There are 50,000 rows in this table. The first statement shows a sample block scan and the last SQL statement shows a sample row scan.

select

 count(*)

from

 customer

 sample block(20);

 COUNT(*)

 12268

select

 pol_no,

 sales_id,

 sum_assured,

 premium

from

 customer

 sample (0.02) ;

 POL_NO SALES_ID SUM_ASSURED PREMIUM

---------- ---------- ----------- ---------- --

 2895 10 2525 2

 3176 10 2525 2

 9228 10 2525 2

 11294 11 2535 4

 19846 11 2535 4

 25547 12 2545 6

 29583 12 2545 6

 40042 13 2555 8

 47331 14 2565 10

 45283 14 2565 10

10 rows selected.

Just as the data can be sampled with SQL, the Oracle10g CBO can sample the data prior to formulating the execution plan XE "execution plan" . For example, the new dynamic_sampling XE "dynamic_sampling" SQL hint can be used to sample rows from the table:

select /*+ dynamic_sampling (customer 10) */

 pol_no,
 sales_id,
 sum_assured,
 premium

from
 customer;
 POL_NO SALES_ID SUM_ASSURED PREMIUM

---------- ---------- ----------- ---------- --

 2895 10 2525 2

 3176 10 2525 2

 9228 10 2525 2

 11294 11 2535 4

 19846 11 2535 4

 25547 12 2545 6

 29583 12 2545 6

 40042 13 2555 8

 47331 14 2565 10

 45283 14 2565 10

10 rows selected.

Dynamic sampling addresses an innate problem in SQL and this issue is common to all relational databases. Estimating the optimal join order involves guessing the sequence that results in the smallest amount of intermediate row sets, and it is impossible to collect every possible combination of WHERE clauses without real experience upon which to base statistics.

Dynamic sampling is a godsend for databases that have large n-way table joins that execute frequently. By sampling a tiny subset of the data, the Oracle 10g CBO gleans clues as to the fastest table join order.

dynamic_sampling XE "dynamic_sampling" does not take a long time to execute, but it can be an unnecessary overhead for all Oracle10g databases. Dynamic sampling is just another example of Oracle’s commitment to making Oracle10g an intelligent, self-optimizing database.

This text is an excerpt from the new book “Oracle Silver Bullets” ($19.95) by Rampant TechPress. It’s only $19.95 from the publisher and the scripts from this book can be immediately downloaded at this link.

